Erratum/addendum to the paper: "Quasi *-algebras and generalized inductive limits of C^{*}-algebras"

(Studia Math. 202 (2011), 165-190)
by

Giorgia Bellomonte and Camillo Trapani (Palermo)

In Example 5.3 of the paper cited in the title, we tried to construct a family $\left\{W_{A} \in \mathfrak{B}\left(\mathcal{H}_{A}\right): A \in \mathcal{L}^{\dagger}(\mathcal{D})\right\}$ so that the partial multiplication, defined in $\mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$by the method discussed ibidem [Section 3.6], would reproduce the well-known quasi ${ }^{*}$-algebra structure of $\left(\mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right), \mathcal{L}^{\dagger}(\mathcal{D})\right)$. Unfortunately, some misplaced inverses and a more relevant mistake made there produced an incorrect conclusion of that discussion. The argument in Example 5.3 shows, in fact, that it is not possible to find a family $\left\{W_{A} \in\right.$ $\left.\mathfrak{B}\left(\mathcal{H}_{A}\right): A \in \mathcal{L}^{\dagger}(\mathcal{D})\right\}$ satisfying the required condition. We will prove the last statement in detail, referring the reader, of course, for notations and definitions to the above mentioned article.

If $A \in \mathcal{L}^{\dagger}(\mathcal{D})$, then $\left(I+A^{*} \bar{A}\right)^{-1} \in \mathfrak{B}\left(\mathcal{H}_{A}\right)$, and, for its norm in $\mathfrak{B}\left(\mathcal{H}_{A}\right)$ one has $\left\|\left(I+A^{*} \bar{A}\right)^{-1}\right\|_{A, A} \leq 1$. Moreover, for every $\xi, \eta \in \mathcal{D}$,

$$
\begin{aligned}
\left\langle\left(I+A^{*} \bar{A}\right)^{-1} \xi \mid \eta\right\rangle_{A} & =\left\langle\left(I+A^{*} \bar{A}\right)^{1 / 2}\left(I+A^{*} \bar{A}\right)^{-1} \xi \mid\left(I+A^{*} \bar{A}\right)^{1 / 2} \eta\right\rangle \\
& =\langle\xi \mid \eta\rangle .
\end{aligned}
$$

This means that the identity operator I of \mathcal{D} is represented in every space $\mathfrak{B}\left(\mathcal{H}_{A}\right)$ by the operator $\left(I+A^{*} \bar{A}\right)^{-1}$. If $Y \in \mathcal{L}^{\dagger}(\mathcal{D})$, then $Y \in \mathfrak{L}_{B}^{A}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$ for some $A \in \mathcal{L}^{\dagger}(\mathcal{D})$, and the operator $Y_{A} \in \mathfrak{B}\left(\mathcal{H}_{A}\right)$, corresponding to Y, satisfies $Y_{A} \upharpoonright \mathcal{D}=\left(I+A^{\dagger} A\right)^{-1} Y$. If $X \in \mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$, then $X \in \mathfrak{L}_{\mathrm{B}}^{S}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$ for a sufficiently large $S \in \mathcal{L}^{\dagger}(\mathcal{D})$. If a family $\left\{W_{A} \in \mathfrak{B}\left(\mathcal{H}_{A}\right): A \in \mathcal{L}^{\dagger}(\mathcal{D})\right\}$ satisfying the required conditions were to exist, one should have, for every $\xi \in \mathcal{D}$,

$$
X_{T} W_{T} Y_{T} \xi=X_{T} W_{T}\left(I+T^{*} \bar{T}\right)^{-1} Y \xi=X_{T} Y \xi, \quad T \succeq S
$$

with $X_{T}=\Phi_{T}^{-1}(X)$. This is possible only if $W_{T}=I+T^{*} \bar{T}$. But this operator does not belong to $\mathfrak{B}\left(\mathcal{H}_{T}\right)$, unless T is bounded.

[^0]This proves that the method developed in the paper cannot be applied to this space of operators. In conclusion, $\mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$has the structure of a C^{*}-inductive locally convex space, but it is not possible to make it a C^{*}-inductive locally convex quasi ${ }^{*}$-algebra via the method of Section 3.6.

Giorgia Bellomonte, Camillo Trapani
Dipartimento di Matematica e Informatica
Università di Palermo
I-90123 Palermo, Italy
E-mail: bellomonte@math.unipa.it
camillo.trapani@unipa.it

[^0]: 2010 Mathematics Subject Classification: 47L60, 47L40.
 Key words and phrases: quasi ${ }^{*}$-algebras, inductive limit of C^{*}-algebras, partial ${ }^{*}$-algebras.

