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An interplay between the weak form of Peano’s theorem
and structural aspects of Banach spaces

by

C. S. Barroso (Fortaleza), M. A. M. Marrocos (Manaus)
and M. P. Rebouças (Manaus)

Abstract. We establish some results that concern the Cauchy–Peano problem in
Banach spaces. We first prove that a Banach space contains a nontrivial separable quotient
iff its dual admits a weak?-transfinite Schauder frame. We then use this to recover some
previous results on quotient spaces. In particular, by applying a recent result of Hájek–
Johanis, we find a new perspective for proving the failure of the weak form of Peano’s
theorem in general Banach spaces. Next, we study a kind of algebraic genericity for the
weak form of Peano’s theorem in Banach spaces E having complemented subspaces with
unconditional Schauder basis. Let K(E) denote the family of all continuous vector fields
f : E → E for which u′ = f(u) has no solutions at any time. It is proved that K(E)∪{0} is
spaceable in the sense that it contains a closed infinite-dimensional subspace of C(E), the
locally convex space of all continuous vector fields on E with the linear topology of uniform
convergence on bounded sets. This yields a generalization of a recent result proved for the
space c0. We also introduce and study a natural notion of weak-approximate solutions
for the nonautonomous Cauchy–Peano problem in Banach spaces. It is proved that the
absence of `1-isomorphs inside the underlying space is equivalent to the existence of such
approximate solutions.

1. Introduction. The classical Peano theorem [P] states that if E is an
n-dimensional Euclidean space and f : E → E is a continuous vector field,
then the ODE u′ = f(u) has a solution. It is natural to ask if the same result
can be proved when E is infinite-dimensional. The answer in general is no,
and the first negative result was obtained by Dieudonné [D] in 1954 when he
exhibited a counterexample for the space c0. This gave rise to a fascinating
research line and several researchers have provided invaluable information on
this topic (see, for instance, [A, C, G, L, Sz] and references therein). In 1974
Godunov [G] settled the question when Peano’s theorem is valid for general
Banach spaces. More precisely, he proved that Peano’s theorem remains true
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for a Banach space E iff E is finite-dimensional. Generalizations of this result
in the context of locally convex and nonnormable Fréchet spaces were given
by Astala [A], Lobanov [L], Shkarin [Sh1] and others. Nonetheless, some
existence results have been derived by using nonnormable linear topologies
(cf. [Sz, T]). A little more than ten years ago, a new trend appeared which
aims at studying relationships between geometric and structural aspects of
Banach spaces and the weak form of Peano’s theorem (cf. [HJ, Sh2]). The
weak form of Peano’s theorem (WFPT, for short) states that if E is finite-
dimensional and f : R×E → E is continuous, then u′ = f(t, u) has a solution
in some open interval. In [Sh2], Shkarin proved that if E is a Banach space
containing a complemented subspace with an unconditional Schauder basis,
then WFPT fails to be true. Hájek and Johanis [HJ] extended this result to
the class of Banach spaces with an infinite-dimensional separable quotient.
In fact, they showed more: There exist continuous vector fields f : E → E
such that the differential equation u′ = f(u) has no solutions at any point
(cf. [HJ, Theorem 8]). They also raised the question of whether this result
remains true in any Banach space.

Henceforth, E will denote a real infinite-dimensional Banach space. The
first two main results of the present research concern WFPT. The first
focuses on relationships between separable quotients and weak?-transfinite
Schauder frames.

Definition 1.1. Let ξ be an ordinal number. A transfinite sequence
(fα)α<ξ in E∗ is called a weak ∗-transfinite Schauder frame in E∗ if:

(i) For every y∗ ∈ spanw
∗{fα : α < ξ} there exists a transfinite sequence

of scalars (aα(y∗))α<ξ ∈ `∞(ξ) such that y∗ =
∑

α<ξ aα(y
∗)fα, with

convergence in the weak∗ topology σ(E∗, E), i.e., for each x ∈ E we
have

lim
α→ξ

〈 α∑
γ=0

aγ(y
∗)fγ , x

〉
= 〈y∗, x〉.

(ii) (fα)α<ξ admits a biorthogonal transfinite sequence (eα)α<ξ in E.

It is easy to see that weak∗-transfinite Schauder frames include weak∗-
Schauder basic sequences (as in [JR, Definition II.1]). Thus, in this case, both
definitions are consistent. It is also worth noticing that a weak∗-transfinite
Schauder frame need not be a weak∗-Schauder basic sequence (cf. [Sin, Ex-
ample 14.1]).

Theorem 1.2. E has a nontrivial separable quotient iff E∗ has a weak ∗-
transfinite Schauder frame.

This result was first proved by Johnson–Rosenthal [JR] in the context of
weak∗-Schauder basic sequences—and, in this case, it is also a consequence
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of Theorem 3 in [Slw]. The proof will be given in Section 2 and makes use
of some techniques related to barrelled spaces and the `1-lifting property.
After getting a glimpse of some related topics, we will also discuss some
consequences and we will revisit known results. As a general comment, The-
orem 1.2 and [HJ, Theorem 8] together yield the following corollary which
seems to bring at the very least a new slant on Hájek–Johanis’s problem.

Corollary 1.3. Assume E∗ has a weak ∗-transfinite Schauder frame.
Then there exists a continuous vector field f : E → E such that u′ = f(u)
has no solutions at any point.

Our second main result concerns the analysis of a kind of genericity of so-
lutions for the weak form of Peano’s theorem. Let C(E) be the locally convex
space of all continuous vector fields on E endowed with the linear topology
Tuc of uniform convergence on bounded sets. Denote by K(E) the family of
all vector fields f in C(E) for which u′ = f(u) does not have solutions at
any time. The central question we address here is: Does K(E) ∪ {0} have
an infinite-dimensional Tuc-closed vector space? This leads to the following
definition of algebraic genericity.

Definition 1.4. A property (P ) is said to be algebraically generic for
K(E) if K(E)∪ {0} contains an infinite-dimensional Tuc-closed vector space
L such that (P ) holds for all nonzero vector fields in L.

We obtain the following.

Theorem 1.5. Assume that E contains a complemented subspace with
an unconditional Schauder basis. Then nonvalidity of WFPT is algebraically
generic for K(E).

Inspiration for this result comes from an idea contained in several works
highlighting the usefulness of techniques involving lineability and spaceabil-
ity (see, for instance, [AGS, APPS, BBFP] as well as references therein).
As a matter of fact, a result of the same genre was previously obtained in
[BBFP, Theorem 2.1] for E = c0. Theorem 1.5 provides a generalization of
that result. The proof given here borrows some ideas from [BBFP], but the
details are realized in a different and rather simple way. The basic task is
to obtain a countable family {fn} of linearly independent vector fields on E
such that the system u′ = fn(u), treated as an uncoupled system of ODEs
in E, has no solution at any time. In the process, a special role is played by a
result of Shkarin [Sh2] concerning Osgood’s Theorem in Banach spaces hav-
ing complemented subspaces with unconditional basis. It further furnishes
the uniform continuity of the family {fn}, a crucial stepping stone to fully
proving the result.

For our third aim, we consider the nonautonomous Cauchy–Peano
problem
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(1.1) u′ = f(t, u), t ∈ I, and u(0) = u0 ∈ E,
where I = [0, T ]. Here f : [0, T ]×E → E is a Carathéodory vector field, i.e.,
one with the following properties:

(f1) for all t ∈ I, f(t, ·) : E → E is continuous,
(f2) for all x ∈ E, f(·, x) : I → E is measurable.
We introduce a special notion of weak-approximate solutions (WAS) to

the problem (1.1) (see Definition 1.6). Our main result on this topic provides,
for a large class of Carathéodory vector fields, a characterization of the ex-
istence of WAS in terms of `1-containments. In what follows, we describe
the class of fields that will be addressed here. Let I ⊂ R be as above and
denote by X(I, E) the family of all Carathéodory vector fields f : I×E → E
fulfilling the following growth condition:

(?) ‖f(s, x)‖E ≤ α(s)ϕ(‖x‖E) for a.e. s ∈ I and every x ∈ E, where α
and ϕ have the following properties:
(a) α ∈ L1[0, T ];
(b) ϕ : [0,∞) → (0,∞) is a nondecreasing continuous function such

that
T�

0

α(s) ds <

∞�

0

ds

ϕ(s)
.

Definition 1.6 (WAS). Let f ∈ X(I, E) be given. We say a sequence
(un) ⊂ C(I, E) of continuous E-valued functions on I is a weak-approximate
solution of (1.1) if the following holds:

(i) each un is almost everywhere strongly differentiable in I,
(ii) both (un) and (u′n) are bounded sequences in C(I, E),
(iii) (un) is weakly Cauchy and un(t)−

	t
0 f(s, un(s)) ds ⇀ u0 in C(I, E)

for all t ∈ I,
(iv) un(t)− u0 ∈ span(f(I × E)) for all t ∈ I and n ∈ N.
We can now state our third main result.
Theorem 1.7. Problem (1.1) always has WAS for any f ∈ X(I, E) if

and only if E contains no subspace isomorphic to `1.

This is a kind of generalization of [Bar1, Theorem 4.2]. The proof given
here relies on three important results from functional analysis: (1) a funda-
mental characterization of weak compactness in L∞(µ,E) due to Schlüchter-
mann [Sch]; (2) a characterization of reflexivity due to Cellina [C], and
(3) Rosenthal’s famous `1-theorem.

1.1. Preliminary notation and definitions. Before starting the
proofs, we fix some basic notations and recall the necessary definitions. All
of the Banach spaces we consider are over the reals. Given a Banach space
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X with norm ‖ · ‖X , we denote the closed unit ball of X by BX . If A ⊂ X
is nonempty, A and spanA stand for the closure and the linear span of
A, respectively. Subspaces of Banach spaces are understood to be closed
infinite-dimensional subspaces. As usual, we will write X ≈ Y to indicate
that X and Y are linearly isomorphic spaces. A Banach space X is said to
have an isomorphic copy of `1 if it contains a basic sequence (xn) spanning
a subspace isomorphic to `1. This is in turn equivalent to the existence of
constants C1, C2 > 0 such that for all scalars t1, . . . , tn,

C−11

n∑
i=1

|ti| ≤
∥∥∥ n∑
i=1

tixi

∥∥∥
X
≤ C2

n∑
i=1

|ti|.

Recall that a series
∑
xn in a Banach space X is unconditionally conver-

gent if
∑
εnxn converges for all choices of signs εn = ±1. A basic sequence

(xn) is said to be unconditional if for every x ∈ span{xn : n ∈ N}, its expan-
sion x =

∑
anxn converges unconditionally. The reader is referred to [F–Z]

for more background in Banach space theory.
We will need the following well-known result (cf. [F–Z, Proposition 5.10]):

Proposition 1.8. `1 has the lifting property.

Let us recall that a Banach space X is said to have the lifting property if
for all Banach spaces Y, Z such that there is an onto bounded linear operator
S : Y → Z and for every bounded linear operator T : X → Z, there is another
bounded linear operator T̃ : X → Y such that T = S ◦ T̃ .

To end this section, we recall a few known definitions from topological
vector space theory. Let (X, τ) be a Hausdorff locally convex space. A subset
U of X is called a barrel in X if it is closed, absolutely convex and absorbing
in X. Further, X is said to be a barrelled space if every barrel in X is a
neighborhood of 0 in X. For example, it is well-known that every Baire
locally convex space is barrelled (cf. [J, p. 220]). A linear map S : X → Y
between topological vector spaces is called a closed linear map if it has closed
graph in X × Y (cf. [J, p. 92]).

2. Proof of Theorem 1.2. Two important ingredients will be helpful
in the proof. The first one is the following result whose proof can be found
in [PB, Theorem 4.1.10] (see also [J, Theorem 8, p. 221]).

Theorem 2.1 (Closed graph theorem for barrelled spaces). Let X be a
barrelled space, Y a Fréchet space and S : X → Y a linear map with closed
graph in X × Y . Then S is continuous.

The second one deals with a characterization of spaces having separable
quotient in terms of barrelled subspaces (cf. [Mu, Theorem 3.2, p. 313] and
[W, Theorem 1, p. 255]).
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Theorem 2.2. Let (X, ‖ · ‖) be a Banach space. Then (X, ‖ · ‖) has an
infinite-dimensional separable quotient if and only if (X, ‖ · ‖) has a nonbar-
relled proper dense subspace.

These results will be used below to prove a preliminary lemma concerning
separable quotients and `1-fundamental biorthogonal systems.

Definition 2.3. A biorthogonal system {xα;x∗α}α∈Γ ⊂ E×E∗ is called
`1-fundamental if the linear space {x ∈ E :

∑
α∈Γ |x∗α(x)| ‖xα‖ < ∞} is

norm-dense in E.

It is clear that every fundamental biorthogonal system is `1-fundamental.

Lemma 2.4. If {xα;x∗α}α∈Γ is an `1-fundamental biorthogonal system in
E × E∗, then E has a nontrivial separable quotient.

Proof. Let ‖ · ‖ denote the norm of E. For contradiction, suppose that
(E, ‖·‖) does not have any nontrivial infinite-dimensional separable quotient.
Then two conclusions can be drawn. First, by [Mu, Theorem 4.1, p. 317], `1
is not isomorphic to a subspace of (E, ‖ · ‖). Second, from Theorem 2.2 we
conclude that every proper dense subspace of (E, ‖ · ‖) is barrelled. Let now
Z denote the subspace of (E, ‖ · ‖) formed by those x ∈ E for which∑

α∈Γ
|x∗α(x)| ‖xα‖ <∞.

By assumption, (Z, ‖·‖) is dense in (E, ‖·‖). Of course, we may assume that
Z 6= E. Then by the second conclusion above, (Z, ‖ · ‖) is barrelled. We will
use this fact to show that the linear mapping S : (Z, ‖·‖)→ (`1(Γ ), ‖·‖`1(Γ ))
given, for each x ∈ Z, by

S(x) = (x∗α(x)‖xα‖)α∈Γ ,
is continuous. Suppose that uk → u in (Z, ‖ · ‖) and S(uk) → v in (`1(Γ ),
‖ · ‖`1(Γ )). Write v = (vα)α∈Γ and fix γ ∈ Γ . Notice that for all k ∈ N,∣∣x∗γ(uk)‖xγ‖ − vγ∣∣ ≤∑

α∈Γ

∣∣x∗α(uk)‖xα‖ − vα∣∣ = ‖S(uk)− v‖`1(Γ ).
Thus, letting k →∞ we obtain x∗γ(u)‖xγ‖ = vγ . Since γ was arbitrary, this
implies that S(u) = v, so S has closed graph in (Z, ‖ · ‖)× (`1(Γ ), ‖ · ‖`1(Γ ));
hence, by Theorem 2.1, it is continuous, as desired.

As S is bounded, it can be linearly extended to the whole space E. This
extension will be denoted by S too. Since S is a noncompact operator, it is
standard to check that S(BE) contains a seminormalized sequence (xj) in
`1(Γ ) which is equivalent to the unit basis of `1. By the lifting property of
`1 (cf. Proposition 1.8), the formal inverse S−1 from the span of {xj} back
to E is bounded, and so it is really the inverse linear operator. Clearly, the
image S−1(xj) is a sequence equivalent to the unit basis of `1 again. Thus E
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contains an isomorphic copy of `1. But this contradicts the first conclusion
stated at the beginning of the proof, and hence the proof of the lemma is
finished.

Proof of Theorem 1.2. If E has a nontrivial separable quotient, then by
[Slw, Theorem 3] we conclude that E∗ contains a weak∗ basic sequence.
Conversely, assume (fα)α<ξ is a weak∗-transfinite Schauder frame in E∗. Let

X := span{eα : α < ξ}, Y := spanw
∗{fα : α < ξ}.

From Definition 1.1, it is straightforward to see that X> ∩ Y = {0}. Since
(X + Y⊥)

> = (X ∪ Y⊥)> = X> ∩ Y , we infer that X + Y⊥ is norm-dense
in E. In particular,

Z =
{
x ∈ E :

∑
α<ξ

|fα(x)| ‖eα‖ <∞
}

is norm-dense in E. The result now follows from Lemma 2.4.

2.1. Some remarks and known results on separable quotients.
The Separable Quotient Problem (SQP) asks whether every Banach space E
has a nontrivial separable quotient, i.e. a closed infinite-dimensional subspace
M so that E/M is linearly isomorphic to a separable infinite-dimensional
Banach space. This still open problem was formulated at different times
by Banach and Pełczyński. Many special spaces (e.g., separable or reflexive
spaces) are known to have nontrivial separable quotients. In fact, there are
a number of important works on this subject, including that of Johnson–
Rosenthal [JR], Hagler–Johnson [HaJ], Rosenthal [R1] and Argyros–Dodos–
Kanellopoulos [ADK]. We also refer the reader to Mujica’s article [Mu] for
a rich and systematic survey on the matter.

Quite recently, Śliwa [Slw] characterized Banach spaces which have sep-
arable quotients as those whose duals have weak∗-Schauder basic sequences,
or equivalently, those which admit strongly normal sequences. Let us recall
that a normalized sequence (x∗n) ⊂ E∗ is called strongly normal if the linear
space {x ∈ E :

∑∞
n=1 |x∗n(x)| <∞} is norm-dense in E. Using the techniques

developed in [JR], Śliwa proved that strongly normal sequences admit weak∗
basic subsequences (cf. [Slw, Theorem 1]). Furthermore, he established the
existence of strongly normal sequences in the dual space of every WCG
Banach space.

Given the bond between WFPT and SQP, it may be important to high-
light some facts, including known results, concerning the existence of sepa-
rable quotients, as well as the existence of weak∗ basic sequences. We start
with the following simple consequence of Lemma 2.4, which is due to Plichko
[Pl2, Pl3].
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Corollary 2.5. Every real Banach space having a fundamental biortho-
gonal system has a nontrivial separable quotient.

Remark. It is worth noting that a wide class of Banach spaces ad-
mit fundamental biorthogonal systems, including `∞(Γ ), WLD, WCD and
WCG-spaces (cf. [Z]).

Proposition 2.6. Let E be a Banach space whose dual contains a sub-
space with separable dual. Then E∗ has a weak ∗ basic sequence.

Proof. Let Y be a subspace of E∗ with separable dual Y ∗. Then there
exists a normalized sequence (u∗n) ⊂ Y ⊂ E∗ which is weakly null. Since
Y ∗ is separable, by a result of Johnson–Rosenthal [JR, Theorem III.3], we
conclude that (u∗n) contains a (shrinking) weak∗ basic subsequence.

Remark 2.7. Observe that E∗ has a subspace with separable dual pro-
vided that E∗ is Asplund, contains a reflexive subspace or an isomorphic
copy of c0. Proposition 2.6 is a well-known partial answer to SQP (see [JR,
Remark III.3]). It seems to be nearly best possible, for if E∗ has a subspace
isomorphic to `1 then E contains a quotient isomorphic to c0 or `2 (cf. [Mu,
Theorem 4.2]).

The following provides quantitative information on spaces whose duals
have unconditional basic sequences.

Proposition 2.8. Let E be a Banach space whose dual has an uncon-
ditional basic sequence. Then one of the following holds:

(i) E contains a subspace isomorphic to `1.
(ii) E∗ contains a subspace with separable dual or an isomorphic copy

of `1.

Proof. This follows from a classical result of James [F–Z, Corollary 6.36].
Indeed, let (un) be an unconditional basic sequence in E∗. Let R :=
span{un : n ∈ N}. Then either R is reflexive, contains a subspace isomor-
phic to `1, or contains a subspace isomorphic to c0. Assume that (i) does not
hold. Then, by a result of Bessaga–Pełczyński [HaJ, Theorem 4], E∗ does
not contain an isomorphic copy of c0. Hence, either E∗ contains a separable,
reflexive space whose dual is separable, or it contains an isomorphic copy
of `1.

The following direct consequence of the above proposition was originally
proved by Hagler and Johnson [HaJ]. An alternative proof was given in
[ADK].

Corollary 2.9. If E∗ has an unconditional basic sequence, then E has
a nontrivial separable quotient.
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We mention that Argyros, Dodos and Kanellopoulos [ADK] showed that
the bi-dual of a separable Banach space with nonseparable dual admits an
unconditional basic sequence. Using this fact and the above results, we are
also able to offer a slightly different proof of the following result first proved
in [ADK]:

Corollary 2.10. E∗ has a nontrivial separable quotient.

Proof. If E∗ has the Radon–Nikodym property, then E is Asplund. Thus
E∗ has a fundamental biorthogonal system (cf. [Z, Theorem 7.13]). By Lem-
ma 2.4, E∗ has a separable quotient. Assume that E∗ does not have the
Radon–Nikodym property. Then E∗∗ contains an uncondtional basic se-
quence. By Corollary 2.9, E∗ has a nontrivial separable quotient.

Remark 2.11. Note that if a continuous linear map maps E onto a dual
Banach space then, by Corollary 2.10, E has a nontrivial separable quotient.

The above leads to the following problem.

Problem 2.12. Does the assertion of Theorem 1.1 still hold if condition
(ii) of Definition 1.1 is dropped?

3. The algebraic genericity of the failure of WFPT. In this sec-
tion we establish the algebraic genericity of the failure of the weak form
of Peano’s theorem in Banach spaces having complemented subspaces with
unconditional Schauder basis.

3.1. Proof of Theorem 1.5. By assumption, there exists a comple-
mented subspaceX of E having an unconditional Schauder basis {en; e∗n}∞n=1.
As X is complemented, there exists a bounded linear projection P of E
onto X (cf. [F–Z]). Split N into N =

⋃
i≥1Ni, where each Ni is infinite and

Ni ∩ Nj = ∅ if i 6= j. We use the convention N0 = N. Let Xi = span{en :
n ∈ Ni}. We then define, for each i ∈ N, the ith projection πi from X into
Xi by

(3.1) πi(x) =
∞∑
n=1

(e∗Ni
)n(x)en, x ∈ X

where (e∗Ni
)n(x) = e∗n(x) if n ∈ Ni, and 0 otherwise. Since {en : n ∈ Ni} is

an unconditional Schauder basis for Xi (see [F–Z, Proposition 6.31]), πi(x)
is well-defined and supi∈N ‖πi‖ <∞. Moreover, Xi = πi(X).

The following lemma, whose proof can be found in [Sh2, Corollary 1.5],
will be the crucial ingredient in the proof of the algebraic genericity of the
failure of the weak form of Peano’s theorem on E.

Lemma 3.1. Let X be a Banach space with a complemented subspace
which has an unconditional basis. Then for any α ∈ (0, 1) and ε > 0, there
exists f : X → X such that
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(i) ‖f(x)‖ ≤ 2 for all x ∈ X,
(ii) ‖f(x)− f(y)‖ ≤ ε‖x− y‖α for all x, y ∈ X,
(iii) the equation u′ = f(u) has no solutions in any interval of the real

line.

Fix α ∈ (0, 1) and let ε = 1. Now according to Lemma 3.1, for each i ∈ N
there exists a vector field fi : Xi → Xi with properties (i)–(iii) above. Let
hi : E → E be the continuous vector field given by

hi(x) = fi(πi(Px)), x ∈ E.
For each (an) ∈ `1 we define another vector field f(an) on E by putting

f(an)(x) =
∞∑
i=1

aihi(x), x ∈ E.

A direct computation shows that f(an) ≡ 0 iff (an) = 0, and

‖f(an)(x)− f(an)(y)‖ ≤
(
sup
i∈N
‖πi‖ ‖P‖

)α
‖(an)‖`1‖x− y‖α, ∀x, y ∈ E.

Using the same reasoning we can also prove the following proposition.
Proposition 3.2. The operator T : `1 → C(E) given by T ((an)) = f(an)

is well-defined and is an injective continuous linear map.

We conclude that T (`1) is algebraically isomorphic to `1. We now claim
that
(3.2) T (`1) ⊂ K(E) ∪ {0}.
Indeed, let (an) ∈ `1 \ {0}. Then am 6= 0 for some m ≥ 1. Assume to the
contrary that T ((an)) 6∈ K(E). Hence we can find an open interval I ⊂ R so
that
(3.3) u′(t) = f(an)(u(t))

has a solution on I, say u. Define v : I → Xm by
v(t) = (πm ◦ P )(u(t/am)), t ∈ I.

Taking into account that (3.3) is an infinite uncoupled system of ODEs, after
projecting and calculating the derivatives, we get

v′(t) = fm(v(t)) ∀t ∈ I,
which contradicts the fact that for the field fm the WFPT fails in Xm. This
concludes the proof of (3.2).

It remains to prove the finer inclusion

T (`1)
Tuc ⊂ K(E) ∪ {0}.

To see this, let h ∈ T (`1)
Tuc . Then there is a sequence
{xk}k∈N := {(akn)∞n=1}k∈N
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in `1 such that the sequence{ ∞∑
n=1

aknfn(πn(Px))
}
k∈N

converges to h uniformly on BE as k →∞. From Lemma 3.1(iii), we conclude
that fi(0) 6= 0 for all i ∈ N. In addition, as a simple computation shows,
we have aki → πiPh(0)/fi(0) for all i. Let ai = πiPh(0)/fi(0). Then after
taking the limit over k, we obtain

πiPh(x) = aifi(πiPx)

for all x ∈ E and every i.
Now suppose for contradiction that some solution of u′(t) = h(u(t))

is known at some time t. If we fix any integer i ≥ 1, then by defining
v(t) = πiP (u(t/ai)) we readily obtain v′(t) = fi(v(t)). This contradicts
Lemma 3.1, and hence concludes the proof. �

4. Characterization of Banach spaces containing `1 in terms of
WAS for the Cauchy–Peano problem. The celebrated dichotomy the-
orem of H. Rosenthal [R2] states that every bounded sequence in a Banach
space E either has a weak Cauchy subsequence, or contains a subsequence
equivalent to the unit vector basis of `1. In this section, we will use this
result, together with a characterization of weak compactness in L∞(µ,E),
due to Schlüchtermann [Sch], to prove Theorem 1.7.

4.1. Proof of Theorem 1.7. Necessity. Suppose X is a subspace of E
which is isomorphic to `1. Then X is not reflexive and, by a result of Cellina
[C], there exist a continuous linear functional ϑ ∈ BX∗ with ‖ϑ‖ = 1 and a
continuous fixed-point-free map g : BX → BX satisfying the equality

〈ϑ, g(x)〉 = 1
2(〈ϑ, x〉+ 1), ∀x ∈ BX .

Let G : E → BX be a continuous extension of g to the whole E, with range
in BX . It exists by the classical result of Dugundji [Dug] stating that convex
sets in locally convex spaces are absolute retracts.

By following the arguments of [C], we can define a continuous vector field
fG : R× E → E by

fG(t, x) =

{
2tG(x/t2), t 6= 0,

0, t = 0.

Notice that

(4.1) ‖fG(t, x)‖E ≤ 2|t|, ∀t ∈ R, ∀x ∈ E.
Thus fG belongs to the class X(R, E) with α, ϕ given as follows: α(t) = 2|t|
and ϕ ≡ 1. In [C], Cellina proved that there is no solution for the Cauchy
problem
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u′(t) = fG(t, u(t)),

u(0) = 0.
(4.2)

That is, the integral equation

u(t) =

t�

0

fG(s, u(s)) ds(4.3)

has no solutions.

Claim 1. (4.2) does not have a WAS.

Indeed, suppose to the contrary that (4.2) admits a WAS. Then for some
bounded interval I ⊂ R containing 0, there is a sequence (un) ⊂ C(I, E)
satisfying conditions (i)–(iv) from Definition 1.6. First, since fG(I×E) ⊂ X,
we see from Definition 1.6(v) that un(t) ∈ X for all n ∈ N and t ∈ I.
Furthermore, (iii) implies that

un(t)−
t�

0

fG(s, un(s)) ds ⇀ 0 in X, ∀t ∈ I.

Now as X ≈ `1, it follows that X has Schur’s property and is σ(X,X∗)-
sequentially complete. Hence for each t,

un(t)−
t�

0

fG(s, un(s)) ds→ 0 in X.(4.4)

On the other hand, it is easily seen from Definition 1.6(iv) that each sequence
(un(t))n is weakly Cauchy in X. Fix t ∈ I. As X is σ(X,X∗)-sequentially
complete, (un(t))n converges weakly (and so strongly) to some u(t) ∈ X. By
the estimate in (4.1) and the Lebesgue Dominated Convergence Theorem,
(4.3) implies

u(t) =

t�

0

fG(s, u(s)) ds, ∀t ∈ I.

So u belongs to C(I, E) and is a solution of (4.3), a contradiction.
Sufficiency. Informally, the strategy we employ is to show that the map-

ping F : C(I, E)→ C(I, E) given by

F (u)(t) = u0 +

t�

0

f(s, u(s)) ds, t ∈ I,

has a weak-approximate fixed point sequence, that is, a sequence (un) such
that un−F (un)⇀ 0 in C(I, E). Such a sequence will be a WAS of (1.1). In
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order to check this, consider the sets

A = {u ∈ C(I, E) : ‖u(t)‖E ≤ b(t) for a.e. t ∈ I},
B = {v ∈ C(I, E) : v(I) ⊂W, ‖v(t)‖E ≤ α(t)ϕ(b(t)) for a.e. t ∈ I},

C =
{
u ∈ A : u(t) = u0 +

t�

0

û(s) ds for a.e. t ∈ I and some û ∈ B
}
,

where W = span(f(I × E)) and b : [0,∞)→ R is defined by

b(t) = J−1
( t�

0

α(s) ds
)
, t ≥ 0,

where J(z) =
	z
‖u0‖E ds/ϕ(s). Clearly both A and B are closed convex subsets

of C(I, E), while C is bounded and convex. Moreover, it is easy to see that
F (C) ⊂ C. The rest of the proof is divided into three steps.

Step A. F is demicontinuous.

Indeed, suppose that un → u in C. We have to show that F (un)⇀ F (u)
in C(I, E). By assumption, un(t) → u(t) in E for all t ∈ I. Since f is
Carathéodory, this implies f(t, un(t)) → f(t, u(t)) in E for a.e. t ∈ I. On
the other hand, condition (f2) shows that ‖f(t, un(t))‖E ≤ b′(t) for all t ∈ I.
So by Lebesgue’s Dominated Convergence Theorem,

t�

0

‖f(s, un(s))− f(s, u(s))‖E ds→ 0, ∀t ∈ I.

In particular, F (un)(t)→ F (u)(t) for all t ∈ I. The next claim is a key point
to conclude the demicontinuity of F .

Claim 2. K = {F (un) : n ∈ N} is relatively weakly compact.

In order to prove this, we need the following characterization of weak
compactness in L∞(I, E) (see [Sch, Theorem 2.7] for its full statement):

Theorem 4.1. Let (Ω,Σ, µ) be a positive and finite measure space. For
a bounded subset K ⊂ L∞(µ,E) the following are equivalent:

(a) K is relatively weakly compact.
(b) For any sequence (vn) ⊂ K there exist a subsequence (wi) of (vn),

a function w ∈ L∞(µ,E) and a set N ⊂ Ω with µ(N) = 0 such that:
(i) wi(t)→ w(t) weakly in E for all t ∈ Ω \N ,
(ii) for any sequences (x∗j ) ⊂ BE∗ and (tj) ⊂ Ω \ N , there exist

subsequences (x∗jk), (tjk) such that

lim
i→∞

lim
k→∞
〈x∗jk , (wi − w)(tjk)〉 = 0.
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Let (vi) be any subsequence of (F (un)) and (wi) any subsequence of (vi).
Set w = F (u), and pick any set N ⊂ I with |N | = 0. We have already proved
that wi(t) → w(t) for all t ∈ I \N . Hence, condition (b)(i) in Theorem 4.1
is fulfilled. Let now (x∗j ) be any sequence in the unit ball BE∗ of E∗, and let
(tj) be any sequence of real numbers in I \N . It is easy to check that

|〈x∗j , (wi − w)(tj)〉| ≤
T�

0

‖f(s, umi(s))− f(s, u(s))‖E ds

where we are assuming that wi = F (umi) for all i ∈ N. Using again Lebes-
gue’s Dominated Convergence Theorem, it is easy to verify that

lim
i→∞

T�

0

‖f(s, umi(s))− f(s, u(s))‖E ds = 0,

which implies that

lim
i→∞

lim
j→∞

|〈x∗j , (wi − w)(tj)〉| = 0.

Thus we get for free the assumption (b)(ii) in Theorem 4.1, given the arbi-
trariness of the sequences (x∗j ) and (tj). HenceK is relatively weakly compact
in L∞(I, E), and the proof of Claim 2 is complete.

As is well known, Claim 2 implies that for some subsequence (unk
) of

(un) the sequence (F (unk
)) converges weakly to some v in L∞(I, E). Then,

by Theorem 2.11 in [T], F (unk
)(t)⇀ v(t) in E for almost every t ∈ I. Since

the weak topology is Hausdorff, it follows that v ≡ F (u) a.e. in I. It is not
hard to deduce that F (un) converges weakly to F (u) in C(I, E). This proves
that F is demicontinuous.

Step B. F has a weak-approximate fixed point sequence in C.

To prove this, we need the following result as a crucial tool.

Lemma 4.2. Let X be a Banach space, C ⊂ X a bounded convex set
and F : C → C a demicontinuous map. Assume that C does not contain
any isomorphic copy of `1. Then there exists a sequence (un) in C so that
un − F (un)⇀ 0 in X.

Proof. This is a direct consequence of Proposition 3.7 in [BKL].

Let us turn our attention to the proof of Theorem 1.2. Since I is not
scattered and X contains no isomorphic copy of `1, a result of Cembra-
nos [Ce] shows that C(I,X) has no isomorphic copy of `1 either. Thus, by
Lemma 4.2, there is a sequence (un) in C so that un−F (un)⇀ 0 in C(I, E).
This concludes the proof of Step B.

Step C. The sequence (un) obtained in Step B is a WAS for problem
(1.1).
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Indeed, conditions (i)–(ii) and (iv) of Definition 1.6 follow easily from the
fact that (un) belongs to C. Finally, after passing to a subsequence if needed,
item (iii) is a direct consequence of Rosenthal’s `1-theorem [R2] and the fact
that un−F (un)⇀ 0 in C(I, E). This concludes the proof of Theorem 1.2.
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