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Abstract. We show that if the set of all bounded strongly continuous cosine fami-
lies on a Banach space X is treated as a metric space under the metric of the uniform
convergence associated with the operator norm on the space L (X) of all bounded linear
operators on X, then the isolated points of this set are precisely the scalar cosine fami-
lies. By definition, a scalar cosine family is a cosine family whose members are all scalar
multiples of the identity operator. We also show that if the sets of all bounded cosine
families and of all bounded strongly continuous cosine families on an infinite-dimensional
separable Banach space X are viewed as topological spaces under the topology of the uni-
form convergence associated with the strong operator topology on L (X), then these sets
have no isolated points. We present counterparts of all the above results for semigroups
and groups of operators, relating to both the norm and strong operator topologies.

1. Introduction. This paper is a continuation of our earlier work [2]
in which, among other things, we discussed the convergence of sequences
of cosine families. One question that arose previously was whether, given
a cosine family C = {C(t)}t∈R on a Banach space X, there is a sequence
Cn = {Cn(t)}t∈R, n = 1, 2, . . . , of cosine families on X such that Cn 6= C
for every n ∈ N and limn→∞Cn(t) = C(t) strongly and uniformly in t ∈ R.
Here our main interest lies in a similar question but with the strong operator
topology replaced by the norm operator topology: Given a cosine family
C = {C(t)}t∈R on a Banach space X, is there a sequence Cn = {Cn(t)}t∈R,
n = 1, 2, . . . , of cosine families on X such that Cn 6= C for every n ∈ N and
limn→∞Cn(t) = C(t) in operator norm uniformly in t ∈ R?

We show that the answer to the latter question is in the affirmative if
C is bounded and not scalar in the sense that, for some t ∈ R, C(t) is not
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a scalar multiple of the identity operator on X. As a partial converse, we
prove that if C is bounded, strongly continuous, and scalar (meaning, of
course, that each C(t) is a scalar multiple of the identity operator), then
the answer is in the negative. In addition, we show that in the case where
X is a Hilbert space, the negative answer holds without C necessarily being
strongly continuous.

An immediate consequence of the first two of the above results is the
identification of the isolated points of the set of all bounded strongly contin-
uous cosine families on a Banach space X when this set is endowed with the
metric of the uniform convergence corresponding to the operator norm on
L (X)—these are precisely the scalar cosine families. Here, of course, L (X)
denotes the Banach space of all bounded linear operators on X. Contrasting
this result is an analogous result that we derive for semigroups of operators:
it turns out that only rather special scalar semigroups constitute the isolated
points of the set of all bounded strongly continuous semigroups on a Banach
space, namely those that are extendable to scalar groups. Our companion
result reveals that the isolated points of the set of all bounded strongly
continuous groups on a Banach space are precisely the scalar groups.

As a supplementary contribution and one that provides a link with our
earlier work, we show that if the sets of all bounded cosine families and of all
bounded strongly continuous cosine families on an infinite-dimensional sep-
arable Banach space X are viewed as topological spaces under the topology
of the uniform convergence associated with the strong operator topology on
L (X), then these sets have no isolated points. We derive similar results for
semigroups and groups of operators.

2. Preliminaries. We first review some of the concepts and terminology
used in the paper.

Let A be a Banach algebra with a unity e and let G be an Abelian group,
written additively, with a neutral element 0. A family {C(g)}g∈G in A is said
to be a cosine family if

(i) 2C(g)C(h) = C(g + h) + C(g − h) for all g, h ∈ G (d’Alembert’s
functional equation, also called the cosine functional equation),

(ii) C(0) = e.

As is customary, a cosine family for which the indexing group is the additive
group of integers Z will be referred to as a cosine sequence.

Given a Banach spaceX, we shall henceforth consider L (X) as a Banach
algebra with unity, the unity element being the identity operator IX on X.

We shall be mainly concerned with cosine families indexed by R in Banach
algebras of the form L (X), where X is a Banach space. An L (X)-valued
cosine family, where X is a Banach space, will be termed a cosine family
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on X. Related objects of interest will be semigroups and groups of operators
on a Banach space. We recall that a family {S(t)}t≥0 of bounded linear
operators on a Banach space X is a semigroup of operators on X if

(i) S(s)S(t) = S(s + t) for all s, t ≥ 0 (Cauchy’s equation, also called
the exponential equation),

(ii) S(0) = IX .

Likewise, a family {G(t)}t∈R of bounded linear operators on X is a group of
operators if

(i) G(s)G(t) = G(s+ t) for all s, t ∈ R,
(ii) G(0) = IX .

Our main focus will be on bounded strongly continuous cosine families
and semigroups on a Banach space. We recall that a family F = {F (t)}t∈T
of bounded linear operators on a Banach space X indexed by T ⊂ R is
bounded if supt∈T ‖F (t)‖ <∞, and is strongly continuous if, for each x ∈ X,
the function T 3 t 7→ F (t)x ∈ X is continuous in norm. We also recall that
strongly continuous semigroups and cosine families on a Banach space are
uniquely characterised by their respective generators. The generator A of a
strongly continuous semigroup {S(t)}t≥0 on a Banach space X is defined by

(2.1) Ax =
d

dt

∣∣∣∣
0

S(t)x = lim
s→0

S(s)x− x
s

(x ∈ D(A)),

where D(A), the domain of A, is the set of all x ∈ X for which the derivative
(2.1) exists. In turn, the generator A of a strongly continuous cosine family
{C(t)}t∈R on X is defined by

(2.2) Ax =
d2

dt2

∣∣∣∣
0

C(t)x = lim
s→0

2

s2
(C(s)x− x) (x ∈ D(A)),

where D(A) is the set of all x ∈ X for which the second derivative (2.2)
exists. For standard results concerning strongly continuous semigroups and
cosine families and their corresponding generators, the reader is referred to,
e.g., [1], [13], or [16].

Finally, we recall the rudiments of the theory of almost periodic func-
tions [5]. A continuous function f on R with values in a Banach space X is
said to be (uniformly) almost periodic if the set of its translates {Ttf}t∈R is
relatively compact in the metric ρ(f, g) = supt∈R ‖f(t)− g(t)‖; the translate
Ttf of f by t ∈ R is, by definition, given by Ttf(s) = f(t + s), s ∈ R. Let
AP (R, X) be the space of all X-valued almost periodic functions on R. For
any f ∈ AP (R, X) and any α ∈ R, the mean value

Mt{e−iαtf(t)} = lim
T→∞

1

2T

T�

−T
e−iαtf(t) dt
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exists and defines the Fourier–Bohr coefficient of f for the Fourier expo-
nent α, f̂(α). The Fourier–Bohr coefficients of f vanish for all but at most
countably many Fourier exponents. The set

Σ(f) = {α ∈ R | f̂(α) 6= 0}

constitutes the Bohr spectrum of f and is non-empty if f is non-zero. The
function f is uniquely determined by its Fourier–Bohr coefficients, this prop-
erty being implicitly meant when one refers to f via its expansion into a
formal Fourier–Bohr series

f(t) ∼
∑

α∈Σ(f)

eiαtf̂(α).

3. Main results. As already indicated, this paper is primarily concerned
with the question of when a given cosine family C = {C(t)}t∈R on a Banach
space X satisfies the following condition:

(AN) there exists a sequence Cn = {Cn(t)}t∈R, n = 1, 2, . . . , of cosine
families on X such that Cn 6= C for every n ∈ N and limn→∞Cn(t) =
C(t) in operator norm uniformly in t ∈ R.

If the given cosine family C is strongly continuous, it is also of interest to
consider the following variant of the above condition:

(ACN) there exists a sequence Cn = {Cn(t)}t∈R, n = 1, 2, . . . , of strongly
continuous cosine families on X such that Cn 6= C for every n ∈ N
and limn→∞Cn(t) = C(t) in operator norm uniformly in t ∈ R.

Below we give a full characterisation of bounded strongly continuous cosine
families satisfying (ACN). Some statements which we shall make on the way
will, in fact, be of a more general nature and will concern bounded cosine
families which are not necessarily strongly continuous.

A cosine family C = {C(t)}t∈R on a Banach space X will be called scalar
if, for every t ∈ R, C(t) is a scalar multiple of IX . A cosine family which
is not scalar will be termed non-scalar. It is immediate that a cosine family
C = {C(t)}t∈R is scalar if and only if there exists a scalar-valued cosine
family c = {c(t)}t∈R such that C(t) = c(t)IX for every t ∈ R. If C is a scalar
cosine family on a non-zero Banach space X, then the scalar-valued cosine
family c = {c(t)}t∈R satisfying C(t) = c(t)IX for every t ∈ R is uniquely
determined.

We first show that every bounded (strongly continuous or not) non-scalar
cosine family on a Banach space satisfies (AN) and that every bounded
strongly continuous non-scalar cosine family on a Banach space satisfies
(ACN).
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Theorem 1. Let C = {C(t)}t∈R be a bounded non-scalar cosine family
on a Banach space X. Then there exists a sequence Cn = {Cn(t)}t∈R, n =
1, 2, . . . , of cosine families on X such that Cn 6= C for every n ∈ N and
limn→∞Cn(t) = C(t) in operator norm uniformly in t ∈ R. Moreover, if C is
strongly continuous, then each Cn may be assumed to be strongly continuous.

To establish this theorem, we need an auxiliary result which seems to be
part of the folklore of operator theory; for the sake of completeness, we state
it with a proof.

For a Banach space X, let X ′ be the dual space of X. Given x ∈ X
and x′ ∈ X ′, we denote by 〈x, x′〉 the value of the functional x′ at x. Let
Z(L (X)) be the centre of the algebra of L (X), that is,

Z(L (X)) = {A ∈ L (X) | AB = BA for each B ∈ L (X)}.
Lemma 1. If X is a Banach space, then Z(L (X)) consists precisely of

all scalar multiples of IX .

Proof. Without loss of generality, we may assume that X is non-zero. It
is clear that any scalar multiple of IX is in Z(L (X)). To prove the converse
statement, suppose that A ∈ Z(L (X)). For any x′ ∈ X ′ and any y ∈ X, let
Tx′,y be the operator in L (X) given by

Tx′,yx = 〈x, x′〉y (x ∈ X).

Then ATx′,y = Tx′,yA for all x′ ∈ X ′ and all y ∈ X, or equivalently,

(3.1) 〈x, x′〉Ay = 〈Ax, x′〉y
for all x′ ∈ X ′ and all x, y ∈ X. Fix x0 ∈ X \ {0} arbitrarily and next,
employing the Hahn–Banach theorem, select x′0 ∈ X ′ so that 〈x0, x′0〉 = 1.
If we now let λ = 〈Ax0, x′0〉, then (3.1) yields Ay = λy for all y ∈ X, or
equivalently, A = λIX . The lemma follows.

We are now ready to establish Theorem 1.

Proof of Theorem 1. Since C is non-scalar, there exists s ∈ R such that
C(s) is not a scalar multiple of IX . By Lemma 1, there exists a bounded linear
operator B on X such that C(s)B 6= BC(s). Let (εn)n∈N be a sequence in
(0, ‖B‖−1) converging to 0, and let In = IX + εnB for every n ∈ N. Then,
clearly, each operator In has a bounded inverse and

Cn(t) = I−1n C(t)In (t ∈ R, n ∈ N)
defines a sequence of cosine families on X. Moreover, each Cn is strongly
continuous whenever C is strongly continuous. Since C is bounded and
limn→∞ In = limn→∞ I

−1
n = IX in operator norm, we see that limn→∞Cn(t)

= C(t) in operator norm uniformly in t ∈ R. Taking into account that, for
each n ∈ N, Cn(s) = C(s) holds if and only if C(s)B = BC(s), we finally
deduce that Cn(s) 6= C(s) for all n ∈ N.
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We remark that it is immediate that the cosine families Cn appearing in
Theorem 1 are equibounded, that is, supn∈N, t∈R ‖Cn(t)‖ <∞.

We now investigate to what extent the converse of Theorem 1 holds. To
tackle this question, we begin with a preliminary technical result.

Let T denote the unit circle {z ∈ C | |z| = 1}.
Lemma 2. Let a, b ∈ T be such that

lim sup
n→∞

|an + a−n − (bn + b−n)| < 1.

Then either a = b or a = b−1.

Proof. Arguing contrapositively, assume that neither a = b nor a = b−1.
Then

lim
N→∞

1

N

N∑
n=1

anbn = lim
N→∞

1

N

N∑
n=1

a−nbn = 0.

In addition,

lim
N→∞

1

N

N∑
n=1

b2n =

{
0 if b /∈ {−1, 1},
1 otherwise.

Therefore ∣∣∣∣ lim
N→∞

1

N

N∑
n=1

(
anbn + a−nbn − (b2n + 1)

)∣∣∣∣
equals either 1 or 2. On the other hand,∣∣∣∣ lim

N→∞

1

N

N∑
n=1

(
anbn + a−nbn − (b2n + 1)

)∣∣∣∣
≤ lim sup

n→∞
|anbn + a−nbn − (b2n + 1)|

= lim sup
n→∞

|an + a−n − (bn + b−n)| < 1,

where the last inequality holds by assumption. The resulting contradiction
establishes the lemma.

If X is a Banach space and f : R→ L (X) is a bounded function, we let

‖f‖∞ = sup
t∈R
‖f(t)‖.

Given a bounded linear operator A on a Hilbert space, we denote by A∗ the
adjoint of A.

Theorem 2. Let c = {c(t)}t∈R be a bounded scalar-valued cosine family.
If C = {C(t)}t∈R is a bounded cosine family on a Hilbert space H such that

4‖C‖2∞ lim sup
t→∞

‖C(t)− c(t)IH‖ < 1,

then C(t) = c(t)IH for every t ∈ R.
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Proof. By a result of Fattorini [12], there exists an invertible operator S
in L (H) such that the cosine family defined by

C̃(t) = SC(t)S−1 (t ∈ R)
satisfies C̃(t) = C̃∗(t) for each t ∈ R. In view of [4, Theorem 1], one may
safely assume that ‖S‖ ‖S−1‖ ≤ 2‖C‖2∞. It is clear that

lim sup
t→∞

‖C̃(t)− c(t)IH‖ ≤ ‖S‖ ‖S−1‖ lim sup
t→∞

‖C(t)− c(t)IH‖,

and hence

(3.2) lim sup
t→∞

‖C̃(t)− c(t)IH‖ ≤ 2‖C‖2∞ lim sup
t→∞

‖C(t)− c(t)IH‖.

LetA be the smallest complex Banach subalgebra of L (H) containing all the
operators C̃(t). The algebra A is a commutative C∗-algebra with unity. Let
∆(A) be the set of all complex-valued homomorphisms on A. Fix φ ∈ ∆(A)
and s ∈ R arbitrarily. Consider two scalar-valued cosine sequences c1 =
{c1(n)}n∈N and c2 = {c2(n)}n∈N defined by

c1(n) = φ(C̃(ns)) and c2(n) = c(ns)

for all n ∈ N. The sequences c1 and c2 are both bounded. This is clear for
c2, and for c1 it follows from the fact that ‖φ‖ = 1 and from the estimate

|φ(C̃(ns))| ≤ ‖φ‖ ‖C̃(ns)‖ ≤ ‖C̃(ns)‖ ≤ ‖C̃‖∞ (n ∈ N).
By a result of Kannappan [19], there exist a, b ∈ C \ {0} such that

c1(n) =
1
2(a

n + a−n) and c2(n) =
1
2(b

n + b−n)

for all n ∈ N. In fact, both a and b have unit modulus; for if |a| 6= 1, say,
then an + a−n diverges in modulus to infinity as n → ∞, contradicting the
boundedness of c1. Since, for each n ∈ N,

|c1(n)− c2(n)| = |φ(C̃(ns)− c(ns)IH)| ≤ ‖C̃(ns)− c(ns)IH‖,
we see that

lim sup
n→∞

|c1(n)− c2(n)| ≤ lim sup
t→∞

‖C̃(t)− c(t)IH‖.

Combining this with (3.2), we get

lim sup
n→∞

|c1(n)− c2(n)| ≤ 2‖C‖2∞ lim sup
t→∞

‖C(t)− c(t)IH‖.

Consequently,

lim sup
n→∞

|an + a−n − (bn + b−n)| ≤ 4‖C‖2∞ lim sup
t→∞

‖C(t)− c(t)IH‖ < 1,

where the rightmost inequality holds by assumption. An application of Lem-
ma 2 now shows that either a = b or a = b−1. This in turn implies that
c1 = c2. In particular, φ(C̃(s)) = φ(c(s)IH). Since φ was arbitrarily chosen
and since A, as any other commutative C∗-algebra, is semisimple (which
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means that, for any A ∈ A, if ψ(A) = 0 holds for every ψ ∈ ∆(A), then
A = 0), it follows that C̃(s) = c(s)IH . Hence also C(s) = c(s)IH . As s was
arbitrarily chosen, the theorem follows.

As an immediate consequence of Theorem 2, we obtain the following
partial converse to Theorem 1:

Theorem 3. No bounded scalar cosine family on a Hilbert space satis-
fies (AN).

We next establish an analogue of Theorem 3 for bounded scalar cosine
families on arbitrary Banach spaces. It will concern exclusively cosine fam-
ilies that are strongly continuous. We begin with a handful of technical re-
sults.

Lemma 3. Let c = {c(t)}t∈R be a bounded continuous scalar-valued co-
sine family. If C = {C(t)}t∈R is a strongly continuous bounded cosine family
on a Banach space X such that

sup
t∈R
‖C(t)− c(t)IX‖ < 1,

then the generator of C is bounded.

Proof. Let a ≥ 0 be such that c(t) = cos at for each t ∈ R. Select
0 < δ ≤ 1/2 so that

sup
t∈R
‖C(t)− cos(at)IX‖ ≤ 1− 2δ.

Next choose λ > 0 so that 1 − λ2/(λ2 + a2) ≤ δ; any λ satisfying λ ≥
a
√
δ−1(1− δ) will do. Let A be the generator of C. Then∥∥∥∥λ2(λ2 −A)−1 − λ2

λ2 + a2
IX

∥∥∥∥ =
∥∥∥∞�

0

λe−λt(C(t)− cos(at)IX) dt
∥∥∥ ≤ 1− 2δ,

since
	∞
0 λe−λt dt = 1. Consequently,

‖λ2(λ2 −A)−1 − IX‖ ≤
∥∥∥∥λ2(λ2 −A)−1 − λ2

λ2 + a2
IX

∥∥∥∥+ ∥∥∥∥ λ2

λ2 + a2
IX − IX

∥∥∥∥
≤ 1− δ.

It follows that λ2(λ2−A)−1 is invertible in L (X), and hence so is (λ2−A)−1.
Consequently, A is bounded.

Let δ0 denote the Dirac function on R concentrated at the origin, i.e.,

δ0(α) =

{
1 if α = 0,
0 otherwise.

Lemma 4. Let A be a Banach algebra with unity and let {C(t)}t∈R be
an A-valued cosine family such that the function C : t 7→ C(t) is almost
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periodic. Then
1
2(1 + δ0(α))Ĉ(α) = Ĉ(α)2

for each α ∈ R.
Proof. By the cosine functional equation, for each α ∈ R and each s ∈ R,

Mt{e−iαtC(t+ s)}+Mt{e−iαtC(t− s)} = 2Mt{e−iαtC(t)C(s)}(3.3)

= 2Mt{e−iαtC(t)}C(s)
= 2Ĉ(α)C(s).

Clearly,

Mt{e−iαtC(t+ s)} = eiαsMt{e−iα(t+s)C(t+ s)}
= eiαsMt{e−iαtC(t)} = eiαsĈ(α)

and, likewise,
Mt{e−iαtC(t− s)} = e−iαsĈ(α).

Therefore (3.3) can be rewritten as

eiαsĈ(α) + e−iαsĈ(α) = 2Ĉ(α)C(s).

Consequently,
(1 + e−2iαs)Ĉ(α) = 2e−iαsĈ(α)C(s)

and further

(1 +Ms{e−2iαs})Ĉ(α) = 2Ĉ(α)Ms{e−iαsC(s)} = 2Ĉ(α)2.

To complete the proof, it suffices to note that Ms{e−2iαs} = δ0(α).

Lemma 5. Let A be a Banach algebra with unity and let {C(t)}t∈R be
an A-valued cosine family such that the function C : t 7→ C(t) is almost
periodic. Then, for each α ∈ R, if ‖Ĉ(α)‖ < 1/2, then Ĉ(α) = 0.

Proof. By Lemma 4, for each α ∈ R,
1
2‖Ĉ(α)‖ ≤

1
2(1 + δ0(α))‖Ĉ(α)‖ = ‖Ĉ(α)2‖ ≤ ‖Ĉ(α)‖2.

Hence
0 ≤ ‖Ĉ(α)‖(‖Ĉ(α)‖ − 1/2).

We see that if ‖Ĉ(α)‖ < 1/2, then, necessarily, ‖Ĉ(α)‖ ≤ 0, implying that
Ĉ(α) = 0.

Lemma 6. Let (εk)k∈N be a sequence of mutually independent Rade-
macher random variables satisfying P(εk = −1) = P(εk = 1) = 1/2 for
each k ∈ N. Let A be an algebra with unity and let {C(t)}t∈R be an A-valued
cosine family. Then

C(t)n = E[C(ε1t+ · · ·+ εnt)]

for each t ∈ R and each n ∈ N.
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Proof. We proceed by induction on n, with t ∈ R being fixed arbitrarily.
The statement is true for n = 1 because

E[C(ε1t)] =
1
2(C(t) + C(−t)) = C(t).

Assume that the statement holds for n. Then

C(t)n+1 = C(t)nC(t) = E[C(ε1t+ · · ·+ εnt)C(t)]

= E
[
1
2

(
C(ε1t+ · · ·+ εnt+ t) + C(ε1t+ · · ·+ εnt− t)

)]
.

Since the εk’s are mutually independent, we have
1
2

(
C(ε1t+ · · ·+ εnt+ t) + C(ε1t+ · · ·+ εnt− t)

)
= E[C(ε1t+ · · ·+ εn+1t) | ε1, . . . , εn],

where E[C(ε1t+ · · ·+ εn+1t) | ε1, . . . , εn] denotes the conditional expectation
of C(ε1t+ · · ·+ εn+1t) given ε1, . . . , εn. Now the statement for n+ 1 follows
from the law of total expectation (which is a particular case of the tower
property of conditional expectation):

E[C(ε1t+ · · ·+ εn+1t)] = E
[
E[C(ε1t+ · · ·+ εn+1t) | ε1, . . . , εn]

]
.

The induction is complete and so is the proof.

Lemma 7. Let A be a Banach algebra with unity and let C1 = {C1(t)}t∈R
and C2 = {C2(t)}t∈R be two A-valued bounded cosine families. Then, for
each n ∈ N,

‖Cn1 − Cn2 ‖∞ ≤ ‖C1 − C2‖∞,
where Cni , i = 1, 2, denotes the mapping R 3 t 7→ Ci(t)

n ∈ A.

Proof. Let (εk)k∈N be a sequence of mutually independent Rademacher
random variables. By Lemma 6, for each t ∈ R and each n ∈ N,

‖Cn1 (t)− Cn2 (t)‖ = ‖E[C1(ε1t+ · · ·+ εnt)− C2(ε1t+ · · ·+ εnt)]‖
≤ E[‖C1(ε1t+ · · ·+ εnt)− C2(ε1t+ · · ·+ εnt)‖]
≤ E[‖C1 − C2‖∞] = ‖C1 − C2‖∞.

Hence ‖Cn1 − Cn2 ‖∞ ≤ ‖C1 − C2‖∞, as desired.
Lemma 8. Let X be a Banach space and let f : R→ X be a periodic func-

tion with a period t0. Suppose that there exists a bounded function g : R→ X
such that

f(t) = g(t+ t0)− g(t)
for each t ∈ R. Then f(t) = 0 for each t ∈ R.

Proof. For each t ∈ R, we have

g(t+ t0) = g(t) + f(t)

and also
g(t) = g(t− t0) + f(t− t0) = g(t− t0) + f(t).
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Hence
g(t+ t0)− g(t) = g(t)− g(t− t0),

showing that the function t 7→ g(t + t0) − g(t) is periodic with period t0.
Now, for each n ∈ N and each t ∈ R,

g(t+ nt0)− g(t) =
n∑
k=1

(
g(t+ kt0)− g(t+ (k − 1)t0)

)
= n(g(t+ t0)− g(t)) = nf(t).

Since g(t+ nt0)− g(t) stays bounded as n→∞, it follows that f(t) = 0.

Lemma 9. Let A be a Banach algebra with a unity e and let {C(t)}t∈R
be a bounded continuous A-valued cosine family. Suppose that C(t0) = e for
some t0 ∈ R. Then the function t 7→ C(t) is periodic with period t0.

Proof. For each t ∈ R, set
F (t) = C(t+ t0)− C(t).

We have, for each t ∈ R,
C(t+ 2t0) + C(t) = 2C(t+ t0)C(t0) = 2C(t+ t0),

and so
C(t+ 2t0)− C(t+ t0) = C(t+ t0)− C(t),

which means that F (t + t0) = F (t) for each t ∈ R. Applying Lemma 8
with F as f and C as g, we deduce that F (t) = 0 for every t ∈ R. Hence
C(t+ t0) = C(t) for every t ∈ R.

Before formulating the main result of the remainder of this section, we
recall some definitions and facts that will be needed in its proof.

Let X be a Banach space. Recall that a subset Γ ⊂ X ′ is total if, for any
x ∈ X, 〈x, x′〉 = 0 for all x′ ∈ Γ implies x = 0.

Let M be a σ-algebra of subsets of a set Ω and let Γ be a total subset
of X ′. A spectral measure of class Γ is a map E : M → L (X) such that

(i) E(∅) = 0 and E(Ω) = IX ;
(ii) E(ω ∩ ω′) = E(ω)E(ω′) for any ω, ω′ ∈M ;
(iii) ω 7→ 〈E(ω)x, x′〉 is σ-additive for any x ∈ X and x′ ∈ Γ ;
(iv) supω∈Ω ‖E(ω)‖ <∞.

It follows from the Orlicz–Pettis theorem that any spectral measure of class
X ′ is strongly σ-additive—that is, the function M 3 ω 7→ E(ω)x ∈ E is
σ-additive for each x ∈ X.

The spectrum of an operator T ∈ L (X) is denoted by σ(T ). For T ∈
L (X) and a linear subspace Y of X such that T (Y ) ⊂ Y , T |Y denotes the
restriction of T to Y .

The Borel σ-algebra of a topological space Y is designated by B(Y ).
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Following Dunford [9] (cf. also [8, 10, 11]), an operator T ∈ L (X) is
called prespectral of class Γ if there is a spectral measure E : B(C)→ L (X)
of class Γ such that

(i) TE(ω) = E(ω)T for each ω ∈ B(C),
(ii) σ(T |E(ω)X) ⊂ ω for each ω ∈ B(C), with the bar denoting set clo-

sure.

The spectral measure E : M → L (X) of class Γ satisfying (i) and (ii) is
uniquely determined by T and is called the resolution of the identity of class
Γ for T [8, Theorem 5.13]. Any resolution of the identity E for a prespectral
operator T ∈ L (X), of some class, is supported on σ(T ) in the sense that
E(σ(T )) = IX . In general, a prespectral operator of some class can also be
a prespectral operator of another class, with a possibly different resolution
of the identity [14] (see also [8, Example 5.35]).

If T ∈ L (X) has the form

T =
�

σ(T )

λ dE(λ),

where E : B(C) → L (X) is a spectral measure of class Γ , then T is a
prespectral operator of class Γ and E is its resolution of the identity of
class Γ . In this case, T is termed a scalar-type operator of class Γ .

An operator Q ∈ L (X) is called quasinilpotent if limn→∞ ‖Qn‖1/n = 0,
which is equivalent to σ(Q) = {0}.

If T ∈ L (X) is a prespectral operator with resolution of the identity E
of class Γ and if

(3.4) S =
�

σ(T )

λ dE(λ), Q = T − S,

then S is a scalar-type operator with resolution of the identity E of class
Γ and Q is a quasinilpotent operator commuting with {E(ω) | ω ∈ B(C)};
moreover σ(T ) = σ(S). This characterisation of prespectral operators has a
partial converse: If S ∈ L (X) is a scalar-type operator with resolution of
the identity E of class Γ and Q is a quasinilpotent operator commuting with
{E(ω) | ω ∈ B(C)}, then S+Q is prespectral with resolution of the identity
E of class Γ ; moreover, σ(S +Q) = σ(S) [8, Theorem 5.15].

The decomposition T = S+Q in (3.4) is called the Jordan decomposition
of T . It does not depend on the spectral measure E used to define S (and,
effectively, also Q)—all spectral measures for which T is prespectral yield
the same S and Q. This follows from the fact that if an operator T ∈ L (X),
prespectral or not, can be represented as T = S+Q = S0+Q0, where S, S0 ∈
L (X) are scalar-type prespectral, andQ,Q0 ∈ L (X) are quasinilpotent and
satisfy SQ = QS and S0Q0 = Q0S0, then S = S0 and Q = Q0 [8, Theorem
5.23]. If T ∈ L (X) can be written as T = S +Q with S ∈ L (X) of scalar
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type and Q ∈ L (X) quasinilpotent with SQ = QS, then S is said to be the
scalar part of T and Q is its radical part.

An operator T ∈ L (X) is a spectral operator if it is a prespectral operator
of class X ′. In this case, T has a unique resolution of the identity [8, Theorem
6.7]. An operator T ∈ L (X) is spectral if and only if it has the form T =
S+Q, where S ∈ L (X) is a scalar-type spectral operator (i.e., a scalar-type
operator of class X ′) and Q ∈ L (X) is a quasinilpotent operator which
commutes with S. The operators T and S have the same spectrum and the
same resolution of the identity [8, Theorem 6.8].

Theorem 4. Let c = {c(t)}t∈R be a bounded continuous scalar-valued
cosine family. If C = {C(t)}t∈R is a strongly continuous bounded cosine
family on a Banach space X such that

sup
t∈R
‖C(t)− c(t)IX‖ < 1/2,

then C(t) = c(t)IX for every t ∈ R.
Proof. Let A be the smallest complex Banach subalgebra of L (X) con-

taining all the operators C(t). The algebra A is a commutative Banach
algebra with IX as its identity. Let ∆(A) be the set of all complex-valued
homomorphisms on A. Fix φ ∈ ∆(A) and s ∈ R arbitrarily. Consider two
scalar-valued cosine sequences c1 = {c1(n)}n∈N and c2 = {c2(n)}n∈N defined
by

c1(n) = φ(C(ns)) and c2(n) = c(ns)

for all n ∈ N. Using the same argument as in the proof of Theorem 2, we see
that there exist a, b ∈ T such that

c1(n) =
1
2(a

n + a−n) and c2(n) =
1
2(b

n + b−n)

and also
|c1(n)− c2(n)| ≤ ‖C(ns)− c(ns)IX‖

for every n ∈ N. Consequently,
lim sup
n→∞

|an + a−n − (bn + b−n)| ≤ 2 sup
t∈R
‖C(t)− c(t)IX‖ < 1,

where the rightmost inequality holds by assumption. Reprising the famil-
iar argument, we have either a = b or a = b−1 by Lemma 2, and this in
turn implies that c1 = c2. In particular, φ(C(s)) = φ(c(s)IX). Since φ was
arbitrarily chosen, it follows that the operator

Q(s) = C(s)− c(s)IX
is a quasinilpotent element of A: φ(Q(s)) = 0 holds for every φ ∈ ∆(A),
or equivalently, limn→∞ ‖Q(s)n‖1/n = 0. By virtue of the representation
C(s) = c(s)IX + Q(s) and the fact that c(s)IX commutes with Q(s), C(s)
is a spectral operator, with c(s)IX being the scalar part of C(s) and Q(s)
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being the radical part of C(s). We remark here that the scalarity of any
operator of the form aIX , where a ∈ C, follows from the fact that

aIX =
�

{a}

λ dE(λ),

where E is the spectral measure given by

E(ω) = δa(ω)IX (ω ∈ B(C))
with δa being the Dirac measure concentrated on a, i.e.,

δa(ω) =

{
1 if a ∈ ω,
0 otherwise

for each ω ∈ B(C).
Let t0 be a period of c. Then, of course, c(t0) = 1. By Lemma 7 and the

assumption, for each n ∈ N,
‖C(t0)n − IX‖ = ‖C(t0)n − c(t0)nIX‖ ≤ sup

t∈R
‖C(t)− c(t)IX‖ < 1/2.

Hence, firstly,
‖C(t0)n‖ ≤ 1 + 1/2

and, secondly, C(t0)n is invertible in L (X) and

‖C(t0)−n‖ ≤ (1− 1/2)−1 = 2.

It follows that C(t0) is doubly power bounded, i.e.,

sup
n∈Z
‖C(t0)n‖ <∞.

According to a theorem proved independently by Fixman [14] and Foguel [15]
and further extended by Dowson [7] (see also [8, Theorem 10.17]), every
doubly power bounded spectral operator is of scalar type. Hence C(t0) is
scalar-type spectral. By the uniqueness of the Jordan decomposition,

C(t0) = c(t0)IX = IX .

With this result in hand, Lemma 9 now ensures that the function C : t 7→
C(t) is periodic with period t0. By Lemma 3, C is continuous under the op-
erator norm topology on L (X). Thus C is an L (X)-valued almost periodic
function. Let a ∈ R be such that c(t) = cos at for each t ∈ R. Then, clearly,
ĉ(α) = 0 unless α = a or α = −a. Since

‖Ĉ(α)− ĉ(α)IX‖ = ‖Mt{e−iαtC(t)− e−iαtc(t)IX}‖
≤Mt{‖e−iαtC(t)− e−iαtc(t)IX‖}
≤ sup

t∈R
‖C(t)− c(t)IX‖ < 1/2,

it follows that ‖Ĉ(α)‖ < 1/2 whenever α ∈ R\{−a, a}. In view of Lemma 5,
Ĉ(α) = 0 for each α ∈ R \ {−a, a}. By the uniqueness of the Fourier–Bohr
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expansion,
C(t) = eiatĈ(a) + e−iatĈ(−a)

for each t ∈ R. Since C is even, we have Ĉ(a) = Ĉ(−a), and so

C(t) = (eiat + e−iat)Ĉ(a)

for each t ∈ R. Letting t = 0 in the above formula yields

Ĉ(a) = 1
2IX .

Therefore, finally,

C(t) = 1
2(e

iat + e−iat)IX = c(t)IX

for each t ∈ R, as was to be proved.

As an immediate consequence of Theorem 5, we obtain the following
partial converse to Theorem 1:

Theorem 5. No bounded strongly continuous scalar cosine family on a
Banach space satisfies (ACN).

4. Isolated points within cosine families, semigroups, and groups.
We are now going to look at the results obtained in the previous section from
a slightly different perspective.

Let X be a Banach space and let Cosnormb,sc (X) denote the set of all
bounded strongly continuous cosine families on X turned into a metric space
by defining the distance d(C, C̃) between two cosine functions C and C̃ in
Cosnormb,sc (X) as

d(C, C̃) = sup
t∈R
‖C(t)− C̃(t)‖.

It follows from Theorem 4 that scalar cosine families form isolated points of
Cosnormb,sc (X), whereas Theorem 1 guarantees that there are no other isolated
points in this space. In other words, we have the following result:

Theorem 6. If X is a Banach space, then the isolated points of
Cosnormb,sc (X) are precisely the scalar cosine families in Cosnormb,sc (X).

Remarkably, the picture displayed in Theorem 6 changes when we turn
our attention to semigroups of operators. Let Seminormb,sc (X) denote the set of
all bounded strongly continuous semigroups on X made into a metric space
by means of the metric

d(S, S̃) = sup
t≥0
‖S(t)− S̃(t)‖ (S, S̃ ∈ Seminormb,sc (X)).

It transpires that the isolated points of Seminormb,sc (X) constitute only a small
fraction of the set of all scalar semigroups in Seminormb,sc (X), where the term
“scalar semigroup” has a meaning analogous to the corresponding term for
cosine families.
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Theorem 7. If X is a complex Banach space, then the isolated points
of Seminormb,sc (X) are precisely the scalar semigroups of the form

S(t) = eiatIX (t ≥ 0, a ∈ R).

If X is a real Banach space, then the only isolated point of Seminormb,sc (X) is
the identity semigroup defined by S(t) = IX for each t ≥ 0.

The first step in the proof of Theorem 7 is based on our Theorem 8 below.
We omit the proof of the latter result as it is essentially the same as the proof
of Theorem 1.

Theorem 8. Let S = {S(t)}t≥0 be a bounded non-scalar semigroup on a
Banach space X. Then there exists a sequence Sn = {Sn(t)}t≥0, n = 1, 2, . . . ,
of semigroups on X such that Sn 6= S for every n ∈ N and limn→∞ Sn(t) =
S(t) in operator norm uniformly in t ≥ 0. Moreover, if S is strongly contin-
uous, then each Sn may be assumed to be strongly continuous.

Proof of Theorem 7. It follows from Theorem 8 that any isolated point
of Seminormb,sc (X) is necessarily a scalar semigroup.

Assume now that the space X is complex. For any z ∈ C, let S[z] =
{S[z](t)}t≥0 be the semigroup on X given by

S[z](t) = eztIX (t ≥ 0).

Every scalar semigroup in Seminormb,sc (X) is of the form S[z] for some z with
<z ≤ 0. We next show that if a semigroup S[z] is an isolated point of
Seminormb,sc (X), then necessarily <z = 0.

Fix λ > 0 arbitrarily. If 0 < µ < λ, then, as is easily checked, the
function t 7→ e−µt− e−λt on [0,∞) is non-negative and attains its maximum
at tλ,µ = (lnµ− lnλ)/(µ− λ). Since limµ→λ tλ,µ = λ−1, we see that, for any
a ∈ R, the expression

sup
t≥0
‖S[−µ+ia](t)− S[−λ+ia](t)‖ = e−µtλ,µ − e−λtλ,µ

converges to 0 as µ → λ. Hence S[−λ+ia] is not an isolated point of
Seminormb,sc (X).

We now show that, for each a ∈ R, S[ia] is an isolated point of
Seminormb,sc (X). The proof will rely on the following result.

Lemma 10. For any semigroup T = {T (t)}t≥0 in Seminormb,sc (X), if

sup
t≥0
‖T (t)− IX‖ < 1,

then T (t) = IX for every t ≥ 0.

Assuming this for now, note that if S is a semigroup in Seminormb,sc (X)

such that supt≥0 ‖S(t)− eiatIX‖ < 1, then supt≥0 ‖e−iatS(t)− IX‖ < 1 and
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this then implies that e−iatS(t) = IX for each t ≥ 0 so that S = S[ia], with
the immediate consequence that S[ia] is an isolated point of Seminormb,sc (X).

Proof of Lemma 10. Let T = {T (t)}t≥0 be a semigroup in Seminormb,sc (X)
satisfying supt≥0 ‖T (t) − IX‖ = 1 − δ for some 0 < δ < 1. Let A be the
generator of T . Arguing as in the proof of Lemma 3, we first conclude that
A is bounded, so that T (t) = etA for all t ≥ 0. Next, for each t ≥ 0, we let

U(t) = −
∞∑
n=1

1

n
(IX − etA)n ∈ L (X).

Then the mapping t 7→ U(t) is differentiable on (0,∞) and

dU(t)

dt
=
∞∑
n=1

(IX − etA)n−1etAA = e−tAetAA = A.

Since U(0) = 0, it follows that U(t) = At for all t ≥ 0. On the other hand,

‖U(t)‖ ≤
∞∑
n=1

1

n
(1− δ)n = − ln δ <∞

for every t ≥ 0, implying that U is bounded. This, however, is impossible
unless A = 0. (We remark that the condition supt≥0 ‖T (t) − IX‖ < 1 is
optimal: for any λ > 0, we have supt≥0 ‖IX − e−λtIX‖ = 1, while e−λt 6= 1
whenever t > 0.)

Finally, we note that if the space X is real, then every scalar semigroup
in Seminormb,sc (X) is of the form S[−λ] for some λ ≥ 0. This observation along
with straightforward modifications of the proof given thus far establishes the
result in the real case.

We remark that Lemma 10 can be readily deduced from the following
generalisation of a result of Cox [6]: If A is a normed algebra with an iden-
tity e and a is an element of A such that supn∈N ‖an − e‖ < 1, then a = e.
Cox’s original result concerned the case of square matrices of a given size.
This was later extended to bounded operators on Hilbert space by Naka-
mura and Yoshida [22] and to an arbitrary normed algebra by Hirschfeld
[17] and Wallen [26]. The latter author gave an elementary argument us-
ing a significantly weaker hypothesis, namely that ‖an − 1‖ = o(n) and
lim infn→∞ n

−1(‖a−e‖+‖a2−e‖+· · ·+‖an−e‖) < 1.Wils [27], Chernoff [3],
Nagisa and Wada [21], and Kalton et al.[18] provided further generalisations.

Lemma 10 allows us, serendipitously, to improve on the constant de-
scribing the neighbourhood of a scalar cosine family in Theorem 4 in the
case c(t) ≡ 1. We claim that for any strongly continuous cosine family
C = {C(t)}t∈R on a Banach space X, the condition

(4.1) sup
t∈R
‖C(t)− IX‖ < 1
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implies C(t) = IX for every t ∈ R. Let A be the generator of C. If S =
{S(t)}t≥0 is the strongly continuous semigroup on X related to C by the
abstract Weierstrass formula

S(t)x =
1√
πt

∞�

0

e−τ
2/4tC(τ)x dτ (t > 0, x ∈ X),

then the generator of S coincides with A (see, e.g., [1, proof of Theorem
3.14.17] or [16, Theorem 8.7]). Moreover, on account of (4.1), we have
supt≥0 ‖S(t)− IX‖ < 1. This last condition guarantees, by Lemma 10, that
S(t) = IX for each t ≥ 0, and this in turn implies that A = 0 and further
that C(t) = IX for each t ≥ 0, establishing the claim.

We finally note that Theorem 7 has a natural counterpart for groups of
operators. Let X be a Banach space and let Grpnormb,sc (X) denote the set of
all bounded strongly continuous groups on X converted into a metric space
by means of the metric

d(G, G̃) = sup
t∈R
‖G(t)− G̃(t)‖ (G, G̃ ∈ Grpnormb,sc (X)).

A minor modification of the proof of Theorem 7 (requiring, among other
things, the use of a natural analogue of Theorem 8 for groups of operators)
yields the following result.

Theorem 9. If X is a Banach space, then the isolated points of
Grpnormb,sc (X) are precisely the scalar groups in Grpnormb,sc (X); these are of the
form

G(t) = eiatIX (t ∈ R, a ∈ R)

when X is complex, and reduce to the single identity group, defined by
G(t) = IX for every t ∈ R, when X is real.

5. Uniform convergence in the strong operator topology. Let us
introduce the following two conditions, of which the first is applicable to
any given bounded cosine family C = {C(t)}t∈R on a Banach space X, and
the second is of relevance when the given cosine family C is bounded and
strongly continuous:

(AS) there exists a sequence Cn = {Cn(t)}t∈R, n = 1, 2, . . . , of equi-
bounded cosine families on X such that Cn 6= C for every n ∈ N
and limn→∞Cn(t) = C(t) strongly and uniformly in t ∈ R.

(ACS) there exists a sequence Cn = {Cn(t)}t∈R, n = 1, 2, . . . , of strongly
continuous equibounded cosine families on X such that Cn 6= C for
every n ∈ N and limn→∞Cn(t) = C(t) strongly and uniformly in
t ∈ R.
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In this final section of the paper, we show that a bounded scalar co-
sine family may satisfy (AS) without satisfying (AN), and a bounded
strongly continuous scalar cosine family may satisfy (ACS) without sat-
isfying (ACN). We also present similar results for operator semigroups and
groups.

We start our discussion with a few preliminaries. Let X be a Banach
space and let Γ be a non-empty set. A family {(xγ , x′γ)}γ∈Γ of pairs in
X × X ′ is called a biorthogonal system in X × X ′ if 〈xα, x′β〉 = δαβ for
all α, β ∈ Γ , where δαβ denotes the Kronecker delta. For simplicity, we
shall write a biorthogonal system {(xγ , x′γ)}γ∈Γ in X ×X ′ as {xγ ;x′γ}γ∈Γ .
A biorthogonal system {xγ ;x′γ}γ∈Γ is called fundamental if the closed linear
span span{xγ | γ ∈ Γ} of {xγ}γ∈Γ is equal to X, and total if {x′γ}γ∈Γ
separates the points of X, i.e., if for each x ∈ X \{0}, there exists γ ∈ Γ such
that 〈x, xγ〉 6= 0. A fundamental and total biorthogonal system in X × X ′
is called a Markushevich basis for X. If the set of functional coefficients is
understood, a Markushevich basis {xγ ;x′γ}γ∈Γ is abbreviated to {xγ}γ∈Γ .
Clearly, every Schauder basis of a Banach space X is a Markushevich basis
of X. An example of a Markushevich basis that is not a Schauder basis is the
family of trigonometric polynomials t 7→ e2πint, n ∈ Z, in the space C[0, 1] of
all complex continuous functions on [0, 1] whose values at 0 and 1 are equal,
endowed with the supremum norm.

A biorthogonal system {xγ ;x′γ}γ∈Γ is called λ-bounded for some λ ≥ 1 if
sup{‖xγ‖ ‖x′γ‖ | γ ∈ Γ} ≤ λ. A biorthogonal system is called bounded if it is
λ-bounded for some λ ≥ 1. Markushevich [20] proved that every separable
Banach space has a countable Markushevich basis. Ovsepian and Pełczyński
[23] showed the existence of a bounded countable Markushevich basis for
any separable Banach space. Pełczyński [24] and Plichko [25] established
independently that every separable Banach space has a (1 + ε)-bounded
countable Markushevich basis for every ε > 0.

Theorem 10. Every bounded scalar cosine family on an infinite-dimen-
sional separable Banach space satisfies (AS). Likewise, every bounded strongly
continuous scalar cosine family on an infinite-dimensional separable Banach
space satisfies (ACS).

Proof. Let X be an infinite-dimensional separable Banach space. Let c =
{c(t)}t∈R be a bounded scalar-valued cosine family and let C = {C(t)}t∈R
be the corresponding scalar cosine family on X, i.e.,

C(t) = c(t)IX

for each t ∈ R. Let {xn;x′n}n∈N be a λ-bounded Markushevich basis for X
for some λ > 1. For each n ∈ N, let Pn be the one-dimensional operator in
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L (X) given by
Pn(x) = 〈x, x′n〉xn.

Clearly, each Pn is a projection, i.e., P 2
n = Pn, and, moreover, we have

‖Pn‖ ≤ λ. Let c̃ = {c̃(t)}t∈R be an arbitrary bounded continuous scalar-
valued cosine family different from c. For each n ∈ N and each t ∈ R, set

Cn(t) = c(t)(IX − Pn) + c̃(t)Pn.

It is evident that, for each n ∈ N, Cn = {Cn(t)}t∈R is a cosine family on X
different from C, and, moreover, if C is continuous, then Cn is continuous,
too. In addition, the Cn’s are equibounded:

‖Cn(t)‖ ≤ 1 + 2‖Pn‖ ≤ 1 + 2λ

for each n ∈ N and each t ∈ R. Here the first inequality makes use of the
fact that any bounded (continuous or not) scalar cosine family c = {c(t)}t∈R
automatically satisfies

(5.1) |c(t)| ≤ 1

for all t ∈ R. One way to see this is as follows. By the result of Kannappan
quoted earlier, if c = {c(t)}t∈R is a scalar cosine family, then there exists a
function g : R→ C \ {0} such that g(s+ t) = g(s)g(t) for all s, t ∈ R and

(5.2) c(t) = 1
2(g(t) + g(t)−1)

for all t ∈ R. Now, if c is also bounded, then necessarily

(5.3) |g(t)| = 1

for every t ∈ R, for otherwise, should |g(t0)| 6= 1 hold for some t0, the
representation

c(nt0) =
1
2(g(nt0) + g(nt0)

−1) = 1
2(g(t0)

n + g(t0)
−n) (n ∈ N)

would imply that c(nt0) diverges in modulus to infinity as n → ∞. At this
point, (5.1) readily follows from (5.2) and (5.3).

Returning to the main line of the proof, note that if x =
∑K

k=1 αkxk
is a finite linear combination of the xn’s, then Pnx = 0 whenever n > K,
and so Cn(t)x = C(t)x for all n > K and all t ∈ R. Since the Cn’s are
equibounded and span{xn | n ∈ N} = X, it follows that, for each x ∈ X,
limn→∞Cn(t)x = C(t)x uniformly in t.

An immediate consequence of Theorems 3 and 10 is the following.

Theorem 11. Any bounded scalar cosine family on an infinite-dimen-
sional separable Hilbert space satisfies (AS) without satisfying (AN).

In turn, Theorems 5 and 10 immediately imply the following.



Bounded cosine families 239

Theorem 12. Any bounded strongly continuous scalar cosine family on
an infinite-dimensional separable Banach space satisfies (ACS) without sat-
isfying (ACN).

Let X be a Banach space and let Cosstrongb (X) and Cosstrongb,sc (X) denote
the sets of all bounded cosine families on X and of all bounded strongly con-
tinuous cosine families on X, respectively, each converted into a topological
space by means of the collection of pseudometrics

dx(C, C̃) = sup
t∈R
‖C(t)x− C̃(t)x‖ (x ∈ X).

Combining Theorems 1 and 10, we obtain the following.

Theorem 13. If X is an infinite-dimensional separable Banach space,
then neither Cosstrongb (X) nor Cosstrongb,sc (X) has isolated points.

We finally discuss the extent to which the results obtained thus far in
this section carry over to semigroups and groups of operators.

By consistently replacing each occurrence of “cosine family” or “cosine
families” by “semigroup” or “semigroups” in one case, and “group” or “groups”
in another, conditions (AN), (ACN), (AS), and (ACS) can be extended
to apply to semigroups and groups of operators. With this extension in effect,
it takes a minor modification of the proof to obtain the following companion
result to Theorem 10.

Theorem 14. Every bounded scalar semigroup or group on an infinite-
dimensional separable Banach space satisfies (AS). Likewise, every bounded
strongly continuous scalar semigroup or group on an infinite-dimensional
separable Banach space satisfies (ACS).

Not every bounded strongly continuous scalar semigroup on an infinite-
dimensional separable Banach space satisfies (ACS) without satisfying
(ACN). Indeed, only semigroups of the form S[ia] with a ∈ R are in that
category, whereas any semigroup of the form S[−λ+ia] with λ > 0 and a ∈ R
satisfies both (ACN) and (ACS) (as is clear from the proof of Theorem 7
and from Theorem 14). In contrast, for groups of operators the following
consequence of Theorems 9 and 14 holds.

Theorem 15. Any bounded strongly continuous scalar group on an
infinite-dimensional separable Banach space satisfies (ACS) without sat-
isfying (ACN).

Given a Banach space X, let Semi strongb (X) and Semi strongb,sc (X) be the
sets of all bounded semigroups on X and of all bounded strongly continuous
semigroups on X, and let Grpstrongb (X) be the sets of all bounded groups on
X and of all bounded strongly continuous groups on X, respectively, each
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equipped with the topology determined by a collection of seminorms analo-
gous to the collection defining the topology of Cosstrongb (X) or Cosstrongb,sc (X).
Combining Theorem 8, the natural analogue of Theorem 8 for groups of
operators, and Theorem 14, we obtain the following as our final result.

Theorem 16. If X is an infinite-dimensional separable Banach space,
then none of the spaces Semi strongb (X), Semi strongb,sc (X), Grpstrongb (X), and
Grpstrongb,sc (X) has isolated points.
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