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Kaczmarz algorithm with relaxation in Hilbert space

by

Ryszard Szwarc and Grzegorz Świderski (Wrocław)

Abstract. We study the relaxed Kaczmarz algorithm in Hilbert space. The connec-
tion with the non-relaxed algorithm is examined. In particular we give sufficient conditions
when relaxation leads to the convergence of the algorithm independently of the relaxation
coefficients.

1. Introduction. Let {en}∞n=0 be a linearly dense sequence of unit vec-
tors in a Hilbert space H. Define

x0 = 〈x, e0〉e0,
xn = xn−1 + 〈x− xn−1, en〉en.

The formula is called the Kaczmarz algorithm ([4]).
In this work we fix a sequence λ = {λn}∞n=0 of relaxation coefficients so

that 0 < λn < 2 for any n. Then we define

(1.1)
x0 = λ0〈x, e0〉e0,
xn = xn−1 + λn〈x− xn−1, en〉en.

Let Qn denote the orthogonal projection onto the line Cen and let Pn =
I −Qn. Then (1.1) takes the form

(1.2) xn = xn−1 + λnQn(x− xn−1).
The last formula can be transformed into

(1.3) x− xn = (I − λnQn)(x− xn−1) = [(1− λn)Qn + Pn](x− xn−1).
Define

(1.4) Rn = (1− λn)Qn + Pn.

Clearly Rn is a contraction. Iterating (1.3) gives

x− xn = RnRn−1 . . . R0x.
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We are interested in determining when the algorithm converges, i.e. xn → x
for any x in the space.

This is always satisfied in a finite-dimensional space for a periodic choice
of vectors and relaxation coefficients. Indeed, let dimH < ∞ and {en}∞n=0,
{λn}∞n=0 be N -periodic. For A = RN−1 . . . R1R0 it suffices to show that An
tends to zero. We claim that ‖A‖ < 1. If not, there is a vector x such that
‖Ax‖ = ‖x‖ = 1. Then ‖R0x‖ ≥ ‖Ax‖ = ‖x‖, hence R0x = x, which
implies P0x = x. In the same way P1x = x, . . . , PN−1x = x, which implies
that x ⊥ e0, e1, . . . , eN−1. As the vectors {en}N−1n=0 are linearly dense we get
x = 0. The speed of convergence in the finite-dimensional case has been
studied in [2].

In the infinite-dimensional case this work is a natural continuation of
[6] where the non-relaxed algorithm was studied in detail. In particular the
convergence was characterized in terms of the Gram matrix of the vectors en.

2. Main formulas. Define vectors gn recursively by

(2.1) gn = λnen − λn
n−1∑
k=0

〈en, ek〉gk

(see [5]). Then by straightforward induction it can be verified that

(2.2) xn =

n∑
k=0

〈x, gk〉ek.

As the images of the projections Pn and Qn are mutually orthogonal, in view
of (1.3) we get

‖x− xn‖2 = (1− λn)2‖Qn(x− xn−1)‖2 + ‖Pn(x− xn−1)‖2,
‖x− xn−1‖2 = ‖Qn(x− xn−1)‖2 + ‖Pn(x− xn−1)‖2.

Subtracting gives

‖x− xn−1‖2 − ‖x− xn‖2 = λn(2− λn) ‖Qn(x− xn−1)‖2.
By (1.2) we thus get

(2.3) ‖x− xn−1‖2 − ‖x− xn‖2 =
2− λn
λn

‖xn − xn−1‖2.

Now taking (2.2) into account results in

‖x− xn−1‖2 − ‖x− xn‖2 =
2− λn
λn

|〈x, gn〉|2.

By summing up the last formula we obtain

‖x‖2 − lim
n
‖x− xn‖2 =

∞∑
n=0

2− λn
λn

|〈x, gn〉|2.
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Therefore the algorithm converges if and only if

(2.4) ‖x‖2 =
∞∑
n=0

2− λn
λn

|〈x, gn〉|2, x ∈ H.

Define

hn =

√
2− λn
λn

gn, fn =

√
2− λn
λn

en.

Then (2.1) takes the form

(2.5) hn = fn −
n−1∑
k=0

1

2− λk
〈fn, fk〉hk.

In view of (2.4) the algorithm converges if and only if

(2.6) ‖x‖2 =
∞∑
n=0

|〈x, hn〉|2, x ∈ H.

The last condition states that {hn}∞n=0 is a so-called tight frame (see [1];
cf. [6]). Equivalently the sequence hn is linearly dense and the Gram matrix
of the vectors hn is a projection.

We are now going to describe the Gram matrix of the vectors hn in more
detail.

Define the lower triangular matrix Mλ by the formula

(2.7) (Mλ)nk =
1

2− λk
〈fn, fk〉, n > k.

Thus (2.5) can be rewritten as

(2.8) fn = hn +

n−1∑
k=0

(Mλ)nkhk.

Let Uλ be the lower triangular matrix defined by

(2.9) (I + Uλ)(I +Mλ) = I.

Denote
(Uλ)nk = cnk, n > k.

Then (2.7)–(2.9) imply

hn = fn +
n−1∑
k=0

cnkfk.

Moreover setting cnn = 1 gives

(2.10) 〈hi, hj〉 =
i∑

k=0

cik

j∑
l=0

cjl〈fk, fl〉 = 〈(I + Uλ)Fλ(I + U∗λ)δj , δi〉,
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where Fλ denotes the Gram matrix of the vectors fn, i.e.

(2.11) (Fλ)nk = 〈fn, fk〉,

and δi is the standard basis in `2(N). We will denote by Dan the diagonal
matrix with the numbers an on the main diagonal. By definition of the
vectors fn and by (2.7) we have

(2.12) Fλ = D(2−λn)λn +MλD2−λn +D2−λnM
∗
λ .

We have

Lemma 2.1.

(2.13) (I+Uλ)Fλ(I+U
∗
λ) = I− (D1−λn +UλD2−λn)(D1−λn +D2−λnU

∗
λ).

Proof. The formula follows readily by using the relation

MλUλ = UλMλ = −Mλ − Uλ,

which comes from (2.9).

Now we are ready to state one of the main results.

Theorem 2.2. The relaxed Kaczmarz algorithm defined by (1.1) is con-
vergent if and only if the matrix Vλ := D1−λn+UλD2−λn is a partial isometry.

Proof. By Lemma 2.1 the operator Vλ is a contraction. Again by Lemma
2.1 and (2.10) we get

〈hi, hj〉 = 〈(I − VλV ∗λ )δj , δi〉.

From the discussion after formula (2.6) we know that the algorithm converges
if and only if the Gram matrix of the vectors hi is a projection. But the latter
is equivalent to Vλ being a partial isometry.

3. Relaxed versus non-relaxed algorithm. For a constant sequence
λ ≡ 1 let M =M1 and U = U1. From the definition of Mλ we get

(3.1) Mλ = D√
λn(2−λn)

MD√
λn/(2−λn)

.

We would like to have a similar relation for Vλ (see Thm. 2.2). Clearly for
λ ≡ 1 we have V1 = U.

Lemma 3.1. Let D1 and D2 be diagonal matrices with non-zero elements
on the main diagonal. Let M, M̃, U and Ũ be lower triangular matrices so
that M̃ = D1MD2 and

(I +M)(I + U) = I, (I + M̃)(I + Ũ) = I.

Then
Ũ = D1U [I + (I −D1D2)U ]−1D2.
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Proof. We have

M = −U(I + U)−1, Ũ = −M̃(I + M̃)−1.

Thus

Ũ = −D1MD2(I +D1MD2)
−1 = −D1M(I +D1D2M)−1D2

= D1U(I + U)−1[I −D1D2U(I + U)−1]−1D2

= D1U [(I + U)−D1D2U ]−1D2 = D1U [I + (I −D1D2)U ]−1D2.

Proposition 3.2. We have

(3.2) Vλ := D1−λn + UλD2−λn = (Aλ +BλU)(Bλ +AλU)−1,

where

(3.3) Aλ = D
(1−λn)/

√
λn(2−λn)

, Bλ = D
1/
√
λn(2−λn)

.

Proof. Let

D1 = D√
λn(2−λn)

, D2 = D√
λn/(2−λn)

.

By (3.1) we have Mλ = D1MD2. We can apply Lemma 3.1 to get

Uλ = D1U [I + (I −D1D2)U ]−1D2.

Observe that D1D2 = Dλn and D2D2−λn = D1. Thus

Vλ = I −D1D2 +D1U [I + (I −D1D2)U ]−1D1

=
{
D−11 (I −D1D2)[I + (I −D1D2)U ] +D1U

}
[I + (I −D1D2)U ]−1D1

=
{
(D−11 −D2) + [D−11 (I −D1D2)

2 +D1]U
}
[D−11 + (D−11 −D2)U ]−1.

The proof will be finished once we notice that

D−11 −D2 = Aλ, D−11 = Bλ, (I −D1D2)
2 +D2

1 = I.

Basing on Proposition 3.2 we can derive a simple formula for V ∗λ Vλ in
terms of U and U∗.

Main Theorem 3.3. Assume the sequence λn satisfies ε ≤ λn ≤ 2 − ε
for any n ≥ 0. Then

I − V ∗λ Vλ = (Bλ + U∗Aλ)
−1(I − U∗U)(Bλ +AλU)−1,

where Aλ and Bλ are defined in (3.3). In particular the relaxed algorithm is
convergent for any sequence λn with ε ≤ λn ≤ 2− ε if U∗U = I.

Proof. Both operators Aλ and Bλ are bounded as soon as the coefficients
λn stay away from 0 and 2. Moreover the operator Bλ+AλU is invertible as

Bλ +AλU = Bλ(I +D1−λnU), ‖D1−λn‖ ≤ 1− ε < 1.

Notice that
B2
λ −A2

λ = I.
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Therefore

V ∗λ Vλ=(Bλ + U∗Aλ)
−1(Aλ + U∗Bλ)(Aλ +BλU)(Bλ +AλU)−1

=(Bλ+U
∗Aλ)

−1[B2
λ+U

∗A2
λU+U∗AλBλ+AλBλU+U∗U−I](Bλ+AλU)−1

=(Bλ + U∗Aλ)
−1[(Bλ + U∗Aλ)(Bλ +AλU) + U∗U − I](Bλ +AλU)−1

=I + (Bλ + U∗Aλ)
−1(U∗U − I)(Bλ +AλU)−1.

Finally, we get

I − V ∗λ Vλ = (Bλ + U∗Aλ)
−1(I − U∗U)(Bλ +AλU)−1.

Corollary 3.4. Assume 0 < |λn−1| < 1−ε for any n ≥ 0. The relaxed
algorithm is convergent if and only if U∗U = I.

Proof. By (3.2) the operator Vλ is one-to-one as λn 6= 1. Assume the re-
laxed algorithm is convergent. Then Vλ is a partial isometry. Hence V ∗λ Vλ = I
as Vλ is one-to-one. By Theorem 3.3 we get U∗U = I. The converse impli-
cation is already included in Theorem 3.3.

Remark. The assumption U∗U = I is stronger than U being a par-
tial isometry. According to [3] it ensures that the Kaczmarz algorithm is
convergent even if we drop finitely many vectors from the sequence {en}∞n=0.

Remark. The assumption ε < λn < 2 − ε is necessary in general for
convergence of the relaxed Kaczmarz algorithm. Indeed, assume the opposite,
i.e. |λnk

−1| → 1− for an increasing subsequence {nk}∞k=1 of natural numbers.
By extracting a subsequence we may assume

(3.4)
∞∑
k=1

(1− |λnk
− 1|) < 1.

In particular we have λnk
6= 1. In the two-dimensional space C2 let

en =

{
(1, 0) for n = nk,

(0, 1) for n 6= nk.

Then for x = (1, 0) we have

xnl
=
[
1−

l∏
k=1

(1− λnk
)
]
x.

But the product
∏∞
k=1(1 − λnk

) does not tend to zero under assumptions
(3.4).
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