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Abstract. In the setting of spaces of homogeneous type, it is shown that the com-
mutator of Calderón–Zygmund type operators as well as the commutator of a potential
operator with a BMO function are bounded in a generalized grand Morrey space. Interior
estimates for solutions of elliptic equations are also given in the framework of generalized
grand Morrey spaces.

1. Introduction. In 1992 T. Iwaniec and C. Sbordone [17], in their
studies related to the integrability properties of the Jacobian in a bounded
open set Ω, introduced a new type of function spaces Lp)(Ω), called grand
Lebesgue spaces. Their generalized version, Lp),θ(Ω), appeared in L. Greco,
T. Iwaniec and C. Sbordone [16]. Harmonic analysis related to these spaces
and their associate spaces (called small Lebesgue spaces), has been inten-
sively studied during the last years due to various applications; we mention
e.g. [1, 8–12, 18, 21].

Recently in [35] a version of weighted grand Lebesgue spaces was intro-
duced, adjusted for sets Ω ⊆ Rn of infinite measure, where the integrability
of |f(x)|p−ε at infinity is controlled by means of a weight; moreover, grand
grand Lebesgue spaces were also considered, together with the study of
classical operators of harmonic analysis in such spaces. Another idea of in-
troducing “bilateral” grand Lebesgue spaces on sets of infinite measure was
suggested in [24], where the structure of such spaces was investigated, but
not operators; the spaces in [24] are two-parameter spaces with respect to
the exponent p, with norm involving supp1<p<p2 .
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Morrey spaces Lp,λ were introduced in 1938 by C. Morrey [28] in con-
nection with regularity of solutions to partial differential equations, and
provided a useful tool in the regularity theory of PDEs (for Morrey spaces
we refer to the books [14, 23]; see also [31] where an overview of various
generalizations may be found).

Recently, in the spirit of grand Lebesgue spaces, A. Meskhi [26, 27] in-
troduced grand Morrey spaces (in [26] they were defined on quasi-metric
measure spaces with doubling measure) and obtained results on the bound-
edness of the maximal operator, Calderón–Zygmund singular operators and
Riesz potentials. The boundedness of commutators of singular and potential
operators in grand Morrey spaces was treated by X. Ye [40]. Note that the
“grandification procedure” was applied only to the parameter p.

This paper is a continuation of work begun in [30] and [22]; in the former,
generalized grand Morrey spaces (called “grand grand Morrey spaces”) were
introduced and maximal and Calderón–Zygmund operators were studied in
the framework of Euclidean spaces, whereas in the latter paper the bound-
edness of potential operators was studied in the framework of generalized
grand Morrey spaces in the homogeneous and even in the nonhomogeneous
case.

Notation:

• dX denotes the diameter of the set X;
• c and C denote various absolute positive constants, which may have

different values even in the same line;
• A ∼ B for positive A and B means that there exists c > 0 such that
c−1A ≤ B ≤ cA;
• B(x, r) = {y ∈ X : d(x, y) < r};
• A . B stands for A ≤ CB;
• ↪→ means continuous imbedding;
•
�
B f dµ denotes the integral average of f , i.e.

�
B f dµ := 1

µB

	
B f dµ;

• D(X) denotes the set of L∞ functions on X with compact support;
• p′ stands for the conjugate exponent 1/p+ 1/p′ = 1.

2. Preliminaries

2.1. Spaces of homogeneous type. Let X := (X, d, µ) be a topo-
logical space with a complete measure µ such that the space of compactly
supported continuous functions is dense in L1(X,µ) and d is a quasimetric,
i.e. a non-negative real-valued function d on X ×X which satisfies:

(i) d(x, y) = 0 if and only if x = y;
(ii) there exists a constant Ct > 0 such that d(x, y) ≤ Ct[d(x, z)+d(z, y)]

for all x, y, z ∈ X, and
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(iii) there exists a constant Cs > 0 such that d(x, y) ≤ Csd(y, x) for all
x, y ∈ X.

Let µ be a positive measure on a σ-algebra of subsets of X which contains the
d-ballsB(x, r). Everywhere we assume that all balls have finite measure, that
is, µB(x, r) <∞ for all x ∈ X and r > 0, and that for every neighborhood
V of x ∈ X, there exists r > 0 such that B(x, r) ⊂ V .

We say that the measure µ is lower α-Ahlfors regular if

µB(x, r) ≥ crα,
and is upper β-Ahlfors regular (or satisfies the growth condition of degree β)
if

µB(x, r) ≤ crβ,
where α, β, c > 0 do not depend on x or r. When α = β, the measure µ is
simply called α-Ahlfors regular.

The condition

µB(x, 2r) ≤ CdµB(x, r), Cd > 1,

on the measure µ with Cd independent of x ∈ X and 0 < r < dX , is known
as the doubling condition.

Iterating it, we obtain

(2.1)
µB(x,R)

µB(y, r)
≤ Cd

(
R

r

)log2 Cd

, 0 < r ≤ R,

for all d-balls B(x,R) and B(y, r) with B(y, r) ⊂ B(x,R).
The triplet (X, d, µ), with µ satisfying the doubling condition, is called

a space of homogeneous type, abbreviated from now on as SHT. For some
important examples of SHTs we refer e.g. to [5].

From (2.1) it follows that every homogeneous type space (X, d, µ) with
finite measure is lower (log2Cd)-Ahlfors regular.

Throughout the paper we will also assume that

(2.2) µ(B(x,R) \B(x, r)) > 0

for all x ∈ X and r,R with 0 < r < R < dX . The reverse doubling con-
dition, following from the doubling condition under certain restrictions, is
well known (cf., for example, [39, p. 269]). For instance, when (2.2) is valid
and (X, d, µ) is an SHT, the measure µ also satisfies the reverse doubling
condition

(2.3)
µB(x, r)

µB(x,R)
≤ C

(
r

R

)γ
for appropriate positive constants C and γ. For other conditions ensuring the
validity of the reverse doubling condition whenever the measure is doubling,
see e.g. [32].
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2.2. Generalized Lebesgue spaces. For 1 < p < ∞, θ > 0 and
0 < ε < p − 1 the grand Lebesgue space is the set of measurable functions
for which

‖f‖Lp),θ(X,µ) := sup
0<ε<p−1

εθ/(p−ε)‖f‖Lp−ε(X,µ) <∞,

where

‖f‖pLp(X,µ) :=
�

X

|f(y)|p dµ(y).

For θ = 1, we denote the space Lp),θ(X,µ) simply by Lp)(X,µ).

When µX <∞, for all ε, θ1 and θ2 satisfying the conditions 0 < ε < p−1
and 0 < θ1 ≤ θ2, we have

Lpω(X,µ) ↪→ Lp),θ1ω (X,µ) ↪→ Lp),θ2ω (X,µ) ↪→ Lp−εω (X,µ),

where ω is any Muckenhoupt weight (see Subsection 2.3).

For more properties of grand Lebesgue spaces, see [18].

2.3. Muckenhoupt weights. A weight ω (i.e. a non-negative locally
integrable function) is in the Muckenhoupt class A∞(X) if there are positive
constants C and ε such that

ω(E)

ω(B)
≤ C

(
µ(E)

µ(B)

)ε
for all balls B and every measurable set E ⊂ B, where ω(E) =

	
E ω dµ.

The infimum of such C will be denoted by [w]A∞ . A weight ω is in the
Muckenhoupt class Ap(X) if there is a positive constant C such that( �

B

ω dµ
)( �

B

ω−1/(p−1) dµ
)p−1

≤ C

for all balls B, and the infimum of such C will be denoted by [w]Ap . A weight
ω is in the Muckenhoupt class A1(X) if there is a constant C such that
Mω(x) ≤ Cw(x), where M is the maximal operator (2.4). Note that the
Ap(X) classes increase with p, namely A1(X) ( Ap(X) ( Aq(X) ( A∞(X),
1 < p < q < ∞. For general properties of Muckenhoupt weights we refer
e.g. to [13] in the Euclidean case and [37] for spaces of homogeneous type.

2.4. Morrey spaces. For 1 ≤ p <∞ and 0 ≤ λ < 1, the usual Morrey
space Lp,λ(X,µ) is the set of all measurable functions such that

‖f‖Lp,λ(X,µ) := sup
x∈X

0<r<dX

(
1

µB(x, r)λ

�

B(x,r)

|f(y)|p dµ(y)

)1/p

<∞.
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2.5. BMO space. The space of functions of bounded mean oscillation,
denoted by BMO(X,µ), is the set of all real-valued locally integrable func-
tions such that

‖f‖BMO(X,µ) = sup
x∈X

0<r<dX

1

µB(x, r)

�

B(x,r)

|f(y)− fB(x,r)| dµ(y) <∞,

where fB(x,r) is the integral average over the ball B(x, r). BMO(X,µ) is a
Banach space with respect to the norm ‖ · ‖BMO(X,µ) when we regard its
elements as equivalence classes of functions modulo additive constants.

Remark. The space BMO(X,µ) can be given several equivalent norms:

(i) we have

‖f‖BMO(X,µ) ∼ sup
x∈X

0<r<dX

inf
c∈R

1

µB(x, r)

�

B(x,r)

|f(y)− c| dµ(y),

(ii) the John–Nirenberg inequality (see e.g. [38, Cor. 1.5, p. 203]) gives

‖f‖BMO(X,µ) ∼ sup
x∈X

0<r<dX

(
1

µB(x, r)

�

B(x,r)

|f(y)− fB(x,r)|p dµ(y)

)1/p

for 1 < p <∞.

2.6. Maximal operators. In the following we always assume that f
is a locally integrable function defined in X. We denote by Mf the Hardy–
Littlewood maximal operator, given by

(2.4) Mf(x) = sup
0<r<dX

�

B(x,r)

|f(y)| dµ(y) for x ∈ X.

From [27] we have the following boundedness result for Morrey spaces.

Lemma 2.1. Let 1 < p <∞ and 0 ≤ λ < 1. Then

‖Mf‖Lp,λ(X,µ) ≤ (C · Cλ/pd (p′)1/p + 1)‖f‖Lp,λ(X,µ)

where the constant Cd ≥ 1 comes from the doubling condition for µ, and C
is a constant independent of p.

We denote by Msf the maximal operator

Msf(x) := (M |f |s)1/s

for 1 ≤ s <∞. Using Lemma 2.1, it is easy to obtain the following bound-
edness result.

Lemma 2.2. Let 1 < s < p <∞ and 0 ≤ λ < 1. Then

‖Msf‖Lp,λ(X,µ) ≤ (C · Cλs/pd ((p/s)′)s/p + 1)‖f‖Lp,λ(X,µ)
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where the constant Cd ≥ 1 comes from the doubling condition for µ, and C
is a constant independent of p.

When λ = 0, the statement above reduces to the well-known analogous
result in the setting of Lp spaces.

2.7. Calderón–Zygmund singular operators. In this section we fol-
low [27], in particular, making use of the definition of Calderón–Zygmund
singular operators as integral operators

Tf(x) = p.v.
�

X

K(x, y)f(y) dµ(y), f ∈ D(X),

with the kernel K : X × X \ {(x, x) : x ∈ X} → R being a measurable
function satisfying the conditions:

(i) |K(x, y)| ≤ C/µB(x, d(x, y)), x, y ∈ X, x 6= y;
(ii) |K(x1, y)−K(x2, y)|+ |K(y, x1)−K(y, x2)|

≤ Cw
(
d(x2, x1)

d(x2, y)

)
1

µB(x2, d(x2, y))

for all x1, x2 and y with d(x2, y) ≥ Cd(x1, x2), where w is a positive non-
decreasing function on (0,∞) which satisfies the ∆2 condition w(2t) ≤ cw(t)

(t > 0) and the Dini condition
	1
0w(t)/t dt < ∞. We also assume that Tf

exists almost everywhere on X in the principal value sense for all f ∈ L2(X)
and that T is bounded in L2(X).

Such Calderón–Zygmund operators are bounded in Morrey spaces, as
can be seen from the following proposition, proved in [27].

Proposition 2.3. Let 1 < p <∞ and 0 ≤ λ < 1. Then

‖Tf‖Lp,λ(X,µ) ≤ Cp,λ‖f‖Lp,λ(X,µ), f ∈ D(X),

where

Cp,λ ≤ c


p

p− 1
+

p

2− p
+
p− λ+ 1

1− λ
if 1 < p < 2,

p+
p

p− 2
+
p− λ+ 1

1− λ
if p > 2,

with c independent of p and λ.

Remark. The Riesz–Thorin interpolation theorem and Lemma 4.1 of
[27] imply that there is a positive constant C independent of p such that

‖T‖Lp→Lp ≤ C, p ∈ [3/2, 5/2].

Following now the proof of Proposition 4.2 in [27] it can be deduced that
there is a positive constant C independent of p and λ such that

‖T‖Lp,λ→Lp,λ ≤ C
(

1 +
p− λ− 1

1− λ

)
, p ∈ [3/2, 5/2].
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2.8. Commutators. Let U be an operator and b a locally integrable
function. We denote, indiscriminately, the commutator by [b, U ]f or Ubf and
define it as

[b, U ]f := bU(f)− U(bf) =: Ubf.

Commutators are very useful when studying problems related to regularity
of solutions of elliptic partial differential equations of second order (e.g.,
[2, 3]).

3. Generalized grand Morrey spaces and the reduction lemma.
In this section we will assume that the measure µ is upper γ-Ahlfors regular.
All the results stated in this section were proved in [22].

We introduce the following functional:

Φp,λϕ,A(f, s) := sup
0<ε<s

ϕ(ε)1/(p−ε)‖f‖Lp−ε,λ−A(ε)(X,µ),

where s is a positive number and A is a non-negative function defined on
(0, p− 1).

Definition 3.1 (Generalized grand Morrey spaces). Let 1 < p < ∞,
0 ≤ λ < 1, ϕ be a positive bounded function with limt→0+ ϕ(t) = 0 and A be
a non-decreasing real-valued non-negative function with limx→0+A(x) = 0.

We denote by L
p),λ)
ϕ,A (X,µ) the space of measurable functions with finite norm

(3.1) ‖f‖
L
p),λ)
ϕ,A (X)

:= Φp,λϕ,A(f, smax), smax = min{p− 1, a},

where a = sup{x > 0 : A(x) ≤ λ}.

Remark. For appropriate ϕ, in the case A ≡ 0, λ > 0 we recover the
grand Morrey spaces introduced by A. Meskhi [27], and when λ = 0, A ≡ 0
we have the grand Lebesgue spaces introduced in [16] (and in [17] in the
case θ = 1).

For fixed p, λ, ϕ,A, f the function

s 7→ Φp,λϕ,A(f, s)

is non-decreasing, but it is possible to estimate Φp,λϕ,A(f, s) via Φp,λϕ,A(f, σ) with
σ < s as follows.

Lemma 3.2. For 0 < σ < s < smax we have

Φp,λϕ,A(f, s) ≤ Cϕ(σ)−1/(p−σ)Φp,λϕ,A(f, σ),

where C depends on γ, the parameters p, λ, ϕ, A and the diameter dX , but
does not depend on f , s or σ.

From Lemma 3.2 we immediately have



166 V. Kokilashvili et al.

Lemma 3.3. For 0 < σ < smax, the norm defined in (3.1) satisfies

‖f‖
L
p),λ)
ϕ,A (X)

≤ C
Φp,λϕ,A(f, σ)

ϕ(σ)1/(p−σ)
,

where C depends on γ, the parameters p, λ, ϕ, A and the diameter dX , but
does not depend on f or σ.

Lemma 3.4 (Extended reduction lemma). Let U and Λ be operators (not
necessarily sublinear) satisfying the following relation in Morrey spaces:

‖Uf‖Lq−ε,λ−A2(ε)(X) ≤ Cp−ε,λ−A1(ε),q−ε,λ−A2(ε)‖Λf‖Lp−ε,λ−A1(ε)(X)

for all sufficiently small ε ∈ (0, σ], where 0 < σ < smax. If

sup
0<ε<σ

Cp−ε,λ−A1(ε),q−ε,λ−A2(ε) <∞

and

sup
0<ε<σ

ψ(ε)1/(q−ε)

ϕ(ε)1/(p−ε) <∞,

then the relation is also valid in generalized grand Morrey spaces:

‖Uf‖
L
q),λ)
ψ,A2

(X)
≤ C‖Λf‖

L
p),λ)
ϕ,A1

(X)

with

C =
C0

ϕ(σ)1/(p−σ)
sup

0<ε<σ
Cp−ε,λ−A1(ε),q−ε,λ−A2(ε),

where C0 may depend on γ, p, λ, ϕ, A and dX , but does not depend on σ
or f .

Proof. The proof follows the same lines as for the case where Λ is the
identity operator (see [22]).

Using the reduction lemma we obtain the boundedness of maximal and
Calderón–Zygmund operators in generalized grand Morrey spaces:

Theorem 3.5. Let 1 < p < ∞ and 0 ≤ λ < 1. Then the Hardy–

Littlewood maximal operator is bounded from L
p),λ)
ϕ,A (X,µ) to L

p),λ)
ψ,A (X,µ) if

there exists a small σ such that

sup
0<ε<σ

ψ(ε)1/(q−ε)/ϕ(ε)1/(p−ε) <∞.

Theorem 3.6. Let 1 < p < ∞, θ > 0 and 0 < λ < 1. Then the
Calderón–Zygmund operator T is bounded in the generalized grand Morrey

space L
p),λ)
θ,A (X,µ).
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4. Boundedness of commutators in generalized grand Morrey
spaces

4.1. Commutators of Calderón–Zygmund operators. Before prov-
ing the main result of this subsection, we need some auxiliary results. The
following theorem was proved in [29].

Theorem 4.1. Let 1 < p <∞, ω ∈ A∞(X) and b ∈ BMO(X,µ). Then
there is a constant Cp depending on the space (X, d, µ) and the A∞(X)
constant of ω such that

(4.1)
�

X

|Tbf(x)|pω(x) dµ(x) ≤ Cp‖b‖pBMO(X,µ)

�

X

(M2f(x))pω(x) dµ(x)

for all f ∈ D(X), where M2 is the twice iterated Hardy–Littlewood maximal
operator.

Remark. Analyzing the proof of Theorem 4.1 in [29], when ω ∈ A1(X),
we see that the constant Cp in (4.1) has the property that for every p there
exists η such that

sup
0<ε<η

Cp−ε <∞.

Corollary 4.2. Under the assumptions of Theorem 4.1,
�

X

|Tbf(x)|pω(x) dµ(x) ≤ C‖b‖pBMO(X,µ)

�

X

|f(x)|pω(x) dµ(x)

for all ω ∈ Ap(X) and f ∈ D(X).

Theorem 4.3. Let 1 < p < ∞ and 0 < λ < 1. Suppose that b ∈
BMO(X,µ). Then

(4.2) ‖Tbf‖Lp,λ(X,µ) ≤ Cp,λ‖b‖BMO(X,µ)‖f‖Lp,λ(X,µ), f ∈ D(X),

where the positive constant C depends only on (X, d, µ), p and λ.

Proof. For simplicity assume that d is a metric and let B ≡ B(x, r). It
is known that

(MχB)δ ∈ A1(X) for 0 < δ < 1

(the proof is the same as in the classical case, see [4]). Let 0 < λ < δ < 1.
Using Corollary 4.2 and the definition of the classical Morrey space, we have
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(assuming that 0 < r < dX/2)

(4.3)
�

B(x,r)

|Tbf(x)|p dµ(x) ≤ C
�

X

|Tbf(x)|p(M(χB)(x))δ dµ(x)

≤ C‖b‖pBMO(X,µ)

�

X

|f(x)|p(M(χB)(x))δ dµ(x)

= C‖b‖pBMO(X,µ)

[( �

B(x,r)

+
�

(B(x,r)){

)
|f(x)|p(M(χB)(x))δ dµ(x)

]

≤ C‖b‖pBMO(X,µ)

[(
1

(µB)λ

�

B(x,r)

|f(x)|p dµ(x)

)
(µB)λ +

m∑
n=0

In

]
where the last inequality comes from the fact that M(χB)(x) ≤ 1 and
In :=

	
2n+1B\2nB |f(x)|p(M(χB)(x))δ dµ(x). Since x ∈ 2n+1B \ 2nB implies

M(χB)(x) ≤ CµB/µ(2n+1B) we get

(4.4) In ≤
�

2n+1B

|f(x)|p
(

µB

µ(2n+1B)

)δ
dµ(x).

By (4.3) and (4.4),

�

B(x,r)

|Tbf(x)|p dµ(x) ≤ C‖b‖pBMO(X,µ)‖f‖
p
Lp,λ(X,µ)

(µB)λ
(

1 +

∞∑
k=0

2n0k(λ−δ)
)

≤ C‖b‖pBMO(X,µ)‖f‖
p
Lp,λ(X,µ)

,

where we have used the reverse doubling condition µ(2B) ≥ 2n0µB, for some
constant n0.

Finally, we have

‖Tbf‖Lp,λ(X,µ) ≤ Cp,λ‖b‖BMO(X,µ)‖f‖Lp,λ(X,µ), f ∈ D(X),

where the positive constant Cp,λ depends on p and λ.

Remark. Analyzing the proofs of Theorem 4.3 and the Remark after
Theorem 4.1, we see that the constant Cp,λ in (4.2) satisfies the following
condition: for every p and λ there are η and σ such that

(4.5) sup
0<ε<η
0<α<σ

Cp−ε,λ−α <∞.

Theorem 4.4. Let 1 < p < ∞, θ > 0 and 0 < λ < 1. Suppose T is
a Calderón–Zygmund operator and b ∈ BMO(X,µ). Then the commutator

[b, T ] is bounded in L
p),λ)
θ,A (X,µ).

Proof. This follows from the extended reduction Lemma 3.4, Theorem
4.3 and relation (4.5).
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4.2. Commutators of potential operators. Let 0 < α < 1 and let

Iαf(x) =
�

X

f(y)

µB(x, d(x, y))1−α dµ(y)

be a potential operator.

The following lemma was shown in [40] by well-known arguments; we
give a slightly modified proof for completeness and for the convenience of
the reader.

Lemma 4.5. Let Iα be a potential operator, 1 < s < p < ∞, 0 < α <
(1 − λ)/p, 0 ≤ λ < 1 and 1/p − 1/q = α/(1 − λ). If b ∈ BMO(X,µ), then
there exists a constant Cp,α,λ > 0 such that for all functions f with compact
support,

‖M([b, Iα]f)‖Lq,λ(X,µ) ≤ Cp,α,λ‖b‖BMO(X,µ)‖f‖Lp,λ(X,µ),

where

(4.6) Cp,α,λ = C
(
C
λs/p
d ((p/s)′)s/p + 1

)1+p/q
(

1 +
p

1− λ− αp

)
[(p′)1/q + 1],

and Cd is the doubling constant.

Proof. For any ball B = B(x, r) ⊂ X and any real number c where c
does not depend on s, p, α, λ or Cd, we write

[b, Iα]f(y) = [b− c, Iα]f(y)

= (b− c)Iαf(y)− Iα((b− c)fχc0B)(y)− Iα((b− c)fχ(c0B){)(y)

= I1(y)−I2(y)−I3(y),

where c0 is a constant depending on Ct and Cs, to be determined later.
Then, by the sublinearity of the maximal operator, we have

M([b, Iα]f)(x) ≤MI1(x) +MI2(x) +MI3(x).

For MI1(x), we have the pointwise estimate

MI1(x) ≤ C‖b‖BMO(X,µ)Ms(I
αf(x)),

which follows from Hölder’s inequality. Taking Lemma 2.2 and the bound
of ‖Iα‖Lp,λ(X,µ)→Lq,λ(X,µ) (see [27, Lemma 4.5]) into account we have

‖MI1‖Lq,λ(X,µ) . ‖b‖BMO(X,µ)‖Ms(I
αf)‖Lq,λ(X,µ)(4.7)

. (C
λs/p
d ((p/s)′)s/p + 1)‖b‖BMO(X,µ)‖Iαf‖Lq,λ(X,µ)

. Cp,α,λ‖b‖BMO(X,µ)‖f‖Lp,λ(X,µ),

where Cp,α,λ is (4.6).

For 1 < s < p < ∞, 0 < α < (1 − λ)/p, there exist s0, s1, t0, t > 1 such
that 1/s0 = 1/t0 − α, 1/t0 = 1/s1 + 1/s and s/t = αp/(1− λ). By Hölder’s
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inequality together with Jensen’s inequality and the fact that Iα is of strong
type (t0, s0) we have (remember that B := B(x, r))

MI2(x) ≤ sup
0<r<dX

( �
B

|Iα((b− c)fχc0B)(y)|s0 dµ(y)
)1/s0

. sup
0<r<dX

(
1

µ(B)1−t0α

�

c0B

|b(y)− c|t0 |f(y)|t0 dµ(y)

)1/t0

. sup
0<r<dX

(
1

µ(B)1−t0α

�

c0B

|b(y)− c|t0 |f(y)|t0 dµ(y)

)1/t0

. sup
0<r<dX

(
1

µ(B)1−t0α

�

c0B

|b(y)− c|t0 |f(y)|t0 dµ(y)

)1/t0

. sup
0<r<dX

( �

c0B

|b(y)− c|s1 dµ(y)
)1/s1

(
1

µ(c0B)1−sα

�

c0B

|f(y)|s dµ(y)

)1/s

. ‖b‖BMO(X,µ) sup
0<r<dX

µ(c0B)α−1/s
( �

c0B

|f(y)|s dµ(y)
)1/s−1/t

×
[
µ(c0B)1−s/p

( �

c0B

|f(y)|pdµ(y)
)s/p]1/t

. ‖b‖BMO(X,µ) sup
0<r<dX

µ(c0B)α−1/s+1/t−s(1−λ)/(pt)
( �

c0B

|f(y)|s dµ(y)
)1/s−1/t

×
(

1

µ(c0B)λ

�

c0B

|f(y)|p dµ(y)

)s/(pt)
. ‖b‖BMO(X,µ)‖f‖

αp
1−λ
Lp,λ(X,µ)

sup
0<r<dX

( �

c0B

|f(y)|s dµ(y)
) 1
s

(1−s/t)

. ‖b‖BMO(X,µ)‖f‖
αp
1−λ
Lp,λ(X,µ)

(Msf(x))1− αp
1−λ .

Consequently, by Lemma 2.2,

‖MI2‖Lq,λ(X,µ) . ‖b‖BMO(X,µ)‖f‖
αp
1−λ
Lp,λ(X,µ)

‖(Msf)1− αp
1−λ ‖Lq,λ(X,µ)(4.8)

. ‖b‖BMO(X,µ)‖f‖
αp
1−λ
Lp,λ(X,µ)

‖Msf‖p/qLp,λ

. (Cp,α,λ)p/q‖b‖BMO(X,µ)‖f‖Lp,λ(X,µ),

where Cp,α,λ is as in (4.6).
By the reverse doubling condition (see (2.3)), there exist constants 0 <

α, β < 1 such that for all x ∈ X and small positive r, µB(x, αr) ≤ βµB(x, r).
Let us take an integer m so that αmdX is sufficiently small.
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Observe now that (see also [20, p. 929]) if z ∈ B(x, r), then

B(x, r) ⊂ B(z, Ct(Cs + 1)r) ⊂ B
(
x,Ct(Ct(Cs + 1) + 1)r

)
;

we rewrite it simply as B(x, r) ⊂ B(z, c1r) ⊂ B(x, c2r). Hence,

‖MI3‖Lq,λ(X,µ) ≤ sup
x∈X

0<r<dX

(
1

µB(x, r)λ

�

B(x,r)

|M(I3)(y)|q dµ(y)

)1/q

. sup
x∈X

0<r<dX

µB(x, r)(1−λ)/q sup
B⊂B(z,c1r)

1

µB(z, c1r)

�

B(z,c1r)

|I3(y)| dµ(y)

. sup
B⊂B(z,c1r)

µB(z, c1r)
(1−λ)/q−1

�

B(z,c1r)

|I3(y)| dµ(y).

Further, notice that when c0 is an appropriate constant, B ⊂ B(z, c1r),
y ∈ B(z, c1r), α

md(y, z) ≤ d(y, t) ≤ αm+1d(y, z) and z ∈ (c0B)c, then
d(x, t) > c̄0r, where c̄0 depends on Ct, Cs and c0; it is also easy to check
that there are positive constants b1, b2 and b3 such that B(y, b1d(y, t)) ⊂
B(x, b2d(x, t)) ⊂ B(y, b3d(y, t)). Consequently, by using Fubini’s theorem
and Lemma 1.2 of [19] we have, for y ∈ B(z, c1r),

I3(y) ≤
�

X\c0B

|(b(z)− c)f(z)|µB(y, d(y, z))α−1 dµ(z)

≤ C
�

X\c0B

|(b(z)− c)f(z)|

×
( �

B(y,αmd(y,z))\B(y,αm−1d(y,z))

µB(y, d(y, t))α−2 dµ(t)
)
dµ(z)

≤ C
�

X\B(x,c̄0r)

µB(y, d(y, t))α−2

×
( �

B(y,a−md(y,t))

|(b(z)− c)f(z)| dµ(z)
)
dµ(t)

≤ C‖b‖BMO(X,µ)

�

X\B(x,c̄0r)

µB(y, d(y, t))α−1

×
(

1

µB(y, a1−md(y, t))

�

B(y,a1−md(y,t))

|f(z)|p dµ(z)

)1/p

dµ(t)

≤ C‖b‖BMO(X,µ)‖f‖Lp,λ(X,µ)

�

X\B(x,c̄0r)

µB(y, d(y, t))α−(1−λ)/p−1 dµ(t)

≤ CµB(x, r)α−(1−λ)/p‖b‖BMO(X,µ)‖f‖Lp,λ(X,µ).
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Thus applying the relation between B(x, r) and B(z, r) we find that

(4.9) ‖MI3‖Lq,λ(X,µ)

. ‖b‖BMO(X,µ)‖f‖Lp,λ(X,µ) sup
B⊂B(z,c1r)

µB(z, c1r)
(1−λ)/q+α−(1−λ)/p

. ‖b‖BMO(X,µ)‖f‖Lp,λ(X,µ).

Gathering (4.7)–(4.9) it is easy to show that

‖M([b, Iα]f)‖Lq,λ(X,µ) ≤ Cp,α,λ‖b‖BMO(X,µ)‖f‖Lp,λ(X,µ).

Before proving the next result, we define the following auxiliary functions
which where introduced in [22].

Definition 4.6 (auxiliary functions). On an interval (0, δ], δ small, we
define the following functions:

φ̄(x) := p+
(x− q)(1− λ+A2(x))

1−λ+A2(x)−α(x−q)
, φ̃(x) := q − (p− x)(1− λ+A1(x))

1−λ+A1(x)−α(p−x)
,

Ā(x) := 1− α(x− q)
1− λ+A2(x)

, Ã(x) :=
1− λ+A1(η)

1− λ+A1(η)− (p− η)α
,

φ(x) := φ̄(x)Ā(x), Φ(x) := φ̃(x)Ã(x),

ψ(ε) := φ(εθ1), Ψ(ε) := Φ(εθ1),

for θ1 > 0.

Theorem 4.7. Let Iα be a potential operator and let M be the maximal
operator. Assume that 1 < p <∞, 0 < α < (1−λ)/p, 0 < λ < 1, 1/p−1/q =
α/(1− λ). Suppose that θ1 > 0 and θ2 ≥ θ1[1 + αq/(1− λ)]. Let A1 and A2

be continuous non-negative functions on (0, p− 1] and (0, q− 1] respectively
satisfying the conditions:

(i) A2 ∈ C1((0, δ]) for some positive δ > 0;
(ii) limx→0+A2(x) = 0;

(iii) 0 ≤ B := limx→0+
d
dxA2(x) < (1−λ)2

αq2
;

(iv) A1(η) = A2(φ̄−1(η)), where φ̄−1 is the inverse of φ̄ on (0, δ] for
some δ > 0.

If b ∈ BMO(X,µ), then the operator M([b, Iα]) is bounded from the space

L
p),λ)
θ1,A1

(X,µ) to L
q),λ)
θ2,A2

(X,µ).

Proof. We note that it is enough to prove the theorem for θ2 = θ1(1 +
αq/(1 − λ)) because εθ2 ≤ εθ1(1+αq/(1−λ)) for θ2 > θ1[1 + αq/(1 − λ)] and
small ε. We also note that, by L’Hospital’s rule, φ̄(x) ∼ x as x → 0+ since

B < (1−λ)2/(αq2). Moreover, φ̄ is invertible near 0, since dφ̄
dx (x) > 0. Under

the conditions of Theorem 4.7 the function A1 is continuous on (0, δ] and
limx→0+A1(x) = 0. With all of the previous remarks taken into account,
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it is enough to prove the boundedness of M([b, Iα]) from L
p),λ)
θ1,A1

(X,µ) to

L
q),λ)
ψ,A2

(X,µ) since φ(x) ∼ x1+αq/(1−λ), and consequently

ψ(x) = φ(xθ1) ∼ xθ1(1+αq/(1−λ)) as x→ 0.

The case σ < ε ≤ smax, where smax is from (3.1). Letting

I := ψ(ε)
1
q−ε

(
1

µB(x, r)λ−A2(ε)

�

B(x,r)

|M([b, Iα]f)(y)|q−ε dµ(y)

) 1
q−ε

we have

I . ψ(ε)
1
q−εµB(x, r)

A2(ε)+1−λ
q−ε

( �

B(x,r)

|M([b, Iα]f)(y)|q−σ dµ(y)
) 1
q−σ

. ψ(ε)
1
q−εµB(x, r)

A2(σ)+1−λ
q−σ

( �

B(x,r)

|M([b, Iα]f)(y)|q−σ dµ(y)
) 1
q−σ

.
(

sup
σ≤ε≤smax

ψ(ε)
1
q−ε
)
ψ(σ)

1
σ−q

× sup
0<ε≤σ

sup
x∈X
r>0

(
ψ(ε)

µB(x, r)λ−A2(ε)

�

B(x,r)

|M([b, Iα]f)(y)|q−ε dµ(y)

) 1
q−ε

,

where the first inequality comes from Hölder’s inequality and the second one
is due to the fact that A2 is bounded on [σ, q−1) and x 7→ (1−λ)/(q−x) is
an increasing function. Hence, it is enough to consider the case 0 < ε ≤ σ.

The case 0 < ε ≤ σ. Let η and ε be chosen so that

(4.10)
1

p− η
− 1

q − ε
=

α

1− λ+A2(ε)
.

Obviously, ε→ 0 if and only if η → 0, and solving for η in (4.10) we obtain

η = p− (q − ε)(1− λ+A2(ε))

1− λ+A2(ε)− α(ε− q)
= φ̄(ε).

Letting

J := ψ(ε)
1
q−ε

(
1

µB(x, r)λ−A2(ε)

�

B(x,r)

|M([b, Iα]f)(y)|q−ε dµ(y)

) 1
q−ε
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we have

J . Cψ(ε)
1
q−ε sup

x∈X
r>0

(
1

µB(x, r)λ−A2(ε)

�

B(x,r)

|f(y)|p−η dµ(y)

) 1
p−η

. Cη
θ1
η−pψ(ε)

1
q−ε sup

x∈X
r>0

(
ηθ1

µB(x, r)λ−A2(ε)

�

B(x,r)

|f(y)|p−η dµ(y)

) 1
p−η

. ‖f‖
L
p),λ)
θ1,A1

(X,µ)
,

where C := Cp−η,q−ε,α,λ−A2(ε) is the constant from (4.6) and the first in-

equality is due to Lemma 4.5. The last inequality follows from η = φ̄(ε).
Since the constant in the last inequality is uniformly bounded with respect
to ε, we obtain the desired boundedness of the operator.

Corollary 4.8. Let the assumptions of Theorem 4.7 be satisfied. Then

the commutator [b, Iα] is bounded from L
p),λ)
θ1,A1

(X,µ) to L
q),λ)
θ2,A2

(X,µ).

Proof. The result follows from the previous theorem and the inequality

‖[b, Iα]f‖
L
q),λ)
θ2,A2

(X,µ)
≤ ‖M([b, Iα]f)‖

L
q),λ)
θ2,A2

(X,µ)
.

5. Interior estimates for elliptic equations. In this section we apply
the main result of this paper to establish some interior estimates of solutions
to non-divergence elliptic equations with VMO coefficients (see also [25] for
related topics). Suppose n ≥ 3 and Ω is an open set in Rn. Let

Lu =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
,

where aij = aji for i, j = 1, . . . , n, a.e. in Ω; assume that there exists C > 0
such that, for y = (y1, . . . , yn) ∈ Rn,

C−1|y|2 ≤
n∑

i,j=1

aij(x)yiyj ≤ C|y|2 for a.e. x ∈ Ω;

denote by (Aij)n×n the inverse of the matrix (aij)n×n. For x ∈ Ω and y ∈ Rn,
let

K(x, y) =
1

(n− 2)Cn
√

det(aij(x))

( n∑
i,j=1

Aij(x)yiyj

)1−n/2
,

Ki(x, y) =
∂

∂yi
K(x, y), Kij(x, y) =

∂2

∂xi∂xj
K(x, y).

We denote by VMO(Ω) the class of all locally integrable functions with
vanishing mean oscillation introduced in [36] (used e.g. in [33] and [34]).
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From [2, 7], we obtain the interior representation formula: if aij ∈ VMO ∩
L∞(Ω) and u ∈W 2,r

0 (Ω), 1 < r <∞ (see [2, 3, 15]), then

uxixj (x) = p.v.
�

B

Kij(x, x− y)
[ n∑
k,l=1

(akl(x)− akl(y))uxkxl(y) + Lu(y)
]
dy

+ Lu(x)
�

|y|=1

Ki(x, y)yj dδy,

for a.e. x ∈ B ⊂ Ω, where B is a ball in Ω. We also set

M := max
i,j=1,...,n

max
|α|≤2n

‖∂αKij(x, y)/∂yα‖L∞ .

To prove the next statement we need a local version of Theorem 4.3 (see
also Theorem 2.4 in [2] or Theorem 2.13 in [3]).

Corollary 5.1. Let 1 < p <∞ and let Ω be a bounded domain in Rn.
Suppose that a ∈ VMO ∩ L∞. Assume that T is a Calderón–Zygmund op-
erator defined on Ω and η is the VMO modulus of a. Then for any ε > 0,
there exists a positive number ρ = ρ(ε, η) such that for any balls Br with

Ωr := Br ∩Ω 6= ∅, r ∈ (0, ρ) and all f ∈ Lp),λ)
θ,A (Ωr), we have

‖[a, T ]f‖
L
p),λ)
θ,A (Ωr)

≤ Cε‖f‖
L
p),λ)
θ,A (Ωr)

.

Theorem 5.2. Let Ω be a bounded domain in Rn. Suppose that 1 <
p, r < ∞. Let aij ∈ VMO(Ω) ∩ L∞, i, j = 1, . . . , n. Suppose that ηi,j is the
VMO modulus of aij; set η = (

∑n
i,j=1 ηi,j)

1/2. Suppose also that M < ∞.
Then there is a positive constant ρ = ρ(n, r, p, λ,M, θ,A, η) such that for

all balls B ⊂ Ω with radius smaller than ρ, and all u ∈ W 2,r
0 (Ω) with

‖Lu‖
L
p),λ)
θ,A

(B) < ∞, we have uxixj ∈ L
p),λ)
θ,A (B), and there exists a positive

constant C = C(n, p, λ, θ,M,A, η) such that

‖uxixj‖Lp),λ)θ,A (B)
≤ C‖Lu‖

L
p),λ)
θ,A (B)

.

Proof. It is easy to verify that Kij satisfies the assumptions of Corol-
lary 5.1 by the representation of uxixj and the conditions of Kij . Thus, from
Corollary 5.1, we deduce, for any ε > 0,

‖uxixj‖Lp),λ)θ,A (B)
≤ Cε‖uxixj‖Lp),λ)θ,A (B)

+ C‖Lu‖
L
p),λ)
θ,A (B)

.

Choosing ε to be small enough (e.g. ε < 1), we then obtain

‖uxixj‖Lp),λ)θ,A (B)
≤ (C/(1− Cε))‖Lu‖

L
p),λ)
θ,A (B)

.

This finishes the proof.
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[23] A. Kufner, O. John and S. Fučik, Function Spaces, Noordhoff, Leyden, and Acad-
emia, Praha, 1977.

[24] E. Liflyand, E. Ostrovsky and L. Sirota, Structural properties of bilateral grand
Lebesque spaces, Turkish J. Math. 34 (2010), 207–219.

[25] L. Liu, Interior estimates in Morrey spaces for solutions of elliptic equations and
weighted boundedness for commutators of singular integral operators, Acta Math.
Sci. 25 (2005), 89–94.

[26] A. Meskhi, Maximal functions and singular integrals in Morrey spaces associated
with grand Lebesgue spaces, Proc. A. Razmadze Math. Inst. 151 (2009), 139–143.

[27] A. Meskhi, Maximal functions, potentials and singular integrals in grand Morrey
spaces, Complex Var. Elliptic Equations 56 (2011), 1003–1019.

[28] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations,
Trans. Amer. Math. Soc. 43 (1938), 126–166.

[29] G. Pradolini and O. Salinas, Commutators of singular integrals on spaces of homo-
geneous type, Czechoslovak Math. J. 57 (2007), 75–93.

[30] H. Rafeiro, A note on boundedness of operators in grand grand Morrey spaces, in:
Advances in Harmonic Analysis and Operator Theory, The Stefan Samko Anniver-
sary Volume (Aveiro, 2011), A. Almeida et al. (eds.), Operator Theory Adv. Appl.
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