Erratum/addendum to the paper: "Quasi *-algebras and generalized inductive limits of C^* -algebras"

(Studia Math. 202 (2011), 165–190)

by

GIORGIA BELLOMONTE and CAMILLO TRAPANI (Palermo)

In Example 5.3 of the paper cited in the title, we tried to construct a family $\{W_A \in \mathfrak{B}(\mathcal{H}_A) : A \in \mathcal{L}^{\dagger}(\mathcal{D})\}$ so that the partial multiplication, defined in $\mathfrak{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times})$ by the method discussed *ibidem* [Section 3.6], would reproduce the well-known quasi *-algebra structure of $(\mathfrak{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times}), \mathcal{L}^{\dagger}(\mathcal{D}))$. Unfortunately, some misplaced inverses and a more relevant mistake made there produced an incorrect conclusion of that discussion. The argument in Example 5.3 shows, in fact, that it is not possible to find a family $\{W_A \in \mathfrak{B}(\mathcal{H}_A) : A \in \mathcal{L}^{\dagger}(\mathcal{D})\}$ satisfying the required condition. We will prove the last statement in detail, referring the reader, of course, for notations and definitions to the above mentioned article.

If $A \in \mathcal{L}^{\dagger}(\mathcal{D})$, then $(I + A^*\overline{A})^{-1} \in \mathfrak{B}(\mathcal{H}_A)$, and, for its norm in $\mathfrak{B}(\mathcal{H}_A)$ one has $\|(I + A^*\overline{A})^{-1}\|_{A,A} \leq 1$. Moreover, for every $\xi, \eta \in \mathcal{D}$,

$$\langle (I+A^*\overline{A})^{-1}\xi \mid \eta \rangle_A = \langle (I+A^*\overline{A})^{1/2}(I+A^*\overline{A})^{-1}\xi \mid (I+A^*\overline{A})^{1/2}\eta \rangle$$
$$= \langle \xi \mid \eta \rangle.$$

This means that the identity operator I of \mathcal{D} is represented in every space $\mathfrak{B}(\mathcal{H}_A)$ by the operator $(I + A^*\overline{A})^{-1}$. If $Y \in \mathcal{L}^{\dagger}(\mathcal{D})$, then $Y \in \mathfrak{L}^{A}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times})$ for some $A \in \mathcal{L}^{\dagger}(\mathcal{D})$, and the operator $Y_A \in \mathfrak{B}(\mathcal{H}_A)$, corresponding to Y, satisfies $Y_A \upharpoonright \mathcal{D} = (I + A^{\dagger}A)^{-1}Y$. If $X \in \mathfrak{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times})$, then $X \in \mathfrak{L}^{S}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times})$ for a sufficiently large $S \in \mathcal{L}^{\dagger}(\mathcal{D})$. If a family $\{W_A \in \mathfrak{B}(\mathcal{H}_A) : A \in \mathcal{L}^{\dagger}(\mathcal{D})\}$ satisfying the required conditions were to exist, one should have, for every $\xi \in \mathcal{D}$,

$$X_T W_T Y_T \xi = X_T W_T (I + T^* \overline{T})^{-1} Y \xi = X_T Y \xi, \quad T \succeq S,$$

with $X_T = \Phi_T^{-1}(X)$. This is possible only if $W_T = I + T^*\overline{T}$. But this operator does not belong to $\mathfrak{B}(\mathcal{H}_T)$, unless T is bounded.

²⁰¹⁰ Mathematics Subject Classification: 47L60, 47L40.

Key words and phrases: quasi *-algebras, inductive limit of C^* -algebras, partial *-algebras.

This proves that the method developed in the paper cannot be applied to this space of operators. In conclusion, $\mathfrak{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times})$ has the structure of a C^* -inductive locally convex space, but it is not possible to make it a C^* -inductive locally convex quasi *-algebra via the method of Section 3.6.

Giorgia Bellomonte, Camillo Trapani Dipartimento di Matematica e Informatica Università di Palermo I-90123 Palermo, Italy E-mail: bellomonte@math.unipa.it camillo.trapani@unipa.it

Received July 5, 2013

(7812)

96