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Generators for algebras dense in Lp-spaces

by

Alexander J. Izzo and Bo Li (Bowling Green, OH)

Abstract. For various Lp-spaces (1 ≤ p < ∞) we investigate the minimum number
of complex-valued functions needed to generate an algebra dense in the space. The results
depend crucially on the regularity imposed on the generators. For µ a positive regular
Borel measure on a compact metric space there always exists a single bounded measurable
function that generates an algebra dense in Lp(µ). For M a Riemannian manifold-with-
boundary of finite volume there always exists a single continuous function that generates
an algebra dense in Lp(M). These results are in sharp contrast to the situation when the
generators are required to be smooth. For smooth generators we prove a result similar
to a known fact about algebras uniformly dense in continuous functions: for M a smooth
manifold-with-boundary of dimension n, at least n smooth functions are required in order
to generate an algebra dense in Lp(M). We also show that on every smooth manifold-
with-boundary there exists a bounded continuous real-valued function that is one-to-one
on the complement of a set of measure zero.

1. Introduction. A theorem of Andrew Browder [4] (or see [16, The-
orem 10.6]) gives a lower bound on the number of elements needed to
generate a dense subalgebra of a commutative Banach algebra. In this pa-
per we consider the analogous problem for Lp-spaces: for various Lp-spaces
(1 ≤ p < ∞) we investigate the minimum number of complex-valued func-
tions needed to generate an algebra dense in the space. The results depend
crucially on the regularity imposed on the generators. We consider separately
the cases of measurable, continuous, and smooth generators. Throughout the
paper, the word “smooth” shall always mean “of class C1 ”, and manifolds
will always be assumed to be second countable. We will show a single gener-
ator always suffices both in the case of bounded measurable generators and
“nice” measures and in the case of continuous generators on smooth man-
ifolds. In contrast, for smooth generators on a smooth manifold one needs
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at least as many generators as the dimension of the manifold. The precise
statements of these results are as follows.

Theorem 1.1. Let X be a compact metric space, and let µ be a positive
regular Borel measure on X. Then there exists a real-valued function f in
L∞(µ) such that the set of polynomials in f is dense in Lp(µ) for all 1 ≤
p <∞.

Theorem 1.2. Let M be a Riemannian manifold-with-boundary of finite
volume. Then there exists a bounded continuous real-valued function f such
that the set of polynomials in f is dense in Lp(M) for all 1 ≤ p <∞.

Theorem 1.3. Let M be an n-dimensional Riemannian manifold-with-
boundary. Then no set of fewer than n smooth complex-valued functions
generates an algebra dense in Lp(M) for 1 ≤ p <∞.

Note the similarity between Theorem 1.3 and the following rather well-
known result about generators for C(M) which is an easy consequence of
the theorem of Browder mentioned above. Note also the contrast between
these results and Theorem 1.2.

Theorem 1.4 (Freeman [10, Corollary 2.2]). Let M be a compact n-
dimensional manifold-with-boundary. Then no set of fewer than n continu-
ous complex-valued functions generates an algebra dense in C(M).

Of course, in Theorems 1.2 and 1.3, by Lp(M) we mean Lp of the measure
induced by the Riemannian structure. (See [17] for a discussion of integration
on a Riemannian manifold.) In the case when the manifold is compact it is
unnecessary to fix a Riemannian structure, for if µ1 and µ2 are two measures
induced by two different Riemannian structures, then µ1 and µ2 are mutu-
ally absolutely continuous, and the Radon–Nikodym derivative of one with
respect to the other is bounded away from zero and infinity. It follows that
Lp(µ1) and Lp(µ2) are identical as sets, and the Lp(µ1) and Lp(µ2) norms
are equivalent. Thus for M a compact manifold, Lp(M) is well-defined as a
topological vector space independent of the choice of Riemannian structure.

We also treat the case of homeomorphisms as generators. In that regard
we prove the following results. Here and throughout the paper m will denote
Lebesgue measure of whatever dimension is appropriate for the context, and
Sk will denote the unit k-sphere in Rk+1.

Theorem 1.5. There exists a homeomorphism f : S1 → S1 such that
the set of polynomials in f is dense in Lp(S1,m) for all 1 ≤ p <∞.

Theorem 1.6. There is no one-to-one smooth function f such that the
set of polynomials in f is dense in Lp(S1,m) for some 1 ≤ p <∞.

Theorem 1.7. There exists a homeomorphism f : D→ D such that the
set of polynomials in f is dense in Lp(D,m) for all 1 ≤ p <∞.
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Theorem 1.8. Let X be a compact subset of Rn. Then there exists an
embedding F : X → Cdn/2e such that the set of the component functions
f1, . . . , fdn/2e of F generates an algebra dense in Lp(X,m) for all 1 ≤ p <∞.

As pointed out by William Ross, the proof of Theorem 1.7 is reminiscent
of the proof of Bram’s theorem [3] (or see [7, Theorem VI.8.14]). One might
therefore wonder whether it is possible to derive one of these theorems from
the other. However, as far as the authors can tell, this is not the case.

Theorem 1.5 was the first result we proved. It was this result that led us
to conjecture the assertion of Theorem 1.7, which in turn led us to Theo-
rem 1.8. The question then naturally arose whether, in the context of Theo-
rem 1.8, it is the case that dn/2e is the minimum number of complex-valued
functions needed to generate an algebra dense in Lp(X,m) for a suitable
choice of X. We showed that this question is related to a question regarding
a possible strengthening of the well-known theorem that there is no embed-
ding of Rn into Rk for k < n. Before stating this question, it is convenient
to make the following definition.

Definition 1.9. We call a map F defined on a measure space X one-
to-one almost everywhere if there is a subset E of X of measure zero such
that the restriction of F to X \ E is one-to-one.

We showed that if complex-valued functions f1, . . . , fk generate an al-
gebra dense in Lp(X,m), then the map F = (f1, . . . , fk) : X → Rk is
one-to-one almost everywhere. This led us to ask whether, for k < n, there
ever exists a continuous map F : Rn → Rk that is one-to-one almost ev-
erywhere. We initially conjectured that no such mappings exist and hence
that dn/2e is the minimum number of complex-valued functions needed to
generate an algebra dense in Lp(X,m) for X a ball in Rn. However, we
subsequently proved the following result showing that this conjecture fails
in the strongest possible way. The assertion of Theorem 1.2 that only one
function is needed follows as a corollary.

Theorem 1.10. On every smooth manifold-with-boundary there exists
a bounded continuous real-valued function that is one-to-one almost every-
where.

Although this theorem is the exact opposite of what we at first expected,
in hindsight the existence of such functions is not so surprising on account
of the difference between measure-theoretic smallness and topological small-
ness in the sense of Baire category. The set on which our function will be
shown to be one-to-one, while of full measure, will nevertheless be a set of
first category. Thus from the point of view of category, the set on which our
function is not required to be one-to-one is a large set. This leads us to make
the following conjecture.
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Conjecture 1.11. If k <n, then there is no continuous mapF :Rn→Rk
that is one-to-one on the complement of a set of first category in Rn.

Our motivation for considering the question of how many functions are
required to generate an algebra dense in an Lp-space arose from an erroneous
paper by Guangfu Cao [5] related to the following theorem of Sheldon Axler,
Željko Čučković, and N. V. Rao. Here H∞(Ω) denotes the algebra of all
bounded holomorphic functions on Ω.

Theorem 1.12 (Axler–Čučković–Rao [1]). Let Ω be a bounded connected
open set in the complex plane. If φ ∈ H∞(Ω) is non-constant and ψ ∈
L∞(Ω) is such that the Toeplitz operators Tφ and Tψ on the Bergman space
of Ω commute, then ψ is holomorphic.

Axler, Čučković, and Rao [1] asked what happens in connection with
their theorem in higher dimensions. In [5] Cao presents as a theorem the
statement that the above theorem holds with the planar domain Ω replaced
by an arbitrary bounded pseudoconvex domain with C2-smooth boundary
in Cn. (It is somewhat unclear exactly what the hypotheses on the domain
are, but they appear to be as stated in the preceding sentence.) We do not
know whether this result of Cao is true although it seems unlikely since, as
he notes, the result does not hold for the bidisk. Nevertheless, the argument
he gives is definitely incorrect. Axler, Čučković, and Rao prove their result
as a consequence of the following approximation theorem of Christopher
Bishop (an alternative proof of which can be found in [13]).

Theorem 1.13 (Bishop [2, Theorem 1.2]). Let Ω be an open set in the
complex plane, and let φ ∈ H∞(Ω) be non-constant on each component of Ω.
Then C(Ω) is contained in the norm-closed subalgebra of L∞(Ω) generated
by H∞(Ω) and φ.

Cao presents as a lemma an assertion that is a weak form of Bishop’s
theorem for pseudoconvex domains in Cn and then correctly shows that from
this assertion his main theorem follows by the same argument as that used
by Axler, Čučković, and Rao. However, this weak form of Bishop’s theorem
for pseudoconvex domains, which we now state, is in fact false.

Erroneous Statement 1.14 (Cao [5, Theorem 5]). Suppose Ω is a
bounded pseudoconvex domain with C2-smooth boundary in Cn and φ ∈
H∞(Ω) is non-constant. Then C(Ω) is contained in the closure in L2(Ω,m)
of the algebra generated by H∞(Ω) and φ.

It was this false assertion that first got us thinking about generators
for algebras dense in Lp-spaces. A simple direct way to see that the above
assertion is indeed false is to take Ω to be the open unit ball in C2 and note
that then in L2(Ω,m) the function z2 is orthogonal to the algebra generated
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by H∞(Ω) and z1. In fact, Erroneous Statement 1.14 is never true when
n > 1. To see this note that if the conclusion of 1.14 held for some Ω
and φ, then for a closed ball B contained in Ω, the algebra generated by the
coordinate functions z1, . . . , zn and φ would be dense in L2(B,m), whereas
by Theorem 1.3 at least 2n smooth functions are needed to generate an
algebra dense in L2(B,m).

2. Measurable generators. In this section we prove Theorem 1.1,
and we show that the hypothesis that the space is metrizable cannot be
omitted. The proof of Theorem 1.1 is essentially a repetition of an argument
of Paul Halmos [12]. We thank Donald Sarason for directing our attention
to Halmos’ paper.

Proof of Theorem 1.1. Every compact metric space is a continuous image
of the Cantor set. Let K denote the (standard middle thirds) Cantor set and
let ϕ : K → X be a continuous surjective map. By a theorem of topology,
there exists a Borel cross-section of ϕ, that is, a Borel function f : X → K
such that the composition ϕ ◦ f is the identity on X. (See [12].)

Now let f∗(µ) be the push forward measure on K defined by f∗(µ)(E) =
µ(f−1(E)) for each measurable set E in K. Then for every Borel measurable
function g on K, �

X

(g ◦ f) dµ =
�

K

g df∗(µ).

It follows that the map T : Lp(f∗(µ)) → Lp(µ) given by Tg = g ◦ f is
an isometry. Furthermore, T maps Lp(f∗(µ)) onto Lp(µ); to see this define
S : Lp(µ) → Lp(f∗(µ)) by Sg = g ◦ ϕ, and note that since ϕ ◦ f is the
identity on X, the operator TS is the identity on Lp(µ). By the Weierstrass
approximation theorem, the polynomials are uniformly dense in C(K) and
hence are dense in Lp(f∗(µ)), so it follows that the polynomials in f are
dense in Lp(µ).

Remark 2.1. We note that the metrizability of the space X cannot
be omitted from the hypotheses of Theorem 1.1. For example, consider the
Cantor space X = {0, 1}J with the index set J uncountable. Then X is
non-metrizable. Regard X as the infinite product group (Z/2)J , and let µ
be the Haar measure on X. We now show that Lp(µ) is non-separable, which
implies that the conclusion of Theorem 1.1 cannot hold. For each α ∈ J , let
χα be the characteristic function of the set {(xγ)γ∈J ∈ X : xα = 1}. Then
the function |χα − χβ| takes the value 1 on a set of measure 1/2 and takes
the value 0 on the rest of X. Hence,

‖χα − χβ‖p =
[ �
X

|χα − χβ|p dµ
]1/p

= 2−1/p.
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Thus {χα}α∈J is an uncountable discrete set in Lp(µ), and hence Lp(µ) is
non-separable.

One might be tempted to imagine that Lp(µ) is non-separable whenever
the support of µ is non-metrizable, and hence that the conclusion of the
theorem holds if and only if the support of µ is metrizable. However, this
is not the case. Let X be a separable compact Hausdorff space that is not
metrizable. For instance, X could be the product space II where I = [0, 1].
Let {xn} be a countable dense subset of X. Choose a sequence (an) of
positive numbers such that

∑
an <∞, and define a measure µ on X by

µ(E) =
∑
xn∈E

an.

In other words, µ is counting measure with weight an at xn. Then µ is a
positive regular Borel measure on X whose support is X and hence is non-
metrizable. But Lp(µ) is clearly isometrically isomorphic to the weighted
lp-space with weights (an), and hence Lp(µ) is separable. Furthermore, the
isomorphism preserves the multiplication. By viewing the set of positive
integers as a subset of its one-point compactification, we can apply The-
orem 1.1 to conclude that there is a bounded sequence that generates an
algebra dense in our weighted lp-spaces. We conclude that there is a bounded
measurable function on X that generates an algebra dense in Lp(µ) for all
1 ≤ p <∞.

3. Continuous generators and almost everywhere one-to-one
functions. This section is devoted to proving Theorems 1.2 and 1.10. We
first show that Theorem 1.2 follows from Theorem 1.10 and then turn to the
proof of Theorem 1.10. We conclude the section by showing that dimension
decreasing, almost everywhere one-to-one mappings can never be smooth.

Proof of Theorem 1.2. Let µ be the measure on M corresponding to the
volume form given by the Riemannian metric on M . By Theorem 1.10 there
is a bounded continuous real-valued function f on M that is one-to-one
almost everywhere. Let M̃ be the closure of f(M) in R, and let f∗(µ) be
the push forward of µ under f . By the Weierstrass approximation theorem,
the polynomials are uniformly dense in the continuous functions on M̃ and
hence dense in Lp(M̃, f∗(µ)). Now let h ∈ Lp(M,µ) be arbitrary and let E
be a set of measure zero in M such that f is one-to-one on M \E. Redefine h
if necessary on E so that h is constant on each level set of f . Then h induces
a function h̃ in Lp(M̃, f∗(µ)) such that h̃ ◦ f = h. For any ε > 0, there is a
polynomial q such that [ �

M̃

|h̃− q|p df∗(µ)
]1/p

< ε.
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Then pulling back to M , we have[ �

M

|h− q ◦ f |p dµ
]1/p

< ε.

Since q ◦ f is a polynomial in f , the assertion is proven.

We now proceed to the proof of Theorem 1.10. We begin with several
easy lemmas. Throughout the paper, by “a Cantor set” we mean any space
that is homeomorphic to the standard middle thirds Cantor set.

Lemma 3.1. If C is a Cantor set and U is an open cover of C, then C
can be written as a finite union of disjoint Cantor sets C1, . . . , CN each of
which lies in some member of U .

Proof. Without loss of generality we take C = {0, 1}ω. By passing to a
refinement of the open cover U , we may assume that U consists of basic
open sets, that is, sets of the form {(xn) ∈ {0, 1}ω : xk = ak for all k ∈ F}
for some finite set F and some ak ∈ {0, 1} for each k ∈ F . Furthermore, by
compactness of C we may assume that U is a finite set {U1, . . . , Ur}. For
each j = 1, . . . , r, let Fj be the finite set such that Uj may be expressed in
the form

Uj = {(xn) ∈ {0, 1}ω : xk = ak for all k ∈ Fj}.
Let F =

⋃r
j=1 Fj . Then F is finite and the equation

C = {0, 1}ω =
⋃

(aj)j∈F∈{0,1}F
{(xn) ∈ {0, 1}ω : xk = ak for all k ∈ F}

expresses C as a finite union of disjoint Cantor sets each of which lies in
some Uj .

Lemma 3.2. Given an open set U in Rd with m(U) <∞ and an ε > 0,
there exists a Cantor set C in U such that m(U \ C) < ε.

Proof. Every open set in Rd is a countable union of (d-dimensional)
cubes with disjoint interiors [9, Lemma 2.43], so choose cubes R1, R2, . . .
with disjoint interiors such that U =

⋃
nRn. Then choose N such that∑∞

n=N+1m(Rn) < ε/2. For each j = 1, . . . , N choose a Cantor set Cj in Rj
such that m(Rj \ Cj) < ε/2j+1. Let C = C1 ∪ · · · ∪ Cn. Then m(U \ C) =∑N

n=1m(Rn \Cn)+
∑∞

n=N+1m(Rn) < ε, and being a finite union of disjoint
Cantor sets, C is itself a Cantor set.

The next lemma follows immediately from Lemma 3.2 and a simple in-
duction argument.

Lemma 3.3. Given an open set U in Rd with m(U) <∞, there exists a
countable collection {Cn}∞n=1 of disjoint Cantor sets in U such that
m(U \

⋃∞
n=1Cn) = 0.
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Lemma 3.4. Let M be a smooth manifold-with-boundary. Then there
exists a countable collection {Cn}∞n=1 of disjoint Cantor sets in M such that
M \

⋃∞
n=1Cn has measure zero in M .

Proof. Since the boundary of a smooth manifold always has measure
zero, we may assume without loss of generality that M is boundaryless.
Now choose an at most countable open cover {Un} of M such that for each
n there is a coordinate system (φn,Wn) such that Un ⊂Wn and φ(Un) is an
open ball in Euclidean space. Then the topological boundary ∂Un of each
set Un has measure zero in M . Now define a collection of disjoint open sets
{Vn} in M by setting Vn = Un \ (U1 ∪ · · · ∪ Un−1).

Suppose x is a point of M \
⋃
n Vn. Let k be the smallest value of n for

which x is in Un. Since x is not in Vk, it must be in U j for some j < k. Then
x is in ∂Uj . We conclude that M \

⋃
n Vn is contained in

⋃
n ∂Un and hence

has measure zero in M .

By Lemma 3.3 we can choose, for each n, a countable collection {Crn}∞r=1

of disjoint Cantor sets in Vn such that Vn \
⋃∞
r=1C

r
n has measure zero. Then

the collection {Crn} of all the chosen Cantor sets is a countable collection of
disjoint Cantor sets in M such that M \

⋃
n,r C

r
n has measure zero in M .

With these preliminaries we are ready for the proof of Theorem 1.10.

Proof of Theorem 1.10. Let M be a smooth manifold-with-boundary. By
Lemma 3.4 there exists a countable collection {Cn}∞n=1 of disjoint Cantor
sets in M such that M \

⋃∞
n=1Cn has measure zero in M . We will construct

a sequence (fn)∞n=1 of continuous functions from M into [0, 1] such that, for
each n,

(i) fn is one-to-one on C1 ∪ · · · ∪ Cn,
(ii) fn+1 agrees with fn on C1 ∪ · · · ∪ Cn, and
(iii) ‖fn+1 − fn‖∞ ≤ 1/2n.

Suppose for the moment that such a sequence of functions has been con-
structed. Then on account of condition (iii), the sequence (fn) converges
uniformly to a continuous limit function f . Due to condition (ii), fm agrees
with fn on C1 ∪ · · · ∪ Cn for all m ≥ n, and hence the limit function f
also agrees with fn on C1 ∪ · · · ∪ Cn. Now given distinct points a and b
in
⋃∞
n=1Cn, choose N such that both a and b lie in C1 ∪ · · · ∪ CN . Then

f(a) = fN (a) 6= fN (b) = f(b). Hence f is one-to-one on
⋃∞
n=1Cn. Thus it

suffices to construct a sequence of functions satisfying conditions (i)–(iii).

We will construct the sequence of functions fn by induction. To carry
out the induction we will also require the additional condition that, for
each n,

(iv) {fn(C1), . . . , fn(Cn)} is a collection of disjoint Cantor sets in [0, 1].
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We begin by defining f1. Choose a Cantor set C̃1 in [0, 1]. Choose a

homeomorphism g1 of C1 onto C̃1. By the Tietze extension theorem, there
is an extension of g1 to a continuous function of M into [0, 1]. Let f1 be the
extension.

Now for the induction step, assume that functions f1, . . . , fk have been
defined so that conditions (i)–(iv) hold for those values of n for which they
are meaningful. We wish to define fk+1. By the continuity of fk, there is
an open cover U of Ck+1 such that the image fk(U) of each member U
of U is contained in an interval of length 1/2k. By Lemma 3.1, we can write
Ck+1 as a finite union Ck+1 = C1

k+1 ∪ · · · ∪ CNk+1 of disjoint Cantor sets

C1
k+1, . . . , C

N
k+1 each of which is contained in some member of U . Then for

each j = 1, . . . , N , the set fk(C
j
k+1) is contained in an interval Ijk+1 of length

1/2k. Since fk(C1), . . . , fk(Ck) are disjoint Cantor sets, their union is also
a Cantor set and in particular has empty interior in [0, 1]. Consequently,

we can choose disjoint Cantor sets C̃1
k+1, . . . , C̃

N
k+1 with C̃jk+1 contained in

Ijk+1 \ (fk(C1) ∪ · · · ∪ fk(Ck)) for each j. Choose a homeomorphism gjk+1 of

Cjk+1 onto C̃jk+1 for each j, and then define gk+1 on C1 ∪ · · · ∪Ck ∪Ck+1 by

gk+1(x) =

{
fk(x) for x ∈ C1 ∪ · · · ∪ Ck,
gjk+1(x) for x ∈ Cjk+1 (j = 1, . . . , N).

Then gk+1 is a homeomorphism of C1∪· · ·∪Ck+1 onto f(C1)∪· · ·∪f(Ck)∪
C̃1
k+1 ∪ · · · ∪ C̃Nk+1 taking Ck+1 onto C̃1

k+1 ∪ · · · ∪ C̃Nk+1. Note that

sup
x∈C1∪···∪Ck+1

|fk(x)− gk+1(x)| ≤ 1/2k

since for each j both fk(C
j
k+1) and gk+1(C

j
k+1) are contained in Ijk+1. By the

Tietze extension theorem, there is a continuous function hk+1 on M that
agrees with fk − gk+1 on C1 ∪ · · · ∪ Ck+1 and satisfies

‖hk+1‖∞ ≤ 1/2k.

Set fk+1 = fk−hk+1. Then fk+1 = gk+1 on C1∪· · ·∪Ck+1, and ‖fk+1 − fk‖∞
≤ 1/2k. It follows that f1, . . . , fk+1 satisfy the required conditions (i)–(iv)
for those values of n for which the conditions are meaningful. Therefore, by
induction we obtain the desired sequence (fn).

We conclude this section by showing that, not surprisingly, smooth maps
one-to-one almost everywhere can never be dimension decreasing.

Proposition 3.5. If k < n, then there is no smooth map F : Rn → Rk
that is one-to-one almost everywhere.

Proof. Let F = (f1, . . . , fk) : Rn → Rk be a smooth map. Let r be the
maximum rank achieved by the derivative dF of F , and let a be a point where
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this maximum is achieved. Then dF has rank r throughout some neighbor-
hood U of a. Now without loss of generality we may assume that in U the
differentials df1, . . . , dfr are linearly independent, and dfr+1, . . . , dfk are in
the span of df1, . . . , dfr. Then (f1, . . . , fr) : Rn → Rr is a submersion at a,
so by the local submersion theorem [11, p. 20], there are local coordinates
about a and

(
f1(a), . . . , fr(a)

)
in which (f1, . . . , fr) becomes the canonical

submersion (x1, . . . , xk) 7→ (x1, . . . , xr). On each slice {(x1, . . . , xr) = c}, for
c a constant in Rr, the functions f1, . . . , fr are constant. Hence df1, . . . , dfr
are identically zero when restricted to a slice. Since dfr+1, . . . , dfk are in the
span of df1, . . . , dfr, we see that dfr+1, . . . , dfk are also identically zero when
restricted to a slice. But then fr+1, . . . , fk must be constant on each slice.
Thus F = (f1, . . . , fk) is constant on each slice. Consequently, any subset
of U on which F is one-to-one contains at most one point of each slice. But
any measurable set with this property has measure zero. Thus F cannot be
one-to-one almost everywhere.

4. Smooth generators. This section is devoted to proving Theorem 1.3.
We noted in the introduction the similarity between Theorem 1.3 and the
consequence of Browder’s theorem stated as Theorem 1.4. In our context,
the methods of Browder do not seem to be applicable. However, in the case
of smooth generators, there is a more elementary proof of Theorem 1.4 due
to Michael Freeman [10]. Our proof of Theorem 1.3 is an adaptation of
Freeman’s argument. Following Freeman, we make the following definition.

Definition 4.1. Let M be an n-dimensional smooth manifold-with-
boundary. Let F be a collection of complex-valued smooth functions on M .
The exceptional set E of F is defined by the equation

E = {p ∈M : df1 ∧ · · · ∧ dfn(p) = 0

for each n-tuple (f1, . . . , fn) of functions in F}.
Note that in the set-up of the above definition, if the collection F has

fewer than n elements, then necessarily the exceptional set E is all of M .
Therefore, Theorem 1.3 is an immediate consequence of the following result.

Theorem 4.2. Let M be an n-dimensional Riemannian manifold-with-
boundary, and let F be a collection of smooth functions on M that generates
an algebra dense in Lp(M) for some 1 ≤ p < ∞. Then the exceptional set
E of F has empty interior in M .

Proof. Given an arbitrary open set U of M we are to show that there are
functions f1, . . . , fn in F such that df1∧· · ·∧dfn is not identically zero on U .
Of course, by shrinking U we may assume that U is a set of finite measure
that is diffeomorphic to a bounded open set in Euclidean space, and then we
can pull everything back to Euclidean space. We may also assume that the
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Lp-norm obtained from pulling back is comparable to the Lp-norm obtained
by restricting Lebesgue measure to the image of U . The theorem therefore
follows immediately from Lemma 4.3 below.

Lemma 4.3. If F is a collection of C1 functions on a bounded open set
U in Rn such that the polynomials in F are dense in Lp(U,m) for some
1 ≤ p <∞, then the exceptional set for F is a proper subset of U .

Proof. Since the measure of U is finite, the L1(U,m)-norm is dominated
by a multiple of the Lp(U,m)-norm, and Lp(U,m) is a dense subset of
L1(U,m). Thus density in Lp(U,m) implies density in L1(U,m), so we only
have to consider the case p = 1.

We need to show that there are functions f1, . . . , fn in F such that
df1 ∧ · · · ∧ dfn is not identically zero on U . We will choose these functions
inductively so that for each k, 1 ≤ k ≤ n, the k-form df1 ∧ · · · ∧ dfk is not
identically zero on U .

When k = 1, the required function can clearly be chosen, since the
functions in F cannot all be constant on U . Now assume that functions
f1, . . . , fk ∈ F have been found so that df1 ∧ · · · ∧ dfk does not vanish
identically on U . Fix a point p0 in U such that df1 ∧ · · · ∧ dfk(p0) 6= 0.
Then there must be some k coordinates xj1 , . . . , xjk such that (df1 ∧ · · · ∧
dfk(p0))(∂/∂xj1 , . . . , ∂/∂xjk) 6= 0. By reordering the coordinates, we may
assume that (j1, . . . , jk) = (1, . . . , k). Now choose a neighborhood V of p0
and an r > 0 such that p+ t · (x1, . . . , xk, 1 +xk+1, 0, . . . , 0) is in U for every
p ∈ V , every 0 ≤ t ≤ r, and every (x1, . . . , xk+1) ∈ Sk ⊂ Rk+1. Define
α : Sk × V → U by

α((x1, . . . , xk+1), p) = p+ r · (x1, . . . , xk, 1 + xk+1, 0, . . . , 0).

For each p ∈ V the map α takes Sk ×{p} diffeomorphically onto a k-sphere
in U containing the point p and such that the tangent space to the sphere
at p is spanned by ∂/∂x1, . . . , ∂/∂xk. Thus letting Np denote the closed ball
whose boundary ∂Np is the image sphere, we find that (df1∧· · ·∧dfk)(p0) is
non-zero as a form on ∂Np0 . Consequently, there is a continuous function g
on U such that �

∂Np0

g df1 ∧ · · · ∧ dfk 6= 0.(1)

We claim that inequality (1) together with the hypothesis that the poly-
nomials in F are dense in L1(U,m) implies that for some function h that is
a polynomial in functions in F and for some point p in V we have

�

∂Np

h df1 ∧ · · · ∧ dfk 6= 0.(2)
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To verify this, first note that (1) implies that there is a compact neighbor-
hood W ⊂ V of p0 such that

(3)
�

W

�

∂Np

g df1 ∧ · · · ∧ dfk dm 6= 0.

Now let µ denote surface area measure on Sk, and note that the measure
corresponding to df1 ∧ · · · ∧ dfk on ∂Np pulls back under α to σp dµ on Sk

for some smooth function σp. Define σ on Sk × V by σ(x, p) = σp(x). Then
σ is smooth, and hence in particular the supremum ‖σ‖∞ of σ over Sk ×W
is finite. Now pulling back and applying Fubini’s theorem we have�

W

�

∂Np

g df1 ∧ · · · ∧ dfk dm =
�

W

�

Sk

(g ◦ α)σ dµ dm(4)

=
�

Sk

�

W

(g ◦ α)σ dmdµ.

By (3) and (4) we have

(5)
∣∣∣ �
Sk

�

W

(g ◦ α)σ dmdµ
∣∣∣ > 0,

so by the hypothesis on the collection F , there is a function h that is a
polynomial in functions in F such that

(6) ‖σ‖∞ ‖g − h‖1 µ(Sk) <
∣∣∣ �
Sk

�

W

(g ◦ α)σ dmdµ
∣∣∣.

Furthermore,

(7)
∣∣∣ �
Sk

�

W

(g ◦ α)σ dmdµ−
�

Sk

�

W

(h ◦ α)σ dmdµ
∣∣∣

≤
�

Sk

�

W

∣∣(g ◦ α)σ − (h ◦ α)σ
∣∣ dmdµ ≤ ‖σ‖∞ ‖g − h‖1 µ(Sk).

From (6) and (7) we get

(8)
�

Sk

�

W

(h ◦ α)σ dmdµ 6= 0.

Since equation (4) continues to hold with g replaced by h we get

(9)
�

W

�

∂Np

h df1 ∧ · · · ∧ dfk dm 6= 0.

Consequently, inequality (2) holds for some p ∈W ⊂ V as claimed.
Now Stokes’ theorem gives�

Np

dh ∧ df1 ∧ · · · ∧ dfk =
�

∂Np

h df1 ∧ · · · ∧ dfk 6= 0.(10)
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From the formula for the differential of a product, we see that dh is a linear
combination (with coefficients that are smooth functions) of the differentials
of functions in F . Thus (10) implies the existence of a function fk+1 ∈ F
such that df1 ∧ · · · ∧ dfk+1 is not identically zero on Np ⊂ U . This completes
the induction and the proof.

5. Homeomorphism generators. In this section we prove Theorems
1.5–1.8. The proof of Theorem 1.7 is by far the longest and occupies the
bulk of the section.

Proof of Theorem 1.5. Choose a self-homeomorphism α of S1 that is
continuously differentiable and such that�

S1

log |α′| dm = −∞.(11)

(For instance one could set g(θ) = π
	θ
0 e
−1/x2 dx /

	π
0 e
−1/x2 dx, and take

α(eiθ) = eig(θ) for θ ∈ [−π, π].)
Let dµ = |α′|dm. Define an operator T : Lp(S1,m) → Lp(S1, µ) by

Th = h ◦ α. Then by the change of variables formula, T is an isometry:

‖Th‖pp =
�

S1

|h ◦ α|p|α′| dm =
�

S1

|h|p dm = ‖h‖pp.

Because of (11), Szegö’s theorem [6, Theorem XX.6.6] shows that the set
of polynomials in z is dense in Lp(S1, µ). Now let f be the inverse of the
homeomorphism α. Then since Tf = z, it follows that the set of polynomials
in f is dense in Lp(S1,m).

Proof of Theorem 1.6. We will denote the set of polynomials in a function
f by P(f). Assume to get a contradiction that there is a one-to-one function
f ∈ C1(S1) such that P(f) is dense in Lp(S1,m). Let Γ = f(S1), which is a
simple closed curve. By the Riemann mapping theorem there is a conformal
mapping g that maps the interior of the unit circle onto the interior of Γ , and
this map can be extended continuously to be a homeomorphism of S1 onto Γ
by Carathéodory’s theorem [14, Theorem 5.1.1]. Since f is in C1(S1), the
curve Γ is rectifiable and consequently g is a function of bounded variation
on S1. Then by [8, Theorems 3.11 and 3.12], the function g|S1 : S1 → Γ is
absolutely continuous and its derivative g′ lies in the Hardy space H1.

Let µ denote the arc length measure on Γ . Let E = {eiψ : f ′(eiψ) = 0}.
Then µ(f(E)) =

	
E |f

′(eiψ)| dm(ψ) = 0. On Γ \ f(E) we also have

(f−1)′(τ) =
1

f ′(f−1(τ))
.

Let F = g−1(f(E)). Boundary sets of measure zero are preserved under
the conformal mapping g [8, p. 45], so m(F ) = 0. Let α(eiθ) = f−1 ◦ g(eiθ).
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Then we know that α is a homeomorphism of S1 onto S1 and is differentiable
almost everywhere on S1 with

α′(eiθ) = (f−1)′(g(eiθ))g′(eiθ) a.e.

Let ν be the push forward measure α−1∗ (m) on S1 induced by α−1. Then
for any h ∈ L1(S1,m),

�

S1

h(eiψ) dm(ψ) =
�

S1

h ◦ α(eiθ) dν(θ).

Thus the operator T : Lp(S1,m)→ Lp(S1, ν) given by

(Th)(eiθ) = h ◦ α(eiθ)

is an isometry, and T is invertible because α is a homeomorphism. Moreover,

Tf = g.

In particular, T (P(f)) = P(g). By our assumption, P(f) is dense in
Lp(S1,m), and hence P(g) is dense in Lp(S1, ν). Note that g is in the disk
algebra A(S1) = P(z). Consequently, P(g) ⊂ A(S1) = P(z), which implies
that P(z) is dense in Lp(S1, ν). Hence by Szegö’s theorem,

�

S1

log
dν(θ)

dm(θ)
dm(θ) = −∞.(12)

Note that

dν(θ)

dm(θ)
= |α′(eiθ)| = |(f−1)′(g(eiθ))g′(eiθ)| a.e.(13)

on S1. Since g′ ∈ H1, we know that log |g′| ∈ L1(S1,m) [15, Theorem 17.17].
Then by (12) and (13), we have

�

S1

log |(f−1)′(g(eiθ))| dm(θ) = −∞.

This implies that for some eiθ0 ∈ S1 \ F ,

(f−1)′(g(eiθ0)) = 0,

which contradicts the assumption that f ∈ C1(S1).

We now turn to the proof of Theorem 1.7. An important trick in the proof
is to consider the intersection of the spaces Lp(X,m) over all 1 ≤ p < ∞.
While the individual Lp-spaces are not algebras, their intersection is an
algebra, and this enables us to apply the Stone–Weierstrass theorem to
reduce the problem to proving the existence of a continuous function f such
that f lies in the Lp-closure of the polynomials in f for every p. We isolate
this part of the proof in the following two lemmas.
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Lemma 5.1. Let µ be a positive measure and let A be an algebra of
functions contained in the intersection over all 1 ≤ p < ∞ of the spaces
Lp(µ). Then the intersection over all 1 ≤ p <∞ of the Lp(µ)-closures of A
is also an algebra.

Proof. Let B denote the intersection over all 1 ≤ p < ∞ of the Lp(µ)-
closures of A. If g and h are in B, then so is gh, since applying Hölder’s
inequality ‖gh‖r ≤ ‖g‖p‖h‖q for 1/p + 1/q = 1/r (with p = q = 2r) gives,
for any gn and hn in A,

‖gh− gnhn‖r ≤ ‖gh− ghn‖r + ‖ghn − gnhn‖r
≤ ‖g‖2r‖h− hn‖2r + ‖g − gn‖2r‖hn‖2r.

Since B is obviously a vector space, this shows that B is an algebra.

Lemma 5.2. Let X be a compact space and µ be a positive regular Borel
measure on X. If f is a one-to-one continuous function on X such that f
is in the Lp(µ)-closure of the polynomials in f for every 1 ≤ p < ∞, then
the polynomials in f are dense in Lp(µ) for every 1 ≤ p <∞.

Proof. Let B denote the intersection over all 1 ≤ p < ∞ of the Lp-
closures of the polynomials in f . By Lemma 5.1, B is an algebra. Our hy-
pothesis on f now implies that B contains the algebra P(f, f) generated
by f and f . The algebra P(f, f) is obviously self-adjoint, and since f is one-
to-one, this algebra also separates points. Thus by the Stone–Weierstrass
theorem, P(f, f) is uniformly dense in C(X). It follows that B is dense in
Lp(µ).

As motivation for the proof of Theorem 1.7, we give a second proof of
Theorem 1.5. The construction for Theorem 1.7 is somewhat similar but
more elaborate.

Second proof of Theorem 1.5. We will construct a homeomorphism α :
S1 → S1 such that the inverse of α is the desired homeomorphism f .
We define α by prescribing its values at the points 0, π, 3π/2, 7π/4, . . .
. . . , (2n − 1)π/2n−1, . . . for n = 0, 1, 2, . . . , and then interpolating between
the prescribed values.

Let 〈a, b〉 stand for the closed arc {eiθ : a ≤ θ ≤ b}. It is well-known
that on any proper closed subset of the unit circle, the polynomials in z are
uniformly dense in the continuous functions. Thus for each n = 1, 2, . . . , we
can choose a polynomial qn such that

|z − qn(z)| ≤ 1
n√4π · n

for all z ∈ 〈0, (2n − 1)π/2n−1〉.

Let

Mn = sup
z∈S1

|z − qn(z)|.
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Now we inductively define a sequence (θn)∞n=0 of angles by setting θ0 = 0
and in general choosing θn such that θn−1 < θn < 2π and

m(〈θn, 2π〉) <
1

2nnMn
n

.

Then we set α(ei(2
n−1)π/2n−1

) = eiθn . Finally, on each arc 〈(2n − 2)π/2n−1,
(2n − 1)π/2n−1〉, with n = 1, 2, . . . , we define α by interpolating between
the values at the end points using any interpolation that maps the arc
〈(2n − 2)π/2n−1, (2n − 1)π/2n−1〉 continuously and bijectively onto the arc
〈θn−1, θn〉. Because θn → 2π as n→∞, the map α is a continuous bijection
of S1 onto itself and hence is a homeomorphism. Set f = α−1.

Let µ denote the push forward measure f∗(m). Then

�

S1

|z − qn(z)|n dµ =

(2n−1)π/2n−1�

0

|z − qn(z)|n dµ

+

2π�

(2n−1)π/2n−1

|z − qn(z)|n dµ

≤ 2π

(
1

n√4π · n

)n
+Mn

n

2π�

(2n−1)π/2n−1

dµ

=
1

2nn
+Mn

nm(〈θn, 2π〉)

≤ 1

2nn
+Mn

n

1

2nnMn
n

=
1

nn
.

Now the formula for integrating against a push forward measure gives

‖f − qn(f)‖Ln(m) = ‖z − qn(z)‖Ln(µ) ≤
1

n
.

Since the Lp(m)-norms are increasing in p, it follows that qn(f) → f in
Lp(m) for every 1 ≤ p <∞. Hence Lemma 5.2 shows that the polynomials
in f are dense in Lp(m) for every 1 ≤ p <∞.

Proof of Theorem 1.7. We will construct a sequence (αn) of self-homeo-
morphisms of S1 by induction and show that the sequence converges uni-
formly to a self-homeomorphism α. We will then define a self-homeomor-
phism H of D by extending α linearly in radial directions (i.e., H(reiθ) =
rα(eiθ)). Finally, the desired function f will be H−1.

Every self-map of S1 lifts to a self-map of R under the covering map
θ 7→ eiθ. For convenience we will call a self-map of S1 (strictly) increasing if
the lift is (strictly) increasing.

We present the proof in steps.
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Step 1: We define the homeomorphism α1.
Choose a Cantor set C1 on S1. Let K1 = C1, and let K̃1 be the cone

of K1 over the origin defined by

K̃1 = {rz ∈ D : z ∈ K1, 0 ≤ r ≤ 1}.

Then K̃1 is a compact set in the plane whose complement is connected, so
by Lavrentiev’s theorem there is a polynomial q1(z) such that

|z − q1(z)| <
1

2π
∀z ∈ K̃1.

Let M1 = supz∈D |z − q1(z)|. Choose a Cantor set C ′1 on S1 such that

m(S1 \ C ′1) < 1/M1.

Let K ′1 = C ′1, and choose an increasing self-homeomorphism α1 of S1 such
that α1(K1) = K ′1.

Step 2: We define the homeomorphism α2.
We will let 〈a, b〉 stand for the open arc {eiθ : a < θ < b}. Write the

complement of K1 in S1 as a countable union of disjoint open arcs

S1 −K1 =
⋃
k

〈a(1)k , b
(1)
k 〉.

In each arc 〈a(1)k , b
(1)
k 〉 choose a Cantor set C2,k that contains the end points

a
(1)
k and b

(1)
k . Let C2 =

⋃
k C2,k, let K2 = C1 ∪ C2, and let K̃2 be the cone

of K2 over the origin defined by

K̃2 = {rz : z ∈ K2, 0 ≤ r ≤ 1}.

Then K̃2 is a compact set in the plane whose complement is connected, so
by Lavrentiev’s theorem there is a polynomial q2(z) such that

|z − q2(z)| <
1√

2π · 2
∀z ∈ K̃2.

LetM2 = supz∈D |z−q2(z)|. Write the complement ofK ′1 in S1 as a countable
union of disjoint open arcs

S1 −K ′1 =
⋃
k

〈c(1)k , d
(1)
k 〉.

In each arc 〈c(1)k , d
(1)
k 〉 choose a Cantor set C ′2,k that contains the end points

c
(1)
k and d

(1)
k in such a way that

m
(⋃

k

(〈c(1)k , d
(1)
k 〉 \ C

′
2,k)
)
<

1

22M2
2

.

Then there is a homeomorphism α2,k of 〈a(1)k , b
(1)
k 〉 onto 〈c(1)k , d

(1)
k 〉 such that

α2,k is increasing and α2,k(C2,k) = C ′2,k. We define α2 on S1 by taking α2 to
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agree with α1 on K1 and, for each k, to agree with α2,k on 〈a(1)k , b
(1)
k 〉. Then

α2 is an increasing homeomorphism of S onto itself and letting C ′2 =
⋃
k C
′
2,k

and K ′2 = C ′1 ∪ C ′2 we have α2(K2) = K ′2.

Step 3: Continuing as in Step 2, we inductively obtain sequences (Cn),

(Kn), (K̃n), (C ′n), (K ′n) of sets, a sequence (qn) of polynomials, a sequence
(Mn) of positive numbers, and a sequence (αn) of self-homeomorphisms of S1

such that:

(i) Kn = C1 ∪ . . . ∪ Cn is a Cantor set in S1.

(ii) K̃n = {rz : z ∈ Kn, 0 ≤ r ≤ 1} is the cone of Kn over the origin.

(iii) expressing S1 \ Kn−1 as a countable union
⋃
k〈a

(n−1)
k , b

(n−1)
k 〉 of

disjoint arcs, we have Cn =
⋃
k Cn,k where each Cn,k is a Cantor

set in 〈a(n−1)k , b
(n−1)
k 〉 containing the end points a

(n−1)
k and b

(n−1)
k .

(iv) |z − qn(z)| < 1
n
√

2π · n
for all z ∈ K̃n.

(v) Mn = supz∈D |z − qn(z)|.
(vi) K ′n = C ′1 ∪ · · · ∪ C ′n.

(vii) expressing S1 \ K ′n−1 as a countable union
⋃
k〈c

(n−1)
k , d

(n−1)
k 〉 of

disjoint arcs, we have C ′n =
⋃
k C
′
n,k where each C ′n,k is a Cantor

set in 〈c(n−1)k , d
(n−1)
k 〉 containing the end points c

(n−1)
k and d

(n−1)
k

and such that

m(S1 \K ′n) = m
(⋃

k

(〈c(n−1)k , d
(n−1)
k 〉 \ C ′n,k)

)
<

1

nnMn
n

.

(viii) αn is an increasing self-homeomorphism of S1 such that αn agrees
with αn−1 on Kn−1 and satisfies αn(Cn,k) =C ′n,k and αn(Kn) =K ′n.

Step 4: We show that the sequence (αn) converges uniformly to a self-
homeomorphism α.

Note that whenever m ≥ n, the homeomorphisms αm and αn agree
on Kn, and consequently the monotonicity of αm and αn gives

|αm(z)− αn(z)| ≤ sup
k
|eid

(n)
k − eic

(n)
k | < 1

nnMn
n

.

Thus the sequence (αn) is uniformly Cauchy and hence converges uniformly
to a continuous limit function which we denote by α. (Note that the se-
quence (Mn) is bounded away from zero since z is not a uniform limit of
polynomials in z.)

Note that α must agree with αn on Kn. Since each αn is strictly in-
creasing and the union

⋃∞
n=1Kn is dense in S1, it follows that α is strictly

increasing. Hence α is a self-homeomorphism of S1.
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Step 5: We set f = H−1 and show that the set of polynomials in f is
dense in Lp(D,m) for 1 ≤ p <∞.

Note that because α agrees with αn on Kn, we have α(S1 \ Kn) =
S1 \K ′n. Consequently, letting m1 and m2 denote the 1- and 2-dimensional
Lebesgue measures, respectively, we obtain

m2(H(D \ K̃n)) =
1

2
m1(S

1 \K ′n) <
1

2nnMn
n

.

Now our construction and the formula for integrating against a push forward
measure give�

D

|f̄ − qn(f)|n dm

=
�

D

|z − qn(z)|n df∗(m) =
�

K̃n

|z − qn(z)|n df∗(m) +
�

D\K̃n

|z − qn(z)|n df∗(m)

≤ sup
z∈K̃n

|z − qn(z)|n
�

K̃n

df∗(m) + sup
z∈D
|z − qn(z)|n

�

D\K̃n

df∗(m)

≤ 1

2πnn

�

H(K̃n)

dm+Mn
n

�

H(D\K̃n)

dm ≤ 1

2nn
+Mn

n

1

2nnMn
n

=
1

nn
.

Thus ‖f̄ − qn(f)‖n ≤ 1/n. Since the Lp(m)-norms are increasing in p, it
follows that qn(f) → f in Lp(m) for every 1 ≤ p < ∞. Hence Lemma 5.2
implies that the polynomials in f are dense in Lp(m) for every 1 ≤ p <∞.

Proof of Theorem 1.8. Consider first the case when n is even. We begin
by verifying the following:

Claim. There is an embedding F : D k → Ck such that set of the com-

ponent functions f1, . . . , fk of F generates an algebra dense in Lp(D k
,m)

for all 1 ≤ p <∞.

By Theorem 1.7, there is a self-homeomorphism f of D such that the
set of polynomials in f is dense in Lp(D,m) for 1 ≤ p < ∞. Now define

f1, . . . , fk on D k
by fj(z) = f(zj). Let B denote the intersection over all

1 ≤ p < ∞ of the Lp-closures of the algebra generated by f1, . . . , fk. By
Lemma 5.1, B is an algebra. Because of the property of f , the algebra B

contains every continuous function on D k
that depends on only one variable.

By an application of the Stone–Weierstrass theorem, it follows that B is
dense in Lp(D,m), and the Claim is proved.

Now identify Rn with Cn/2 in the obvious way. Since X is compact, X is

contained in some polydisk ∆
n/2

in Cn/2. By the Claim, there is an em-

bedding of ∆
n/2

into Cn/2 whose component functions f1, . . . , fn/2 generate
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an algebra dense in Lp(∆
n/2
,m) for every 1 ≤ p < ∞. Restricting these

functions to X gives the result.
When n is odd, we replace the above claim by the assertion that there is

an embedding F : D k × I → Ck+1 such that set of the component functions

f1, . . . , fk+1 of F generates an algebra dense in Lp(D k × I,m) for all 1 ≤
p <∞, where I denotes the closed unit interval. This is proved in the same
way as the Claim but taking f1, . . . , fk+1 defined by fj(z, x) = f(zj) for
j = 1, . . . , k and fk+1(z, x) = x. We then identify Rn with Cbn/2c × R, note

that X is contained in a set of the form ∆
bn/2c × [a, b], and conclude the

argument as before.
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[1] S. Axler, Ž. Čučković, and N. V. Rao, Commutants of analytic Toeplitz operators
on the Bergman space, Proc. Amer. Math. Soc. 128 (2000), 1951–1953.

[2] C. J. Bishop, Approximating continuous functions by holomorphic and harmonic
functions, Trans. Amer. Math. Soc. 311 (1989), 781–811.

[3] J. Bram, Subnormal operators, Duke Math. J. 22 (1955), 75–94.
[4] A. Browder, Cohomology of maximal ideal spaces, Bull. Amer. Math. Soc. 67 (1961),

515–516.
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