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Abstract. Let (Ω,Σ, µ) be a measure space and 1 < p < ∞. We show that, under
quite general conditions, the set Lp(Ω)−

⋃
1≤q<p Lq(Ω) is maximal spaceable, that is, it

contains (except for the null vector) a closed subspace F of Lp(Ω) such that dim(F ) =
dim(Lp(Ω)). This result is so general that we had to develop a hybridization technique for
measure spaces in order to construct a space such that the set Lp(Ω)−Lq(Ω), 1 ≤ q < p,
fails to be maximal spaceable. In proving these results we have computed the dimension
of Lp(Ω) for arbitrary measure spaces (Ω,Σ, µ). The aim of the results presented here is,
among others, to generalize all the previous work (since the 1960’s) related to the linear
structure of the sets Lp(Ω)− Lq(Ω) with q < p and Lp(Ω)−

⋃
1≤q<p Lq(Ω).

1. Introduction and preliminaries. This paper is devoted to the
search for what are often large linear spaces of functions enjoying certain
special properties. Let E be a topological vector space and let us consider
such a special property P. We say that the subset M of E formed by all
vectors in E which satisfy P is spaceable if M∪{0} contains a closed infinite-
dimensional subspace. The set M will be called lineable if M ∪ {0} contains
an infinite-dimensional linear (not necessarily closed) space.

The terms “lineability” and “spaceability” were originally coined by
V. Gurariy and they first appeared in [4, 48]. After the first appearance
of this notion, many authors became interested in this topic: see, for in-
stance, the recent works by R. Aron (e.g. [1, 2, 4–6]), P. Enflo [21], V. Gura-
riy [4, 21, 34] or G. Godefroy [9], just to cite some. It is important to recall
that, prior to the publication of [4, 48], some authors (when working with
infinite-dimensional spaces) already found large linear structures enjoying
these type of “special” properties (even though they did not explicitly used
terms like lineability or spaceability). Probably the very first result illus-
trating this was due to B. Levine and D. Milman (1940, [41]):
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Theorem 1.1. The subset of C[0, 1] of all functions of bounded variation
is not spaceable.

Later, the following analogue of this result was proved by V. Gurariy
(1966, [32]):

Theorem 1.2. The set of everywhere differentiable functions on [0, 1] is
not spaceable.

On the other hand (see also [32]):

Theorem 1.3. There exist closed infinite-dimensional subspaces of C[0, 1]
all of whose members are differentiable on (0, 1).

Within the context of subsets of continuous functions, in 1966 V. Gurariy
[33] showed that the set of continuous nowhere differentiable functions on
[0, 1] is lineable. Soon after, V. Fonf, V. Gurariy and M. Kadets [23] showed
that the set of continuous nowhere differentiable functions on [0, 1] is space-
able in C[0, 1]. Actually, much more is known about this set. L. Rodŕıguez-
Piazza [45] showed that the space constructed in [23] can be chosen to
be isometrically isomorphic to any separable Banach space. More recently,
S. Hencl [36] showed that any separable Banach space is isometrically iso-
morphic to a subspace of C[0, 1] whose non-zero elements are nowhere ap-
proximately differentiable and nowhere Hölder. Another set that has also
attracted the attention of several authors is the set of differentiable nowhere
monotone functions on R, which was proved to be lineable (see, e.g., [4, 26]).
We refer the interested reader to [1, 3, 5, 6, 10, 16–18, 24, 25, 27–29, 38, 44]
for recent results on lineability and spaceability, where many more examples
can be found and techniques are developed in several different frameworks.

This paper deals with standard Lp-spaces and canonical concepts of
linear algebra (such as subspaces or dimension), thus it is addressed to a
wide general audience. More particularly, we shall focus on sets of the form
Lp(Ω) −

⋃
1≤q<p Lq(Ω). The study of structural properties of subspaces of

Lp spaces is a classical topic in Banach space theory, dating back to the
early days of the theory (see, e.g., [7, 8]) and developed up to the present
days (see, e.g., [14, 17, 35]).

First of all, let us provide a clear summary and chronological overview
of the spaceability results in this direction throughout the years.

1. H. Rosenthal (1968, [47]) showed that c0 is quasi-complemented in
`∞ (a closed subspace Y of a Banach space X is quasi-complemented
if there is a closed subspace Z of X such that Y ∩Z = {0} and Y +Z
is dense in X); this clearly implies that `∞ − c0 is spaceable.

2. Later, Garćıa-Pacheco, Mart́ın and Seoane-Sepúlveda proved (2009,
[30]) that `∞(Γ )− c0(Γ ) is spaceable for every infinite set Γ . In view
of the previous point, it is interesting to recall that J. Lindenstrauss
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(1968, [42]) proved that, if Γ is uncountable, then c0(Γ ) is not quasi-
complemented in `∞(Γ ).

3. In (2008, [43]), Muñoz-Fernández, Palmberg, Puglisi and Seoane-
Sepúlveda proved that if I is a bounded interval and q > p ≥ 1,
then Lp(I)−Lq(I) is c-lineable. In this same paper it is proved that
both `p − `q and Lp(J) − Lq(J) are c-lineable for any unbounded
interval J and for p > q ≥ 1.

4. One year later (2009, [2]), Aron, Garćıa-Pacheco, Pérez-Garćıa and
Seoane-Sepúlveda showed that the linear subspaces constructed in
[43] can be chosen to be dense.

5. Bernal-González (2010, [13]) provided a series of conditions from
which one can obtain (maximal) lineability (and dense-lineability)
of the set of functions in Lp(X,µ) that are not in Lq(X,µ), where
1 ≤ q 6= p <∞ and µ denotes a regular Borel measure on a topolog-
ical space X.

6. In [31, Theorem 2.6] Garćıa-Pacheco, Pérez-Eslava and Seoane-Sepúl-
veda proved that if (Ω,Σ, µ) is a measure space such that there
exists ε > 0 and an infinite family (An)n∈N ⊂ Σ of pairwise disjoint
measurable sets with µ(An) ≥ ε for all n ∈ N, then

∞⋂
p=1

(L∞(Ω,Σ, µ)− Lp(Ω,Σ, µ)) is spaceable in L∞(Ω,Σ, µ).

7. The results above, somehow, kept evolving and, in ([15], 2011), Bo-
telho, Diniz, Fávaro and Pellegrino proved (for any Banach space X)
that for large classes of Banach (and even quasi-Banach) spaces E
of X-valued sequences, the sets E−

⋃
q∈Γ `q(X) (where Γ ⊂ [0,∞)),

and E − c0(X) are both spaceable in E.
8. Next, and as a consequence of a lecture delivered by V. Fávaro at an

international conference held in Valencia (Spain) in 2010, R. Aron
asked whether the result above ([15, Corollary 1.7]) would hold for
Lp-spaces. This question was answered in the positive (and inde-
pendently) in [14, 17]. More precisely, in [14] Bernal-González and
Ordóñez Cabrera provided a series of conditions on a measure space
(X,M, µ) to ensure the spaceability of the sets

Lp(µ,X)−
⋃

q∈[1,p)

Lq(µ,X), Lp(µ,X)−
⋃

q∈[p,∞)

Lq(µ,X),

Lp(µ,X)−
⋃

q∈[1,∞)−{p}

Lq(µ,X)

(for p ≥ 1); whereas in [17] Botelho, Fávaro, Pellegrino and Seoane-
Sepúlveda obtained a quasi-Banach version of this result by proving
that Lp[0, 1]−

⋃
q>p Lq[0, 1] is spaceable for every p > 0.
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9. In this direction it is also crucial to mention a recent paper [39], where
Kitson and Timoney provided a general result from which some of
the above ones (for the normed case) can be inferred.

At this point, and after all the effort invested in looking for the “optimal”
results on the spaceability of sets of the form Lp(Ω)−Lq(Ω) with p > q and
Lp(Ω)−

⋃
1≤q<p Lq(Ω), we now continue with this ongoing work and provide

rather conclusive contributions in the form of what it is called maximal-
spaceability. In other words, given a measure space (Ω,Σ, µ),

• When does Lp(Ω)−
⋃

1≤q<p Lq(Ω) contain, except for the null vector,

a closed subspace F of Lp(Ω) such that dim(F ) = dim(Lp(Ω))?

Of course, for the above problem to be well-posed we should have µ(Ω) =
+∞. In order to decide whether a subspace of Lp(Ω) has maximal dimension
or not, it is of course crucial to know the dimension of Lp(Ω). So, as a
preparation for the forthcoming results—but with interest on its own—in
Section 2 we compute the dimension of Lp(Ω) for arbitrary measure spaces
(Ω,Σ, µ). In Section 3 we shall benefit from this computation to provide
quite general sufficient conditions for Lp(Ω)−

⋃
1≤q<p Lq(Ω) to be maximal

spaceable. Although the results of Section 3 cover most cases, including all
common Lp(Ω) spaces and some cases never studied before, there might be a
(rather exotic) infinite measure space such that Lp(Ω)−

⋃
1≤q<p Lq(Ω) fails

to be maximal spaceable. In Section 4 we develop a hybridization technique
which, with the help of the results of Sections 2 and 3, provides an example
of a measure space such that even the larger set Lp(Ω)− Lq(Ω) with q < p
fails to be maximal spaceable (of course the conditions given in Section 3
are not fulfilled by this space). By doing this we provide an ultimate answer
to the question of spaceability of the sets of the form Lp−

⋃
1≤q<p Lq for all

measure spaces we are aware of.

Many recent results concern spaceability/maximal spaceability of com-
plements of subspaces of topological vector spaces (sometimes complements
of dense subspaces). For example, [39] provides quite strong results in this
line. So it is important to mention that our results on the maximal space-
ability of Lp(Ω) −

⋃
1≤q<p Lq(Ω) do not require Lq(Ω) to be a subspace of

Lp(Ω) for q < p.

The proofs of the following results use techniques that, to the best of
our knowledge, have never been used before (at least in the context of lin-
eability/spaceability): Lemma 2.2, Theorem 2.3, Lemma 3.1, Theorem 3.4,
Theorem 4.4.

Throughout this paper, K stands for either R or C, #A denotes the
cardinality of the set A, ℵ0 = #N and c = #R, the continuum. The rest of
the notation will be rather usual.
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2. Computing the dimension of Lp(Ω). In this section we compute
the dimension of Lp(Ω), for arbitrary measures spaces (Ω,Σ, µ), in terms
that will reveal useful in the investigation of the maximal spaceability of
Lp(Ω)−

⋃
1≤q<p Lq(Ω).

In this section (Ω,Σ, µ) will denote a measure space and 0 < p <∞.

Definition 2.1.

(i) Σfin := {A ∈ Σ : µ(A) <∞}.
(ii) Two sets A,B ∈ Σfin are equivalent, denoted A ∼ B, if µ((A− B)
∪ (B − A)) = 0. The elements of Σfin/∼ are denoted by [B], for
B ∈ Σfin.

(iii) The cardinal number #Σfin/∼ is called the entropy of the measure
space (Ω,Σ, µ) and is denoted by ent(Ω).

(iv) Given a cardinal number ζ, we say that the measure space (Ω,Σ, µ)
is ζ-bounded if, for every A ∈ Σfin with µ(A) > 0, there are at most
ζ subsets of A with positive measure belonging to different classes
of Σfin/∼.

(v) A set A ∈ Σ is an atom if µ(A) > 0 and there is no B ∈ Σ such
that B ⊂ A and 0 < µ(B) < µ(A).

Lemma 2.2. If ent(Ω) ≥ ℵ0, then there are sets (Bi)i∈N in Σfin such
that µ(Bi) > 0 for every i ∈ N and µ(Bi ∩Bj) = 0 whenever i 6= j.

Proof. Assume first that there is a set A1 ∈ Σfin with µ(A1) > 0 and
containing no atoms. Therefore A1 is not an atom and hence there is a
set A2 ⊂ A1 such that 0 < µ(A2) < µ(A1). By the assumption on the
existence of such A1, we find that A2 is not an atom either. Repeating this
argument we obtain A1 ⊃ A2 ⊃ A3 ⊃ · · · with 0 < µ(Ai+1) < µ(Ai) for
every i. Defining Bi = Ai − Ai+1 we obtain µ(Bi) > 0 for every i ∈ N and
µ(Bi ∩Bj) = 0 for i 6= j.

To complete the proof, suppose now that every B ∈ Σfin with µ(B) > 0
contains an atom. Let B1 ∈ Σfin be an atom. Suppose that we have defined
pairwise disjoint atoms B1, . . . , Bk ∈ Σfin and let us prove that there is a
measurable set B ∈ Σfin such that

µ
(
B −

k⋃
i=1

(B ∩Bi)
)
> 0.

If we suppose that µ(B) = µ(
⋃k
i=1(B∩Bi)) for every measurable set B, then

[B] = [
⋃k
i=1(B∩Bi)] for every measurable set B. In other words, every class

in Σfin/∼ contains a subset of
⋃k
i=1Bi as a representative. Since B1, . . . , Bk

are atoms, the only subsets of
⋃k
i=1Bi that belong to different equivalence

classes are equivalent to either B1, . . . , Bk or unions of some of them. In this
case we have ent(Ω) = 2k, which is absurd. Hence there is a measurable B
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such that µ(B) > µ(
⋃k
i=1(B∩Bi)), that is, µ(B−

⋃k
i=1(B∩Bi)) > 0. So there

is an atom Bk+1 ⊂ B −
⋃k
i=1(B ∩ Bi). Therefore the sets B1, . . . , Bk, Bk+1

∈ Σfin are pairwise disjoint, and, in particular, µ(Bi ∩Bj) = 0 for i 6= j.

Since the continuum hypothesis is not required in what follows, we would
rather prefer not to assume it.

Theorem 2.3.

(a) If ent(Ω) > c, then dim(Lp(Ω)) = ent(Ω).
(b) If ℵ0 ≤ ent(Ω) ≤ c, then dim(Lp(Ω)) = c.
(c) If ent(Ω) ∈ N, then there is k ∈ N such that ent(Ω) = 2k and

dim(Lp(Ω)) = k.

Proof. By χA we denote the characteristic function of the set A ∈ Σ.
Let

W :=
{ n∑
i=1

aiχAi : n ∈ N, ai ∈ K and

Ai is a representative of a class in Σfin/∼
}
.

By [22, Proposition 6.7] we know that Lp(Ω) = W . Therefore

#Lp(Ω) = #W ≤ #{Cauchy sequences in W} ≤ #WN.

Assume that ent(Ω) ≥ c. On the one hand, #W = ent(Ω), hence

#Lp(Ω) ≤ #(Σfin/∼)N = ent(Ω).

On the other hand, if A,B ∈ Σ are not equivalent in Σfin, then χA 6= χB in
Lp(Ω). So ent(Ω) ≤ #Lp(Ω). Therefore #Lp(Ω) = ent(Ω).

(a) Since ent(Ω) > c, we have #Lp(Ω) = ent(Ω) > c. And since the
cardinality of this vector space is greater than the cardinality of the scalar
field, its cardinality and dimension coincide.

(b) Since ent(Ω) ≤ c, again we obtain #Lp(Ω) = #W ≤ c, therefore
dim(Lp(Ω)) ≤ c. On the other hand, since ent(Ω) ≥ ℵ0, by Lemma 2.2
there are countably many sets B1, B2, . . . such that µ(Bi∩Bj) = 0 whenever
i 6= j, all of them of positive measure. Choose a sequence (aj)

∞
j=1 ∈ `p with

aj > 0 for every j and define

f : Ω → K, f(x) =
∞∑
i=1

aj

µ(Bj)1/p
χBj (x).

Notice that
	
Ω |f |

p dµ =
∑∞

i=1 |aj |p, thus f ∈ Lp(Ω). Now let F be a totally
ordered (with respect to the inclusion) family of subsets of N such that
#F = c. For example, identify N with Q and consider the family F =
{(−∞, r) ∩Q : r ∈ R}. Given S ∈ F , define

χS : Ω → K, χS(x) =

{
1 if x ∈ Bj with j ∈ S,
0 otherwise.
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Notice that {fχS : S ∈ F} is a linearly independent subset of Lp(Ω).
Therefore

dim(Lp(Ω)) ≥ #{fχS : S ∈ F} = #F = c.

It follows from the Cantor–Bernstein–Schröder Theorem that dim(Lp(Ω))
= c.

(c) Firstly let us see that, under the assumption ent(Ω) ∈ N, every
measurable set of positive measure contains an atom. In fact, otherwise we
could build a sequence A1 ⊃ A2 ⊃ · · · in Σ with µ(A1) > µ(A2) > · · · . In
this case, Ai and Aj belong to different classes whenever i 6= j. This is a
contradiction because there are only finitely many equivalence classes.

Let S be the family of all subsets of Σfin whose elements are pairwise
disjoint atoms. Consider the partial order in S given by the natural inclusion,
that is, for S1, S2 ∈ S,

S1 ≤ S2 ⇔ S1 ⊂ S2.

Consider a subfamily S ′ = {Si : i ∈ I} ⊂ S totally ordered by inclusion,
where I is an index set. Hence S =

⋃
i∈I Si ∈ S and Si ⊂ S for every

i ∈ I. Then S is an upper bound for S ′. Therefore, by Zorn’s Lemma there
is a maximal set U ∈ S with respect to inclusion. Since the elements of U
are pairwise disjoint atoms, they are in different equivalence classes. But
ent(Ω) < ∞, so #U < ∞, say U = {Ai : i = 1, . . . , k} where k ∈ N. Let
B ∈ Σfin be given. Of course B can be written as the union of the following
two disjoint sets:

B =
(
B −

k⋃
i=1

Ai

)
∪
( k⋃
i=1

(B ∩Ai)
)
.

Suppose that µ(B −
⋃k
i=1Ai) > 0. In this case there is an atom Ak+1 con-

tained in B −
⋃k
i=1Ai such that Ak+1 ∩ Ai = ∅ for every i = 1, . . . , k.

Thus {Ak+1} ∪ U > U , which contradicts the maximality of U . Hence

µ(B −
⋃k
i=1Ai) = 0 and so [B] = [

⋃k
i=1(B ∩ Ai)]. For each i ∈ {1, . . . , k}

such that [B ∩ Ai] 6= [∅], we have µ(B ∩ Ai) > 0, and, since B ∩ Ai ⊂ Ai
and Ai is an atom, we obtain µ(B ∩ Ai) = µ(Ai), that is, [B ∩ Ai] = [Ai].
Denoting by JB the set of all i ∈ {1, . . . , k} such that [B ∩ Ai] 6= [∅], it
follows that

µ
( ⋃
i∈JB

Ai

)
=
∑
i∈JB

µ(Ai) =
∑
i∈JB

µ(B ∩Ai) = µ
( ⋃
i∈JB

(B ∩Ai)
)

= µ(B).

So every set B ∈ Σfin satisfies

(2.1) [B] =
[ ⋃
i∈JB

Ai

]
,

where JB = {i ∈ {1, . . . , k} : [B ∩Ai] 6= [∅]}. This proves that ent(Ω) = 2k.



268 G. Botelho et al.

Now, we know that Lp(X) is the closure of

W =
{ n∑
i=1

biχBi : n ∈ N, bi ∈ K, Bi ∈ Σfin

}
.

By (2.1), each
∑n

i=1 biχBi ∈W is µ-almost everywhere equal to an element

of {
∑k

i=1 aiχAi : ai ∈ K}. Thus

Lp(X) = W =
{ n∑
i=1

biχBi : n ∈ N, bi ∈ K, Bi ∈ Σfin

}

=
{ k∑
i=1

aiχAi : ai ∈ K
}
.

Since any finite-dimensional subspace of a topological vector space is closed,
it follows that dim(Lp(Ω)) = dimW = dim{

∑k
i=1 aiχAi : ai ∈ K} = k, as

required.

Let us state, for future reference, a fact proved in the proof above:

Corollary 2.4. If ent(Ω) ≥ c, then #Lp(Ω) = ent(Ω) = dim(Lp(Ω)).

Remark 2.5. Let us recall that the standard proof of the fact that
the dimension of every infinite-dimensional Banach space is, at least, c (via
Baire’s Theorem) depends on the Continuum Hypothesis (CH). As a by-
product, we shall now see that Theorem 2.3, whose proof does not depend
on CH, can be used to give a CH-free proof of this fact: Let E be an infinite-
dimensional Banach space and let (xn)∞n=1 be a normalized basic sequence
in E (Mazur’s classical proof of the existence of such a sequence does not
depend on CH; see [19, Corollary 5.3]). The operator

(an)∞n=1 ∈ `1 7→
∞∑
n=1

anxn ∈ E

is well-defined because the series is absolutely convergent (and its linearity is
obvious). The uniqueness of the representation of a vector in E as a (possibly
infinite) linear combination of vectors of the basic sequence guarantees the
injectivity of this linear operator. Then dim(E) ≥ dim(`1). By Theorem 2.3
we know that dim(`1) ≥ c, and thus dim(E) ≥ c.

3. Lp(Ω) −
⋃
q<p Lq(Ω) is “usually” maximal spaceable. In this

section we give quite general conditions under which Lp(Ω)−
⋃

1≤q<p Lq(Ω)
is maximal spaceable. These conditions are so general that only highly exotic
spaces may not fulfill them. It is worth mentioning once again that, unlike
several results on lineability/spaceability of complements of subspaces or
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unions of subspaces (see, e.g., [16–18, 39]), we are not assuming that Lq(Ω) ⊂
Lp(Ω).

Of course we need Lp(Ω)−
⋃
q<p Lq(Ω) 6= ∅, thus throughout this section

(Ω,Σ, µ) is an infinite measure space.

Lemma 3.1. Let X be the set of all subsets F of Σfin satisfying the
following conditions:

1. µ(A) > 0 for every A ∈ F .
2. If A,B ∈ F are distinct, then µ(A ∩B) = 0.

If the measure space (Ω,Σ, µ) is ζ-bounded for some cardinal number ζ with
c ≤ ζ < ent(Ω), then there exists a set G ∈ X with #G = ent(Ω).

Proof. Consider the partial order in X given by inclusion, that is, for
F1, F2 ∈ X ,

F1 ≤ F2 ⇔ F1 ⊂ F2.

Given a totally ordered subset Y of X , define F as the union of all elements
of Y. Since F ∈ X , F is an upper bound for Y. Thus, by Zorn’s Lemma
there is a maximal element G ∈ X . By assumption, each element of G has at
most ζ subsets with positive measure belonging to different classes of Σfin/∼,
hence the number of subsets of elements of G that represent different classes
in Σfin/∼ is at most (#G) · ζ.

Now fix A ∈ Σfin with µ(A) > 0 and define

H = {B ∈ G : µ(A ∩B) > 0}.

Clearly H 6= ∅, because otherwise we would have G ∪ {A} > G, which
contradicts the maximality of G. Let us prove that #H is at most ℵ0.
Suppose, for contradiction, that H is uncountable, and note that, for each
B ∈ H, the positive real number µ(A ∩ B) belongs to, at least, one of the
sets (1/n,∞) (n ∈ N). There are countably many sets (1/n,∞), so it follows
from the Infinite Pigeonhole Principle that there is n0 ∈ N such that

µ(A ∩B) > 1/n0

for uncountably many sets B ∈ H. In particular, there are distinct (Ci)i∈N
in H such that

µ(A ∩ Cm) > 1/n0

for every m ∈ N. By Condition 2 we have µ(Ci ∩Cj) = 0 whenever i 6= j, so

µ(A) ≥ µ
(
A ∩

( ∞⋃
m=1

Cm

))
=
∞∑
m=1

µ(A ∩ Cm) =∞,

a contradiction that proves that #H ≤ ℵ0.
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Now, note that
⋃
B∈H(A∩B) ∈ Σfin because

⋃
B∈H(A∩B) ⊂ A. Let us

prove that [A] = [
⋃
B∈H(A ∩ B)]. Assuming that [A] 6= [

⋃
B∈H(A ∩ B)] in

Σfin/∼, we have

µ
(
A−

⋃
B∈H

(A ∩B)
)
> 0.

Let C ∈ G be given and assume that

µ
((
A−

⋃
B∈H

(A ∩B)
)
∩ C

)
> 0.

In this case,

µ(A ∩ C) ≥ µ
((
A−

⋃
B∈H

(A ∩B)
)
∩ C

)
> 0,

which implies that C ∈ H. Hence A−
⋃
B∈H(A ∩ B) ⊂ A− (A ∩ C). Since

(A− (A ∩ C)) ∩ C = ∅, by the inclusion above we obtain

µ
((
A−

⋃
B∈H

(A ∩B)
)
∩ C

)
≤ µ

(
(A− (A ∩ C)) ∩ C

)
= 0.

This contradiction proves that the intersection of A −
⋃
B∈H(A ∩ B) with

each element of G has null measure. Therefore

G ∪
{
A−

⋃
B∈H

(A ∩B)
}
∈ X and G ∪

{
A−

⋃
B∈H

(A ∩B)
}
> G,

which contradicts the maximality of G. Therefore [A] = [
⋃
B∈H(A ∩ B)].

Since A is an arbitrary set in Σfin with positive measure, we have just proved
that each class in Σfin/∼ can be represented by a union of countably many
subsets of elements of G. Combining this with the fact that the number
of subsets of elements of G that represent different classes in Σfin/∼ is at
most (#G) · ζ, we conclude that ent(Ω) ≤ (#G) · ζ. By assumption we have
ent(Ω) > ζ ≥ c, so ent(Ω) ≤ #G.

On the other hand, we know that distinct elements of G determine dif-
ferent classes in Σfin/∼. Thus #G ≤ ent(Ω). Hence ent(Ω) = #G.

Lemma 3.2. Let (Bi)i∈N be a sequence of pairwise disjoint measurable
sets in a measure space (Ω,Σ, µ) with 0 < µ(Bi) < ∞ for every i ∈ N.
Then:

(a) Σ′ := {
⋃
j∈J Bj : J ⊂ N} is a σ-algebra of subsets of Ω′ :=

⋃∞
i=1Bi.

(b) The restriction of µ to Σ′ is a measure.
(c) For every r ≥ 1,

(3.1) Lr(Ω
′) =

{ ∞∑
i=1

aiχBi :
∞∑
i=1

|ai|rµ(Bi) <∞
}
.
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Proof. (a) and (b) are straightforward. Let us prove (c). It is easy to see
that any simple function having support of finite measure can be written as∑∞

j=1 ajχBj , where only finitely many aj ’s are nonzero. So given f ∈ Lr(Ω′)
there is a sequence (fn)∞n=1 with fn =

∑∞
j=1 a

j
nχBj such that only finitely

many ajn’s are nonzero for every n ∈ N and f = limn→∞ fn in Lr(Ω
′). Fix

j ∈ N for a moment. Trivially, we have fχBj = limn→∞ fnχBj in Lr(Ω
′).

On the other hand, fnχBj (x) = ajnχBj (x) for every x ∈ Ω′ and every n; so

fχBj = limn→∞ a
j
nχBj in Lr(Ω

′). Hence (ajnχBj )
∞
n=1 is a Cauchy sequence

in Lr(Ω
′), and since 0 < µ(Bj) <∞ we infer that (ajn)∞n=1 is a Cauchy scalar

sequence, say aj = limn→∞ a
j
n. It follows easily that ajχBj = limn→∞ a

j
nχBj

in Lr(Ω
′). The uniqueness of the limit in Lr(Ω

′) implies that ajχBj = fχBj
in Lr(Ω

′). Observing that Bj contains strictly no nonvoid measurable subset
it follows that fχBj (x) = aiχBj (x) for every x ∈ Ω′. In particular, f(x) = aj
for every x ∈ Bj . This holds for every j ∈ N, so f(x) =

∑∞
j=1 ajχBj (x) for

every x ∈ Ω′. Since |
∑k

j=1 ajχBj (x)| ≤ |f(x)| for every x ∈ Ω′ and every
k ∈ N, by a standard application of the Dominated Convergence Theorem
(see, e.g., [11, Theorem 7.2]), we conclude that f =

∑∞
j=1 ajχBj in Lr(Ω

′).

Now it is immediate that
∑∞

j=1 |aj |rµ(Bj) = ‖f‖rr <∞.

We shall need the following result due to Subramanian [49] and Romero
[46] (see also [14, Theorem 3.1]):

Theorem 3.3. Let (Ω,Σ, µ) be a measure space and p > q ≥ 1. Then:

(a) Lp(Ω) ⊃ Lq(Ω) if and only if inf{µ(A) : A ∈ Σfin, µ(A) > 0} > 0.
(b) Lq(Ω) ⊃ Lp(Ω) if and only if sup{µ(A) : A ∈ Σfin} <∞.

As to the maximal spaceability of Lp(Ω)−
⋃
q<p Lq(Ω), there is nothing

to do if ent(Ω) ∈ N, because in this case we know, by Theorem 2.3(c),
that Lp(Ω) is finite-dimensional. So we restrict ourselves, without loss of
generality, to the case ent(Ω) ≥ ℵ0.

Theorem 3.4. Let p > 1. The set Lp(Ω) −
⋃

1≤q<p Lq(Ω) is maximal
spaceable if either

(a) Lp(Ω)− Lr(Ω) 6= ∅ for some 1 ≤ r < p and ℵ0 ≤ ent(Ω) ≤ c, or
(b) the measure space (Ω,Σ, µ) is ζ-bounded for some cardinal number

ζ with c ≤ ζ < ent(Ω).

Proof. (a) Since ℵ0 ≤ ent(Ω) ≤ c, by Theorem 2.3(b) we know that
dim(Lp(Ω)) = c. Therefore we only need to prove that Lp(Ω)−

⋃
1≤q<p Lq(Ω)

is spaceable.
Since Lp(Ω) − Lr(Ω) 6= ∅ for some 1 ≤ r < p, by Theorem 3.3(b) we

have

(3.2) sup{µ(A) : A ∈ Σfin} =∞.
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In this case we can choose pairwise disjoint measurable sets (Bi)i∈N such
that 0 < µ(B1) < µ(Bi) for every i ≥ 2. Indeed, choose B1 ∈ Σfin with
µ(B1) > 0 and proceed inductively in the following way: if B1, . . . , Bk have
been chosen satisfying those conditions, by (3.2) there is Ak+1 ∈ Σfin such
that µ(Ak+1) > 2µ(B1 ∪ · · · ∪Bk). Choose Bk+1 = Ak+1 − (B1 ∪ · · · ∪Bk).

Consider now the measure space (Ω′, Σ′, µ), where Ω′ and Σ′ are defined
as in Lemma 3.2. Let us prove that Lp(Ω

′)−
⋃

1≤q<p Lq(Ω
′) is spaceable in

Lp(Ω
′). First note that

inf{µ(A) : A ∈ Σ′fin and µ(A) > 0} = µ(B1) > 0.

From Theorem 3.3(a) it follows that Lp(Ω
′) ⊃ Lq(Ω

′) for every 1 ≤ q < p.
Applying (3.1) for r = q we know that every function in Lq(Ω

′) can be writ-
ten as

∑∞
i=1 aiχBi with

∑∞
i=1 |ai|qµ(Bi) <∞. Note that if ‖

∑∞
i=1 aiχBi‖q <

µ(B1)1/q, then |ai| < 1 for every i ∈ N. Since p > q ≥ 1 and |ai| < 1 for
every i ∈ N, we have ∥∥∥ ∞∑

i=1

aiχBi

∥∥∥
q
>
∥∥∥ ∞∑
i=1

aiχBi

∥∥∥
p
.

Given ε > 0, choose δ = min{ε, µ(B1)1/q} > 0. If ‖
∑∞

i=1 aiχBi‖q < δ, then

ε >
∥∥∥ ∞∑
i=1

aiχBi

∥∥∥
q
>
∥∥∥ ∞∑
i=1

aiχBi

∥∥∥
p
.

This shows that the inclusion Lq(Ω
′) ↪→ Lp(Ω

′) is continuous for every
1 ≤ q < p. Choosing a sequence (aj)

∞
j=1 ∈ `p −

⋃
q<p `q, it is clear that the

function

f =

∞∑
j=1

aj

µ(Bj)1/p
χBj

belongs to Lp(Ω
′). Using that µ(Bj) ≥ µ(B1) for every j, it follows that

f /∈ Lq(Ω′) for every 1 ≤ q < p. So Lp(Ω
′) 6=

⋃
1≤q<p Lq(Ω

′). And since

W :=
{ n∑
i=1

aiχAi : n ∈ N, ai ∈ K and Ai ∈ Σ′fin

}
⊂

⋃
1≤q<p

Lq(Ω
′) ⊂ Lp(Ω′)

and W is dense in Lp(Ω
′), it follows that

⋃
1≤q<p Lq(Ω

′) is dense in Lp(Ω
′)

as well. So
⋃

1≤q<p Lq(Ω
′) is not closed in Lp(Ω

′) because Lp(Ω
′) 6=⋃

1≤q<p Lq(Ω
′). Choose a sequence (qj)

∞
j=1 such that 1 ≤ qj < qj+1 for

every j and qj → p. Theorem 3.3(a) ensures that Lqj ⊂ Lqj+1 for every j,
hence ⋃

1≤q<p
Lq(Ω

′) =
∞⋃
j=1

Lqj (Ω
′).
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The spaceability of Lp(Ω
′)−

⋃
1≤q<p Lq(Ω

′) in Lp(Ω
′) follows now from [39,

Theorem 3.3].
A function f defined on Ω′ will be identified with a function defined on

Ω by putting f(x) = 0 for every x ∈ Ω−Ω′. Since ‖f‖Lp(Ω′) = ‖f‖Lp(Ω) for
every f ∈ Lp(Ω′), it is plain that Lp(Ω

′) is a closed subspace of Lp(Ω) up
to this identification.

Use that Lp(Ω
′) ⊃

⋃
1≤q<p Lq(Ω

′) and apply (3.1) for r = p and for
r = q < p to conclude that

Lp(Ω
′) ∩

( ⋃
1≤q<p

Lq(Ω)
)

=
⋃

1≤q<p
Lq(Ω

′).

Thus
Lp(Ω

′)−
⋃

1≤q<p
Lq(Ω

′) = Lp(Ω
′)−

⋃
1≤q<p

Lq(Ω).

It follows that Lp(Ω
′) −

⋃
1≤q<p Lq(Ω) is spaceable in the closed subspace

Lp(Ω
′) of Lp(Ω), hence Lp(Ω

′)−
⋃

1≤q<p Lq(Ω) is spaceable in Lp(Ω). There-
fore Lp(Ω)−

⋃
1≤q<p Lq(Ω) is spaceable in Lp(Ω).

(b) Let G be the family whose existence is guaranteed by Lemma 3.1.
Since #G = ent(Ω) > ζ and there are only c possible values for the measures
of the sets in G (of course µ(B) ∈ (0,∞) for every B ∈ G), there is a
subfamily G′ ⊂ G, with the same cardinality of G, such that all members of
G′ have the same measure, say α (this is another application of the Infinite
Pigeonhole Principle). Denote G′ = {Ak : k ∈ I} with #I = ent(Ω). Recall
that Ak 6= As implies µ(Ak ∩ As) = 0 but µ(Ak) = α = µ(As). Since the
cardinality of I is greater than ζ and ℵ0 · ζ = ζ, for every i ∈ I and every
n ∈ N there is a set Ani so that:

(i) Aji 6= Aki whenever i ∈ I and j 6= k are positive integers;

(ii) the sets Ji := {Aji : j ∈ N}, i ∈ I, are pairwise disjoint;
(iii) G′ =

⋃
i∈IJi.

Select a sequence (bj)
∞
j=1 ∈ `p−

⋃
q<p `q with bj > 0 for every j. For each

k ∈ I, define fk :=
∑∞

j=1 bjχAjk
. Observe that:

1. The intersection of the supports of fk and fs, k 6= s, has measure zero.
Therefore #{fk : k ∈ I} = #I and the functions fk’s are linearly
independent.

2. Let k ∈ I and i ∈ N. Since µ(Ajk ∩ A
s
k) = 0 for all positive integers

j 6= s and µ(Ajk) = α = µ(Aik) for all j ∈ N, for every t > 0 we have

(3.3)
�
|fk|t dµ =

∞∑
j=1

|bj |tµ(Ajk) =
( ∞∑
j=1

|bj |t
)
· α.

Therefore each fk is in Lp(Ω)−
⋃
q<p Lq(Ω).
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3. For all k, l ∈ I,

(3.4)
�
|fk|p dµ =

�
|fl|p dµ.

Let W = span{fk : k ∈ I} ⊂ Lp(Ω). Let (hn)∞n=1 be a Cauchy sequence
in W (with respect to the Lp(Ω)-norm). Each hn is a finite linear combi-
nation of some fk’s, so all these functions together require only countably
many fk’s in their representations as linear combinations. Let (gl)

∞
l=1 be an

enumeration of these fk’s. Thus

hn =
∞∑
l=1

anl gl,

where, for each n, only finitely many anl ’s are nonzero. Using that the inter-
section of the supports of gk and gs, k 6= s, has measure zero and (3.4) we
obtain, for any fixed j ∈ N,

�
|hn − hs|p dµ =

∞∑
l=1

|anl − asl |p ·
�
|gl|p dµ

=
( ∞∑
l=1

|anl − asl |p
) �
|gj |p dµ.

It follows that ((anl )∞l=1)∞n=1 is a Cauchy sequence in `p, say limn→∞ (anl )∞l=1 =
(al)

∞
l=1 ∈ `p. Define h =

∑∞
l=1 algl and notice that h ∈ Lp(Ω). Now

�
|hn − h|p dµ =

∞∑
l=1

|anl − al|p ·
�
|gl|p dµ.

Since
	
|gl|p dµ does not depend on l, by (3.3) and limn→∞ (anl )∞l=1 = (al)

∞
l=1

in `p, we obtain limn→∞ hn = h in Lp(Ω). Finally, if h 6= 0 then some al
is not zero, hence ‖h‖qq ≥ |al|q · ‖gl‖qq = |al|q · α ·

∑∞
j=1 b

q
j = +∞ and so

h /∈
⋃
q<p Lq(Ω), as required.

Remark 3.5. Observe that in case (b) of the theorem above we have
actually proved that Lp(Ω)−

⋃
0<q<p Lq(Ω) is maximal spaceable for every

p > 0. Notice that, as a particular case, from Theorem 3.3(b) one deduces
that condition (3.2) is fulfilled, and thus we also obtain (independently) a
result already given in [14] on the spaceability of this set.

All usual infinite measure spaces satisfy either condition (a) of Theorem
3.4 or condition (b) with ζ = c (for instance, a concrete example of an
infinite measure space satisfying condition (b) is a set of cardinality greater
than c endowed with the counting measure).

4. Lp(Ω)−Lq(Ω) may fail to be maximal spaceable for p > q. As
we have proved in the previous section, Lp(Ω) −

⋃
1≤q<p Lq(Ω) is maximal
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spaceable in most cases. Nevertheless, in this section we prove that there
exist (quite exotic) infinite measure spaces (Ω,Σ, µ) such that the larger set
Lp(Ω)−Lq(Ω), q < p, fails to be maximal spaceable. Actually we develop a
hybridization technique that allows us to prove much more: given 1 ≤ q < p
and cardinal numbers κ > ζ ≥ c, we construct an infinite measure space
(Ω,Σ, µ) such that:

(i) dim(Lp(Ω)) = κ;
(ii) ζ is the maximal dimension of a closed subspace of Lp(Ω) contained

(except for the null vector) in Lp(Ω)− Lq(Ω).

Besides its own interest, this result reinforces the role of Theorem 3.4, be-
cause now we know that some conditions should be imposed on the measure
space for Lp(Ω)−Lq(Ω) to be maximal spaceable, and Theorem 3.4 estab-
lishes quite general conditions for the smaller set Lp(Ω)−

⋃
1≤q<p Lq(Ω) to

be maximal spaceable.
It is worth mentioning that the construction we describe in this section

depends on the results of Sections 2 and 3.

Lemma 4.1. Let ζ be a cardinal number such that ζ ≥ c, let Xζ be a set
such that #Xζ = ζ and let the set P(Xζ) of all subsets of Xζ endow with the
counting measure. Then dim(Lp(Xζ)) = ent(Xζ) = ζ for every 0 < p <∞.

Proof. For A ⊂ Xζ , it is clear that A ∈ P(Xζ)fin if and only if #A <∞,
so #P(Xζ)fin = #Xζ . It follows that ent(Xζ) = #P(Xζ)fin/∼ ≤ #Xζ . On
the other hand, different singletons belong to different classes in P(Xζ)fin,
therefore #Xζ ≤ ent(Xζ). Combining this with ent(Xζ) = #Xζ = ζ ≥ c, by
Theorem 2.3 we have dim(Lp(Xζ)) = ent(Xζ) = #Xζ = ζ.

The key to the proof of the following lemma was communicated to the
authors by L. Bernal-González.

Lemma 4.2. For every cardinal number κ ≥ c there exists a probability
space (Tκ, Σκ, µκ) such that dim(Lp(Tκ)) = ent(Tκ) = κ for every 0<p<∞.

Proof. Let Γ be a set with #Γ = κ. Let Tκ be the product of κ copies
of [0, 1], that is, Tκ =

∏
γ∈Γ [0, 1], and let Σκ be the product σ-algebra

of the Borel σ-algebra on [0, 1], that is, the σ-algebra on Tκ generated by
the inverse images of Borel subsets of [0, 1] by the projections onto each
coordinate (cf. [12, Definition 9.1], [37, Definition 22.2]). By [37, Section 22]
(see also [20, p. 259]) there exists a probability measure µκ on Σκ such that
if A =

∏
γ∈Γ Aγ , where Aγ = [0, 1] except for γ = γi, i = 1, . . . , n, then

µκ(A) = m(Aγ1) · · ·m(Aγn), where m is the Lebesgue measure. Since κ ≥ c,
Σκ is generated by κ× c = κ sets, by [40, Problem 23, Chapter 12] it follows
that #Σκ = κ and, a fortiori, ent(Tκ) ≤ κ. On the other hand, for i, j ∈ Γ ,
i 6= j, setting Ai = Bj = [0, 1/2], the sets A =

∏
t∈Γ At, where At = [0, 1] for



276 G. Botelho et al.

every t 6= i, and B =
∏
t∈Γ Bt, where Bt = [0, 1] for every t 6= j, belong to

different classes in (Σκ)fin/∼. This shows that κ ≤ ent(Tκ). By Theorem 2.3
we have dim(Lp(Tκ)) = ent(Tκ) = κ.

Definition 4.3. Let ζ, κ ≥ c be cardinal numbers. Consider the measure
spaces (Xζ ,P(Xζ), ν) of Lemma 4.1, where ν is the counting measure, and
(Tκ, Σκ, µκ) of Lemma 4.2. Choose Xζ in such a way that Xζ ∩Tκ = ∅. Then
the measure space (Y,A, λ) is defined by the following identities:

• Y = Tκ ∪Xζ ,
• A = {B ∪ C : B ∈ Σκ and C ∈ P(Xζ)}, and
• λ(B ∪ C) = µκ(B) + ν(C) for all B ∈ Σκ and C ∈ P(Xζ).

A subset A of a topological vector space E is η-lineable (η-spaceable,
respectively), where η is a cardinal number, if A ∪ {0} contains a (closed,
respectively) η-dimensional subspace of E.

Theorem 4.4. Let ζ, κ be cardinal numbers such that κ > ζ ≥ c, let
(Y,A, λ) be the measure space of Definition 4.3 and let 1 ≤ q < p. Then:

(i) dim(Lp(Y )) = κ;
(ii) Lp(Y ) − Lq(Y ) is ζ-spaceable but is not η-lineable for any cardinal

number η > ζ.

In particular, Lp(Y )− Lq(Y ) fails to be maximal spaceable.

Proof. (i) By Lemmas 4.1 and 4.2 we have

ent(Y ) = ent(Tκ)× ent(Xζ) = κ× ζ = κ

because c ≤ ζ < κ. Thus dim(Lp(Y )) = ent(Y ) = κ by Theorem 2.3.
(ii) Of course each 0 6= f ∈ Lp(Y ) can be written as f = f ·χTκ +f ·χXζ .

Assume, for a while, that there is a subspace V of dimension greater than
ζ inside (Lp(Y )− Lq(Y )) ∪ {0}. In that case, consider the projection

π : V → Lp(Xζ), π(f) = f |Xζ .
So V =

⋃
g∈π(V ) π

−1({g}). By Lemma 4.1 we know that ent(Xζ) = ζ ≥ c,

thus #Lp(Xζ) = ent(Xζ) = ζ by Corollary 2.4. The dimension of V being
greater than ζ implies that the cardinality of V is also greater than ζ. But
V is the union of at most ζ sets of the form π−1({g}) because

#π(V ) ≤ #Lp(Xζ) = ζ.

So there is g ∈ π(V ) such that the set π−1({g}) has cardinality greater
than 1. Then there are f, h ∈ V , h 6= f , such that π(f) = g = π(h), hence
f · χXζ = h · χXζ . Finally,

0 6= f − h = f · χTκ − h · χTκ = (f − h) · χTκ .
We know that f − h ∈ Lp(Y ), so (f − h) · χTκ ∈ Lp(Tκ). Since µκ(Tκ) = 1,
by Theorem 3.3(b) we have Lp(Tκ) ⊂ Lq(Tκ). So (f − h) · χTκ ∈ Lq(Tκ),
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therefore f − h = (f − h) · χTκ ∈ Lq(Y ). But V is a linear subspace, so
f − h ∈ V , which is not possible because V ⊂ (Lp(Y ) − Lq(Y )) ∪ {0}. So
there is no subspace V of dimension greater than ζ inside Lp(Y )− Lq(Y ).

Now let us prove that there is a closed ζ-dimensional subspace of Lp(Y )
inside (Lp(Y ) − Lq(Y )) ∪ {0}. If c = ζ, then ent(Xζ) = c, so (Lp(Xζ) −
Lq(Xζ)) ∪ {0} contains a closed dim(Lp(Xζ))-dimensional subspace V of
Lp(Xζ) by Theorem 3.4(a). And if c < ζ, then ent(Xζ) = ζ > c. Since every
set of finite measure in X is a finite set, we conclude that Xζ is c-bounded. In
this case, (Lp(Xζ)−Lq(Xζ))∪{0} contains a closed dim(Lp(Xζ))-dimensio-
nal subspace V of Lp(X) by Theorem 3.4(b).

Therefore, in any case there is a closed dim(Lp(Xζ))-dimensional sub-
space V of Lp(Xζ) inside (Lp(Xζ) − Lq(Xζ)) ∪ {0}. It is plain that the
correspondence

f ∈ Lp(Xζ) 7→ f̃ ∈ Lp(Y ), f̃(x) =

{
f(x) if x ∈ Xζ ,

0 if x ∈ Tκ,
is a linear embedding, so Lp(Xζ) can be regarded as a closed subspace of
Lp(Y ). By Theorem 3.3(a) we know that Lq(Xζ) ⊆ Lp(Xζ), so Lp(Xζ) ∩
Lq(Y ) = Lq(Xζ). It follows that

Lp(Xζ)− Lq(Xζ) ⊂ Lp(Y )− Lq(Y ).

Therefore there is a copy of V inside (Lp(Y )− Lq(Y )) ∪ {0}.
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[14] L. Bernal-González and M. Ordóñez Cabrera, Spaceability of strict order integrabil-

ity, J. Math. Anal. Appl. 385 (2012), 303–309.
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Soc. 128 (2000), 3505–3511.

[37] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, 1965.
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