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How far is C(ω) from the other C(K) spaces?

by

Leandro Candido and Elói Medina Galego (São Paulo)

Abstract. Let us denote by C(α) the classical Banach space C(K) when K is the
interval of ordinals [1, α] endowed with the order topology. In the present paper, we
give an answer to a 1960 Bessaga and Pełczyński question by providing tight bounds
for the Banach–Mazur distance between C(ω) and any other C(K) space which is isomor-
phic to it. More precisely, we obtain lower bounds L(n, k) and upper bounds U(n, k) on
d(C(ω), C(ωnk)) such that U(n, k)− L(n, k) < 2 for all 1 ≤ n, k < ω.

1. Introduction. We follow the standard notation and terminology of
Banach spaces theory that can be found in [6]. LetK be a compact Hausdorff
space. We denote by C(K) the Banach space of all continuous scalar valued
functions defined on K, endowed with the supremum norm. The variation
of a measure µ will be denoted by |µ|. The symbol K may denote the field
of real numbers R or the field of complex numbers C. If α is an ordinal
number, then [1, α] denotes the interval {γ : 1 ≤ γ ≤ α} endowed with
the order topology. The space C([1, α]) will be denoted by C(α). As usual,
ω denotes the first infinite ordinal and ω1 the first uncountable ordinal. For
isomorphic Banach spaces X and Y (written X ∼ Y ), let d(X,Y ) denote the
Banach–Mazur distance between them, defined to be inf{‖T‖ ‖T−1‖} where
the infimum is taken over all isomorphisms T from X onto Y .

In this work we are mainly interested in studying the Banach–Mazur
distances between C(ω) and other C(K) spaces which are isomorphic to it.
First of all notice that in this case by the well-known Mazurkiewicz and
Sierpiński theorem [7] and the classical isomorphic classification of C(α)
spaces, ω ≤ α < ω1, due to Bessaga and Pełczyński [1], it follows that C(K)
is isomorphic to some C(ωnk) space with 1 ≤ n, k < ω.

The motivation for this research comes from [1]. There, the authors stated
that if ω ≤ α ≤ β < ω1, then C(α) is isomorphic to C(β) if and only if there
exists 1 ≤ n < ω such that αn ≤ β < αn+1. Moreover, in this case, they
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proved that
n ≤ d(C(α), C(β)) ≤ 4n+3.

It was also indicated in [1, p. 59] that it would be interesting to obtain an
estimate of the form

G(n) ≤ d(C(α), C(β)) ≤ H(n),

where
sup(H(n)/G(n)) <∞.(1.1)

The purpose of the present paper is to get such an estimate in the case where
α = ω. Thus, we focus on lower bounds L(n, k) and upper bounds U(n, k)
on the distances between C(ω) and C(ωnk), 1 ≤ n, k < ω. In this case, we
establish something more than (1.1). Namely, our estimate satisfies

U(n, k)− L(n, k) < 2, ∀1 ≤ n, k < ω.(1.2)
Indeed, we find the following bounds:

L(n, k) =


1 if n = 1, k = 1,
3 if n = 1, k > 1,
2n− 1 if n > 1, k = 1,
2n+ 1 if n > 1, k > 1,

and

U(n, k) =



1 if n = 1, k = 1,
3 if n = 1, k = 2,
2 +
√

5 if n = 1, k > 2,
n+
√

(n− 1)(n+ 3) if n > 1, k = 1,
n+ 1 +

√
n(n+ 4) if n > 1, k > 1.

Therefore it is easy to check that (1.2) holds. We stress that in [5] it has
already been proved that d(C(ω), C(ω2)) = 3 and d(C(ω), C(ωk)) ≥ 3 for
every k ≥ 3.

Of course, the above tight bounds lead naturally to the following conjec-
ture on the exact values of the distances between the Banach spaces we are
considering.

Conjecture 1.1. Let n ≥ 2 and k ≥ 2 be integers. Then

(a) d(C(ω), C(ω(k + 1)) is equal to 3, 4 or 2 +
√

5.
(b) d(C(ω), C(ωn)) is equal to 2n− 1, 2n or n+

√
(n− 1)(n+ 3).

(c) d(C(ω), C(ωnk)) is equal to 2n+ 1, 2n+ 2 or n+ 1 +
√
n(n+ 4).

The paper is organized as follows. In Section 2, inspired by [2] and [3], we
prove the following result which was our guide in the search for tight bounds
satisfying (1.2). Recall that for a positive integer n, the nth derived of K,
K(n), is defined by induction:K(0) = K,K(1) is the set of non-isolated points
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of K, and K(n+1) = (K(n))(1). The cardinality of a set Γ will be denoted
by |Γ |.

Theorem 1.2. Let F be an infinite compact Hausdorff space with F (2)=∅.
Then for every compact Hausdorff space K and 1 ≤ n < ω, we have

C(K) ∼ C(F ) and |K(n)| > |F (1)| ⇒ d(C(K), C(F )) ≥ 2n+ 1.

Thus, since [1, ωnk](n) = {ωn, ωn2, . . . , ωnk}, 1 ≤ n, k < ω, as an imme-
diate consequence of Theorem 1.2 we obtain the following lower bounds on
distances between C(ω) and the C(ωnk) spaces, 1 < n, k < ω.

Corollary 1.3. Suppose that 1 < n, k < ω. Then

(a) d(C(ω), C(ωk)) ≥ 3.
(b) d(C(ω), C(ωn)) ≥ 2n− 1.
(c) d(C(ω), C(ωnk)) ≥ 2n+ 1.

In Section 3, we turn our attention to upper bounds on the distances
between C(ω) and C(ωnk), 1 ≤ n, k < ω. In view of Corollary 1.3, our task is
to search for isomorphisms T from C(ω) onto C(ωn) (resp. C(ωnk)) such that
the product ‖T‖ ‖T−1‖ is not too far from 2n−1 (resp. 2n+1). In Theorem
3.1 we present some special such isomorphisms. Finally, in Section 4, as an
immediate consequence, we prove the following result.

Theorem 1.4. Suppose that 1 < n, k < ω. Then

(a) d(C(ω), C(ωk)) ≤ 2 +
√

5.
(b) d(C(ω), C(ωn)) ≤ n+

√
(n− 1)(n+ 3).

(c) d(C(ω), C(ωnk)) ≤ n+ 1 +
√
n(n+ 4).

2. A lower bound on d(C(K), C(F )) where F (2) = ∅. The main aim
of this section is to prove Theorem 1.2. Before, we need to state two auxiliary
results. For a subset A of a topological space K we denote by Å the set of
interior points of A. Recall that an isomorphism T of C(K) into C(F ) is
said to be norm-increasing if ‖f‖ ≤ ‖Tf‖ for every f ∈ C(K).

Proposition 2.1. Let F be an infinite compact Hausdorff space with
F (2) = ∅, K a compact Hausdorff space and T a norm-increasing isomor-
phism from C(K) into C(F ). Let 1 < n < ω, x0 ∈ K(n), K0 a compact
neighborhood of x0, 0 < ε < 1 and h0 ∈ C(K) such that 0 ≤ h0 ≤ 1,
h0(x) = 1 for each x ∈ K0 and |Th0(y)| < ε for every y ∈ F (1). Then
there are points x1, . . . , xn−1 ∈ K, compact subsets K1, . . . ,Kn−1 of K and
functions h1, . . . , hn−1 in C(K) satisfying

(a) xi ∈ K̊i ∩K(n−i) for 0 ≤ i ≤ n− 1.
(b) Ki ⊂ K̊i−1 for 1 ≤ i ≤ n− 1.
(c) 0 ≤ hi ≤ 1, hi(x) = 1 if x ∈ Ki, and hi(x) = 0 if x /∈ K̊i−1, for

1 ≤ i ≤ n− 1.
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(d) The sets Gi = {y ∈ F : |Thi(y)| ≥ ε}, 0 ≤ i ≤ n− 1, are non-empty
and pairwise disjoint sets of isolated points.

Proof. Since T is norm-increasing and 0 < ε < 1, the set G0 is clearly
non-empty. Moreover, it is finite: otherwise we would have G0 ∩ F (1) 6= ∅,
contrary to our hypothesis. Next, given 0 ≤ r < n−1, suppose that we have
obtained points x0, x1, . . . , xr, compact sets K0,K1, . . . ,Kr, and functions
h0, h1, . . . , hr in C(K) satisfying (a)–(d) above.

Since K is a compact Hausdorff space and K(n) 6= ∅, it is possible to
find points b1, b2, . . . in (K̊r \ {xr}) ∩K(n−r−1), pairwise disjoint open sets
U1, U2, . . . and compact subsets M1,M2, . . . such that

bi ∈ M̊i ⊂Mi ⊂ Ui ⊂ K̊r, i ∈ N.
By the Urysohn Lemma [4, Theorem 1.5.11, p. 41], we can find functions

g1, g2, . . . ∈ C(K) such that, for every i ∈ N, 0 ≤ gi ≤ 1, gi(x) = 1 if
x ∈ Mi, and gi(x) = 0 if x /∈ Ui. Since Ui ∩ Uj = ∅ if i 6= j, we have
gi · gj = 0 if i 6= j. Recalling that T is norm-increasing and 0 < ε < 1, the
sets {y ∈ F : |Tgi(y)| ≥ ε} are non-empty for every i ∈ N.

Next, define G = G0 ∪ G1 ∪ · · · ∪ Gr. We claim that there exists s ∈ N
such that

(2.1) {y ∈ F : |Tgs(y)| ≥ ε} ∩ (G ∪ F (1)) = ∅.
Indeed, otherwise, assuming that G ∪ F (1) = {y1, . . . , yt} and denoting

Γi = {j ∈ N : |Tgj(yi)| ≥ ε}, 1 ≤ i ≤ t,
we would obtain

N ⊆ Γ1 ∪ · · · ∪ Γt,
and so Γp must be infinite for some 1 ≤ p ≤ t. Let p1, p2, . . . be distinct
integers in Γp.

Pick m ∈ N satisfying εm > ‖T‖. For each 1 ≤ i ≤ m let ri be a scalar
such that

ri · Tgpi(yp) = |Tgpi(yp)|.
Since gi · gj = 0 if i 6= j, the function g =

∑m
i=1 ri · gpi ∈ C(K) is such that

‖g‖ ≤ 1. However,

‖T‖ ≥ ‖Tg‖ ≥
∣∣∣T( m∑

i=1

ri · gpi
)

(yp)
∣∣∣

=
∣∣∣ m∑
i=1

ri · Tgpi(yp)
∣∣∣ =

m∑
i=1

|Tgpi(yp)| > ‖T‖;

this contradiction establishes our claim.
Finally, let s ∈ N be chosen to satisfy (2.1). We set xr+1 = bs,Kr+1 = Ms,

hr+1 = gs and Gr+1 = {y ∈ F : |Tgs(y)| ≥ ε}. It is easy to check that (a)–(d)
hold for r + 1, so the proposition is proved.
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Proposition 2.2. Let F be an infinite compact Hausdorff space with
F (2) = ∅, K a compact Hausdorff space and T an isomorphism from C(K)
into C(F ). Suppose that |K(n)| > |F (1)| for some 1 ≤ n < ω. Then for
every ε > 0 there exists x0 ∈ K(n), a compact neighborhood K0 of x0 and
a function h ∈ C(K) such that 0 ≤ h ≤ 1, h(x) = 1 for every x ∈ K0 and
|Th(y)| < ε for every y ∈ F (1).

Proof. Towards a contradiction suppose ε > 0 is such that |Th(y)| ≥ ε
for some y ∈ F (1) whenever h ∈ C(K) is such that 0 ≤ h ≤ 1 and h(x) = 1

for every x in a closed set K0 satisfying K̊0 ∩K(n) 6= ∅.
Assume that |F (1)| = m and pick distinct points x1, . . . , xm+1 in K(n)

with respective pairwise disjoint compact neighborhoods A1, . . . , Am+1. By
applying the Urysohn Lemma, we find functions hi ∈ C(K), 1 ≤ i ≤ m+ 1,
such that 0 ≤ hi ≤ 1, hi(x) = 1 for every x ∈ Ai and moreover hi · hj = 0 if
i 6= j.

Let lm+1
∞ be the space Km+1 provided with the maximum norm. For each

a = (a1, . . . , am+1) ∈ lm+1
∞ consider the function

γa =

m+1∑
i=1

ai · hi ∈ C(K).

Notice that ‖γa‖ = ‖a‖. We can identify, in the usual manner, the space
C(F (1)) with lm∞ . Now define S : lm+1

∞ → lm∞ by

S(a) = Tγa|F (1) , a ∈ lm+1
∞ .

Clearly S is a linear operator. From our assumption, for every a ∈ lm+1
∞

there is a y ∈ F (1) such that

‖S(a)‖ = |Tγa(y)| ≥ ε‖a‖.
Hence, S is an isomorphism of lm+1

∞ into lm∞, which is impossible.

Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. We will assume the existence of an isomorphism T
of C(K) onto C(F ) such that ‖T‖ ‖T−1‖ < 2n+1 and obtain a contradiction.

Without loss of generality we may assume that ‖T−1‖ = 1 so that T is
norm-increasing. Otherwise we may simply replace T by the isomorphism
‖T−1‖T .

Pick 0 < ε < 1 and η > 0 such that

‖T‖ < (2n+ 1)
1− ε
1 + ε

and η < min

{
ε,

(2n+ 1)(1− ε)− ‖T‖
2

}
.

By Proposition 2.2, there is x0 ∈ K(n), a compact neighborhood K0 of
x0 and a function h0 ∈ C(K) such that 0 ≤ h0 ≤ 1, h0(x) = 1 for every
x ∈ K0, and |Th0(y)| < ε for every y ∈ F (1). Related to x0,K0, h0 and ε > 0,
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consider points x1, . . . , xn−1 ∈ K, compact subsets K1, . . . ,Kn−1 ⊂ K, func-
tions h1, . . . , hn−1 ∈ C(K) and subsets G0, G1, . . . , Gn−1 ⊂ F satisfying the
statements (a)–(d) of Proposition 2.1. For each 0 ≤ i ≤ n− 1, define

gi = χGi
· Thi,

where χGi
stands for the characteristic function of Gi. Notice that gi ∈ C(F )

for each 0 ≤ i ≤ n− 1.
Let G be the finite set

⋃n−1
i=0 Gi. For each y ∈ G let δy be the unit point

mass at y. By the Riesz Representation Theorem [8, Theorem 18.4.1, p. 312]
we identify δy with a linear functional in C(F )∗. Then it is clear that

H =
⋃
y∈G
{x ∈ K : |T ∗(δy)|({x}) > η}

is a finite set. Hence, there is z ∈ K̊n−1 \H such that |T ∗(δy)|({z}) < η for
each y ∈ G. By regularity, we can find an open neighborhood of z, U ⊂ Kn−1,
such that |T ∗(δy)|(U) < η for every y ∈ G.

Thanks to the Urysohn Lemma, we can take hn ∈ C(K) such that 0 ≤
hn ≤ 1, hn(z) = 1 and hn(x) = 0 if x /∈ U . Let α ∈ C(F ) be defined by

α(y) = g0(y) + 2
n−1∑
i=1

gi(y) + 2Thn(y), y ∈ F.

Claim 1. ‖α‖ = max{2‖Thn‖, |α(y)| : y ∈ G}.
In order to establish this, notice that for every y ∈ G,

(2.2) |Thn(y)| =
∣∣∣ �Thn dδy∣∣∣ =

∣∣∣ �hn dT ∗(δy)∣∣∣ ≤ |T ∗(δy)|(U) < η < 1.

On the other hand, if y 7→ |Thn(y)| attains its maximum at y0 ∈ F , since
T is norm-increasing we have
(2.3) |Thn(y0)| = ‖Thn‖ ≥ 1,

and hence y0 ∈ F \ G. Since α(y) = 2Thn(y) for y ∈ F \ G, our claim is
established.

Claim 2. ‖α‖ ≥ (2n+ 1)− (2n− 1)ε.

Since ‖T−1‖=1, we have

(2.4) ‖α‖ =
∥∥∥g0 + 2

n−1∑
i=1

gi + 2Thn

∥∥∥ ≥ ∥∥∥T−1g0 + 2

n−1∑
i=1

T−1gi + 2hn

∥∥∥
≥
∣∣∣(h0(z) + 2

n∑
i=1

hi(z)
)
− (h0(z)− T−1g0(z))− 2

n−1∑
i=1

(hi(z)− T−1gi(z))
∣∣∣

≥
∣∣∣h0(z) + 2

n∑
i=1

hi(z)
∣∣∣− |h0(z)− T−1g0(z)| − 2

n−1∑
i=1

|hi(z)− T−1gi(z)|,
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and since ‖f‖ ≤ ‖Tf‖, f ∈ C(K), we have, for each 0 ≤ i ≤ n− 1,

|hi(z)− T−1gi(z)| ≤ ‖hi − T−1gi‖ ≤ ‖Thi − gi‖(2.5)
= ‖(1− χGi

) · Thi‖ ≤ ε.
Putting (2.4) and (2.5) together and recalling the definition of hi we see

that Claim 2 is true.

In view of Claims 1 and 2 there are two possibilities:

(i) 2‖Thn‖ ≥ (2n+ 1)− (2n− 1)ε,
(ii) |α(y)| ≥ (2n+ 1)− (2n− 1)ε for some y ∈ G.

We will show that both lead to a contradiction.
Suppose first that (i) holds. Set A = T−1g0−2hn. Since 0 ≤ hn ≤ h0 ≤ 1

and ‖f‖ ≤ ‖Tf‖ for all f ∈ C(K), for every x ∈ K we have

|T−1g0(x)− 2hn(x)| ≤ |h0(x)− 2hn(x)|+ |T−1g0(x)− h0(x)|
≤ 1 + ‖T−1g0 − h0‖ ≤ 1 + ‖g0 − Th0‖ ≤ 1 + ε.

So ‖A‖ ≤ 1 + ε.
Recalling (2.2) and (2.3), we can fix y0 ∈ F \ G such that ‖Thn‖ =

|Thn(y0)|. It follows that
|T (A)(y0)|=2|Thn(y0)|=2‖Thn‖≥(2n+ 1)− (2n− 1)ε>(2n+ 1)(1− ε).
Consequently,

‖T‖ ≥
∥∥∥∥T( 1

1 + ε
A

)∥∥∥∥ > (2n+ 1)
1− ε
1 + ε

,

contradicting the choice of ε.
Now, assume that (ii) holds. We distinguish two cases.

Case 1: ‖α‖ = |α(y0)| for some y0 ∈ G0. Since G0, G1, . . . , Gn−1 are
pairwise disjoint we have

|α(y0)| = |g0(y0) + 2Thn(y0)| ≥ (2n+ 1)− (2n− 1)ε.

By the choice of η we deduce

|g0(y0)| ≥ (2n+ 1)− (2n− 1)ε− 2|Thn(y0)|
> (2n+ 1)− (2n− 1)ε− 2η > ‖T‖.

Therefore,

‖T‖ ≥ ‖Th0‖ ≥ |Th0(y0)| = |g0(y0)| > ‖T‖,
a contradiction.

Case 2: ‖α‖ = |α(y0)| for some y0 ∈ Gi, i > 0. Since G0, G1, . . . , Gn−1
are pairwise disjoint we have

|α(y0)| = |2gi(y0) + 2Thn(y0)| ≥ (2n+ 1)− (2n− 1)ε.
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By recalling (2.2) and since η < ε, we infer

(2.6) 2|gi(y0)| ≥ (2n+ 1)− (2n− 1)ε− 2|Thn(y0)| > (2n+ 1)(1− ε).

Next, set
Bi = T−1g0 − 2hi.

Recalling that 0 ≤ hi ≤ h0 ≤ 1 and ‖f‖ ≤ ‖Tf‖ for all f ∈ C(K), for every
x ∈ K we have

|T−1g0(x)− 2hi(x)| ≤ |h0(x)− 2hi(x)|+ |T−1g0(x)− h0(x)|
≤ 1 + ‖T−1g0 − h0‖ ≤ 1 + ‖g0 − Th0‖ ≤ 1 + ε.

It follows that ‖Bi‖ ≤ 1 + ε. Moreover, from (2.6), we conclude that

|TBi(y0)| = 2|Thi(y0)| = 2|gi(y0)| > (2n+ 1)(1− ε).

Thus,

‖T‖ ≥
∥∥∥∥T( 1

1 + ε
Bi

)∥∥∥∥ > (2n+ 1)
1− ε
1 + ε

,

a contradiction.
This completes the proof of Theorem 1.2.

3. Special isomorphisms between C(ω) and C(ωnk). The purpose
of this section is to prove Theorem 3.1. It establishes the existence of some
special isomorphisms between C(ω) and C(ωnk), where 1 ≤ n, k < ω, and
it will be the key ingredient in proving Theorem 1.4 in the next section.

Theorem 3.1. Let A > 1 be a real number and 1 ≤ k, n < ω ordinal
numbers. There is an isomorphism T of C(ωnk) onto C(ω) such that

‖T‖ ‖T−1‖ =


max

{
2nA

A− 1
+ 1, 2A− 1

}
if k > 1,

max

{
2(n− 1)A

A− 1
+ 1, 2A− 1

}
if k = 1 and n > 1.

We start by proving two preliminary results on sequences of ordinal num-
bers (Propositions 3.4 and 3.5).

In order to simplify the notation of certain sequences of ordinal numbers
we will introduce some new terminology. First, we recall that each ordinal
number 1 ≤ ξ < ωω can be written in a unique way in Cantor normal form
(see [8, p. 153])

(3.1) ξ = ωnkmk + · · ·+ ωn1m1

where 0 ≤ n1 < · · · < nk < ω, 1 ≤ m1 < ω, . . . , 1 ≤ mk < ω and 1 ≤ k < ω.
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Definition 3.2. For each ordinal number 1 ≤ ξ < ωω, written in Cantor
normal form, as in (3.1), we set ξ[0] = ξ and by induction

ξ[r] =

{
ωnkmk + · · ·+ ωn2m2 + ωn1+1 if r = 1,
(ξ[r−1])[1] if 1 ≤ r < ω.

Remark 3.3. By using the Cantor normal form, it is easy to see that
each ordinal number 1 ≤ ξ < ωn+1 admits a unique representation in the
form

(3.2) ξ = ωni0 + ωn−1i1 + · · ·+ ωn−(j−1)ij−1 + ωn−jij

where 0 ≤ j ≤ n, 1 ≤ ij < ω and 0 ≤ ir < ω if 0 ≤ r ≤ j − 1.
This alternative representation is more convenient for the function ξ 7→ξ[1]

of Definition 3.2. For an ordinal 1 ≤ ξ < ωn+1 written as in (3.2), we have

ξ[1] = ωni0 + ωn−1i1 + · · ·+ ωn−(j−1)(ij−1 + 1),

ξ[2] = ωni0 + ωn−1i1 + · · ·+ ωn−(j−2)(ij−2 + 1),

...

ξ[j−1] = ωni0 + ωn−1(i1 + 1),

ξ[j] = ωn(i0 + 1).

Proposition 3.4. Let A and B be real numbers and 1 ≤ n < ω. For
each f ∈ C(ωn) consider the sequence (aξ)1≤ξ≤ωn defined by

aξ =

{
A if ξ = ωn,
B(f(ξ)− f(ξ[1])) if 1 ≤ ξ < ωn.

Then for each ε > 0 there are only a finite number of ordinals 1 ≤ ξ ≤ ωn

such that |aξ| ≥ ε.

Proof. We will argue by finite induction on n. Clearly, the proposition is
true for n = 1. Assume that it is true for n − 1 with n ≥ 2. Fix f ∈ C(ωn)
and consider the sequence (aξ)1≤ξ≤ωn defined as in the statement.

Given ε > 0, by the continuity of f there is 1 ≤ m < ω such that

ξ ∈ ]ωn−1m,ωn] ⇒ |f(ξ)− f(ωn)| < ε

2(|B|+ 1)
.

If ξ ∈ ]ωn−1m,ωn[, then ξ[1] ∈ ]ωn−1m,ωn]. Thus

|aξ| = |B| |f(ξ)− f(ξ[1])| ≤ |B|
(
|f(ξ)− f(ωn)|+ |f(ξ[1])− f(ωn)|

)
<

|B|ε
2(|B|+ 1)

+
|B|ε

2(|B|+ 1)
< ε.

For each 1 ≤ r ≤ m define gr ∈ C(ωn−1) by

gr(ξ) = f(ωn−1(r − 1) + ξ), 1 ≤ ξ ≤ ωn−1,
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and consider the sequence (arξ)1≤ξ≤ωn−1 given by

arξ =

{
A if ξ = ωn−1,
B(gr(ξ)− gr(ξ[1])) if 1 ≤ ξ < ωn−1.

According to the induction hypothesis, there are only a finite number of
ordinals 1 ≤ ξ ≤ ωn−1 such that |arξ| ≥ ε. Moreover, by construction,

arξ = aωn−1(r−1)+ξ, 1 ≤ ξ < ωn−1.

So, we deduce that for each 1 ≤ r ≤ m there are only a finite number of
ordinals ξ in the interval [ωn−1(r − 1) + 1, ωn−1r] satisfying |aξ| ≥ ε. Since
[1, ωn] is the union of the intervals [1, ωn−1], . . . , [ωn−1(m − 1) + 1, ωn−1m]
and [ωn−1m+ 1, ωn], we are done.

Proposition 3.5. Let A,B,C,D,E be real numbers and 1 ≤ n, k < ω.
For each f ∈ C(ωnk) consider the sequence (aξ)1≤ξ≤ωnk given by

A if ξ = ωnk,
B(f(ξ)− f(ξ[1])) if ξ = ωn(k − 1) + ωn−1i, i ≥ 1,
C(f(ξ)− f(ξ[1])) if ξ ∈ ]ωn(k − 1) + ωn−1(i− 1), ωn(k − 1) + ωn−1i[, i ≥ 1,
D(f(ωnr)− f(ωnk)) if ξ = ωnr, 1 ≤ r ≤ k − 1,
E(f(ξ)− f(ξ[1])) if ξ ∈ ]ωn(r − 1), ωnr[, 1 ≤ r ≤ k − 1.

Then for each ε > 0 there are only a finite number of ordinals 1 ≤ ξ ≤ ωnk
such that |aξ| ≥ ε.

Proof. Fix f ∈ C(ωnk) and consider the sequence (aξ)1≤ξ≤ωnk defined
as in the statement. Let g ∈ C(ωn) be defined by

g(ξ) = f(ωn(k − 1) + ξ), 1 ≤ ξ ≤ ωn,
and let (bξ)1≤ξ≤ωn be given by

A if ξ = ωn,
B(g(ξ)− g(ξ[1])) if ξ = ωn−1i, i ≥ 1,
C(g(ξ)− g(ξ[1])) if ξ ∈ ]ωn−1(i− 1), ωn−1i[, i ≥ 1.

According to Proposition 3.4 there are only a finite number of ordinals 1 ≤
ξ ≤ ωn such that |bξ| ≥ ε. Since

bξ = aωn(k−1)+ξ, 1 ≤ ξ ≤ ωn,
we deduce that there are only a finite number of ordinals ξ in the interval
[ωn(k − 1) + 1, ωnk] satisfying |aξ| ≥ ε.

If k > 1, for each 1 ≤ r ≤ k − 1 define hr ∈ C(ωn) as follows:

hr(ξ) = f(ωn(r − 1) + ξ), 1 ≤ ξ ≤ ωn.
Next, consider the sequence (crξ)1≤ξ≤ωn given by

crξ =

{
D(f(ωnr)− f(ωnk)) if ξ = ωn,
E(hr(ξ)− hr(ξ[1])) if 1 ≤ ξ < ωn.
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Once more, by Proposition 3.4, for each 1 ≤ r ≤ k − 1, there are only a
finite number of ordinals 1 ≤ ξ ≤ ωn such that |crξ| ≥ ε. Since

crξ = aωn(r−1)+ξ, 1 ≤ ξ ≤ ωn,

we conclude that, for each 1 ≤ r ≤ k − 1, there are only a finite number of
ordinals ξ in the interval [ωn(r − 1) + 1, ωnr] satisfying |aξ| ≥ ε. Moreover,
since [1, ωnk] is the union of the intervals [1, ωn], . . . , [ωn(k−2)+1, ωn(k−1)]
and [ωn(k − 1) + 1, ωnk], we are done.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Given 1 ≤ k, n < ω, let Γn,k, 1 ≤ k, n < ω,
be the interval ]0, ωnk[ endowed with the discrete topology. We denote by
Kn,k = Γn,k

.
∪ {ωnk} the Aleksandrov compactification of Γn,k. In order to

simplify the proof, we will replace the space C(ω) by C(Kn,k). These spaces
are isometrically isomorphic.

Let A > 1. For each f ∈ C(ωnk) consider the function T (f) : Kn,k → K
defined by

T (f)(ξ) =

f(ωnk) if ξ = ωnk,
Af(ξ)− (A− 1)f(ξ[1]) if ξ = ωn(k − 1) + ωn−1i, i ≥ 1,
(n− 1)A

A− 1
(f(ξ)− f(ξ[1])) + f(ωnk) if ξ∈ ]ωn(k − 1)+ωn−1(i−1), ωn(k − 1)+ωn−1i[,

i ≥ 1,
Af(ωnr)− (A− 1)f(ωnk) if ξ = ωnr, 1 ≤ r ≤ k − 1,
nA

A− 1
(f(ξ)− f(ξ[1])) + f(ωnk) if ξ ∈ ]ωn(r − 1), ωnr[, 1 ≤ r ≤ k − 1.

We have to demonstrate that T (f) ∈ C(Kn,k) for every f ∈ C(ωnk). Indeed,
given f ∈ C(ωnk) consider the function

G = T (f)− f(ωnk).

More explicitly,
G(ξ) =

0 if ξ = ωnk,
A(f(ξ)− f(ξ[1])) if ξ = ωn(k − 1) + ωn−1i, i ≥ 1,
(n− 1)A

A− 1
(f(ξ)− f(ξ[1])) if ξ ∈ ]ωn(k − 1) + ωn−1(i− 1), ωn(k − 1) + ωn−1i[, i ≥ 1,

A(f(ωnr)− f(ωnk)) if ξ = ωnr, 1 ≤ r ≤ k − 1,
nA

A− 1
(f(ξ)− f(ξ[1])) if ξ ∈ ]ωn(r − 1), ωnr[, 1 ≤ r ≤ k − 1.

According to Proposition 3.5, for each ε > 0 there are only a finite number
of ordinals ξ in the interval [1, ωnk] satisfying |G(ξ)| ≥ ε. It follows that T (f)
is continuous at ωnk. Hence T (f) ∈ C(Kn,k).
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Now it is easy to check that T defines a bounded linear operator from
C(ωnk) to C(Kn,k). Moreover, if k > 1, then

‖T‖ = max

{
2nA

A− 1
+ 1, 2A− 1

}
,(3.3)

while if k = 1 and n > 1, then

‖T‖ = max

{
2(n− 1)A

A− 1
+ 1, 2A− 1

}
.(3.4)

Next, we recall Remark 3.3 and use the fact that every ordinal number
1 ≤ ξ < ωn+1 admits a unique representation in the form

(3.5) ξ = ωni0 + ωn−1i1 + · · ·+ ωn−(j−1)ij−1 + ωn−jij

where 0 ≤ j ≤ n, 1 ≤ ij < ω and 0 ≤ ir < ω if 0 ≤ r ≤ j − 1.
For each g ∈ C(Kn,k) we consider the function S(g) : [1, ωnk] → K

defined by

S(g)(ξ) =


g(ωnk) if ξ = ωnk,
1

A
g(ξ) +

A− 1

A
g(ωnk) if ξ = ωn(k − 1) + ωn−1i, i ≥ 1,

1

A
g(ωnr) +

A− 1

A
g(ωnk) if ξ = ωnr, 1 ≤ r ≤ k − 1.

If ξ ∈ ]ωn(k − 1) + ωn−1(i − 1), ωn(k − 1) + ωn−1i[, 1 ≤ i < ω, and ξ is
written as in (3.5), then

S(g)(ξ) =
A− 1

A(n− 1)

j−2∑
s=0

(g(ξ[s])− g(ωnk)) +
1

A
g(ξ[j−1]) +

A− 1

A
g(ωnk),

and if ξ ∈ ]ωn(r − 1), ωnr[, 1 ≤ r ≤ k − 1, and ξ is written as in (3.5), then

S(g)(ξ) =
A− 1

An

j−1∑
s=0

(g(ξ[s])− g(ωnk)) +
1

A
g(ξ[j]) +

A− 1

A
g(ωnk).

We will check that S(g) is continuous on [1, ωnk] for every g ∈ C(Kn,k).
Fix g ∈ C(Kn,k) and ξ0 a non-isolated point of the interval [1, ωnk]. Given
ε > 0 define

Λε = {1 ≤ ξ ≤ ωnk : |g(ξ)− g(ωnk)| ≥ ε/n}.
We distinguish two cases.

Case 1: ξ0 = ωnk. Since Λε is a finite set, there is 1 ≤ m < ω such that

]ωn(k − 1) + ωn−1m,ωnk[ ∩ Λε = ∅.
It follows from the definition of S(g) that if ξ ∈ ]ωn(k − 1) + ωn−1m,ωnk[,
then

|S(g)(ξ)− S(g)(ξ0)| ≤ |g(ξ1)− g(ωnk)|+ · · ·+ |g(ξs)− g(ωnk)|,
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where 1 ≤ s ≤ n and ξ = ξ1 < · · · < ξs < ωnk. Then

|S(g)(ξ)− S(g)(ξ0)| < ε.

Case 2: 1 ≤ ξ0 < ωnk. We write ξ0 = ωni0 + ωn−1i1 + · · · + ωn−jij ,
0 ≤ j < n, 0 ≤ i0 ≤ k − 1, 1 ≤ ij < ω and 0 ≤ ir < ω if 1 ≤ r ≤ j − 1.

Since Λε is a finite set, there is 1 ≤ m < ω such that

]ωni0 + · · ·+ ωn−j(ij − 1) + ωn−(j+1)m,ωni0 + · · ·+ ωn−jij [ ∩ Λε = ∅.

On the other hand, if

ξ ∈ ]ωni0 + · · ·+ ωn−j(ij − 1) + ωn−(j+1)m,ωni0 + · · ·+ ωn−jij [,

then there is 1 ≤ s ≤ n− j such that ξ[s] = ξ0. By the definition of S(g), we
have

|S(g)(ξ)− S(g)(ξ0)| ≤ |g(ξ1)− g(ωnk)|+ · · ·+ |g(ξs)− g(ωnk)|,

where ξ = ξ1 < · · · < ξs < ξ0. Hence,

|S(g)(ξ)− S(g)(ξ0)| < ε,

so that S(g) is continuous at ξ0. Therefore, S defines a function from C(Kn,k)
to C(ωnk).

Next, we will check that S ◦ T and T ◦ S are, respectively, the iden-
tity operators in C(ωnk) and C(Kn,k). Indeed, let f ∈ C(ωnk) and ξ ∈
[1, ωnk].

If ξ = ωnk, then

(S ◦ T )(f)(ωnk) = T (f)(ωnk) = f(ωnk).

If ξ = ωn(k − 1) + ωn−1i, 1 ≤ i < ω, then

(S ◦ T )(f)(ξ) =
1

A
T (f)(ξ) +

A− 1

A
T (f)(ωnk)

=
1

A
(Af(ξ)− (A− 1)f(ωnk)) +

A− 1

A
f(ωnk) = f(ξ).

If ξ = ωnr, 1 ≤ r ≤ k − 1, then

(S ◦ T )(f)(ξ) =
1

A
T (f)(ωnr) +

A− 1

A
T (f)(ωnk)

=
1

A
(Af(ωnr)− (A− 1)f(ωnk)) +

A− 1

A
f(ωnk) = f(ξ).

If ξ ∈ ]ωn(k − 1) + ωn−1(i − 1), ωn(k − 1) + ωn−1i[, 1 ≤ i < ω, and ξ is
written as in (3.5), then (S ◦ T )(f)(ξ) is equal to
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A− 1

A(n− 1)

j−2∑
s=0

(
T (f)(ξ[s])− T (f)(ωnk)

)
+

1

A
T (f)(ξ[j−1]) +

A− 1

A
T (f)(ωnk)

=
A− 1

A(n− 1)

j−2∑
s=0

(
(n− 1)A

A− 1
(f(ξ[s])− f(ξ[s+1]))

)
+ f(ξ[j−1])

= (f(ξ)− f(ξ[j−1])) + f(ξ[j−1]) = f(ξ).

If ξ ∈ ]ωn(r − 1), ωnr[, 1 ≤ r ≤ k − 1, and ξ is written as in (3.5), then
(S ◦ T )(f)(ξ) is equal to

A− 1

An

j−1∑
s=0

(
T (f)(ξ[s])− T (f)(ωnk)

)
+

1

A
T (f)(ξ[j]) +

A− 1

A
T (f)(ωnk)

=
A− 1

An

j−1∑
s=0

(
nA

A− 1
(f(ξ[s])− f(ξ[s+1]))

)
+ f(ξ[j])

= (f(ξ)− f(ξ[j])) + f(ξ[j]) = f(ξ).

We conclude that (S ◦ T )(f) = f for all f ∈ C(ωnk).
Now, let g ∈ C0(Kn,k) and ξ ∈ Kn,k.
If ξ = ωnk, then

(T ◦ S)(g)(ωnk) = S(g)(ωnk) = g(ωnk).

If ξ = ωn(k − 1) + ωn−1i, 1 ≤ i < ω, then

(T ◦ S)(g)(ξ) = AS(g)(ξ)− (A− 1)S(g)(ωnk)

= A

(
1

A
g(ξ) +

A− 1

A
g(ωnk)

)
− (A− 1)g(ωnk) = g(ξ).

If ξ = ωnr, 1 ≤ r ≤ k − 1, then

(T ◦ S)(g)(ξ) = AS(g)(ωnr)− (A− 1)S(g)(ωnk)

= A

(
1

A
g(ωnr) +

A− 1

A
g(ωnk)

)
− (A− 1)g(ωnk) = g(ξ).

If ξ ∈ ]ωn(k − 1) + ωn−1(i− 1), ωn(k − 1) + ωn−1i[, 1 ≤ i < ω, and ξ is
written as in (3.5), then

(T ◦ S)(g)(ξ) =
(n− 1)A

A− 1

(
S(g)(ξ)− S(g)(ξ[1])

)
+ S(g)(ωnk)

=
(n− 1)A

A− 1

(
A− 1

A(n− 1)
(g(ξ)− g(ωnk))

)
+ g(ωnk) = g(ξ).
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If ξ ∈ ]ωn(r − 1), ωnr[, 1 ≤ r ≤ k − 1, and ξ is written as in (3.5), then

(T ◦ S)(g)(ξ) =
nA

A− 1

(
S(g)(ξ)− S(g)(ξ[1])

)
+ S(g)(ωnk)

=
nA

A− 1

(
A− 1

An
(g(ξ)− g(ωnk))

)
+ g(ωnk) = g(ξ).

We infer that (T ◦ S)(g) = g for every g ∈ C(Kn,k) and (S ◦ T )(f) = f
for each f ∈ C(ωnk). Therefore, S is the inverse operator of T ; moreover, S
is linear and satisfies

(3.6) ‖S‖ = 1.

Combining the relations (3.3), (3.4) and (3.6), we are done.

4. An upper bound on d(C(ω), C(ωnk)) where 1 ≤ n, k < ω. In this
last section we prove Theorem 1.4.

Proof of Theorem 1.4. First we will prove (a) and (c). Notice that ac-
cording to Theorem 3.1, if k > 1 and n ≥ 1 then

(4.1) d(C(ω), C(ωnk)) ≤ inf
A>1

max

{
2nA

A− 1
+ 1, 2A− 1

}
.

Now observe that for A > 1 the function f(A) = 2nA
A−1+1 is strictly decreasing

while g(A) = 2A−1 is strictly increasing. So, the infimum in (4.1) is attained
when f(A) = g(A) and this happens when

A =
n+ 2 +

√
n(n+ 4)

2
.

Hence
d(C(ω), C(ωnk)) ≤ n+ 1 +

√
n(n+ 4).

In particular, when n = 1 and k > 1 it follows that

d(C(ω), C(ωk)) ≤ 2 +
√

5,

and thus (a) and (c) hold.
Finally, we prove (b). Pick k = 1 and n > 1. Then, once more by Theorem

3.1, we see that

(4.2) d(C(ω), C(ωn)) ≤ inf
A>1

max

{
2(n− 1)A

A− 1
+ 1, 2A− 1

}
.

Next notice that for A > 1 the function f(A) = 2(n−1)A
A−1 + 1 is strictly

decreasing while g(A) = 2A− 1 is strictly increasing. Thus, the infimum in
(4.2) is attained when f(A) = g(A), that is, when

A =
n+ 1 +

√
(n− 1)(n+ 3)

2
.
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Consequently,
d(C(ω), C(ωn)) ≤ n+

√
(n− 1)(n+ 3),

therefore (b) holds, and the proof is complete.
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