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An observation on the Turán–Nazarov inequality

by

Omer Friedland (Paris) and Yosef Yomdin (Rehovot)

Abstract. The main observation of this note is that the Lebesgue measure µ in
the Turán–Nazarov inequality for exponential polynomials can be replaced with a certain
geometric invariant ω ≥ µ, which can be effectively estimated in terms of the metric
entropy of a set, and may be nonzero for discrete and even finite sets. While the frequencies
(the imaginary parts of the exponents) do not enter the original Turán–Nazarov inequality,
they necessarily enter the definition of ω.

1. Introduction. The classical Turán inequality bounds the maximum
of the absolute value of an exponential polynomial p(t) on an interval B
through the maximum of its absolute value on any subset Ω of positive
measure. Turán [11] assumed Ω to be a subinterval of B, and Nazarov [7]
generalized the result to any subset Ω of positive measure. More precisely,
we have:

Theorem 1.1 ([7]). Let p(t) =
∑m

k=0 cke
λkt be an exponential polyno-

mial, where ck, λk ∈ C. Let B ⊂ R be an interval, and let Ω ⊂ B be a
measurable set. Then

sup
B
|p| ≤ eµ1(B)·max |Reλk| ·

(
cµ1(B)

µ1(Ω)

)m
· sup
Ω
|p|

where µ1 is the Lebesgue measure on R and c > 0 is an absolute constant.

In this note, we generalize and strengthen the Turán–Nazarov inequality
(and its multi-dimensional analogue stated below) by replacing the Lebesgue
measure of Ω with a simple geometric invariant ωD(Ω). We call it the metric
span of Ω ⊂ Rn with respect to a “diagram” D of p comprising the degree of
p and its maximal frequency λ. The metric span always bounds the Lebesgue
measure from above, and it is strictly positive for sufficiently dense discrete
(in particular, finite) sets Ω. It can be effectively estimated in terms of the
metric entropy of Ω. See [13] and Section 2.1 below for some basic properties
of ωD(Ω).
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Our approach is as follows: Put ρ = supΩ |p|. Then Ω ⊂ Vρ, where Vρ =
Vρ(p) = {t ∈ B : |p(t)| ≤ ρ} is the ρ-sublevel set of the exponential poly-
nomial p. Next we use a theorem of Khovanskĭı [6] to give an upper bound on
the number of solutions of |p(t)| = ρ in an interval B in terms of the length
of the interval, the degree of p and the maximal frequency of p. This also
bounds from above the number of intervals in Vρ. Next, for Vρ, consisting of a
finite number of closed intervals, it is easy to compare the Lebesgue measure
µ1(Vρ) and the metric entropy ofΩ ⊂ Vρ. We conclude that µ1(Vρ) ≥ ωD(Ω).
Finally, we apply the original Turán–Nazarov inequality of Theorem 1.1 to
the sublevel set Vρ.

With appropriate modifications this approach also works in higher di-
mensions. Originally it was applied in [13] in order to produce a Remez-type
inequality for algebraic polynomials on discrete sets. The corresponding in-
variant ωn,d(Ω) depends only on the dimension and the degree, and uses
Vitushkin’s bound (see [12], and [5] for further developments in this direc-
tion) for the metric entropy of semialgebraic sets instead of Khovanskĭı’s
bound. It replaces the Lebesgue measure of Ω in the classical Remez in-
equality for algebraic polynomials ([9, 4]).

Now we give an accurate statement of our main results in the one-
dimensional case. For a given exponential polynomial p(t) =

∑m
k=0 cke

λkt

with ck, λk ∈ C, and for a given interval B ⊂ R, we define the diagram
D = D(p,B) = (m,λ, l). It comprises the degree m of p, the maximal fre-
quency λ = maxk=0,...,m |Imλk|, and the length l = µ1(B).

Define the constant MD (which we call a “frequency bound” for p) as
MD = bd/2c + 1, where d = d(m,λ, l) is the maximal number of solutions
of |p| = ρ, ρ ∈ R, on an interval of length l, for a complex exponential
polynomial p of degree m and of maximal frequency λ.

For any bounded subset Ω ⊂ R and for ε > 0 let M(ε,Ω) be the minimal
number of ε-intervals covering Ω. Now the metric span ωD is defined as
follows:

Definition 1.2. The metric span ωD(Ω) of Ω ⊂ R is given by

ωD(Ω) = sup
ε>0

ε[M(ε,Ω)−MD].

Now we can state our main result in the one-dimensional case:

Theorem 1.3. Let p(t) =
∑m

k=0 cke
λkt be an exponential polynomial,

where ck, λk ∈ C. Let B ⊂ R be an interval, and let Ω ⊂ B be any set. Then

sup
B
|p| ≤ eµ1(B)·max |Reλk| ·

(
cµ1(B)

ωD(Ω)

)m
· sup
Ω
|p|

where c > 0 is an absolute constant.
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Using Khovanskĭı’s [6] bound we can give a more explicit (although
somewhat cumbersome) expression for d, and hence for MD and ωD. Let

us put d̃ = d̃(m,λ, l) = C(m)lλ. Here C(m) = n(2n + 1)2n22n2
for n =

(m+ 1)(m+ 2)/2 + 1. Next we define M̃D = bd̃/2c + 1 and ω̃D(Ω) =
supε>0 ε[M(ε,Ω) − M̃D]. As we shall see below, always d ≤ d̃, and hence
ω̃D(Ω) ≤ ωD(Ω).

Corollary 1.4. Under the conditions of Theorem 1.3,

sup
B
|p| ≤ eµ1(B)·max |Reλk| ·

(
cµ1(B)

ω̃D(Ω)

)m
· sup
Ω
|p|.

Remark 1.5. The same type of reasoning applies to any class of func-
tions for which a Remez-type inequality and a uniform bound on the number
of zeroes hold.

Remark 1.6. For any measurable Ω we always have ωD(Ω) ≥ µ1(Ω),
with equality if Ω is a sublevel set of p (see Section 2.1.1 below). Thus,
Theorem 1.3 provides a true generalization and strengthening of the Turán–
Nazarov inequality given in Theorem 1.1.

Remark 1.7. We insist in Definition 1.2 above that ωD depends only
on the imaginary parts of the exponents λk, i.e. on the frequencies (and
consequently we get a rather complicated bound in Corollary 1.4; compare
Theorems 2.5, 2.6 below).

But this separation allows us to preserve and further develop a remark-
able feature of the original Turán–Nazarov inequality: The bound does not
depend on the frequencies, i.e. on the imaginary parts of λk in p. When we
allow discrete (in particular, finite) sets Ω, this feature certainly cannot be
completely preserved: Already for a trigonometric polynomial p(t) = sin(λt),
the set Ω of its zeroes (on which the Turán–Nazarov inequality certainly
fails) consists of all the points xj = jπ/λ, j ∈ N, and the number of such
points in any interval B is of order µ(B)λ/π.

However, Theorem 1.3 separates the roles of the real and imaginary
parts of the exponents: The first enter the main bound, as in the original
Turán–Nazarov inequality, while the second enter the definition of the span
ωD(Ω). As the density of Ω grows, the influence of the frequencies decreases:
see Section 2.1 below.

Remark 1.8. Recently, promising applications of Theorem 1.3 have
been found in signal processing, specifically, in non-uniform exponential
sampling (see [10, 2, 1] and references therein).

There is a version of the Turán–Nazarov inequality for quasipolynomials
in one or several variables due to A. Brudnyi [3, Theorem 1.7]. While less ac-
curate than the original one (in particular, the role of real and complex parts
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of the exponents is not separated), this result gives important information
for a wider class of quasipolynomials. In Section 3 we provide a strength-
ening of Brudnyi’s result along the same lines as above: We replace the
Lebesgue measure with an appropriate “metric span” which always bounds
the Lebesgue measure from above and is strictly positive for sufficiently
dense discrete (in particular, finite) sets.

2. Proofs and examples in dimension one. In this section we prove
Theorem 1.3 and provide some of its consequences.

Proof of Theorem 1.3. Let p(t) =
∑m

k=0 cke
λkt be an exponential poly-

nomial with ck, λk ∈ C. Let B ⊂ R be an interval. We consider the sublevel
set Vρ = {t ∈ B : |p(t)| ≤ ρ} of p(t). By definition, d = d(m,λ, µ1(B)) is
the maximal number of solutions of |p| = ρ, ρ ∈ R, on the interval B. Hence
the boundary of Vρ consists of at most d points (including the endpoints).
Therefore, the set Vρ consists of at most MD = bd/2c + 1 subintervals ∆i

(i.e. connected components of Vρ), with MD defined as in Theorem 1.3. Let
us cover each of these subintervals ∆i by adjacent ε-intervals Qε starting
from the left endpoint. Since all the adjacent ε-intervals, except possibly
one, are inside ∆i, their number does not exceed |∆i|/ε+ 1. Thus, we have

M(ε, Vρ) ≤ (bd/2c+ 1) + µ1(Vρ)/ε = MD + µ1(Vρ)/ε.

Now let a set Ω ⊂ B be given.

Lemma 2.1. If Ω ⊂ Vρ for a certain ρ ≥ 0 then µ1(Vρ) ≥ ωD(Ω).

Proof. If Ω ⊂ Vρ then for each ε > 0 we have M(ε,Ω) ≤ M(ε, Vρ) ≤
MD + µ1(Vρ)/ε, or µ1(Vρ) ≥ ε[M(ε,Ω) −MD]. Taking supremum with re-
spect to ε > 0, via Definition 1.2 we conclude that µ1(Vρ) ≥ ωD(Ω).

Let us now put ρ̂ = supΩ |p|. Then we have Ω ⊂ Vρ̂. Applying Lemma
2.1 we get µ1(Vρ̂) ≥ ωD(Ω). Finally, we apply the original Turán–Nazarov
inequality (Theorem 1.1) to the subset Vρ̂ ⊂ B, on which |p| by definition
does not exceed ρ̂. This completes the proof of Theorem 1.3.

Proof of Corollary 1.4. Let, as above, p(t) =
∑m

k=0 cke
λkt be an expo-

nential polynomial, where ck, λk ∈ C. Let us write ck = γke
iφk , λk = ak+ibk,

k = 0, 1, . . . ,m.

Lemma 2.2.

|p(t)|2 = 2
∑

0≤k≤l≤m
γkγle

(ak+al)t cos(φk − φl + (bk − bl)t)

is an exponential-trigonometric polynomial of degree (m+ 1)(m+ 2)/2 with
real coefficients.
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Proof. We have

p(t) =

m∑
k=0

γke
iφke(ak+ibk)t =

m∑
k=0

γke
akt+i(φk+bkt),

p̄(t) =

m∑
k=0

γke
akt−i(φk+bkt).

Therefore

|p(t)|2 = p(t)p̄(t) =
m∑

k,l=0

γkγle
(ak+al)t+i(φk−φl+(bk−bl)t).

Adding the terms in this sum for the indices (k, l) and (l, k) we get

|p(t)|2 = 2
∑
k≤l

γkγle
(ak+al)t cos(φk − φl + (bk − bl)t).

The following lemma provides a bound on the number of real solutions
of the equation |p(t)| = ρ. It is a direct consequence of Khovanskĭı’s bound
(Theorem 3.4 and Lemma 3.5 in Section 3.1 below).

Lemma 2.3. For p(t) as above and for each positive η > 0, the number
of non-degenerate solutions of the equation |p(t)| = η in the interval B ⊂ R
does not exceed

d̃ = C(m)µ1(B)λ

where λ = max |Imλk| and

C(m) = n(2n+ 1)2n22n2
, n = (m+ 1)(m+ 2)/2 + 1.

So we have d ≤ d̃, Md ≤Md̃, ωD(Ω) ≥ ω̃D(Ω). This completes the proof
of Corollary 1.4.

We expect that the expression for C(m) in Lemma 2.3 provided by the
general result of Khovanskĭı can be strongly improved in our specific case.
Let us recall the following result of Nazarov [7, Lemma 4.2], which gives a
much more realistic bound on the local distribution of zeroes of an expo-
nential polynomial if the real parts of its exponents are relatively small:

Lemma 2.4. Let p(t) =
∑m

k=0 cke
λkt be an exponential polynomial with

ck, λk ∈ C. Then the number of zeroes of p(z) inside each disk of radius

r > 0 does not exceed 4m+ 7λ̂r, where λ̂ = max |λk|.

The reason we use the Khovanskĭı bound in Theorem 1.3 is that it in-
volves only the imaginary parts of the exponents λk. In contrast, the bound
of Lemma 2.4 is in terms of λ̂ = max |λk| (as opposed to max |Imλk|). So
for the real parts of the exponents of p large, the Khovanskĭı bound may be
better.
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In order to apply Lemma 2.4 we notice that

|p(t)|2 = p(t)p̄(t) =
m∑

k,l=0

ck c̄le
(λk+λ̄l)t

is an exponential polynomial of degree at most m2 with the maximal ab-
solute value of the exponents not exceeding 2λ̂. Adding a constant adds at
most one to the degree. We conclude that the number of real solutions of
|p(t)| = η inside the interval B does not exceed d1 = 4m2 + 14λ̂µ1(B). Now
we define ω′D putting M ′D = bd1/2c + 1 in Definition 1.2. Repeating word
for word the proof of Theorem 1.3 above we obtain:

Theorem 2.5. For p(t) as above,

sup
B
|p| ≤ eµ1(B)·max |Reλk| ·

(
cµ1(B)

ω′D(Ω)

)m
· sup
Ω
|p|.

For the case of a real exponential polynomial p(t) =
∑m

k=0 cke
λkt with

ck, λk ∈ R, we get an especially simple and sharp result. Notice that the
number of zeroes of a real exponential polynomial is always bounded by its
degree m (indeed, the “monomials” eλkt form a Chebyshev system on each
real interval). Applying this fact in the same way as above we get

Theorem 2.6. For p(t) a real exponential polynomial of degree m,

sup
B
|p| ≤ eµ1(B)·max |λk| ·

(
cµ1(B)

ω′′D(Ω)

)m
· sup
Ω
|p|

where ω′′D(Ω) = supε>0 ε[M(ε,Ω)−m].

Notice that in this case the metric span ω′′D(Ω) depends only on the
degree m of p and the result is sharp: For any Ω consisting of at least m+ 1
points there is an inequality of the required form, while for any m points
there is a real exponential polynomial p(t) of degree m vanishing at exactly
those points.

2.1. Some examples. In this section we give just a couple of examples
illustrating the properties of the span ωD, as well as the scope and possible
applications of Theorem 1.3.

2.1.1. ωD(Ω) versus µ1(Ω). Let us recall that for a given interval B and
for an exponential polynomial p(t) =

∑m
k=0 cke

λkt, ck, λk ∈ C, its diagram
D = D(p,B) = (m,λ, l) comprises the degree m of p, the maximal frequency
λ = maxk=0,...,m |Imλk|, and the length l = µ1(B). Next, d = d(m,λ, l) is
the maximal number of solutions of |p| = ρ, ρ ∈ R, on an interval of length l,
MD = bd/2c+ 1, and ωD(Ω) = supε>0 ε[M(ε,Ω)−MD].

Proposition 2.7. For any measurable Ω we have ωD(Ω) ≥ µ1(Ω), with
equality if Ω = Vρ is a sublevel set of p.
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Proof. Indeed, for any ε > 0 we have M(ε,Ω) ≥ µ1(Ω)/ε. Now substi-
tute this into the expression for ωD(Ω) and let ε → 0. We get ωD(Ω) ≥
µ1(Ω). In order to show the equality for Ω = Vρ being a sublevel set of p,
we shall prove a slightly more general statement: Let Ω ⊂ B consist of s
closed intervals. Then for s ≤ MD we have ωD(Ω) = µ1(Ω). Indeed, let
ε > 0 be given. We cover each of these subintervals ∆i, i = 1, . . . , s, of
Ω by adjacent ε-intervals Qε starting from the left endpoint. Since all the
adjacent ε-intervals, except possibly one, are inside ∆i, their number does
not exceed |∆i|/ε+ 1. Thus, M(ε,Ω) ≤ s+ µ1(Ω)/ε, and therefore

ε[M(ε,Ω)−MD] ≤ ε[s+ µ1(Ω)/ε−MD] ≤ µ1(Ω)

if s ≤ MD. Since this inequality holds for each ε > 0, we conclude that
ωD(Ω) ≤ µ1(Ω).

Remark 2.8. It looks plausible that the equality in Proposition 2.7 hap-
pens if and only if Ω = Vρ is a sublevel set of p, i.e. it consists of s closed
intervals, with s ≤MD. Indeed, for one interval ∆i if we take ε smaller than,
but very close to, |∆i|/n, then we have M(ε,∆i) very close to |∆i|/ε+1. For
two intervals, if their lengths are commensurable, in exactly the same way
we can find ε such that M(ε,∆i∪∆j) is very close to (|∆i|+|∆j |)/ε+2. If the
lengths are not commensurable, we still can get the same result, using the
density of the integer multiples of an irrational angle on the unit circle. Pre-
sumably, this reasoning can be extended to any s, providing ε > 0 for which
M(ε,Ω) is very close to µ1(Ω)/ε+s. So if s > MD, for this specific ε we get
ε[M(ε,Ω)−MD] ≥ ε[µ1(Ω)/ε+ s−MD] > µ1(Ω). Hence ωD(Ω) > µ1(Ω).

2.1.2. Subsets Ω dense “in resolution ε”. Here we show that the role
of the frequency bound in the results above decreases as the discrete subset
Ω ⊂ B becomes denser. For Ω ⊂ B and for ε > 0 we define the “mea-
sure µ1(ε,Ω) of Ω in resolution ε” as the minimal possible measure of the
coverings of Ω with ε-intervals.

Proposition 2.9. For each diagram D and for any ε > 0 the metric
span ωD(Ω) satisfies

ωD(Ω) ≥ µ1(ε,Ω)

(
1− εMD

µ1(ε,Ω)

)
.

Proof. By the definition ωD(Ω) ≥ ε[M(ε,Ω)−MD]. Clearly, M(ε,Ω) ≥
ε−1µ1(ε,Ω). Hence ωD(Ω) ≥ µ1(ε,Ω)− εMD.

So if in a small resolution ε, the measure µ := µ1(ε,Ω) is not 0 then
we restore the original Turán–Nazarov inequality for Ω, with a correction
factor 1− εMD/µ, where MD is the frequency bound.

2.1.3. Combining the discrete and positive measure cases. Let a diagram
D be fixed, and let Ω = Ω1∪Ω2 ⊂ B, with Ω1 a set of a positive measure µ,



34 O. Friedland and Y. Yomdin

and Ω2 a discrete set. We assume that the sets Ω1 and Ω2 are 2µ1(B)/MD-
separated, where MD is the frequency bound for D.

Proposition 2.10. ωD(Ω) ≥ µ+ ωD(Ω2).

Proof. By the definition ωD(Ω) = supε ε[M(ε,Ω)−MD], and this supre-
mum is achieved for ε ≤ µ1(B)/MD. Indeed, otherwise M(ε,Ω) − MD

would be negative. Hence by the separation assumption we have M(ε,Ω) =
M(ε,Ω1) +M(ε,Ω2) and so ωD(Ω) = supε ε(M(ε,Ω1) +M(ε,Ω2)−MD) ≥
µ1(Ω1) + ωD(Ω2).

So in situations as above, Theorem 1.3 improves the original Turán–
Nazarov inequality, and the frequency bound applies only to the discrete
part of Ω.

2.1.4. Interpolation with exponential polynomials. This is a classical
topic starting at least with [8] and actively studied today in connection with
numerous applications. Theorems 1.3, 2.5, 2.6 connect the Turán–Nazarov
inequality on Ω ⊂ B with estimates for the robustness of the interpolation
from Ω to B. In particular, they provide robustness estimates in solving the
“generalized Prony system” for non-uniform samples. See [10, 2, 1] for some
initial results in this direction.

3. Multi-dimensional case. In this section we consider the version of
Turán–Nazarov inequality for quasipolynomials in one or several variables
due to A. Brudnyi [3, Theorem 1.7]. We provide a strengthening of this
result along the same lines as above: the Lebesgue measure is replaced with
an appropriate “metric span”. First, let us recall some definitions.

Definition 3.1. Let f1, . . . , fk ∈ (Cn)∗ be a set of pairwise different
complex linear functionals fj which we identify with the scalar products
fj · z, z = (z1, . . . , zn) ∈ Cn. We shall write

fj = aj + ibj .

A quasipolynomial is a finite sum

p(z) =

k∑
j=1

pj(z)e
fj ·z

where pj ∈ C[z1, . . . , zn] are polynomials in z of degrees dj . The degree of p

is m = deg p =
∑k

j=1(dj + 1). Following A. Brudnyi [3], we introduce the
exponential type of p to be

t(p) = max
1≤j≤k

max
z∈Bc(0,1)

|fj · z|

where Bc(0, 1) is the complex Euclidean ball of radius 1 centered at 0.

Below we consider p(x) for the real variables x = (x1, . . . , xn) ∈ Rn.
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Theorem 3.2 ([3]). Let p be a quasipolynomial with parameters n,m, k
defined on Cn. Let B ⊂ Rn be a convex body, and let Ω ⊂ B be a measurable
set. Then

sup
B
|p| ≤

(
cnµn(B)

µn(Ω)

)`
· sup
Ω
|p|

where ` = (c(m, k) + (m − 1) log(c1 max{1, t(p)}) + c2t(p) diam(B)), and
c, c1, c2 are absolute positive constants, and c(k,m) is a positive number
depending only on m and k.

Generalizing this result of Brudnyi, we follow the arguments described
in Sections 1 and 2 above, and [13].

3.1. Covering number of sublevel sets. For a relatively compact
A ⊂ Rn, the covering number M(ε,A) is defined now as the minimal number
of ε-cubes Qε covering A (they are translations of the standard ε-cubes
Qnε := [0, ε]n).

Lemma 3.3. The function

q(x) := |p(x)|2

=
∑

0≤i≤j≤k
e〈ai+aj ,x〉[Pi,j(x) sin〈bi − bj , x〉+Qi,j(x) cos〈bi − bj , x〉]

is a real exponential trigonometric quasipolynomial with Pi,j , Qi,j real poly-
nomials in x of degree di + dj, and at most κ := k(k + 1)/2 exponents, sine
and cosine elements.

Proof. Repeat word for word the proof of Lemma 2.2 above.

Clearly, all the partial derivatives ∂q(x)/∂xj have exactly the same form.
The following bound due to Khovanskĭı gives an estimate of the number of
solutions of a system of real exponential trigonometric quasipolynomials.
More precisely, we have

Theorem 3.4 (Khovanskĭı bound [6, Section 1.4]). Let P1 = · · ·=Pn=0
be a system of n equations with n real unknowns x = x1, . . . , xn, where
Pi is a polynomial of degree mi in n + k + 2p real variables x, y1, . . . , yk,
u1, . . . , up, v1, . . . , vp, with yi = exp〈aj , x〉, j = 1, . . . , k and uq = sin〈bq, x〉,
vq = cos〈bq, x〉, q = 1, . . . , p. Then the number of non-degenerate solutions
of this system in the region bounded by the inequalities |〈bq, x〉| < π/2, q =
1, . . . , p, is finite and less than

m1 · · ·mn

(∑
mi + p+ 1

)p+k
2p+(p+k)(p+k−1)/2.

Let us denote the vectors bi − bj ∈ Rn by bi,j and let λ := max ‖bi,j‖ be
the maximal frequency in q. The next lemma is a simple consequence of the
Khovanskĭı bound:
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Lemma 3.5. Let V be a parallel translation of the coordinate subspace
in Rn generated by xj1 , . . . , xjs. Then the number of non-degenerate real
solutions in V ∩Qnρ of the system

∂q(x)

∂xj1
= · · · = ∂q(x)

∂xjs
= 0

is at most Ĉsλ
s, where

Ĉs =

(
2

π

√
s ρ

)s s∏
r=1

(djr + dir)
( s∑
r=1

djr + dir + 2κ+ 1
)2κ

2κ+(2κ)(2κ−1)/2.

Proof. The following geometric construction is required by the Kho-
vanskĭı bound: Let Qi,j = {x ∈ Rn : |〈bi,j , x〉| ≤ π/2} and let Q =⋂

0≤i≤j≤kQi,j . For any B ⊂ Rn we define M(B) as the minimal number
of translations of Q covering B. For an affine subspace V of Rn we define
M(B ∩ V ) as the minimal number of translations of Q∩ V covering B ∩ V .
Notice that for B = Qnr , a cube of size r, we have M(Qnr ) ≤ ((2/π)

√
n rλ)n.

Indeed, Q always contains a ball of radius π/(2λ). Now, applying the Kho-
vanskĭı bound of Theorem 3.4 to the system

∂q(x)

∂xj1
= · · · = ∂q(x)

∂xjs
= 0

we find that the number of non-degenerate real solutions in V ∩ Qnρ is at
most(

2

π

√
s ρλ

)s s∏
r=1

(djr + dir)
( s∑
r=1

djr + dir + 2κ+ 1
)2κ

2κ+(2κ)(2κ−1)/2.

Let a quasipolynomial p be as above. A sublevel set A = Aρ of p is
defined as A = {x ∈ Rn : |p(x)| ≤ ρ}. The following lemma extends, to the
case of sublevel sets of exponential polynomials, the result of Vitushkin [12]
for semialgebraic sets. It can be proved using a general result of Vitushkin
in [12] through the use of “multi-dimensional variations”. However, in our
specific case the proof below is much shorter and it produces explicit (“in
one step”) constants.

Lemma 3.6. For any 1 ≥ ε > 0 we have

M(ε,A ∩Qn1 ) ≤ C0 + C1

(
1

ε

)
+ · · ·+ Cn−1

(
1

ε

)n−1

+ µn(A)

(
1

ε

)n
where C0, . . . , Cn−1 are positive constants, which depend only on k, di and
the maximal frequency λ of the quasipolynomial p.

Proof. The sublevel set Aρ is defined via the real exponential trigonomet-
ric quasipolynomial q(x) = |p(x)|2, i.e. A = Aρ(p) = {x ∈ Qn1 : q(x) ≤ ρ2}.
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Let us subdivide Qn1 into adjacent ε-cubes Qε with respect to the stan-
dard Cartesian coordinate system. Each Qε having non-empty intersection
with A is either entirely contained in A, or intersects the boundary ∂A
of A. Certainly, the number of those boxes Qε which are entirely contained
in A is bounded by µn(A)/µn(Qε) = µn(A)/εn. In the other case, where Qε
intersects ∂A, it means that there exist faces of Qε that have non-empty
intersection with ∂A.

Among all these faces, let us take the one with the smallest dimension s.
In other words, there exists an s-face F of the smallest dimension s that
intersects ∂A, for some s = 0, 1, . . . , n. Let us fix an s-dimensional affine
subspace V which corresponds to F . Then F contains completely some of
the connected components of A∩ V , otherwise ∂A would intersect a face of
Qε of dimension strictly less than s. Clearly, inside each compact connected
component of A ∩ V there is a critical point of q, which is defined by the
system of equations

∂q(x)

∂xj1
= · · · = ∂q(x)

∂xjs
= 0

(assuming that V is a translation of the coordinate subspace in Rn generated
by xj1 , . . . , xjs). After a small perturbation of q we can always assume that
all such critical points are non-degenerate. Hence by Lemma 3.5 the number
of these points, and therefore of the boxes Qε of the type considered, is
bounded by Ĉsλ

s.

According to the partitioning construction of Qn1 , we have at most
(1/ε + 1)n−s s-dimensional affine subspaces with respect to the same s
coordinates. On the other hand, the number of different choices of s co-
ordinates is

(
n
s

)
. This means that the number of boxes that have an s-face F

which contains completely some connected component of A ∩ V is at most(
n
s

)
(1/ε + 1)n−sĈsλ

s, which does not exceed, assuming ε ≤ 1, the constant

Cn−s :=
(
n
s

)
2n−sĈsλ

s(1/ε)n−s. Note that C0 is the bound on the number
of boxes that contain completely some of the connected components of A.
Thus, we have

M(ε,A) ≤ C0 + C1

(
1

ε

)
+ · · ·+ Cn−1

(
1

ε

)n−1

+ µn(A)

(
1

ε

)n
.

4. Metric span and generalized Brudnyi inequality. Let p be
a quasipolynomial as above, with parameters n, k, dj . These parameters,
together with the maximal frequency λ of p, form the multi-dimensional
diagram D of p. Notice that in contrast to the one-dimensional case (and
to Theorem 3.2) we restrict ourselves to the unit box Qn1 . So B does not
appear in the diagram.
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For a given 0 < ε ≤ 1 let us denote by MD(ε) the quantity MD(ε) =∑n−1
j=0 Cj(1/ε)

j , where C0, . . . , Cn−1 are the constants from Lemma 3.6. Ex-
tending the terminology from the one-dimensional case above, we call MD(ε)
the “frequency bound” for D. Note that the constants Cj depend only on the
parameters n, k, di and on the maximal frequency λ of the quasipolynomial p.
By Lemma 3.6 for any sublevel set Aρ of p we have

M(ε,A) ≤MD(ε) + µn(A)(1/ε)n.

Now for any subset Ω ⊂ Qn1 we introduce the metric span ωD of Ω with
respect to a given diagram D as follows:

Definition 4.1. For a subset Ω ⊂ Rn the metric span ωD is defined as

ωD(Ω) = sup
ε>0

εn[M(ε,Ω)−MD(ε)].

Lemma 4.2. Let A ⊂ Qn1 be a sublevel set of a real quasipolynomial with
diagram D. Then for any Ω ⊂ A we have

µn(A) ≥ ωD(Ω).

Proof. This fact follows directly from Lemma 3.6. Indeed, for any ε > 0
we have

M(ε,Ω) ≤M(ε,A) ≤MD(ε) + µn(A)

(
1

ε

)n
.

Consequently, for any ε > 0 we see that µn(A) ≥ εn[M(ε,Ω) − MD(ε)].
Now, we can take the supremum with respect to ε.

For some examples and properties of sets in Rn with positive metric span,
see [13, Section 5]. Here we only mention that for a measurable Ω ⊂ Rn
we always have ωD(Ω) ≥ µn(Ω). The proof is exactly the same as in the
remark after Theorem 1.3. Now we can prove our generalization of Brudnyi’s
Theorem 3.2 above.

Theorem 4.3. Let p be as above and let Ω ⊂ Qn1 . Then

sup
Qn

1

|p| ≤
(
cnµn(B)

ωD(Ω)

)`
· sup
Ω
|p|.

Proof. Let ρ̂ := supΩ |p|. For the sublevel set Aρ̂ of the quasipolynomial p
we find that Ω ⊂ Aρ̂. By Lemma 4.2 we have µn(Aρ̂) ≥ ωD(Ω). Now since p
is bounded in absolute value by ρ̂ on Aρ̂ by definition, we can apply Theorem
3.2 with B = Qn1 and Aρ̂.
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