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Recognizing the topology of the space
of closed convex subsets of a Banach space
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Abstract. Let X be a Banach space and ConvH(X) be the space of non-empty closed
convex subsets of X, endowed with the Hausdorff metric dH. We prove that each connected
componentH of the space ConvH(X) is homeomorphic to one of the spaces: {0}, R, R×R̄+,
Q × R̄+, l2, or the Hilbert space l2(κ) of cardinality κ ≥ c. More precisely, a component
H of ConvH(X) is homeomorphic to:

(1) {0} iff H contains the whole space X;
(2) R iff H contains a half-space;
(3) R× R̄+ iff H contains a linear subspace of X of codimension 1;
(4) Q× R̄+ iff H contains a linear subspace of X of finite codimension ≥ 2;
(5) l2 iff H contains a polyhedral convex subset of X but contains no linear subspace

and no half-space of X;
(6) l2(κ) for some cardinal κ ≥ c iff H contains no polyhedral convex subset of X.

1. Introduction. In this paper we recognize the topological structure
of the space ConvH(X) of non-empty closed convex subsets of a Banach
space X. The space ConvH(X) is endowed with the Hausdorff metric

dH(A,B) = max
{

sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)
}
∈ [0,∞],

where dist(a,B) = infb∈B ‖a − b‖ is the distance from the point a to the
subset B in X. In fact, the topology of ConvH(X) can be defined directly
without appealing to the Hausdorff metric: a subset U ⊂ ConvH(X) is open
if and only if for every A ∈ U there is an open neighborhood U of the origin in
X such that B(A,U) ⊂ U , where B(A,U) = {A′ ∈ ConvH(X) : A′ ⊂ A+U
and A ⊂ A′+U}. Here, as expected, A+B = {a+ b : a ∈ A, b ∈ B} stands
for the pointwise sum of the sets A,B ⊂ X. In this way, for every linear
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topological space X we can define the topology on the space ConvH(X)
of non-empty closed convex subsets of X. This topology will be called the
uniform topology on ConvH(X) because it is generated by the uniformity
whose base consists of the sets

2U = {(A,A′) ∈ ConvH(X)2 : A ⊂ A′ + U, A′ ⊂ A+ U}
where U runs over open symmetric neighborhoods of the origin in X.

We shall observe in Remark 4.8 that for a Banach space X the space
ConvH(X) is locally connected: two sets A,B ∈ ConvH(X) lie in the same
connected component of ConvH(X) if and only if dH(A,B) < ∞. So, in
order to understand the topological structure of the hyperspace ConvH(X) it
suffices to recognize the topology of its connected components. This problem
is quite easy if X is a 1-dimensional real space. In this case X is isometric
to R and a connected component H of ConvH(X) is homeomorphic to:

(1) {0} iff X ∈ H;
(2) R iff H contains a closed ray;
(3) R× R̄+ iff H contains a bounded set.

Here R̄+ = [0,∞) stands for the closed half-line.
For arbitrary Banach spaces we shall add to this list two more spaces:

(4) Q× R̄+, where Q = [0, 1]ω is the Hilbert cube;
(5) l2(κ), the Hilbert space with an orthonormal basis of cardinality κ.

For κ = ω the separable Hilbert space l2(ω) is usually denoted by l2. By
the famous Toruńczyk Theorem [15], [16], each infinite-dimensional Banach
space X of density κ is homeomorphic to the Hilbert space l2(κ). In par-
ticular, the Banach space l∞ of bounded real sequences is homeomorphic
to l2(c). In what follows, we shall identify cardinals with the sets of ordi-
nals of smaller cardinality and endow such sets with discrete topology. The
cardinality of a set A is denoted by |A|.

Let X be a Banach space. As we shall see in Theorem 1, each non-
locally compact connected component H of ConvH(X) is homeomorphic to
the Hilbert space l2(κ) of density κ = dens(H). This reduces the problem
of recognizing the topology of ConvH(X) to calculating the densities of its
components. In fact, separable components H of ConvH(X) have been char-
acterized in [3] as components containing a polyhedral convex set.

We recall that a convex subset C of a Banach space X is polyhedral if C
can be written as the intersection C =

⋂
F of a finite family F of closed half-

spaces. A half-space in X is a convex set of the form f−1((−∞, a]) for some
real number a and some non-zero linear continuous functional f : X → R.
The whole space X is a polyhedral set, being the intersection X =

⋂
F of

the empty family F = ∅ of closed half-spaces.
The principal result of this paper is the following classification theorem.
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Theorem 1. Let X be a Banach space. Each connected component H of
the space ConvH(X) is homeomorphic to one of the spaces: {0}, R, R× R̄+,
Q× R̄+, l2, or the Hilbert space l2(κ) of density κ ≥ c. More precisely, H is
homeomorphic to:

(1) {0} iff H contains the whole space X;
(2) R iff H contains a half-space;
(3) R× R̄+ iff H contains a linear subspace of X of codimension 1;
(4) Q× R̄+ iff H contains a linear subspace of X of finite codimension
≥ 2;

(5) l2 iff H contains a polyhedral convex subset of X but contains no
linear subspace and no half-space of X;

(6) l2(κ) for some cardinal κ ≥ c iff H contains no polyhedral convex
subset of X.

Theorem 1 will be proved in Section 6 after some preliminary work in
Sections 2–5.

In Corollary 2 below we shall derive from Theorem 1 a complete topo-
logical classification of the spaces ConvH(X) for Banach spaces X with the
Kunen–Shelah property and |X∗| ≤ c.

A Banach space X is defined to have the Kunen–Shelah property if each
closed convex subset C ⊂ X can be written as the intersection C =

⋂
F of

an at most countable family F of closed half-spaces (in fact, this is one of
seven equivalent Kunen–Shelah properties considered in [6] and [7, 8.19]).
For a Banach space X with the Kunen–Shelah property we get

|X∗| ≤ |ConvH(X)| ≤ |X∗|ω.

The upper bound ConvH(X) ≤ |X∗|ω follows from the definition of the
Kunen–Shelah property, while the lower bound |X∗| ≤ |ConvH(X)| follows
from the observation that a functional f ∈ X∗ is uniquely determined by its
polar half-space Hf = f−1((−∞, 1]).

It is clear that each separable Banach space has the Kunen–Shelah prop-
erty. However there are also non-separable Banach spaces with that property.
The first example of such a Banach space was constructed by S. Shelah [13]
under ♦ℵ1 . The second example is due to K. Kunen who used the Continuum
Hypothesis to construct a non-metrizable scattered compact space K such
that the Banach space X = C(K) of continuous functions on K is hereditar-
ily Lindelöf in the weak topology and thus has the Kunen–Shelah property;
see [10, p. 1123]. Kunen’s space X = C(K) has the additional property that
its dual space X∗ = C(X)∗ has cardinality |X∗| = c (this follows from the
fact that each Borel measure on the scattered compact space K has count-
able support). Let us remark that for every separable Banach space X the
dual space X∗ also has the cardinality of the continuum, |X∗| = c. It should
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be mentioned that non-separable Banach spaces with the Kunen–Shelah
property can be constructed only under certain additional set-theoretic as-
sumptions: there are models of ZFC (see [14]) in which each Banach space
with the Kunen–Shelah property is separable.

Corollary 1. For a separable Banach space (more generally, a Ba-
nach space with the Kunen–Shelah property and |X∗| ≤ c), each connected
component H of the space ConvH(X) is homeomorphic to {0}, R, R× R̄+,
Q× R̄+, l2 or l∞. More precisely, H is homeomorphic to:

(1) {0} iff H contains the whole space X;
(2) R iff H contains a half-space;
(3) R× R̄+ iff H contains a linear subspace of X of codimension 1;
(4) Q× R̄+ iff H contains a linear subspace of X of codimension ≥ 2;
(5) l2 iff H contains a polyhedral convex set but contains no linear sub-

space and no half-space;
(6) l∞ iff H contains no polyhedral convex set.

Since ConvH(X) is homeomorphic to the topological sum of its con-
nected components, we can use Corollary 1 to classify topologically the
spaces ConvH(X) for separable Banach spaces X (and more generally Ba-
nach spaces with the Kunen–Shelah property and |X∗| ≤ c). In the following
corollary the cardinal c is considered as a discrete topological space.

Corollary 2. For a separable Banach space X (more generally, a Ba-
nach space X with the Kunen–Shelah property and |X∗| ≤ c) the space
ConvH(X) is homeomorphic to the topological sum:

(1) {0} ⊕ R⊕ R⊕ (R× R̄+) iff dim(X) = 1;
(2) {0} ⊕ Q× R̄+ ⊕ c× (R⊕ R× R̄+ ⊕ l2 ⊕ l∞) iff dim(X) = 2;
(3) {0} ⊕ c× (R⊕ R× R̄+ ⊕ Q× R̄+ ⊕ l2 ⊕ l∞) iff dim(X) ≥ 3.

Moreover, under 2ω1 > c, for a Banach space X, the space ConvH(X) has
cardinality |ConvH(X)| ≤ c if and only if |X∗| ≤ c and the Banach space X
has the Kunen–Shelah property.

Proof. The statements (1)–(3) easily follow from the classification of the
components of ConvH(X) given in Corollary 1 and a routine calculation of
the number of components of a given topological type.

Now assume that 2ω1 > c. If X is a Banach space with the Kunen–Shelah
property and |X∗| ≤ c, then the definition of the Kunen–Shelah property
yields the upper bound

|ConvH(X)| ≤ |X∗|ω ≤ cω = c.

If |ConvH(X)| ≤ c, then |X∗| ≤ c as |X∗| ≤ |ConvH(X)| (because
each functional f ∈ X∗ can be uniquely identified with its polar half-space
f−1((−∞, 1]) ∈ ConvH(X)). Assuming that X fails to have the Kunen–
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Shelah property and applying Theorem 8.19 of [7] (see also [6]), we can find
a sequence {xα}α<ω1 ⊂ X such that for every α < ω1 the point xα does not
lie in the closed convex hull Cω1\{α} of the set {xβ}β∈ω1\{α}. Now for every
subset A ⊂ ω1 consider the closed convex hull CA = conv{xα}α∈A. We claim
that CA 6= CB for any distinct subsets A,B ⊂ ω1. Indeed, if A 6= B then
the symmetric difference (A\B)∪ (B \A) contains some ordinal α. Without
loss of generality, we can assume that α ∈ A \ B. Then xα ∈ CA \ CB as
CB ⊂ Cω1\{α} 63 xα. This implies that {CA : A ⊂ ω1} is a subset of cardi-
nality 2ω1 > c in ConvH(X) and hence |ConvH(X)| ≥ 2ω1 > c, which is the
desired contradiction.

Among the connected components of ConvH(X) there is a special one,
namely, the componentH0 containing the singleton {0}. This component co-
incides with the space BConvH(X) of all non-empty bounded closed convex
subsets of a Banach space X. The spaces BConvH(X) have been intensively
studied both by topologists [9], [12] and analysts [5]. In particular, S. Nadler,
J. Quinn and N. M. Stavrakas [9] proved that for a finite n ≥ 2 the space
BConvH(Rn) is homeomorphic to Q×R̄+, while K. Sakai proved in [12] that
for an infinite-dimensional Banach space X the space H0 = BConvH(X) is
homeomorphic to a non-separable Hilbert space. Moreover, if X is sepa-
rable or reflexive, then dens(H0) = 2dens(X). If X is reflexive, then the
density dens∗(X∗) of the dual space X∗ in the weak∗ topology is equal to
the density dens(X) of X. Banach spaces X with dens∗(X∗) = dens(X)
are called DENS Banach spaces (see [7, 5.39]). By Proposition 5.40 of [7],
the class of DENS Banach spaces includes all weakly Lindelöf determined
spaces, and hence all weakly countably generated and all reflexive Banach
spaces.

Applying Theorem 1 to describing the topology of the component H0 =
BConvH(X), we obtain the following classification.

Corollary 3. The space H0 = BConvH(X) of non-empty bounded
closed convex subsets of a Banach space X is homeomorphic to one of the
spaces: {0}, R × R̄+, Q × R̄+ or the Hilbert space l2(κ) of density κ ≥ c.
More precisely, BConv(X) is homeomorphic to:

(1) {0} iff dim(X) = 0;
(2) R× R̄+ iff dim(X) = 1;
(3) Q× R̄+ iff 2 ≤ dim(X) <∞;
(4) l2(κ) for some cardinal κ ∈ [2dens

∗(X∗), 2dens(X)] iff dim(X) =∞;
(5) l2(2

dens(X)) if X is an infinite-dimensional DENS Banach space.

Proof. This corollary will follow from Theorem 1 as soon as we check that
2dens

∗(X∗) ≤ dens(H0) ≤ |H0| ≤ |ConvH(X)| ≤ 2dens(X) for each infinite-
dimensional Banach space X.
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In fact, the inequality |ConvH(X)| ≤ 2dens(X) has general-topological
nature and follows from the known fact that the number of closed subsets
(equal to the number of open subsets) of a topological space Y does not
exceed 2w(Y ), where w(Y ) is the weight of Y (which is equal to dens(Y ) if
the space Y is metrizable; see [4, 4.1.15]).

To prove that 2dens
∗(X∗) ≤ dens(H0) we shall use a result of Plichko

[11] (see also Theorem 4.12 of [7]) saying that for each infinite-dimensional
Banach space X there is a bounded sequence {(xα, fα)}α<κ ⊂ X × X∗ of
length κ = dens∗(X∗), which is biorthogonal in the sense that fα(xα) = 1
and fα(xβ) = 0 for any distinct ordinals α, β < κ. Let L = sup{‖xα‖, ‖fα‖ :
α < κ}.

For every subset A ⊂ κ consider CA = conv({xα}α∈A), the closed convex
hull of the set {xα}α∈A. We claim that for any distinct subsets A,B ⊂ κ
we get dH(CA, CB) ≥ 1/L. Indeed, since A 6= B the symmetric difference
(A \ B) ∪ (B \ A) contains some ordinal α. Without loss of generality, we
can assume that α ∈ A \ B. Then CB ⊂ f−1α (0) and hence for each c ∈ CB
we get

‖xα − c‖ ≥
|fα(xα)− fα(c)|

‖fα‖
≥ |1− 0|

L
,

which implies dist(xα, CB) ≥ 1/L and hence dH(CA, CB) ≥ 1/L as xα ∈ CA.
Now we see that C = {CA : A ⊂ κ} is a closed discrete subspace in H0

and hence dens(H0) ≥ |C| = 2κ = 2dens
∗(X∗).

Corollaries 1 and 2 motivate the following problem.

Problem 1.1. Is |X∗| ≤ c for each Banach space X with the Kunen–
Shelah property?

Another problem concerns possible densities of the components of the
space ConvH(X).

Problem 1.2. Let X be an infinite-dimensional Banach space. Is it true
that each component H (in particular, H0) of ConvH(X) has density 2κ or
2<κ = sup{2λ : λ < κ} for some cardinal κ?

Observe that under GCH (the Generalized Continuum Hypothesis) the
answer to Problem 1.2 is trivially “yes” as under GCH all cardinals are of
the form 2<κ for some κ.

2. ∞-Metric spaces. Because the Hausdorff distance dH on ConvH(X)
can take the infinite value we should work with generalized metrics called
∞-metrics.

By an∞-metric on a set X we understand a function d : X×X → [0,∞]
satisfying the three axioms of a usual metric:
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• d(x, y) = 0 iff x = y,
• d(x, y) = d(y, x),
• d(x, z) ≤ d(x, y) + d(y, z).

Here we extend the addition operation from (−∞,∞) to [−∞,∞] letting

∞+∞ =∞, −∞+ (−∞) = −∞, ∞+ (−∞) = −∞+∞ = 0

and

x+∞ =∞+ x =∞, x+ (−∞) = −∞+ x = −∞

for every x ∈ (−∞,∞).

An∞-metric space is a pair (X, d) consisting of a set X and an∞-metric
d on X. It is clear that each metric is an ∞-metric and hence each metric
space is an ∞-metric space.

In some respects, the notion of an ∞-metric is more convenient than
the usual notion of a metric. In particular, for any family (Xi, di), i ∈ I, of
∞-metric spaces it is trivial to define a nice ∞-metric d on the topological
sum X =

⊕
i∈I Xi. Just let

d(x, y) =

{
di(x, y) if x, y ∈ Xi,

∞ otherwise.

The resulting ∞-metric space (X, d) will be called the direct sum of the
family of ∞-metric spaces (X, di), i ∈ I.

In fact, each ∞-metric space (X, d) decomposes into the direct sum of
metric subspaces of X called metric components of X. More precisely, a met-
ric component of X is an equivalence class of X by the equivalence relation
∼ defined by x ∼ y iff d(x, y) < ∞. So, the metric component of a point
x ∈ X coincides with the set B<∞(x) = {x′ ∈ X : d(x, x′) < ∞}. The re-
striction of the∞-metric d to each metric component is a metric. Therefore
X is the direct sum of its metric components, and hence understanding the
(topological) structure of a ∞-metric space reduces to studying the metric
(or topological) structure of its metric components.

A typical example of an ∞-metric is the Hausdorff ∞-metric dH on the
space Cld(X) of non-empty closed subsets of a (linear) metric space X (and
the restriction of dH to the subspace Conv(X) ⊂ Cld(X) of non-empty closed
convex subsets of X). So both CldH(X) = (Cld(X), dH) and ConvH(X) =
(Conv(X), dH) are ∞-metric spaces.

A much simpler (but still important) example of an ∞-metric space is
the extended real line R = [−∞,∞] with the ∞-metric

d∞(x, y) =


|x− y| if x, y ∈ (−∞,∞),

0 if x = y ∈ {−∞,∞},
∞ otherwise,
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which will be denoted by |x − y| again. The ∞-metric space R has three
metric components: {−∞}, R, {∞}.

This example allows us to construct another important example of an

∞-metric space. Namely, for a set Γ consider the space RΓ of functions from
Γ to R endowed with the ∞-metric

d∞(f, g) = ‖f − g‖∞ = sup
γ∈Γ
|f(γ)− g(γ)|.

The resulting ∞-metric space (RΓ , d∞) will be denoted by l̄∞(Γ ). Observe
that the topology of l̄∞(Γ ) is different from the Tikhonov product topology

of RΓ . Another reason for using the notation l̄∞(Γ ) is that the metric com-
ponent of l̄∞(Γ ) containing the zero function coincides with the classical
Banach space l∞(Γ ) of bounded functions on Γ . More generally, for each
f0 ∈ l̄∞(Γ ) its metric component

B<∞(f0) = {f ∈ l̄∞(Γ ) : ‖f − f0‖∞ <∞}
is isometric to the Banach space l∞(Γ0) where Γ0 = {γ ∈ Γ : |f0(γ)| <∞}.
This fact will be used later in Corollary 4.5.

It turns out that for every normed space X the space ConvH(X) nicely
embeds into the ∞-metric space l̄∞(S∗) where

S∗ = {x∗ ∈ X∗ : ‖x∗‖ = 1}
stands for the unit sphere of the dual Banach space X∗.

Namely, consider the function

δ : ConvH(X)→ l̄∞(S∗), C 7→ δC ,

where δC(x∗) = supx∗(C) for x∗ ∈ S∗. The function δ will be called the
canonical representation of ConvH(X).

Proposition 2.1. For every normed space X the canonical representa-
tion δ : ConvH(X)→ l̄∞(S∗) is an isometric embedding.

Proof. Let A,B ∈ ConvH(X) be two convex sets. We should prove that
dH(A,B) = ‖δA − δB‖, where

‖δA − δB‖ = sup
x∗∈S∗

|δA(x∗)− δB(x∗)| = sup
x∗∈S∗

|supx∗(A)− supx∗(B)|.

The inequality ‖δA − δB‖ ≤ dH(A,B) will follow as soon as we check
that |supx∗(A) − supx∗(B)| ≤ dH(A,B) for each functional x∗ ∈ S∗. This
is trivial if dH(A,B) = ∞. So we assume that dH(A,B) < ∞. To obtain a
contradiction, assume that |supx∗(A)− supx∗(B)| > dH(A,B). Then either
supx∗(A) − supx∗(B) > dH(A,B) or supx∗(B) − supx∗(A) > dH(A,B).
In the first case supx∗(B) 6= ∞, so we can find a point a ∈ A with
x∗(a)−supx∗(B) > dH(A,B). It follows from the definition of the Hausdorff
metric dH(A,B) ≥ dist(a,B) that ‖a−b‖ < x∗(a)−supx∗(B) for some point
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b ∈ B. Then x∗(a)− x∗(b) ≤ ‖x∗‖ · ‖a− b‖ < x∗(a)− supx∗(B) and hence
x∗(b) > supx∗(B), which is a contradiction.

By analogy, we can derive a contradiction from the assumption supx∗(B)
−supx∗(A) > dH(A,B) and thus prove the inequality ‖δA−δB‖ ≤ dH(A,B).

To prove the reverse inequality ‖δA−δB‖ ≥ dH(A,B) let us consider two
cases:

(i) dH(A,B) = ∞. To prove that ∞ = ‖δA − δB‖, it suffices given any
number R < ∞ to find a linear functional x∗ ∈ S∗ such that |supx∗(A) −
supx∗(B)| ≥ R.

The equality dH(A,B) = ∞ implies that either supa∈A dist(a,B) = ∞
or supb∈B dist(b, A) = ∞. In the first case we can find a point a ∈ A with
dist(a,B) ≥ R and using the Hahn–Banach Theorem construct a linear
functional x∗ ∈ S∗ that separates the convex set B from the closed R-
ball B̄(a,R) = {x ∈ X : ‖x − a‖ ≤ R} in the sense that supx∗(B) ≤
inf x∗(B̄(a,R)). For this functional x∗ we get supx∗(A) ≥ x∗(a) ≥ R +
inf x∗(B̄(a,R)) ≥ R+ supx∗(B) and thus supx∗(A)− supx∗(B) ≥ R.

In the second case, we can repeat the preceding argument to find a linear
functional x∗ ∈ S∗ with

|supx∗(A)− supx∗(B)| ≥ supx∗(B)− supx∗(A) ≥ R.

(ii) dH(A,B) <∞. To prove that ‖δA − δB‖ ≥ dH(A,B) it suffices given
any number ε > 0 to find a linear functional x∗ ∈ S∗ such that |supx∗(A)−
supx∗(B)| ≥ dH(A,B) − ε. It follows from the definition of dH(A,B) that
either there is a point a ∈ A with dist(a,B) > dH(A,B)− ε or else there is a
point b ∈ B with dist(b, A) > dH(A,B)− ε. In the first case we can use the
Hahn–Banach Theorem to find a linear functional x∗ ∈ S∗ which separates
the convex set B from the closed R-ball B̄(a,R), where R = dH(A,B) − ε,
in the sense that supx∗(B) ≤ inf x∗(B̄(a,R)). Then

supx∗(B) ≤ inf x∗(B̄(a,R)) = x∗(a)−R ≤ supx∗(A)−R

and hence

|supx∗(A)− supx∗(B)| ≥ supx∗(A)− supx∗(B) ≥ R = dH(A,B)− ε.

The second case can be considered by analogy.

3. Assigning cones to components of ConvH(X). In this section to
each convex set C of a normed space X we assign two cones: the recession
cone VC ⊂ X and the dual recession cone V ∗C ⊂ X∗.

We recall that a subset V of a linear space L is called a convex cone if
ax + by ∈ V for any points x, y ∈ W and any non-negative real numbers
a, b ∈ [0,∞).
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For a convex subset C of a normed space X its recession cone is the
convex cone

VC = {v ∈ X : ∀c ∈ C, c+ R̄+v ⊂ C},
lying in the normed space X, and its dual recession cone V ∗C is the closed
convex cone

V ∗C = {x∗ ∈ X∗ : supx∗(C) <∞},
which is contained in the dual Banach space X∗.

It turns out that the recession cone VC of a convex set C is uniquely
determined by its dual recession cone V ∗C .

Lemma 3.1. For any non-empty closed convex set C in a normed space
X we get

VC =
⋂
f∈V ∗C

f−1((−∞, 0]).

Proof. Fix any vector v ∈ VC and a functional f ∈ V ∗C . Observe that for
each point c ∈ C and each number t ∈ R̄+, we get c + tv ∈ C and hence
f(c) + tf(v) ≤ sup f(C) <∞, which implies that f(v) ≤ 0. This proves the
inclusion VC ⊂

⋂
f∈V ∗C

f−1((−∞, 0]).

To prove the reverse inclusion, fix any vector v ∈ X \VC . Then for some
point c ∈ C and some positive real number t we get c + tv /∈ C. Using the
Hahn–Banach Theorem, find a functional f ∈ X∗ that separates the convex
set C and the point x = c+ tv in the sense that sup f(C) < f(c+ tv). Then
f ∈ V ∗C . Moreover, f(c) ≤ sup f(C) < f(c) + tf(v) implies that f(v) > 0
and v /∈ f−1((−∞, 0]).

Let X be a normed space. It is easy to see that for each metric component
H of the ∞-metric space ConvH(X) and any two convex sets A,B ∈ H we
get V ∗A = V ∗B. In this case Lemma 3.1 implies that VA = VB as well. This
allows us to define the recession cone VH and the dual recession cone V ∗H of
the metric component H letting VH = VC and V ∗H = V ∗C for any convex set
C ∈ H. Lemma 3.1 guarantees that

VH =
⋂
f∈V ∗H

f−1((−∞, 0]),

so the recession cone VH of H is uniquely determined by its dual recession
cone V ∗H.

4. The algebraic structure of ConvH(X). In this section given a
normed space X we study the algebraic properties of the canonical repre-
sentation δ : ConvH(X)→ l̄∞(S∗).

Note that the space ConvH(X) has a rich algebraic structure, namely
three interrelated algebraic operations: multiplication by a real number, ad-
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dition, and taking maximum. More precisely, for a real number t ∈ R and
convex sets A,B ∈ ConvH(X) let

t ·A = {ta : a ∈ A};
A⊕B = A+B;
max{A,B} = conv(A ∪B), where
conv(Y ) stands for the closed convex hull of a subset Y ⊂ X.

The∞-metric space R also has the corresponding three operations (mul-
tiplication by a real number, addition and taking maximum), which induces

the tree operations on l̄∞(Γ ) = RΓ .

Proposition 4.1. The canonical representation δ : ConvH(X)→ l̄∞(S∗)
has the following properties:

(1) δ(A⊕B) = δ(A) + δ(B),
(2) δ(max{A,B}) = max{δ(A), δ(B)},
(3) δ(rA) = rδ(A),

for every non-negative real number r and convex sets A,B ∈ ConvH(X).

Proof. The three items of the proposition follow from the three obvious
equalities

supx∗(A⊕B) = supx∗(A+B) = supx∗(A) + supx∗(B),
supx∗(conv(A ∪B)) = supx∗(A ∪B) = max{supx∗(A), supx∗(B)},
supx∗(rA) = r supx∗(A),

holding for every functional x∗ ∈ X∗.
Remark 4.2. Easy examples show that the last item of Proposition 4.1

does not hold for negative real numbers r. This means that the operator
δ : ConvH(X)→ l̄∞(S∗) is positively homogeneous but not homogeneous.

The operations of addition and multiplication by a real number allow
us to define another important operation on ConvH(X) preserved by the
canonical representation δ, namely the Minkowski operation

µ : ConvH(X)× ConvH(X)× [0, 1]→ ConvH(X),

(A,B, t) 7→ (1− t)A⊕ tB,
of producing a convex combination. Proposition 4.1 implies that the canon-
ical representation δ : ConvH(X)→ l̄∞(S∗) is affine in the sense that

δ((1− t)A⊕ tB) = (1− t)δ(A) + tδ(B)

for every A,B ∈ ConvH(X) and t ∈ [0, 1].
Propositions 2.1 and 4.1 will help us to establish the metric properties

of the algebraic operations on ConvH(X).

Proposition 4.3. Let A,B,C,A′, B′ ∈ ConvH(X) be five convex sets
and r ∈ R, t, t′ ∈ [0, 1] be three real numbers. Then
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(1) dH(A⊕B,A′ ⊕B′) ≤ dH(A,A′) + dH(B,B′);
(2) dH(A⊕B,A⊕ C) = dH(B,C) provided V ∗A ⊃ V ∗B ∪ V ∗C ;
(3) dH(max{A,B},max{A′, B′}) ≤ max{dH(A,A′), dH(B,B′)};
(4) dH(r ·A, r ·B) = |r| · dH(A,B);
(5) dH((1− t)A⊕ tB, (1− t′)A⊕ t′B) = |t− t′|dH(A,B).

Proof. All the items easily follow from Propositions 2.1, 4.1, and metric
properties of algebraic operations on the ∞-metric space l̄∞(S∗).

Observe that the metric components of the ∞-metric space l̄∞(S∗) are
closed with respect to taking the maximum and producing a convex com-
bination. Moreover those operations are continuous on metric components
of l̄∞(S∗). With the help of the canonical representation those properties
of l̄∞(S∗) transform into the corresponding properties of ConvH(X). In this
way we obtain

Corollary 4.4. Each metric component H of ConvH(X) is closed un-
der the operations of taking maximum and producing a convex combination.
Moreover those operations are continuous on H.

Corollary 4.5. Each metric component H of ConvH(X) is isometric
to a convex max-subsemilattice of the Banach lattice l∞(S∗).

A subset of a Banach lattice is called a max-subsemilattice is it is closed
under the operation of taking maximum.

By a recent result of Banakh and Cauty [1], each non-locally compact
closed convex subset of a Banach space is homeomorphic to an infinite-
dimensional Hilbert space. This result combined with Corollary 4.5 implies:

Corollary 4.6. Let X be a Banach space. Then a metric component H
of ConvH(X) is homeomorphic to an infinite-dimensional Hilbert space if
and only if H is not locally compact.

This corollary reduces the problem of recognition of the topology of
non-locally compact components of ConvH(X) to calculating their densities.
This problem was considered in [3] where the following characterization was
proved.

Proposition 4.7. For a Banach space X and a metric component H of
the space ConvH(X) the following conditions are equivalent:

(1) H is separable;
(2) dens(H) < c;
(3) H contains a polyhedral convex set;
(4) the recession cone VH is polyhedral and belongs to H;

Remark 4.8. By Corollary 4.5, each metric component of ConvH(X),
being homeomorphic to a convex set, is (locally) connected, and, being
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closed-and-open in ConvH(X), coincides with a connected component of
ConvH(X). Hence there is no difference between metric and connected com-
ponents of ConvH(X), so using the term component of ConvH(X) (without
an adjective “metric” or “connected”) will not lead to misunderstanding.

5. Operators between spaces of convex sets. Each linear contin-
uous operator T : X → Y between normed spaces induces a map T :
ConvH(X)→ ConvH(Y ) assigning to each closed convex set A ∈ ConvH(X)
the closure T (A) of its image T (A) in Y . In this section we study properties
of the induced operator T . We start with algebraic properties that trivially
follow from the linearity and continuity of T .

Proposition 5.1. If T : X → Y is a linear continuous operator between
Banach spaces, and T : ConvH(X) → ConvH(Y ) is the induced operator,
then

(1) T (max{A,B}) = max{T (A), T (B)},
(2) T (r ·A) = r · T (A),
(3) T (A⊕B) = T (A)⊕ T (B),
(4) T ((1− t)A⊕ tB) = (1− t)T (A)⊕ tT (B),

for any sets A,B ∈ ConvH(X) and real numbers r ∈ R and t ∈ [0, 1].

We shall be mainly interested in the operators T induced by quotient
operators T . We recall that for a closed linear subspace Z of a normed space
X the quotient normed space X/Z = {x + Z : x ∈ X} carries the quotient
norm

‖x+ Z‖ = inf
y∈x+Z

‖y‖.

We shall denote by q : X → X/Z, x 7→ x+Z, the quotient operator and by
q̄ : ConvH(X) → ConvH(X/Z) the induced operator between the spaces of
closed convex sets.

For a closed convex set C ⊂ X we let C/Z denote the image q(C) ⊂
X/Z. So, q̄(C) = C/Z. If Z ⊂ VC , then the set C/Z is closed in X/Z and
hence q̄(C) = C/Z. Indeed, Z ⊂ VC implies that C + Z = C and hence
C/Z = (X/Z) \ q(X \C) is closed in X/Z, being the complement of the set
q(X \C), which is open as the image of the open set X \C under the open
map q : X → X/Z.

We shall need the following simple reduction lemma:

Lemma 5.2. Let Z be a closed linear subspace of a normed space X and
let A,B be non-empty closed convex subsets of X. If Z ⊂ VA ∩ VB, then
dH(A,B) = dH(A/Z,B/Z).

Proof. The inequality dH(A/Z,B/Z) ≤ dH(A,B) follows from ‖q‖ ≤ 1.
Assuming that dH(A/Z,B/Z) < dH(A,B), we can find a point a ∈ A with
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dist(a,B) > dH(A/Z, b/Z) or a point b ∈ B with dist(b, A) > dH(A/Z,B/Z).
Without loss of generality, we deal with the former case. Consider the
image a′ = q(a) ∈ A/Z under the quotient operator q : X → X/Z.
Since dH(A/Z,B/Z) < dist(a,B), there is a point b′ ∈ B/Z such that
‖b′ − a′‖ < dist(a,B). By the definition of the quotient norm, there is a
vector x ∈ q−1(b′ − a′) such that ‖x‖ < dist(a,B). Now consider the point
b = a+ x and observe that q(b) = q(a) + q(x) = a′ + b′ − a′ = b′ ∈ B/Z and
hence b ∈ q−1(B/Z) = B + Z ⊂ B + VB ⊂ B. So, dist(a,B) ≤ ‖a − b‖ =
‖x‖ < dist(a,B), which is a desired contradiction that completes the proof
of the equality dH(A,B) = dH(A/Z,B/Z).

Corollary 5.3. Let X be a normed space X, H be a component of the
space ConvH(X), and Z be a closed linear subspace of X. If Z ⊂ VH, then
the quotient operator

q̄ : H → H/Z, C 7→ C/Z,

maps isometrically the component H of ConvH(X) onto the component H/Z
of ConvH(X/Z) containing some (equivalently, each) convex set C/Z with
C ∈ H.

6. Proof of Theorem 1. Let X be a Banach space and H be a com-
ponent of the space ConvH(X).

If H contains no polyhedral convex set, then by Proposition 4.7, it has
density dens(H) ≥ c. Consequently, H is not locally compact and, by Corol-
lary 4.6, H is homeomorphic to the non-separable Hilbert space l2(κ) of
density κ = dens(H) ≥ c.

It remains to analyze the topological structure of H if it contains a poly-
hedral convex set. In this case Proposition 4.7 guarantees that the recession
cone VH belongs to H and is polyhedral in X. If VH = X, then H = {X} is
a singleton. So, we assume that VH 6= X. Since the cone VH is polyhedral,
the closed linear subspace Z = −VH∩VH has finite codimension in X. Then
the quotient Banach space X̃ = X/Z is finite-dimensional. Let q : X → X̃
be the quotient operator.

By Corollary 5.3, the component H is isometric to the component H̃ =
H/Z of the space ConvH(X̃) of closed convex subsets of the finite-dimensio-
nal Banach space X̃. The component H̃ contains the polyhedral convex cone
VH̃ = q(VH), which has the property −VH̃ ∩ VH̃ = {0}.

The cone VH̃ can be of two types.

1. The cone VH̃ = {0} is trivial. In this case H contains the closed linear
subspace Z = VH of finite codimension in X. Taking into account that
VH 6= X, we conclude that dim(X̃) ≥ 1. Depending on the value of dim(X̃),
we have two subcases.
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1a. The dimension dim(X̃) = 1 and hence H contains the linear sub-
space Z = VH of codimension 1 in X. In this case H̃ coincides with the
space BConvH(X̃) of non-empty bounded closed convex subsets of the one-
dimensional Banach space X̃ and hence H̃ is homeomorphic to the half-plane
R× R̄+.

1b. The dimension dim(X̃) ≥ 2 and hence H contains the linear sub-
space Z of codimension ≥ 2 in X. In this case H̃ coincides with the space
BConvH(X̃) of non-empty bounded closed convex subsets of the Banach
space X̃ of finite dimension dim(X̃) ≥ 2. By the result of Nadler, Quinn
and Stavrakas [9], the space BConvH(X̃) is homeomorphic to the Hilbert
cube manifold Q× R̄+.

2. The recession cone VH̃ 6= {0} is not trivial. Again there are two sub-
cases.

2a. dim(X̃) = dim(VH̃) = 1. In this case the component H̃ (and its
isometric copy H) is isometric to the real line R.

2b. dim(X̃) ≥ 2. In this case we shall prove that the component H̃ (and
its isometric copy H) is homeomorphic to the separable Hilbert space l2.
This will follow from the separability of H and Corollary 4.6 as soon as
we check that the space H̃ is not locally compact. To prove this fact, it
suffices for every positive ε < 1 to construct a sequence of closed convex sets
{Cn}n∈N ⊂ H̃ such that dH(Cn, VH̃) ≤ ε and infn6=m dH(Cn, Cm) > 0.

The cone VH̃ is polyhedral and hence is generated by some finite set

E ⊂ X̃ \ {0}; see [8] or Theorem 1.1 of [17]. For every e ∈ E the vector
−e does not belong to VH̃. Then the Hahn–Banach Theorem yields a linear
functional he ∈ X∗ such that he(−e) < inf he(VH̃) = 0. It can be shown that
the functional h =

∑
e∈E he has the property h(v) > 0 for all v ∈ VH̃ \ {0}.

Multiplying h by a suitable positive constant, we can additionally assume
that ‖h‖ = 1.

Since dim(X̃) ≥ 2 and VH̃ 6= X̃, we can find a linear continuous func-

tional f : X̃ → R such that ‖f‖ = 1, sup f(VH̃) = 0 and the intersection

f−1(0) ∩ VH̃ contains a non-zero vector x ∈ X̃. Multiplying x by a suitable
positive constant, we can assume that h(x) = 1. Since h−1(0)∩ VH̃ = {0} 6=
f−1(0)∩VH̃, the functionals h and f are distinct and hence there is a vector
y ∈ h−1(0) \ f−1(0) with norm ‖y‖ = ε. Replacing y by −y if necessary, we
can assume that f(y) > 0.

For every n ∈ N consider the point cn = 3nx+ y and the closed convex
set

Cn = max{VH̃, {cn}} = conv(VH̃ ∪ {cn}) ⊂ X̃.
It follows from x ∈ VH̃ and dist(cn, VH̃) ≤ dist(3nx+ y, 3nx) = ‖y‖ = ε that
dH(Cn, VH̃) ≤ ε.
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We claim that infn6=m dH(Cn, Cm) ≥ δ where

δ = 1
2f(y) ≤ 1

2‖y‖ = 1
2ε <

1
2 .

This will follow as soon as we check that dist(cn, Cm) ≥ δ for any numbers
n < m.

Assuming conversely that dist(cn, Cm) < δ and taking into account that
the convex set conv(VH̃ ∪ {cm}) is dense in Cm, we can find a point c ∈
conv(VH̃∪{cm}) such that dist(cn, c) < δ. The point c belongs to the convex
hull of the set VH̃ ∪{cm} and hence can be written as a convex combination
c = tcm + (1 − t)v = t(3mx + y) + (1 − t)v for some t ∈ [0, 1] and v ∈ VH̃.
Observe that

h(cn) = h(3nx+ y) = 3nh(x) + h(y) = 3n · 1 + 0 = 3n

while

h(c) = th(cm) + (1− t)h(v) ≥ th(cm) = 3mt.

Then

3mt− 3n ≤ h(c)− h(cn) ≤ |h(c)− h(cn)| ≤ ‖h‖ · ‖c− cn‖ < 1 · δ
and hence

t < 3n−m + 3−mδ ≤ 1
3 + 1

3δ <
1
3 + 1

6 = 1
2 .

Next, we apply the functional f to the points cn and c. Since f(x) = 0,
we get f(cn) = f(3nx+y) = f(y) = 2δ. On the other hand, f(VH̃) ⊂ (−∞, 0]
implies f(v) ≤ 0 and hence

f(c) = f(tcm + (1− t)v) = tf(3mx+ y) + (1− t)f(v)

= tf(y) + (1− t)f(v) ≤ tf(y) = 2δt.

Then

δ = 2δ(1− 1/2) < 2δ(1− t) ≤ |f(cn)− f(c)| ≤ ‖f‖ · ‖cn − c‖ < δ,

which is the desired contradiction.
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