Recognizing the topology of the space of closed convex subsets of a Banach space

by

TARAS BANAKH (Kielce and Lviv), IVAN HETMAN (Lviv) and KATSURO SAKAI (Tsukuba)

Abstract. Let X be a Banach space and $\operatorname{Conv}_{\mathsf{H}}(X)$ be the space of non-empty closed convex subsets of X, endowed with the Hausdorff metric d_{H} . We prove that each connected component \mathcal{H} of the space $\operatorname{Conv}_{\mathsf{H}}(X)$ is homeomorphic to one of the spaces: $\{0\}, \mathbb{R}, \mathbb{R} \times \overline{\mathbb{R}}_+, Q \times \overline{\mathbb{R}}_+, l_2$, or the Hilbert space $l_2(\kappa)$ of cardinality $\kappa \geq \mathfrak{c}$. More precisely, a component \mathcal{H} of $\operatorname{Conv}_{\mathsf{H}}(X)$ is homeomorphic to:

- (1) $\{0\}$ iff \mathcal{H} contains the whole space X;
- (2) \mathbb{R} iff \mathcal{H} contains a half-space;
- (3) $\mathbb{R} \times \overline{\mathbb{R}}_+$ iff \mathcal{H} contains a linear subspace of X of codimension 1;
- (4) $Q \times \overline{\mathbb{R}}_+$ iff \mathcal{H} contains a linear subspace of X of finite codimension ≥ 2 ;
- (5) l_2 iff \mathcal{H} contains a polyhedral convex subset of X but contains no linear subspace and no half-space of X;
- (6) $l_2(\kappa)$ for some cardinal $\kappa \geq \mathfrak{c}$ iff \mathcal{H} contains no polyhedral convex subset of X.

1. Introduction. In this paper we recognize the topological structure of the space $\text{Conv}_{\mathsf{H}}(X)$ of non-empty closed convex subsets of a Banach space X. The space $\text{Conv}_{\mathsf{H}}(X)$ is endowed with the Hausdorff metric

$$\mathsf{d}_{\mathsf{H}}(A,B) = \max\left\{\sup_{a\in A} \operatorname{dist}(a,B), \sup_{b\in B} \operatorname{dist}(b,A)\right\} \in [0,\infty],$$

where dist $(a, B) = \inf_{b \in B} ||a - b||$ is the distance from the point a to the subset B in X. In fact, the topology of $\operatorname{Conv}_{\mathsf{H}}(X)$ can be defined directly without appealing to the Hausdorff metric: a subset $\mathcal{U} \subset \operatorname{Conv}_{\mathsf{H}}(X)$ is open if and only if for every $A \in \mathcal{U}$ there is an open neighborhood U of the origin in X such that $B(A, U) \subset \mathcal{U}$, where $B(A, U) = \{A' \in \operatorname{Conv}_{\mathsf{H}}(X) : A' \subset A + U$ and $A \subset A' + U\}$. Here, as expected, $A + B = \{a + b : a \in A, b \in B\}$ stands for the pointwise sum of the sets $A, B \subset X$. In this way, for every linear

²⁰¹⁰ Mathematics Subject Classification: Primary 57N20; Secondary 46A55, 46B26, 46B20, 52B05, 03E65.

Key words and phrases: Banach space, space of closed convex sets, Hilbert space, Kunen–Shelah property, polyhedral convex set.

topological space X we can define the topology on the space $\operatorname{Conv}_{\mathsf{H}}(X)$ of non-empty closed convex subsets of X. This topology will be called *the uniform topology* on $\operatorname{Conv}_{\mathsf{H}}(X)$ because it is generated by the uniformity whose base consists of the sets

$$2^U = \{ (A, A') \in \operatorname{Conv}_{\mathsf{H}}(X)^2 : A \subset A' + U, \ A' \subset A + U \}$$

where U runs over open symmetric neighborhoods of the origin in X.

We shall observe in Remark 4.8 that for a Banach space X the space $\operatorname{Conv}_{\mathsf{H}}(X)$ is locally connected: two sets $A, B \in \operatorname{Conv}_{\mathsf{H}}(X)$ lie in the same connected component of $\operatorname{Conv}_{\mathsf{H}}(X)$ if and only if $\mathsf{d}_{\mathsf{H}}(A, B) < \infty$. So, in order to understand the topological structure of the hyperspace $\operatorname{Conv}_{\mathsf{H}}(X)$ it suffices to recognize the topology of its connected components. This problem is quite easy if X is a 1-dimensional real space. In this case X is isometric to \mathbb{R} and a connected component \mathcal{H} of $\operatorname{Conv}_{\mathsf{H}}(X)$ is homeomorphic to:

- (1) $\{0\}$ iff $X \in \mathcal{H}$;
- (2) \mathbb{R} iff \mathcal{H} contains a closed ray;
- (3) $\mathbb{R} \times \mathbb{R}_+$ iff \mathcal{H} contains a bounded set.

Here $\mathbb{R}_+ = [0, \infty)$ stands for the closed half-line.

For arbitrary Banach spaces we shall add to this list two more spaces:

- (4) $Q \times \overline{\mathbb{R}}_+$, where $Q = [0, 1]^{\omega}$ is the Hilbert cube;
- (5) $l_2(\kappa)$, the Hilbert space with an orthonormal basis of cardinality κ .

For $\kappa = \omega$ the separable Hilbert space $l_2(\omega)$ is usually denoted by l_2 . By the famous Toruńczyk Theorem [15], [16], each infinite-dimensional Banach space X of density κ is homeomorphic to the Hilbert space $l_2(\kappa)$. In particular, the Banach space l_{∞} of bounded real sequences is homeomorphic to $l_2(\mathfrak{c})$. In what follows, we shall identify cardinals with the sets of ordinals of smaller cardinality and endow such sets with discrete topology. The cardinality of a set A is denoted by |A|.

Let X be a Banach space. As we shall see in Theorem 1, each nonlocally compact connected component \mathcal{H} of $\operatorname{Conv}_{\mathsf{H}}(X)$ is homeomorphic to the Hilbert space $l_2(\kappa)$ of density $\kappa = \operatorname{dens}(\mathcal{H})$. This reduces the problem of recognizing the topology of $\operatorname{Conv}_{\mathsf{H}}(X)$ to calculating the densities of its components. In fact, separable components \mathcal{H} of $\operatorname{Conv}_{\mathsf{H}}(X)$ have been characterized in [3] as components containing a polyhedral convex set.

We recall that a convex subset C of a Banach space X is *polyhedral* if Ccan be written as the intersection $C = \bigcap \mathcal{F}$ of a finite family \mathcal{F} of closed halfspaces. A *half-space* in X is a convex set of the form $f^{-1}((-\infty, a])$ for some real number a and some non-zero linear continuous functional $f : X \to \mathbb{R}$. The whole space X is a polyhedral set, being the intersection $X = \bigcap \mathcal{F}$ of the empty family $\mathcal{F} = \emptyset$ of closed half-spaces.

The principal result of this paper is the following classification theorem.

THEOREM 1. Let X be a Banach space. Each connected component \mathcal{H} of the space $\operatorname{Conv}_{\mathsf{H}}(X)$ is homeomorphic to one of the spaces: {0}, \mathbb{R} , $\mathbb{R} \times \overline{\mathbb{R}}_+$, $Q \times \overline{\mathbb{R}}_+$, l_2 , or the Hilbert space $l_2(\kappa)$ of density $\kappa \geq \mathfrak{c}$. More precisely, \mathcal{H} is homeomorphic to:

- (1) $\{0\}$ iff \mathcal{H} contains the whole space X;
- (2) \mathbb{R} iff \mathcal{H} contains a half-space;
- (3) $\mathbb{R} \times \mathbb{R}_+$ iff \mathcal{H} contains a linear subspace of X of codimension 1;
- (4) $Q \times \mathbb{R}_+$ iff \mathcal{H} contains a linear subspace of X of finite codimension $\geq 2;$
- (5) l_2 iff \mathcal{H} contains a polyhedral convex subset of X but contains no linear subspace and no half-space of X;
- (6) $l_2(\kappa)$ for some cardinal $\kappa \geq \mathfrak{c}$ iff \mathcal{H} contains no polyhedral convex subset of X.

Theorem 1 will be proved in Section 6 after some preliminary work in Sections 2–5.

In Corollary 2 below we shall derive from Theorem 1 a complete topological classification of the spaces $\operatorname{Conv}_{\mathsf{H}}(X)$ for Banach spaces X with the Kunen–Shelah property and $|X^*| \leq \mathfrak{c}$.

A Banach space X is defined to have the Kunen-Shelah property if each closed convex subset $C \subset X$ can be written as the intersection $C = \bigcap \mathcal{F}$ of an at most countable family \mathcal{F} of closed half-spaces (in fact, this is one of seven equivalent Kunen-Shelah properties considered in [6] and [7, 8.19]). For a Banach space X with the Kunen-Shelah property we get

$$|X^*| \le |\operatorname{Conv}_{\mathsf{H}}(X)| \le |X^*|^{\omega}.$$

The upper bound $\operatorname{Conv}_{\mathsf{H}}(X) \leq |X^*|^{\omega}$ follows from the definition of the Kunen–Shelah property, while the lower bound $|X^*| \leq |\operatorname{Conv}_{\mathsf{H}}(X)|$ follows from the observation that a functional $f \in X^*$ is uniquely determined by its polar half-space $H_f = f^{-1}((-\infty, 1])$.

It is clear that each separable Banach space has the Kunen–Shelah property. However there are also non-separable Banach spaces with that property. The first example of such a Banach space was constructed by S. Shelah [13] under \diamond_{\aleph_1} . The second example is due to K. Kunen who used the Continuum Hypothesis to construct a non-metrizable scattered compact space K such that the Banach space X = C(K) of continuous functions on K is hereditarily Lindelöf in the weak topology and thus has the Kunen–Shelah property; see [10, p. 1123]. Kunen's space X = C(K) has the additional property that its dual space $X^* = C(X)^*$ has cardinality $|X^*| = \mathfrak{c}$ (this follows from the fact that each Borel measure on the scattered compact space K has countable support). Let us remark that for every separable Banach space X the dual space X^* also has the cardinality of the continuum, $|X^*| = \mathfrak{c}$. It should be mentioned that non-separable Banach spaces with the Kunen–Shelah property can be constructed only under certain additional set-theoretic assumptions: there are models of ZFC (see [14]) in which each Banach space with the Kunen–Shelah property is separable.

COROLLARY 1. For a separable Banach space (more generally, a Banach space with the Kunen–Shelah property and $|X^*| \leq \mathfrak{c}$), each connected component \mathcal{H} of the space $\operatorname{Conv}_{\mathsf{H}}(X)$ is homeomorphic to $\{0\}, \mathbb{R}, \mathbb{R} \times \overline{\mathbb{R}}_+, Q \times \overline{\mathbb{R}}_+, l_2 \text{ or } l_{\infty}$. More precisely, \mathcal{H} is homeomorphic to:

- (1) $\{0\}$ iff \mathcal{H} contains the whole space X;
- (2) \mathbb{R} iff \mathcal{H} contains a half-space;
- (3) $\mathbb{R} \times \mathbb{R}_+$ iff \mathcal{H} contains a linear subspace of X of codimension 1;
- (4) $Q \times \mathbb{R}_+$ iff \mathcal{H} contains a linear subspace of X of codimension ≥ 2 ;
- (5) l₂ iff H contains a polyhedral convex set but contains no linear subspace and no half-space;
- (6) l_{∞} iff \mathcal{H} contains no polyhedral convex set.

Since $\operatorname{Conv}_{\mathsf{H}}(X)$ is homeomorphic to the topological sum of its connected components, we can use Corollary 1 to classify topologically the spaces $\operatorname{Conv}_{\mathsf{H}}(X)$ for separable Banach spaces X (and more generally Banach spaces with the Kunen–Shelah property and $|X^*| \leq \mathfrak{c}$). In the following corollary the cardinal \mathfrak{c} is considered as a discrete topological space.

COROLLARY 2. For a separable Banach space X (more generally, a Banach space X with the Kunen-Shelah property and $|X^*| \leq \mathfrak{c}$) the space $\operatorname{Conv}_{\mathsf{H}}(X)$ is homeomorphic to the topological sum:

- (1) $\{0\} \oplus \mathbb{R} \oplus \mathbb{R} \oplus (\mathbb{R} \times \mathbb{R}_+)$ iff dim(X) = 1;
- (2) $\{0\} \oplus Q \times \overline{\mathbb{R}}_+ \oplus \mathfrak{c} \times (\mathbb{R} \oplus \mathbb{R} \times \overline{\mathbb{R}}_+ \oplus l_2 \oplus l_\infty)$ iff dim(X) = 2;
- (3) $\{0\} \oplus \mathfrak{c} \times (\mathbb{R} \oplus \mathbb{R} \times \overline{\mathbb{R}}_+ \oplus Q \times \overline{\mathbb{R}}_+ \oplus l_2 \oplus l_\infty)$ iff dim $(X) \ge 3$.

Moreover, under $2^{\omega_1} > \mathfrak{c}$, for a Banach space X, the space $\operatorname{Conv}_{\mathsf{H}}(X)$ has cardinality $|\operatorname{Conv}_{\mathsf{H}}(X)| \leq \mathfrak{c}$ if and only if $|X^*| \leq \mathfrak{c}$ and the Banach space X has the Kunen–Shelah property.

Proof. The statements (1)-(3) easily follow from the classification of the components of $\text{Conv}_H(X)$ given in Corollary 1 and a routine calculation of the number of components of a given topological type.

Now assume that $2^{\omega_1} > \mathfrak{c}$. If X is a Banach space with the Kunen–Shelah property and $|X^*| \leq \mathfrak{c}$, then the definition of the Kunen–Shelah property yields the upper bound

$$|\operatorname{Conv}_{\mathsf{H}}(X)| \le |X^*|^{\omega} \le \mathfrak{c}^{\omega} = \mathfrak{c}.$$

If $|\operatorname{Conv}_{\mathsf{H}}(X)| \leq \mathfrak{c}$, then $|X^*| \leq \mathfrak{c}$ as $|X^*| \leq |\operatorname{Conv}_{\mathsf{H}}(X)|$ (because each functional $f \in X^*$ can be uniquely identified with its polar half-space $f^{-1}((-\infty, 1]) \in \operatorname{Conv}_{\mathsf{H}}(X)$). Assuming that X fails to have the Kunen– Shelah property and applying Theorem 8.19 of [7] (see also [6]), we can find a sequence $\{x_{\alpha}\}_{\alpha < \omega_1} \subset X$ such that for every $\alpha < \omega_1$ the point x_{α} does not lie in the closed convex hull $C_{\omega_1 \setminus \{\alpha\}}$ of the set $\{x_{\beta}\}_{\beta \in \omega_1 \setminus \{\alpha\}}$. Now for every subset $A \subset \omega_1$ consider the closed convex hull $C_A = \overline{\operatorname{conv}}\{x_{\alpha}\}_{\alpha \in A}$. We claim that $C_A \neq C_B$ for any distinct subsets $A, B \subset \omega_1$. Indeed, if $A \neq B$ then the symmetric difference $(A \setminus B) \cup (B \setminus A)$ contains some ordinal α . Without loss of generality, we can assume that $\alpha \in A \setminus B$. Then $x_{\alpha} \in C_A \setminus C_B$ as $C_B \subset C_{\omega_1 \setminus \{\alpha\}} \not\ni x_{\alpha}$. This implies that $\{C_A : A \subset \omega_1\}$ is a subset of cardinality $2^{\omega_1} > \mathfrak{c}$ in $\operatorname{Conv}_{\mathsf{H}}(X)$ and hence $|\operatorname{Conv}_{\mathsf{H}}(X)| \geq 2^{\omega_1} > \mathfrak{c}$, which is the desired contradiction.

Among the connected components of $\operatorname{Conv}_{\mathsf{H}}(X)$ there is a special one, namely, the component \mathcal{H}_0 containing the singleton $\{0\}$. This component coincides with the space $BConv_H(X)$ of all non-empty bounded closed convex subsets of a Banach space X. The spaces $BConv_H(X)$ have been intensively studied both by topologists [9], [12] and analysts [5]. In particular, S. Nadler, J. Quinn and N. M. Stavrakas [9] proved that for a finite $n \geq 2$ the space $BConv_H(\mathbb{R}^n)$ is homeomorphic to $Q \times \mathbb{R}_+$, while K. Sakai proved in [12] that for an infinite-dimensional Banach space X the space $\mathcal{H}_0 = \operatorname{BConv}_H(X)$ is homeomorphic to a non-separable Hilbert space. Moreover, if X is separable or reflexive, then dens(\mathcal{H}_0) = $2^{\text{dens}(X)}$. If X is reflexive, then the density dens^{*}(X^*) of the dual space X^* in the weak^{*} topology is equal to the density dens(X) of X. Banach spaces X with dens^{*}(X^{*}) = dens(X) are called *DENS Banach spaces* (see [7, 5.39]). By Proposition 5.40 of [7], the class of DENS Banach spaces includes all weakly Lindelöf determined spaces, and hence all weakly countably generated and all reflexive Banach spaces.

Applying Theorem 1 to describing the topology of the component $\mathcal{H}_0 = \operatorname{BConv}_H(X)$, we obtain the following classification.

COROLLARY 3. The space $\mathcal{H}_0 = \operatorname{BConv}_H(X)$ of non-empty bounded closed convex subsets of a Banach space X is homeomorphic to one of the spaces: {0}, $\mathbb{R} \times \overline{\mathbb{R}}_+$, $Q \times \overline{\mathbb{R}}_+$ or the Hilbert space $l_2(\kappa)$ of density $\kappa \geq \mathfrak{c}$. More precisely, $\operatorname{BConv}(X)$ is homeomorphic to:

- (1) $\{0\}$ *iff* dim(X) = 0;
- (2) $\mathbb{R} \times \mathbb{R}_+$ iff dim(X) = 1;
- (3) $Q \times \overline{\mathbb{R}}_+$ iff $2 \le \dim(X) < \infty$;
- (4) $l_2(\kappa)$ for some cardinal $\kappa \in [2^{\text{dens}^*(X^*)}, 2^{\text{dens}(X)}]$ iff $\dim(X) = \infty$;
- (5) $l_2(2^{\operatorname{dens}(X)})$ if X is an infinite-dimensional DENS Banach space.

Proof. This corollary will follow from Theorem 1 as soon as we check that $2^{\text{dens}^*(X^*)} \leq \text{dens}(\mathcal{H}_0) \leq |\mathcal{H}_0| \leq |\text{Conv}_{\mathsf{H}}(X)| \leq 2^{\text{dens}(X)}$ for each infinite-dimensional Banach space X.

In fact, the inequality $|\operatorname{Conv}_{\mathsf{H}}(X)| \leq 2^{\operatorname{dens}(X)}$ has general-topological nature and follows from the known fact that the number of closed subsets (equal to the number of open subsets) of a topological space Y does not exceed $2^{w(Y)}$, where w(Y) is the weight of Y (which is equal to dens(Y) if the space Y is metrizable; see [4, 4.1.15]).

To prove that $2^{\text{dens}^*(X^*)} \leq \text{dens}(\mathcal{H}_0)$ we shall use a result of Plichko [11] (see also Theorem 4.12 of [7]) saying that for each infinite-dimensional Banach space X there is a bounded sequence $\{(x_\alpha, f_\alpha)\}_{\alpha < \kappa} \subset X \times X^*$ of length $\kappa = \text{dens}^*(X^*)$, which is biorthogonal in the sense that $f_\alpha(x_\alpha) = 1$ and $f_\alpha(x_\beta) = 0$ for any distinct ordinals $\alpha, \beta < \kappa$. Let $L = \sup\{\|x_\alpha\|, \|f_\alpha\| : \alpha < \kappa\}$.

For every subset $A \subset \kappa$ consider $C_A = \overline{\operatorname{conv}}(\{x_\alpha\}_{\alpha \in A})$, the closed convex hull of the set $\{x_\alpha\}_{\alpha \in A}$. We claim that for any distinct subsets $A, B \subset \kappa$ we get $\mathsf{d}_{\mathsf{H}}(C_A, C_B) \geq 1/L$. Indeed, since $A \neq B$ the symmetric difference $(A \setminus B) \cup (B \setminus A)$ contains some ordinal α . Without loss of generality, we can assume that $\alpha \in A \setminus B$. Then $C_B \subset f_{\alpha}^{-1}(0)$ and hence for each $c \in C_B$ we get

$$||x_{\alpha} - c|| \ge \frac{|f_{\alpha}(x_{\alpha}) - f_{\alpha}(c)|}{||f_{\alpha}||} \ge \frac{|1 - 0|}{L},$$

which implies dist $(x_{\alpha}, C_B) \ge 1/L$ and hence $\mathsf{d}_{\mathsf{H}}(C_A, C_B) \ge 1/L$ as $x_{\alpha} \in C_A$.

Now we see that $\mathcal{C} = \{C_A : A \subset \kappa\}$ is a closed discrete subspace in \mathcal{H}_0 and hence dens $(\mathcal{H}_0) \geq |\mathcal{C}| = 2^{\kappa} = 2^{\text{dens}^*(X^*)}$.

Corollaries 1 and 2 motivate the following problem.

PROBLEM 1.1. Is $|X^*| \leq \mathfrak{c}$ for each Banach space X with the Kunen–Shelah property?

Another problem concerns possible densities of the components of the space $\operatorname{Conv}_{\mathsf{H}}(X)$.

PROBLEM 1.2. Let X be an infinite-dimensional Banach space. Is it true that each component \mathcal{H} (in particular, \mathcal{H}_0) of $\operatorname{Conv}_{\mathsf{H}}(X)$ has density 2^{κ} or $2^{<\kappa} = \sup\{2^{\lambda} : \lambda < \kappa\}$ for some cardinal κ ?

Observe that under GCH (the Generalized Continuum Hypothesis) the answer to Problem 1.2 is trivially "yes" as under GCH all cardinals are of the form $2^{<\kappa}$ for some κ .

2. ∞ -Metric spaces. Because the Hausdorff distance d_{H} on $\operatorname{Conv}_{\mathsf{H}}(X)$ can take the infinite value we should work with generalized metrics called ∞ -metrics.

By an ∞ -metric on a set X we understand a function $d: X \times X \to [0, \infty]$ satisfying the three axioms of a usual metric:

- d(x, y) = 0 iff x = y,
- d(x,y) = d(y,x),
- $d(x,z) \le d(x,y) + d(y,z)$.

Here we extend the addition operation from $(-\infty,\infty)$ to $[-\infty,\infty]$ letting

$$\infty + \infty = \infty$$
, $-\infty + (-\infty) = -\infty$, $\infty + (-\infty) = -\infty + \infty = 0$

and

$$x + \infty = \infty + x = \infty, \quad x + (-\infty) = -\infty + x = -\infty$$

for every $x \in (-\infty, \infty)$.

An ∞ -metric space is a pair (X, d) consisting of a set X and an ∞ -metric d on X. It is clear that each metric is an ∞ -metric and hence each metric space is an ∞ -metric space.

In some respects, the notion of an ∞ -metric is more convenient than the usual notion of a metric. In particular, for any family $(X_i, d_i), i \in \mathcal{I}$, of ∞ -metric spaces it is trivial to define a nice ∞ -metric d on the topological sum $X = \bigoplus_{i \in \mathcal{I}} X_i$. Just let

$$d(x,y) = \begin{cases} d_i(x,y) & \text{if } x, y \in X_i, \\ \infty & \text{otherwise.} \end{cases}$$

The resulting ∞ -metric space (X, d) will be called the *direct sum* of the family of ∞ -metric spaces $(X, d_i), i \in \mathcal{I}$.

In fact, each ∞ -metric space (X, d) decomposes into the direct sum of metric subspaces of X called metric components of X. More precisely, a *metric component* of X is an equivalence class of X by the equivalence relation \sim defined by $x \sim y$ iff $d(x, y) < \infty$. So, the *metric component* of a point $x \in X$ coincides with the set $\mathbb{B}_{<\infty}(x) = \{x' \in X : d(x, x') < \infty\}$. The restriction of the ∞ -metric d to each metric component is a metric. Therefore X is the direct sum of its metric components, and hence understanding the (topological) structure of a ∞ -metric space reduces to studying the metric (or topological) structure of its metric components.

A typical example of an ∞ -metric is the Hausdorff ∞ -metric d_{H} on the space $\operatorname{Cld}(X)$ of non-empty closed subsets of a (linear) metric space X (and the restriction of d_{H} to the subspace $\operatorname{Conv}(X) \subset \operatorname{Cld}(X)$ of non-empty closed convex subsets of X). So both $\operatorname{Cld}_{\mathsf{H}}(X) = (\operatorname{Cld}(X), \mathsf{d}_{\mathsf{H}})$ and $\operatorname{Conv}_{\mathsf{H}}(X) = (\operatorname{Conv}(X), \mathsf{d}_{\mathsf{H}})$ are ∞ -metric spaces.

A much simpler (but still important) example of an ∞ -metric space is the extended real line $\overline{\mathbb{R}} = [-\infty, \infty]$ with the ∞ -metric

$$d_{\infty}(x,y) = \begin{cases} |x-y| & \text{if } x, y \in (-\infty,\infty), \\ 0 & \text{if } x = y \in \{-\infty,\infty\}, \\ \infty & \text{otherwise,} \end{cases}$$

which will be denoted by |x - y| again. The ∞ -metric space $\overline{\mathbb{R}}$ has three metric components: $\{-\infty\}$, \mathbb{R} , $\{\infty\}$.

This example allows us to construct another important example of an ∞ -metric space. Namely, for a set Γ consider the space $\overline{\mathbb{R}}^{\Gamma}$ of functions from Γ to $\overline{\mathbb{R}}$ endowed with the ∞ -metric

$$d_{\infty}(f,g) = \|f - g\|_{\infty} = \sup_{\gamma \in \Gamma} |f(\gamma) - g(\gamma)|.$$

The resulting ∞ -metric space $(\overline{\mathbb{R}}^{\Gamma}, d_{\infty})$ will be denoted by $\overline{l}_{\infty}(\Gamma)$. Observe that the topology of $\overline{l}_{\infty}(\Gamma)$ is different from the Tikhonov product topology of $\overline{\mathbb{R}}^{\Gamma}$. Another reason for using the notation $\overline{l}_{\infty}(\Gamma)$ is that the metric component of $\overline{l}_{\infty}(\Gamma)$ containing the zero function coincides with the classical Banach space $l_{\infty}(\Gamma)$ of bounded functions on Γ . More generally, for each $f_0 \in \overline{l}_{\infty}(\Gamma)$ its metric component

$$\mathbb{B}_{<\infty}(f_0) = \{ f \in \overline{l}_{\infty}(\Gamma) : \| f - f_0 \|_{\infty} < \infty \}$$

is isometric to the Banach space $l_{\infty}(\Gamma_0)$ where $\Gamma_0 = \{\gamma \in \Gamma : |f_0(\gamma)| < \infty\}$. This fact will be used later in Corollary 4.5.

It turns out that for every normed space X the space $\operatorname{Conv}_{\mathsf{H}}(X)$ nicely embeds into the ∞ -metric space $\overline{l}_{\infty}(\mathbb{S}^*)$ where

$$\mathbb{S}^* = \{x^* \in X^* : \|x^*\| = 1\}$$

stands for the unit sphere of the dual Banach space X^* .

Namely, consider the function

 $\delta : \operatorname{Conv}_{\mathsf{H}}(X) \to \overline{l}_{\infty}(\mathbb{S}^*), \quad C \mapsto \delta_C,$

where $\delta_C(x^*) = \sup x^*(C)$ for $x^* \in \mathbb{S}^*$. The function δ will be called the *canonical representation* of Conv_H(X).

PROPOSITION 2.1. For every normed space X the canonical representation $\delta : \operatorname{Conv}_{\mathsf{H}}(X) \to \overline{l}_{\infty}(\mathbb{S}^*)$ is an isometric embedding.

Proof. Let $A, B \in \text{Conv}_{\mathsf{H}}(X)$ be two convex sets. We should prove that $\mathsf{d}_{\mathsf{H}}(A, B) = \|\delta_A - \delta_B\|$, where

$$\|\delta_A - \delta_B\| = \sup_{x^* \in \mathbb{S}^*} |\delta_A(x^*) - \delta_B(x^*)| = \sup_{x^* \in \mathbb{S}^*} |\sup x^*(A) - \sup x^*(B)|.$$

The inequality $\|\delta_A - \delta_B\| \leq \mathsf{d}_{\mathsf{H}}(A, B)$ will follow as soon as we check that $|\sup x^*(A) - \sup x^*(B)| \leq \mathsf{d}_{\mathsf{H}}(A, B)$ for each functional $x^* \in \mathbb{S}^*$. This is trivial if $\mathsf{d}_{\mathsf{H}}(A, B) = \infty$. So we assume that $\mathsf{d}_{\mathsf{H}}(A, B) < \infty$. To obtain a contradiction, assume that $|\sup x^*(A) - \sup x^*(B)| > \mathsf{d}_{\mathsf{H}}(A, B)$. Then either $\sup x^*(A) - \sup x^*(B) > \mathsf{d}_{\mathsf{H}}(A, B)$ or $\sup x^*(B) - \sup x^*(A) > \mathsf{d}_{\mathsf{H}}(A, B)$. In the first case $\sup x^*(B) \neq \infty$, so we can find a point $a \in A$ with $x^*(a) - \sup x^*(B) > \mathsf{d}_{\mathsf{H}}(A, B)$. It follows from the definition of the Hausdorff metric $\mathsf{d}_{\mathsf{H}}(A, B) \geq \operatorname{dist}(a, B)$ that $||a-b|| < x^*(a) - \sup x^*(B)$ for some point $b \in B$. Then $x^*(a) - x^*(b) \le ||x^*|| \cdot ||a - b|| < x^*(a) - \sup x^*(B)$ and hence $x^*(b) > \sup x^*(B)$, which is a contradiction.

By analogy, we can derive a contradiction from the assumption $\sup x^*(B) - \sup x^*(A) > \mathsf{d}_{\mathsf{H}}(A, B)$ and thus prove the inequality $\|\delta_A - \delta_B\| \leq \mathsf{d}_{\mathsf{H}}(A, B)$.

To prove the reverse inequality $\|\delta_A - \delta_B\| \ge d_H(A, B)$ let us consider two cases:

(i) $\mathsf{d}_{\mathsf{H}}(A, B) = \infty$. To prove that $\infty = \|\delta_A - \delta_B\|$, it suffices given any number $R < \infty$ to find a linear functional $x^* \in \mathbb{S}^*$ such that $|\sup x^*(A) - \sup x^*(B)| \ge R$.

The equality $d_{\mathsf{H}}(A, B) = \infty$ implies that either $\sup_{a \in A} \operatorname{dist}(a, B) = \infty$ or $\sup_{b \in B} \operatorname{dist}(b, A) = \infty$. In the first case we can find a point $a \in A$ with $\operatorname{dist}(a, B) \geq R$ and using the Hahn–Banach Theorem construct a linear functional $x^* \in \mathbb{S}^*$ that separates the convex set B from the closed R-ball $\overline{B}(a, R) = \{x \in X : ||x - a|| \leq R\}$ in the sense that $\sup x^*(B) \leq \inf x^*(\overline{B}(a, R))$. For this functional x^* we get $\sup x^*(A) \geq x^*(a) \geq R + \inf x^*(\overline{B}(a, R)) \geq R + \sup x^*(B)$ and thus $\sup x^*(A) - \sup x^*(B) \geq R$.

In the second case, we can repeat the preceding argument to find a linear functional $x^* \in \mathbb{S}^*$ with

$$|\sup x^*(A) - \sup x^*(B)| \ge \sup x^*(B) - \sup x^*(A) \ge R.$$

(ii) $\mathsf{d}_{\mathsf{H}}(A, B) < \infty$. To prove that $\|\delta_A - \delta_B\| \ge \mathsf{d}_{\mathsf{H}}(A, B)$ it suffices given any number $\varepsilon > 0$ to find a linear functional $x^* \in \mathbb{S}^*$ such that $|\sup x^*(A) - \sup x^*(B)| \ge \mathsf{d}_{\mathsf{H}}(A, B) - \varepsilon$. It follows from the definition of $\mathsf{d}_{\mathsf{H}}(A, B)$ that either there is a point $a \in A$ with $\operatorname{dist}(a, B) > \mathsf{d}_{\mathsf{H}}(A, B) - \varepsilon$ or else there is a point $b \in B$ with $\operatorname{dist}(b, A) > \mathsf{d}_{\mathsf{H}}(A, B) - \varepsilon$. In the first case we can use the Hahn–Banach Theorem to find a linear functional $x^* \in \mathbb{S}^*$ which separates the convex set B from the closed R-ball $\overline{B}(a, R)$, where $R = \mathsf{d}_{\mathsf{H}}(A, B) - \varepsilon$, in the sense that $\sup x^*(B) \le \inf x^*(\overline{B}(a, R))$. Then

$$\sup x^*(B) \le \inf x^*(B(a,R)) = x^*(a) - R \le \sup x^*(A) - R$$

and hence

$$|\sup x^*(A) - \sup x^*(B)| \ge \sup x^*(A) - \sup x^*(B) \ge R = \mathsf{d}_\mathsf{H}(A, B) - \varepsilon.$$

The second case can be considered by analogy. \blacksquare

3. Assigning cones to components of $\operatorname{Conv}_{\mathsf{H}}(X)$. In this section to each convex set C of a normed space X we assign two cones: the recession cone $V_C \subset X$ and the dual recession cone $V_C^* \subset X^*$.

We recall that a subset V of a linear space L is called a *convex cone* if $ax + by \in V$ for any points $x, y \in W$ and any non-negative real numbers $a, b \in [0, \infty)$.

For a convex subset C of a normed space X its *recession cone* is the convex cone

$$V_C = \{ v \in X : \forall c \in C, \ c + \overline{\mathbb{R}}_+ v \subset C \}$$

lying in the normed space X, and its dual recession cone V_C^* is the closed convex cone

$$V_C^* = \{ x^* \in X^* : \sup x^*(C) < \infty \},\$$

which is contained in the dual Banach space X^* .

It turns out that the recession cone V_C of a convex set C is uniquely determined by its dual recession cone V_C^* .

LEMMA 3.1. For any non-empty closed convex set C in a normed space X we get

$$V_C = \bigcap_{f \in V_C^*} f^{-1}((-\infty, 0]).$$

Proof. Fix any vector $v \in V_C$ and a functional $f \in V_C^*$. Observe that for each point $c \in C$ and each number $t \in \overline{\mathbb{R}}_+$, we get $c + tv \in C$ and hence $f(c) + tf(v) \leq \sup f(C) < \infty$, which implies that $f(v) \leq 0$. This proves the inclusion $V_C \subset \bigcap_{f \in V_C^*} f^{-1}((-\infty, 0])$.

To prove the reverse inclusion, fix any vector $v \in X \setminus V_C$. Then for some point $c \in C$ and some positive real number t we get $c + tv \notin C$. Using the Hahn–Banach Theorem, find a functional $f \in X^*$ that separates the convex set C and the point x = c + tv in the sense that $\sup f(C) < f(c + tv)$. Then $f \in V_C^*$. Moreover, $f(c) \leq \sup f(C) < f(c) + tf(v)$ implies that f(v) > 0and $v \notin f^{-1}((-\infty, 0])$.

Let X be a normed space. It is easy to see that for each metric component \mathcal{H} of the ∞ -metric space $\operatorname{Conv}_{\mathsf{H}}(X)$ and any two convex sets $A, B \in \mathcal{H}$ we get $V_A^* = V_B^*$. In this case Lemma 3.1 implies that $V_A = V_B$ as well. This allows us to define the *recession cone* $V_{\mathcal{H}}$ and the *dual recession cone* $V_{\mathcal{H}}^*$ of the metric component \mathcal{H} letting $V_{\mathcal{H}} = V_C$ and $V_{\mathcal{H}}^* = V_C^*$ for any convex set $C \in \mathcal{H}$. Lemma 3.1 guarantees that

$$V_{\mathcal{H}} = \bigcap_{f \in V_{\mathcal{H}}^*} f^{-1}((-\infty, 0]),$$

so the recession cone $V_{\mathcal{H}}$ of \mathcal{H} is uniquely determined by its dual recession cone $V_{\mathcal{H}}^*$.

4. The algebraic structure of $\operatorname{Conv}_{\mathsf{H}}(X)$. In this section given a normed space X we study the algebraic properties of the canonical representation $\delta : \operatorname{Conv}_{\mathsf{H}}(X) \to \overline{l}_{\infty}(\mathbb{S}^*)$.

Note that the space $\operatorname{Conv}_{\mathsf{H}}(X)$ has a rich algebraic structure, namely three interrelated algebraic operations: multiplication by a real number, ad-

dition, and taking maximum. More precisely, for a real number $t \in \mathbb{R}$ and convex sets $A, B \in \text{Conv}_{\mathsf{H}}(X)$ let

 $t \cdot A = \{ta : a \in A\};\ A \oplus B = \overline{A + B};\ \max\{A, B\} = \overline{\operatorname{conv}}(A \cup B), \text{ where }\ \overline{\operatorname{conv}}(Y) \text{ stands for the closed convex hull of a subset } Y \subset X.$

The ∞ -metric space \mathbb{R} also has the corresponding three operations (multiplication by a real number, addition and taking maximum), which induces the tree operations on $\overline{l}_{\infty}(\Gamma) = \mathbb{R}^{\Gamma}$.

PROPOSITION 4.1. The canonical representation δ : Conv_H(X) $\rightarrow \bar{l}_{\infty}(\mathbb{S}^*)$ has the following properties:

(1)
$$\delta(A \oplus B) = \delta(A) + \delta(B),$$

- (2) $\delta(\max\{A, B\}) = \max\{\delta(A), \delta(B)\},\$
- (3) $\delta(rA) = r\delta(A),$

for every non-negative real number r and convex sets $A, B \in \text{Conv}_{H}(X)$.

Proof. The three items of the proposition follow from the three obvious equalities

$$\sup x^*(A \oplus B) = \sup x^*(A + B) = \sup x^*(A) + \sup x^*(B),$$

$$\sup x^*(\overline{\operatorname{conv}}(A \cup B)) = \sup x^*(A \cup B) = \max\{\sup x^*(A), \sup x^*(B)\},$$

$$\sup x^*(rA) = r \sup x^*(A),$$

holding for every functional $x^* \in X^*$.

REMARK 4.2. Easy examples show that the last item of Proposition 4.1 does not hold for negative real numbers r. This means that the operator $\delta : \operatorname{Conv}_{\mathsf{H}}(X) \to \overline{l}_{\infty}(\mathbb{S}^*)$ is positively homogeneous but not homogeneous.

The operations of addition and multiplication by a real number allow us to define another important operation on $\text{Conv}_{\mathsf{H}}(X)$ preserved by the canonical representation δ , namely the *Minkowski operation*

$$\begin{split} \mu : \operatorname{Conv}_{\mathsf{H}}(X) \times \operatorname{Conv}_{\mathsf{H}}(X) \times [0,1] \to \operatorname{Conv}_{\mathsf{H}}(X), \\ (A,B,t) \mapsto (1-t)A \oplus tB, \end{split}$$

of producing a convex combination. Proposition 4.1 implies that the canonical representation $\delta : \operatorname{Conv}_{\mathsf{H}}(X) \to \overline{l}_{\infty}(\mathbb{S}^*)$ is *affine* in the sense that

$$\delta((1-t)A \oplus tB) = (1-t)\delta(A) + t\delta(B)$$

for every $A, B \in \text{Conv}_{\mathsf{H}}(X)$ and $t \in [0, 1]$.

Propositions 2.1 and 4.1 will help us to establish the metric properties of the algebraic operations on $\text{Conv}_{H}(X)$.

PROPOSITION 4.3. Let $A, B, C, A', B' \in \text{Conv}_{\mathsf{H}}(X)$ be five convex sets and $r \in \mathbb{R}, t, t' \in [0, 1]$ be three real numbers. Then

- (1) $\mathsf{d}_{\mathsf{H}}(A \oplus B, A' \oplus B') \leq \mathsf{d}_{\mathsf{H}}(A, A') + \mathsf{d}_{\mathsf{H}}(B, B');$
- (2) $\mathsf{d}_{\mathsf{H}}(A \oplus B, A \oplus C) = \mathsf{d}_{\mathsf{H}}(B, C) \text{ provided } V_A^* \supset V_B^* \cup V_C^*;$
- (3) $d_{H}(\max\{A, B\}, \max\{A', B'\}) \le \max\{d_{H}(A, A'), d_{H}(B, B')\};$
- (4) $\mathsf{d}_{\mathsf{H}}(r \cdot A, r \cdot B) = |r| \cdot \mathsf{d}_{\mathsf{H}}(A, B);$
- (5) $\mathsf{d}_{\mathsf{H}}((1-t)A \oplus tB, (1-t')A \oplus t'B) = |t-t'|\mathsf{d}_{\mathsf{H}}(A, B).$

Proof. All the items easily follow from Propositions 2.1, 4.1, and metric properties of algebraic operations on the ∞ -metric space $\bar{l}_{\infty}(\mathbb{S}^*)$.

Observe that the metric components of the ∞ -metric space $\bar{l}_{\infty}(\mathbb{S}^*)$ are closed with respect to taking the maximum and producing a convex combination. Moreover those operations are continuous on metric components of $\bar{l}_{\infty}(\mathbb{S}^*)$. With the help of the canonical representation those properties of $\bar{l}_{\infty}(\mathbb{S}^*)$ transform into the corresponding properties of $\operatorname{Conv}_{\mathsf{H}}(X)$. In this way we obtain

COROLLARY 4.4. Each metric component \mathcal{H} of $\operatorname{Conv}_{\mathsf{H}}(X)$ is closed under the operations of taking maximum and producing a convex combination. Moreover those operations are continuous on \mathcal{H} .

COROLLARY 4.5. Each metric component \mathcal{H} of $\operatorname{Conv}_{\mathsf{H}}(X)$ is isometric to a convex max-subsemilattice of the Banach lattice $l_{\infty}(\mathbb{S}^*)$.

A subset of a Banach lattice is called a *max-subsemilattice* is it is closed under the operation of taking maximum.

By a recent result of Banakh and Cauty [1], each non-locally compact closed convex subset of a Banach space is homeomorphic to an infinitedimensional Hilbert space. This result combined with Corollary 4.5 implies:

COROLLARY 4.6. Let X be a Banach space. Then a metric component \mathcal{H} of $\operatorname{Conv}_{\mathsf{H}}(X)$ is homeomorphic to an infinite-dimensional Hilbert space if and only if \mathcal{H} is not locally compact.

This corollary reduces the problem of recognition of the topology of non-locally compact components of $\text{Conv}_{\mathsf{H}}(X)$ to calculating their densities. This problem was considered in [3] where the following characterization was proved.

PROPOSITION 4.7. For a Banach space X and a metric component \mathcal{H} of the space Conv_H(X) the following conditions are equivalent:

- (1) \mathcal{H} is separable;
- (2) dens(\mathcal{H}) < \mathfrak{c} ;
- (3) \mathcal{H} contains a polyhedral convex set;
- (4) the recession cone $V_{\mathcal{H}}$ is polyhedral and belongs to \mathcal{H} ;

REMARK 4.8. By Corollary 4.5, each metric component of $\text{Conv}_{H}(X)$, being homeomorphic to a convex set, is (locally) connected, and, being closed-and-open in $\operatorname{Conv}_H(X)$, coincides with a connected component of $\operatorname{Conv}_H(X)$. Hence there is no difference between metric and connected components of $\operatorname{Conv}_H(X)$, so using the term *component* of $\operatorname{Conv}_H(X)$ (without an adjective "metric" or "connected") will not lead to misunderstanding.

5. Operators between spaces of convex sets. Each linear continuous operator $T : X \to Y$ between normed spaces induces a map \overline{T} : $\operatorname{Conv}_{\mathsf{H}}(X) \to \operatorname{Conv}_{\mathsf{H}}(Y)$ assigning to each closed convex set $A \in \operatorname{Conv}_{\mathsf{H}}(X)$ the closure $\overline{T(A)}$ of its image T(A) in Y. In this section we study properties of the induced operator \overline{T} . We start with algebraic properties that trivially follow from the linearity and continuity of T.

PROPOSITION 5.1. If $T: X \to Y$ is a linear continuous operator between Banach spaces, and \overline{T} : $\operatorname{Conv}_{\mathsf{H}}(X) \to \operatorname{Conv}_{\mathsf{H}}(Y)$ is the induced operator, then

- (1) $\overline{T}(\max\{A, B\}) = \max\{\overline{T}(A), \overline{T}(B)\},\$
- (2) $\overline{T}(r \cdot A) = r \cdot \overline{T}(A),$
- (3) $\overline{T}(A \oplus B) = \overline{T}(A) \oplus \overline{T(B)},$
- (4) $\overline{T}((1-t)A \oplus tB) = (1-t)\overline{T}(A) \oplus t\overline{T(B)},$

for any sets $A, B \in \text{Conv}_{\mathsf{H}}(X)$ and real numbers $r \in \mathbb{R}$ and $t \in [0, 1]$.

We shall be mainly interested in the operators \overline{T} induced by quotient operators T. We recall that for a closed linear subspace Z of a normed space X the quotient normed space $X/Z = \{x + Z : x \in X\}$ carries the quotient norm

$$||x + Z|| = \inf_{y \in x + Z} ||y||.$$

We shall denote by $q: X \to X/Z$, $x \mapsto x + Z$, the quotient operator and by $\bar{q}: \operatorname{Conv}_{\mathsf{H}}(X) \to \operatorname{Conv}_{\mathsf{H}}(X/Z)$ the induced operator between the spaces of closed convex sets.

For a closed convex set $C \subset X$ we let C/Z denote the image $q(C) \subset X/Z$. So, $\bar{q}(C) = \overline{C/Z}$. If $Z \subset V_C$, then the set C/Z is closed in X/Z and hence $\bar{q}(C) = C/Z$. Indeed, $Z \subset V_C$ implies that C + Z = C and hence $C/Z = (X/Z) \setminus q(X \setminus C)$ is closed in X/Z, being the complement of the set $q(X \setminus C)$, which is open as the image of the open set $X \setminus C$ under the open map $q: X \to X/Z$.

We shall need the following simple reduction lemma:

LEMMA 5.2. Let Z be a closed linear subspace of a normed space X and let A, B be non-empty closed convex subsets of X. If $Z \subset V_A \cap V_B$, then $d_H(A, B) = d_H(A/Z, B/Z)$.

Proof. The inequality $\mathsf{d}_{\mathsf{H}}(A/Z, B/Z) \leq \mathsf{d}_{\mathsf{H}}(A, B)$ follows from $||q|| \leq 1$. Assuming that $\mathsf{d}_{\mathsf{H}}(A/Z, B/Z) < \mathsf{d}_{\mathsf{H}}(A, B)$, we can find a point $a \in A$ with dist $(a, B) > d_{\mathsf{H}}(A/Z, b/Z)$ or a point $b \in B$ with dist $(b, A) > d_{\mathsf{H}}(A/Z, B/Z)$. Without loss of generality, we deal with the former case. Consider the image $a' = q(a) \in A/Z$ under the quotient operator $q : X \to X/Z$. Since $d_{\mathsf{H}}(A/Z, B/Z) < \text{dist}(a, B)$, there is a point $b' \in B/Z$ such that ||b' - a'|| < dist(a, B). By the definition of the quotient norm, there is a vector $x \in q^{-1}(b' - a')$ such that ||x|| < dist(a, B). Now consider the point b = a + x and observe that $q(b) = q(a) + q(x) = a' + b' - a' = b' \in B/Z$ and hence $b \in q^{-1}(B/Z) = B + Z \subset B + V_B \subset B$. So, $\text{dist}(a, B) \le ||a - b|| = ||x|| < \text{dist}(a, B)$, which is a desired contradiction that completes the proof of the equality $d_{\mathsf{H}}(A, B) = d_{\mathsf{H}}(A/Z, B/Z)$.

COROLLARY 5.3. Let X be a normed space X, \mathcal{H} be a component of the space $\operatorname{Conv}_{\mathsf{H}}(X)$, and Z be a closed linear subspace of X. If $Z \subset V_{\mathcal{H}}$, then the quotient operator

$$\bar{q}: \mathcal{H} \to \mathcal{H}/Z, \quad C \mapsto C/Z,$$

maps isometrically the component \mathcal{H} of $\operatorname{Conv}_{\mathsf{H}}(X)$ onto the component \mathcal{H}/Z of $\operatorname{Conv}_{\mathsf{H}}(X/Z)$ containing some (equivalently, each) convex set C/Z with $C \in \mathcal{H}$.

6. Proof of Theorem 1. Let X be a Banach space and \mathcal{H} be a component of the space $\operatorname{Conv}_{\mathsf{H}}(X)$.

If \mathcal{H} contains no polyhedral convex set, then by Proposition 4.7, it has density dens(\mathcal{H}) $\geq \mathfrak{c}$. Consequently, \mathcal{H} is not locally compact and, by Corollary 4.6, \mathcal{H} is homeomorphic to the non-separable Hilbert space $l_2(\kappa)$ of density $\kappa = \operatorname{dens}(\mathcal{H}) \geq \mathfrak{c}$.

It remains to analyze the topological structure of \mathcal{H} if it contains a polyhedral convex set. In this case Proposition 4.7 guarantees that the recession cone $V_{\mathcal{H}}$ belongs to \mathcal{H} and is polyhedral in X. If $V_{\mathcal{H}} = X$, then $\mathcal{H} = \{X\}$ is a singleton. So, we assume that $V_{\mathcal{H}} \neq X$. Since the cone $V_{\mathcal{H}}$ is polyhedral, the closed linear subspace $Z = -V_{\mathcal{H}} \cap V_{\mathcal{H}}$ has finite codimension in X. Then the quotient Banach space $\tilde{X} = X/Z$ is finite-dimensional. Let $q: X \to \tilde{X}$ be the quotient operator.

By Corollary 5.3, the component \mathcal{H} is isometric to the component $\tilde{\mathcal{H}} = \mathcal{H}/Z$ of the space $\text{Conv}_{\mathsf{H}}(\tilde{X})$ of closed convex subsets of the finite-dimensional Banach space \tilde{X} . The component $\tilde{\mathcal{H}}$ contains the polyhedral convex cone $V_{\tilde{\mathcal{H}}} = q(V_{\mathcal{H}})$, which has the property $-V_{\tilde{\mathcal{H}}} \cap V_{\tilde{\mathcal{H}}} = \{0\}$.

The cone $V_{\tilde{\mathcal{H}}}$ can be of two types.

1. The cone $V_{\tilde{\mathcal{H}}} = \{0\}$ is trivial. In this case \mathcal{H} contains the closed linear subspace $Z = V_{\mathcal{H}}$ of finite codimension in X. Taking into account that $V_{\mathcal{H}} \neq X$, we conclude that $\dim(\tilde{X}) \geq 1$. Depending on the value of $\dim(\tilde{X})$, we have two subcases.

1a. The dimension $\dim(\tilde{X}) = 1$ and hence \mathcal{H} contains the linear subspace $Z = V_{\mathcal{H}}$ of codimension 1 in X. In this case $\tilde{\mathcal{H}}$ coincides with the space $\operatorname{BConv}_H(\tilde{X})$ of non-empty bounded closed convex subsets of the onedimensional Banach space \tilde{X} and hence $\tilde{\mathcal{H}}$ is homeomorphic to the half-plane $\mathbb{R} \times \mathbb{R}_+$.

1b. The dimension $\dim(\tilde{X}) \geq 2$ and hence \mathcal{H} contains the linear subspace Z of codimension ≥ 2 in X. In this case $\tilde{\mathcal{H}}$ coincides with the space $\operatorname{BConv}_H(\tilde{X})$ of non-empty bounded closed convex subsets of the Banach space \tilde{X} of finite dimension $\dim(\tilde{X}) \geq 2$. By the result of Nadler, Quinn and Stavrakas [9], the space $\operatorname{BConv}_H(\tilde{X})$ is homeomorphic to the Hilbert cube manifold $Q \times \mathbb{R}_+$.

2. The recession cone $V_{\tilde{\mathcal{H}}} \neq \{0\}$ is not trivial. Again there are two subcases.

2a. $\dim(\tilde{X}) = \dim(V_{\tilde{\mathcal{H}}}) = 1$. In this case the component $\tilde{\mathcal{H}}$ (and its isometric copy \mathcal{H}) is isometric to the real line \mathbb{R} .

2b. $\dim(\tilde{X}) \geq 2$. In this case we shall prove that the component $\tilde{\mathcal{H}}$ (and its isometric copy \mathcal{H}) is homeomorphic to the separable Hilbert space l_2 . This will follow from the separability of \mathcal{H} and Corollary 4.6 as soon as we check that the space $\tilde{\mathcal{H}}$ is not locally compact. To prove this fact, it suffices for every positive $\varepsilon < 1$ to construct a sequence of closed convex sets $\{C_n\}_{n\in\mathbb{N}} \subset \tilde{\mathcal{H}}$ such that $\mathsf{d}_{\mathsf{H}}(C_n, V_{\tilde{\mathcal{H}}}) \leq \varepsilon$ and $\inf_{n\neq m} \mathsf{d}_{\mathsf{H}}(C_n, C_m) > 0$.

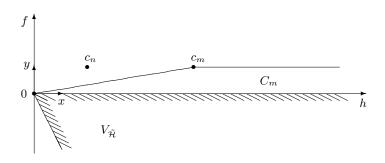
The cone $V_{\tilde{\mathcal{H}}}$ is polyhedral and hence is generated by some finite set $E \subset \tilde{X} \setminus \{0\}$; see [8] or Theorem 1.1 of [17]. For every $e \in E$ the vector -e does not belong to $V_{\tilde{\mathcal{H}}}$. Then the Hahn–Banach Theorem yields a linear functional $h_e \in X^*$ such that $h_e(-e) < \inf h_e(V_{\tilde{\mathcal{H}}}) = 0$. It can be shown that the functional $h = \sum_{e \in E} h_e$ has the property h(v) > 0 for all $v \in V_{\tilde{\mathcal{H}}} \setminus \{0\}$. Multiplying h by a suitable positive constant, we can additionally assume that ||h|| = 1.

Since dim $(\tilde{X}) \geq 2$ and $V_{\tilde{\mathcal{H}}} \neq \tilde{X}$, we can find a linear continuous functional $f: \tilde{X} \to \mathbb{R}$ such that ||f|| = 1, $\sup f(V_{\tilde{\mathcal{H}}}) = 0$ and the intersection $f^{-1}(0) \cap V_{\tilde{\mathcal{H}}}$ contains a non-zero vector $x \in \tilde{X}$. Multiplying x by a suitable positive constant, we can assume that h(x) = 1. Since $h^{-1}(0) \cap V_{\tilde{\mathcal{H}}} = \{0\} \neq f^{-1}(0) \cap V_{\tilde{\mathcal{H}}}$, the functionals h and f are distinct and hence there is a vector $y \in h^{-1}(0) \setminus f^{-1}(0)$ with norm $||y|| = \varepsilon$. Replacing y by -y if necessary, we can assume that f(y) > 0.

For every $n \in \mathbb{N}$ consider the point $c_n = 3^n x + y$ and the closed convex set

 $C_n = \max\{V_{\tilde{\mathcal{H}}}, \{c_n\}\} = \overline{\operatorname{conv}}(V_{\tilde{\mathcal{H}}} \cup \{c_n\}) \subset \tilde{X}.$

It follows from $x \in V_{\tilde{\mathcal{H}}}$ and $\operatorname{dist}(c_n, V_{\tilde{\mathcal{H}}}) \leq \operatorname{dist}(3^n x + y, 3^n x) = ||y|| = \varepsilon$ that $\mathsf{d}_{\mathsf{H}}(C_n, V_{\tilde{\mathcal{H}}}) \leq \varepsilon$.



We claim that $\inf_{n \neq m} \mathsf{d}_{\mathsf{H}}(C_n, C_m) \geq \delta$ where

 $\delta = \tfrac{1}{2}f(y) \le \tfrac{1}{2}\|y\| = \tfrac{1}{2}\varepsilon < \tfrac{1}{2}.$

This will follow as soon as we check that $dist(c_n, C_m) \ge \delta$ for any numbers n < m.

Assuming conversely that $\operatorname{dist}(c_n, C_m) < \delta$ and taking into account that the convex set $\operatorname{conv}(V_{\tilde{\mathcal{H}}} \cup \{c_m\})$ is dense in C_m , we can find a point $c \in \operatorname{conv}(V_{\tilde{\mathcal{H}}} \cup \{c_m\})$ such that $\operatorname{dist}(c_n, c) < \delta$. The point c belongs to the convex hull of the set $V_{\tilde{\mathcal{H}}} \cup \{c_m\}$ and hence can be written as a convex combination $c = tc_m + (1-t)v = t(3^m x + y) + (1-t)v$ for some $t \in [0,1]$ and $v \in V_{\tilde{\mathcal{H}}}$. Observe that

$$h(c_n) = h(3^n x + y) = 3^n h(x) + h(y) = 3^n \cdot 1 + 0 = 3^n$$

while

$$h(c) = th(c_m) + (1-t)h(v) \ge th(c_m) = 3^m t$$

Then

$$3^{m}t - 3^{n} \le h(c) - h(c_{n}) \le |h(c) - h(c_{n})| \le ||h|| \cdot ||c - c_{n}|| < 1 \cdot \delta$$

and hence

$$t < 3^{n-m} + 3^{-m}\delta \le \frac{1}{3} + \frac{1}{3}\delta < \frac{1}{3} + \frac{1}{6} = \frac{1}{2}$$

Next, we apply the functional f to the points c_n and c. Since f(x) = 0, we get $f(c_n) = f(3^n x + y) = f(y) = 2\delta$. On the other hand, $f(V_{\tilde{\mathcal{H}}}) \subset (-\infty, 0]$ implies $f(v) \leq 0$ and hence

$$f(c) = f(tc_m + (1 - t)v) = tf(3^m x + y) + (1 - t)f(v)$$

= $tf(y) + (1 - t)f(v) \le tf(y) = 2\delta t.$

Then

$$\delta = 2\delta(1 - 1/2) < 2\delta(1 - t) \le |f(c_n) - f(c)| \le ||f|| \cdot ||c_n - c|| < \delta,$$

which is the desired contradiction. \blacksquare

Acknowledgements. The first author has been partially financed by NCN means granted by decision DEC-2011/01/B/ST1/01439.

References

- T. Banakh and R. Cauty, Topological classification of convex sets in Fréchet spaces, Studia Math. 205 (2011), 1–11.
- [2] T. Banakh and I. Hetman, A "hidden" characterization of polyhedral convex sets, Studia Math. 206 (2011), 63–74.
- T. Banakh and I. Hetman, A "hidden" characterization of approximatively polyhedral convex sets in Banach spaces, Studia Math. 210 (2012), 137–157.
- [4] R. Engelking, *General Topology*, Heldermann, Berlin, 1989.
- [5] A. S. Granero, M. Jiménez and J. P. Moreno, Convex sets in Banach spaces and a problem of Rolewicz, Studia Math. 129 (1998), 19–29.
- [6] A. S. Granero, M. Jiménez, A. Montesinos, J. P. Moreno and A. Plichko, On the Kunen-Shelah properties in Banach spaces, Studia Math. 157 (2003), 97–120.
- [7] P. Hájek, V. Montesinos Santalucía, J. Vanderwerff and V. Zizler, *Biorthogonal Systems in Banach Spaces*, Springer, New York, 2008.
- [8] V. Klee, Some characterizations of convex polyhedra, Acta Math. 102 (1959), 79–107.
- S. B. Nadler Jr., J. Quinn and N. M. Stavrakas, Hyperspaces of compact convex sets, Pacific J. Math. 83 (1979), 441–462.
- [10] S. Negrepontis, Banach spaces and topology, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 1045–1142.
- [11] A. Plichko, Existence of a bounded total biorthogonal system in a Banach space, Teor. Funktsii Funktsional. Anal. i Prilozhen. 33 (1980), 111–118 (in Russian).
- [12] K. Sakai, The spaces of compact convex sets and bounded closed convex sets in a Banach space, Houston J. Math. 34 (2008), 289–300.
- S. Shelah, Uncountable constructions for B.A., e.c. groups and Banach spaces, Israel J. Math. 51 (1985), 273–297.
- S. Todorčević, Biorthogonal systems and quotient spaces via Baire category methods, Math. Ann. 335 (2006), 687–715.
- [15] H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247– 262.
- [16] H. Toruńczyk, A correction of two papers concerning Hilbert manifolds, Fund. Math. 125 (1985), 89–93.
- [17] G. M. Ziegler, *Lectures on Polytopes*, Springer, New York, 1995.

Taras Banakh	Ivan Hetman
Jan Kochanowski University	Department of Mathematics
25-406 Kielce, Poland, and	Ivan Franko National University of Lviv
Department of Mathematics	Universytetska 1
Ivan Franko National University of Lviv	Lviv, 79000 Ukraine
Lviv, 79000 Ukraine	E-mail: ihromant@gmail.com
E-mail: t.o.banakh@gmail.com	

Katsuro Sakai Institute of Mathematics University of Tsukuba Tsukuba, 305-8571, Japan E-mail: sakaiktr@sakura.cc.tsukuba.ac.jp

> Received July 2, 2012 Revised version May 11, 2013

(7556)