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Abstract. Some new examples of K-monotone couples of the type (X,X(w)), where
X is a symmetric space on [0, 1] and w is a weight on [0, 1], are presented. Based on
the property of w-decomposability of a symmetric space we show that, if a weight w
changes sufficiently fast, all symmetric spaces X with non-trivial Boyd indices such that
the Banach couple (X,X(w)) is K-monotone belong to the class of ultrasymmetric Orlicz
spaces. If, in addition, the fundamental function of X is t1/p for some p ∈ [1,∞], then
X = Lp. At the same time a Banach couple (X,X(w)) may be K-monotone for some
non-trivial w in the case when X is not ultrasymmetric. In each of the cases where X is a
Lorentz, Marcinkiewicz or Orlicz space, we find conditions which guarantee that (X,X(w))
is K-monotone.

1. Introduction. One of the fundamental problems in interpolation
theory is to find a description of all interpolation spaces between two fixed
Banach spaces X0 and X1 which form a Banach couple X̄ = (X0, X1), i.e.,
the description of all intermediate Banach spaces X with respect to X̄ such
that every linear operator T : X̄ → X̄ maps X into X boundedly.

An important role in interpolation theory is played by K-monotone
spaces between fixed Banach spaces X0 and X1 which are defined as fol-
lows: if x ∈ X, y ∈ X0 +X1, and

K(t, y;X0, X1) ≤ K(t, x;X0, X1) for all t > 0,

then y ∈ X and ‖y‖X ≤ C‖x‖X for some constant C ≥ 1 independent of x
and y. Here
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K(t, x;X0, X1) = inf{‖x0‖X0 + t‖x1‖X1 : x = x0 + x1, x0 ∈ X0, x1 ∈ X1}

is the classical K-functional of Peetre.

A couple X̄ = (X0, X1) is called K-monotone (or a Calderón–Mityagin
couple) if all interpolation spaces between X0 and X1 are K-monotone.

By a theorem due to Brudny̆ı and Krugljak [BK91, Theorem 4.4.5] all
interpolation spaces with respect to a K-monotone Banach couple (X0, X1)
can be represented in the form X = (X0, X1)

K
Φ , where Φ is a Banach lattice

of measurable functions on (0,∞) and

‖x‖(X0,X1)KΦ
= ‖K(·, x;X0, X1)‖Φ.

Moreover, even if (X0, X1) is not K-monotone, every interpolation space X
with respect to (X0, X1) which happens to be K-monotone satisfies X =
(X0, X1)

K
Φ for some Φ, of course only up to equivalence of norms (Brudny̆ı

and Krugljak [BK91, Theorem 3.3.20]). Therefore, the problem of finding
new examples of K-monotone couples or K-monotone spaces becomes very
important.

Calderón [Ca66] and independently Mityagin [Mi65] proved that the
couple (L1, L∞) is K-monotone. Several years later Sedaev and Semenov
[SS71] proved that every weighted couple (L1(w0), L1(w1)) is K-monotone
(cf. also Cwikel–Kozlov [CK02] for another proof), and then Sedaev [Se73]
generalized this result to all couples of the form (Lp(w0), Lp(w1)) (1 ≤
p ≤ ∞). Finally, Sparr [Sp74], [Sp78] showed that (Lp(w0), Lq(w1)) is a
K-monotone couple for 0 < p, q ≤ ∞. There are other proofs of Sparr’s
result, for example, by Dmitriev [Dm81], Cwikel [Cw76] and Arazy–Cwikel
[AC84].

In [CN03], Cwikel and Nilsson considered the problem of K-monotonicity
from a somewhat different point of view. Namely, they investigated when a
weighted Banach couple (X(w0), Y (w1)), with X,Y being separable Ba-
nach lattices with the Fatou property on a measure space (Ω,Σ, µ), is
K-monotone for all weights w0, w1 on Ω. They proved that this can happen
if and only if X = Lp(v0) and Y = Lq(v1) for some weights v0, v1 and some
numbers 1 ≤ p, q < ∞. In their proof the concept of a decomposable Ba-
nach lattice on a measure space is essentially used. A Banach lattice X is
called decomposable if for any convergent series

∑∞
n=1 fn in X with pairwise

disjoint fn (n = 1, 2, . . . ) and any (formal) series
∑∞

n=1 gn with gn ∈ X
and ‖gn‖X ≤ ‖fn‖X (n = 1, 2, . . . ), and with all gn pairwise disjoint, we
have

∑∞
n=1 gn ∈ X and ‖

∑∞
n=1 gn‖X ≤ C ‖

∑∞
n=1 fn‖X with a constant C

independent of fn, gn. This notion or some variants of it were introduced
earlier by Cwikel [Cw84] and Cwikel–Nilsson [CN84].

Note that the problem of K-monotonicity of weighted couples (X(w0),
Y (w1)) can be reduced to considering couples of the form (X,Y (w)). There-
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fore, in what follows, we will examine couples with one weight only. We will
say that a weight w is non-trivial if either w or 1/w is unbounded.

In [Ti11], the concept of w-decomposability of a Banach lattice, which
generalizes in a sense the previous one due to Cwikel, was introduced.
A theorem proved in [Ti11] states that, whenever X is a Banach lattice with
the Fatou property, the couple (X,X(w)) is K-monotone if and only if X
is w-decomposable (see Theorem 3.1 below). Earlier Kalton [Ka93] showed
that in the case of symmetric sequence spaces with the Fatou property the
K-monotonicity of a couple (X,Y (w)) for some non-trivial weight w implies
that X = lp and Y = lq for some 1 ≤ p, q ≤ ∞ (note, however, that there
exist examples of shift-invariant sequence spaces X with the Fatou prop-
erty such that (X,X(2−k)) is K-monotone but X is not isomorphic to lp
for any 1 ≤ p ≤ ∞ [AT10a], [AT10b]). Tikhomirov’s theorem from [Ti11]
allows us to examine whether the result of Kalton extends to symmetric
function spaces. We will see that this is not the case and the situation here
is essentially different.

The paper is organized as follows. In Section 2, some necessary defi-
nitions and notations are collected. First, we recall necessary information
about symmetric spaces on [0, 1], and then regularly varying convex Orlicz
functions on [0,∞) and regularly varying quasi-concave functions on [0, 1]
are discussed.

In Section 3 we consider the notion of a w-decomposable Banach lattice,
which plays a central role in these investigations. Using the Krivine theo-
rem we show that this notion can be essentially simplified in the case of
symmetric function spaces. Namely, we prove that for any w-decomposable
symmetric space X there exists p ∈ [1,∞] (depending on X) such that X
has, roughly speaking, both restricted lower and upper p-estimates. In par-
ticular, for some p, its fundamental function ϕ has the property that ϕp is
“almost additive” near zero.

Section 4 contains results on the w-decomposability of Lorentz and Mar-
cinkiewicz spaces on [0, 1]. If ϕ is a concave increasing function on [0, 1],
with γϕ > 0 and 1 ≤ p < ∞, then the couple (X,X(w)), where X is a
Lorentz space Λp,ϕ[0, 1] and w is a non-trivial weight, is K-monotone if and
only if condition (3.9) holds. This couple is K-monotone for some weight w
if and only if ϕ is equivalent to a function regularly varying at 0 of order p.
Moreover, for any weight w on [0, 1] we can construct a concave function ϕ
on [0, 1] such that the couple (X,X(w)) with X = Λ1,ϕ[0, 1] is K-monotone
and Λ1,ϕ[0, 1] 6= L1[0, 1].

We obtain analogous results for Marcinkiewicz spaces, as a consequence
of a new duality theorem which is of independent interest. It states that
under suitable mild conditions on a Banach lattice X, the weighted couple
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(X,X(w)) is K-monotone if and only if the couple (X ′, X ′(w)) is K-mono-
tone, where X ′ means the Köthe dual to X.

Section 5 deals with w-decomposability of Orlicz spaces LF [0, 1]. It is
shown (Theorem 6) that if the Orlicz function F satisfies the ∆2-condition
for large arguments, then LF [0, 1] is w-decomposable if and only if it satisfies
some restricted p-upper and p-lower estimates (see condition (5.1)). More-
over, it is proved (Theorem 7) that if F is equivalent to an Orlicz function
which is regularly varying at ∞ of order p ∈ [1,∞), then the Orlicz space
LF = LF [0, 1] is w-decomposable for some weight w on [0, 1] and therefore
the couple (LF , LF (w)) is K-monotone.

Finally, in Section 6, we prove that if a symmetric space X on [0, 1]
with non-trivial Boyd indices is w-decomposable with respect to a weight
changing sufficiently fast, then X is an ultrasymmetric Orlicz space. This
result implies that, for such a weight w, every K-monotone couple (X,X(w))
with X having the Fatou property must be an ultrasymmetric Orlicz space.
Moreover, if its fundamental function is of the form ϕX(t) = t1/p for some
1 ≤ p ≤ ∞, then X = Lp.

2. Preliminaries. Let us collect necessary information and results on
symmetric (rearrangement invariant) spaces and regularly varying functions.

2.1. Symmetric spaces. Let (Ω,Σ, µ) be a complete σ-finite measure
space and L0 = L0(Ω) be the space of all classes of µ-measurable real-valued
functions defined on Ω. A Banach space X = (X, ‖ · ‖X) is said to be a
Banach lattice on Ω if X is a linear subspace of L0(Ω) and has the ideal
property : if y ∈ X, x ∈ L0 and |x(t)| ≤ |y(t)| for µ-almost all t ∈ Ω, then
x ∈ X and ‖x‖X ≤ ‖y‖X . We also assume that the support of the space X
is Ω (suppX = Ω), that is, there is an x0 ∈ X such that x0(t) > 0 µ-a.e.
on Ω.

We will say that X has the Fatou property if the conditions 0 ≤ xn ↑
x ∈ L0 with xn ∈ X and supn∈N ‖xn‖X < ∞ imply that x ∈ X and
‖xn‖X ↑ ‖x‖X .

A Banach lattice X is said to be p-convex (1 ≤ p < ∞), respectively
q-concave (1 ≤ q <∞), if there is a constant C > 0 such that∥∥∥( n∑

k=1

|xk|p
)1/p∥∥∥

X
≤ C

( n∑
k=1

‖xk‖pX
)1/p

,

respectively, ( n∑
k=1

‖xk‖qX
)1/q

≤ C
∥∥∥( n∑

k=1

|xk|q
)1/q∥∥∥

X
,

for any choice of vectors x1, . . . , xn in X and any n ∈ N. If in the above defi-
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nitions the vectors x1, . . . , xn ∈ X are assumed to be pairwise disjoint, then
X is said to satisfy an upper p-estimate and lower q-estimate, respectively.
Of course, p-convexity implies upper p-estimate, and q-concavity implies
lower q-estimate. More properties can be found in the book [LT79].

Let w be a weight on (Ω,Σ, µ), i.e., a positive, a.e. finite function, and
let X be a Banach lattice on (Ω,Σ, µ). Then the weighted space X(w)
on (Ω,Σ, µ) is defined by X(w) = {x ∈ Ω : xw ∈ X} with the norm
‖x‖X(w) = ‖xw‖X . In what follows, we will always suppose that the weight
w is non-trivial, that is, w or 1/w is an unbounded function on (Ω,Σ, µ).

For two Banach spaces E and F the symbol E
C
↪→ F means that the

embedding E ⊂ F is continuous with norm at most C, i.e., ‖x‖F ≤ C‖x‖E
for all x ∈ E.

By a symmetric space (symmetric Banach function space), we mean a
Banach lattice X = (X, ‖ · ‖X) on I = [0, 1] with the Lebesgue measure
m satisfying the following additional property: for any two equimeasurable
functions x, y ∈ L0(I) (that is, dx(λ) = dy(λ), where dx(λ) = m({t ∈ I :
|x(t)| > λ}), λ ≥ 0, is the distribution function of x) the condition x ∈ X
implies that y ∈ X and ‖x‖X = ‖y‖X . In particular, ‖x‖X = ‖x∗‖X , where
x∗(t) = inf{λ > 0 : dx(λ) ≤ t}, t ≥ 0.

Recall that a non-negative function ϕ : [0, 1] → [0,∞) is called quasi-
concave if it is non-decreasing on [0, 1] with ϕ(0) = 0 and if ϕ(t)/t is non-
increasing on (0, 1]. The fundamental function ϕX of a symmetric space X
on I is ϕX(t) = ‖χ[0, t]‖X , t ∈ I. It is well known that ϕX is quasi-concave
on I. Taking ϕ̃X(t) := infs∈(0,1)(1 + t/s)ϕX(s) we obtain a concave function
ϕ̃X satisfying ϕX(t) ≤ ϕ̃X(t) ≤ 2ϕX(t) for all t ∈ I. For any quasi-concave
function ϕ on I the Marcinkiewicz space Mϕ is defined by the norm

‖x‖Mϕ = sup
t∈I, t>0

ϕ(t)x∗∗(t), x∗∗(t) =
1

t

t�

0

x∗(s) ds.

It is a symmetric space on I with fundamental function ϕMϕ(t) = ϕ(t) and

X
1
↪→MϕX . The fundamental function of a symmetric space X = (X, ‖ ·‖X)

is not necessarily concave but we can introduce an equivalent norm on X
in such a way that it will be concave (take ‖x‖1X = max(‖x‖X , ‖x‖Mϕ̃X

),

x ∈ X).
For any symmetric function space X with concave fundamental function

ϕ = ϕX there is also the smallest symmetric space with the same funda-
mental function: it is the Lorentz space Λϕ given by the norm

‖x‖Λϕ =
�

I

x∗(t) dϕ(t) := ϕ(0+)‖x‖L∞(I) +
�

I

x∗(t)ϕ′(t) dt.

We then have embeddings ΛϕX
1
↪→ X

1
↪→MϕX . Every non-trivial symmetric
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function space X on I = [0, 1] is an intermediate space between the spaces

L1(I) and L∞(I), and L∞(I)
C1
↪→ X

C2
↪→ L1(I), where C1 = ϕX(1) and

C2 = 1/ϕX(1) (see [BS88, Corollary 6.7, p. 78] or [KPS82, Theorem 4.1,
p. 91] for a similar result when the underlying measure space is (0,∞).)

The lower and upper Boyd indices αX resp. βX and the dilation indices
γX resp. δX of a symmetric space X on I = [0, 1] with fundamental function
ϕX = ϕ are defined as follows:

αX := lim
t→0+

ln ‖σt‖X→X
ln t

, βX := lim
t→∞

ln ‖σt‖X→X
ln t

,

σtx(s) = x(s/t)χI(s/t)

and

γX := γϕ = lim
t→0+

ln ϕ̄(t)

ln t
, δX := δϕ = lim

t→∞

ln ϕ̄(t)

ln t
, ϕ̄(t) = sup

s,st∈I

ϕ(st)

ϕ(s)
.

We have 0 ≤ αX ≤ γX ≤ δX ≤ βX ≤ 1 (see [KPS82, pp. 101–102] and
[Ma85, p. 28]).

A function F : [0,∞)→ [0,∞) is called an Orlicz function if it is convex
and increasing with F (0) = 0. For a given Orlicz function F the Orlicz space
LF = LF (I) on I = [0, 1] is defined as

LF (I) = {x ∈ L0(I) : IF (cx) <∞ for some c = c(x) > 0},
where IF (x) :=

	
I F (|x(t)|) dt. The Orlicz space LF is a symmetric space

on I with the Luxemburg–Nakano norm defined by

‖x‖LF = inf {λ > 0 : IF (x/λ) ≤ 1} .
An Orlicz function F satisfies the ∆2-condition for large u if there exist

constants C ≥ 1 and u0 ≥ 0 such that F (2u) ≤ CF (u) for all u ≥ u0.
Throughout, f

C
≈ g means that the functions f and g are equivalent

with constant C > 0, that is, C−1f(t) ≤ g(t) ≤ Cf(t) for all points t of
the set on which these functions are defined, or all points of some explicitly
indicated subset of that set. In the case when the equivalence constant is
not important we write just f ≈ g. By [r] we denote the integer part of a
real number r.

More information about Banach lattices and symmetric spaces can be
found, for example, in [BS88], [KPS82] and [LT79]; about Orlicz spaces one
can read e.g. in [KR61] and [Ma89].

2.2. Regularly varying convex and concave functions. An Orlicz
function F on [0,∞) is called regularly varying at ∞ of order p (1 ≤ p <∞)
if

(2.1) lim
t→∞

F (tu)

F (t)
= up for all u > 0.

The following result is due to Kalton [Ka93, Lemma 6.1].



New examples of K-monotone weighted couples 61

Lemma 2.1. Let F be an Orlicz function. The following conditions are
equivalent:

(a) F is equivalent to an Orlicz function regularly varying at ∞ of order
p ∈ [1,∞).

(b) There exists a constant C > 0 such that for any u ∈ (0, 1] we can
find t0 = t0(u) with

F (tu)

F (t)

C
≈ up for all t ≥ t0.

Although we do not need it here, there is an analogous definition of Or-
licz functions which are regularly varying of order p at 0 (see e.g. [Ka93]).
However, we do need to consider quasi-concave functions which are regularly
varying of order p at 0. Before recalling their definition we point out that
it is not quite analogous to the definitions for regularly varying Orlicz func-
tions, because the power p which appears in (2.1) and in the corresponding
definition in [Ka93] will be replaced in (2.2) by 1/p.

A function ϕ : [0, 1]→ [0,∞) which is quasi-concave and satisfies ϕ(0)=0
is said to be regularly varying at zero of order p (1 ≤ p ≤ ∞) if

(2.2) lim
t→0+

ϕ(tu)

ϕ(t)
= u1/p for all u > 0.

Abakumov and Mekler [AM94, Theorem 5] proved that a quasi-concave
function ϕ is equivalent to a quasi-concave function regularly varying at zero
of order p ∈ [1,∞] if and only if

lim sup
t→0+

ϕ(tu)

ϕ(t)
≈ u1/p for all u > 0.

The following lemma is an immediate consequence of this result (see also
the proof of Theorem 5 in [AM94]).

Lemma 2.2. A quasi-concave function ϕ on [0, 1] is equivalent to a quasi-
concave function which is regularly varying at zero of order p ∈ [1,∞] if and
only if for some C > 0 and any N ∈ N there exists τ(N) ∈ (0, 1] such that
for all 0 < t ≤ τ(N) with 0 < tN ≤ 1 we have

(2.3)
ϕ(Nt)

ϕ(t)

C
≈ N1/p.

Recall that the fundamental function of an Orlicz space LF on [0, 1] with
the Luxemburg–Nakano norm is ϕLF (t) = 1/F−1(1/t) for 0 < t ≤ 1 and
ϕLF (0) = 0, where F−1 is the inverse of F (see [KR61, formula (9.23, p. 79
of the English version)] or [Ma89, Corollary 5, p. 58]). The function ϕLF is
quasi-concave but not necessarily concave on [0, 1] (see [KR61] or [Ma89]).

The notions of regularly varying Orlicz and quasi-concave functions are
closely related. Using Lemmas 2.1 and 2.2 and routine arguments one can
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establish the following quantitative result showing a connection between a
regularly varying Orlicz function F and the fundamental function of the
corresponding Orlicz space LF .

Proposition 2.3. Suppose that p ∈ [1,∞) and let F be an Orlicz func-
tion such that both F and its complementary function F ∗ satisfy the ∆2-
condition for large u. Then the following conditions are equivalent:

(a) There exists a constant C ′ > 0 such that for any N ∈ N there exists
τ(N) ∈ (0, 1] with

(2.4)
F (u)

F (uN−1/p)

C′

≈ N for all u ≥ F−1(1/τ(N)).

(b) There exists a constant C > 0 such that for any N ∈ N the funda-
mental function ϕLF satisfies condition (2.3) with the same τ(N).

3. w-decomposable Banach lattices. Throughout, C will denote a
constant whose value may be different in different appearances.

The following notion, introduced in [Ti11], will be important for us. Let
X be a Banach lattice on (Ω,Σ, µ) and w be a weight on Ω. We say that
X is w-decomposable if there exists C > 0 such that for any n ∈ N and for
all x1, . . . , xn, y1, . . . , yn in X satisfying the conditions

(3.1) ‖xi‖X = ‖yi‖X , i = 1, . . . , n,

and

(3.2) inf w(suppxi ∪ supp yi) ≥ 2 supw(suppxi+1 ∪ supp yi+1)

for i = 1, . . . , n− 1, we have

(3.3)
∥∥∥ n∑
i=1

xi

∥∥∥
X

C
≈
∥∥∥ n∑
i=1

yi

∥∥∥
X
.

To clarify the meaning of condition (3.2), consider the following example.
Let X be a Banach lattice of Lebesgue measurable functions on [0, 1] and
w(t) = 1/t (0 < t ≤ 1). Then (3.2) is equivalent to

2 sup(suppxi ∪ supp yi) ≤ inf(suppxi+1 ∪ supp yi+1), i = 1, . . . , n− 1.

In other words, there are intervals [ai, bi] ⊂ [0, 1] (depending on xi, yi) such
that 2bi ≤ ai+1 (i = 1, . . . , n − 1), suppxi ⊂ [ai, bi] and supp yi ⊂ [ai, bi]
(i = 1, . . . , n).

It is not hard to see that 1/t-decomposability is equivalent to 1/tq-
decomposability, and more generally, w-decomposability and wq-decompo-
sability are equivalent for any weight w and any q > 0 (see [Ti11a, Corol-
lary 2.2, p. 61]).
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It turns out that the w-decomposability of a Banach lattice X guaran-
tees the K-monotonicity of the weighted couple (X,X(w)). More precisely,
Tikhomirov [Ti11] obtained the following generalization of Kalton’s results
from [Ka93].

Theorem 3.1. Suppose X is a Banach lattice on a σ-finite measure
space (Ω,Σ, µ) with suppX = Ω which has the Fatou property, and w
is a (non-trivial) weight on Ω. Then the Banach couple (X,X(w)) is
K-monotone if and only if X is w-decomposable.

In the case of symmetric spaces on [0, 1] the notion of w-decomposability
can be clarified by using the well-known Krivine theorem.

Proposition 3.2. Let w be a weight on [0, 1]. A symmetric space X on
[0, 1] is w-decomposable if and only if there exist C > 0 and 1 ≤ p ≤ ∞ such
that for any n ∈ N and all x1, . . . , xn ∈ X satisfying the conditions

(3.4) inf w(suppxi) ≥ 2 supw(suppxi+1), 1 ≤ i ≤ n− 1,

we have

(3.5)
∥∥∥ n∑
i=1

xi

∥∥∥
X

C
≈
( n∑
i=1

‖xi‖pX
)1/p

,

where, as usual, in the case p =∞ the right hand side should be replaced by
max1≤i≤n ‖xi‖X .

Proof. By Krivine’s theorem (see [LT79, Theorem 2.b.6] or [Ro78]), there
exists p ∈ [1/βX , 1/αX ] such that for every m ∈ N there are pairwise disjoint
equimeasurable functions y1, . . . , ym ∈ X, ‖yk‖X = 1 (k = 1, . . . ,m), such
that for any αk ∈ R (k = 1, . . . ,m) we have

(3.6) 1
2‖(αk)‖p ≤

∥∥∥ m∑
k=1

αkyk

∥∥∥
X
≤ 2‖(αk)‖p.

Obviously, the support of each yk has measure not greater than 1/m.
Suppose that a symmetric space X is w-decomposable and that, for some

n ∈ N, functions x1, . . . , xn in X satisfy (3.4). Without loss of generality we
may assume that xi 6= 0 for each i = 1, . . . , n. We choose m ∈ N sufficiently
large so that the support of each xi has measure greater than 1/m (and so
of course m ≥ n). For this choice of m we consider the disjoint measurable
functions y1, . . . , ym, ‖yk‖X = 1 (k = 1, . . . ,m), obtained as described in the
previous paragraph. In fact, we will only need the first n of these functions,
and we will only need a special case of (3.6) for sequences (αk) which satisfy
αk = 0 for k > n. We may assume without loss of generality that supp yi ⊂
suppxi for each i = 1, . . . , n. (If not, since X is symmetric, we can simply
replace each yi by an equimeasurable function which has this property and
the above mentioned special case of (3.6) will remain valid.) Thus (3.4)
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implies (3.2), and therefore, applying w-decomposability (see (3.3)) and then
the special case of (3.6), we obtain∥∥∥∥ n∑

i=1

αi
xi
‖xi‖X

∥∥∥∥
X

≈
∥∥∥ n∑
i=1

αiyi

∥∥∥
X
≈ ‖(αk)ni=1‖p

for all real αi. In particular, when αi = ‖xi‖X we obtain (3.5). Since the
reverse implication is obvious, the proof is complete.

For a given weight w consider the sets

Mk := {t ∈ [0, 1] : w(t) ∈ [2k, 2k+1)}, k ∈ Z.
Let (wr)

∞
r=1 be the non-increasing rearrangement of the sequence

(m(Mk))
+∞
k=−∞. Since the weight w is non-trivial it follows that wr > 0

for all r = 1, 2, . . . .
For some fixed n ∈ N, let x1, . . . , xn be functions in X. Suppose first

that they satisfy (3.4). Then it is easy to see that

card{i : Mk ∩ suppxi 6= ∅} ≤ 1 for each k ∈ Z.
On the other hand, more or less conversely, suppose that the functions xi
satisfy

card{k : Mk ∩ suppxi 6= ∅} ≤ 1 for each i ∈ {1, . . . , n},
i.e., for each i, there exists a unique ki ∈ Z for which suppxi ⊂ Mki .
Furthermore, suppose k1 < · · · < kn. While this is not sufficient to imply
that the collection of functions x1, . . . , xn satisfies (3.4), it does imply that
(after relabelling) the collection x1, x3, x5, . . . satisfies (3.4), and so does
x2, x4, . . . .

We will denote by {M r}∞r=1 any rearrangement of the sets Mk (k =

0,±1,±2, . . .) such that m(M r) = wr, r = 1, 2, . . . . Thus, by Proposition
3.2, we obtain the following result.

Theorem 3.3. Suppose w is a non-trivial weight on [0, 1]. A symmetric
space X on [0, 1] is w-decomposable if and only if there exist C > 0 and
1 ≤ p ≤ ∞ such that for any n ∈ N and all x1, . . . , xn ∈ X satisfying the
condition

(3.7) suppxi ⊂M i, 1 ≤ i ≤ n,
we have the equivalence (3.5).

Next, we will need some corollaries of Theorem 3.3. Firstly, using the
symmetry of the norm in X, we get

Corollary 3.4. Let w be a non-trivial weight on [0, 1]. A symmetric
space X on [0, 1] is w-decomposable if and only if there exist C > 0 and
1 ≤ p ≤ ∞ such that for any n ∈ N and all pairwise disjoint x1, . . . , xn ∈ X
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satisfying the condition

(3.8) m(suppxi) ≤ wi, 1 ≤ i ≤ n,
we have (3.5).

Corollary 3.5. A symmetric space X on [0, 1] is w-decomposable for
some non-trivial weight w on [0, 1] if and only if there exist C > 0, 1 ≤ p
≤ ∞, and a sequence {∆k}∞k=1 of disjoint subintervals of [0, 1] such that for
any n ∈ N and all x1, . . . , xn ∈ X satisfying suppxi ⊂ ∆i (1 ≤ i ≤ n) we
have (3.5).

Corollary 3.6. Let w be a non-trivial weight on [0, 1] and let (wr)
∞
r=1

be as above. Suppose that X is a w-decomposable symmetric space on [0, 1]
with fundamental function ϕ. Then there exist C > 0 and p ∈ [1,∞] such
that, for every sequence (τr)

∞
r=1 of reals satisfying 0 < τr ≤ wr (r ∈ N), we

have

(3.9) ϕ
( ∞∑
r=1

τr

)
C
≈
( ∞∑
r=1

ϕp(τr)
)1/p

with the natural modification for p =∞.

Corollary 3.7. Let w be a non-trivial weight on [0, 1] such that a sym-
metric space X on [0, 1] is w-decomposable. Then there exist C > 0 and
1 ≤ p ≤ ∞ such that condition (2.3) is fulfilled with τ(N) = wN (N ∈ N).
In particular, the fundamental function ϕ of X is equivalent to a function
regularly varying at zero of order p and αX = γϕ = δϕ = βX = 1/p.

Proof. First we note that (2.3) is an immediate consequence of (3.9).
Moreover, it is well known that the assertion of Krivine’s theorem holds
for both p = 1/αX and p = 1/βX (see [LT79, p. 141], [Ro78] and [As11]).
Therefore, the coincidence of the Boyd indices and dilation indices follows
from an inspection of the proof of Proposition 3.2 and the inequalities αX ≤
γϕ ≤ δϕ ≤ βX (cf. [KPS82, p. 102] and [Ma85, p. 28]).

Let us show that, conversely, (3.9) can be derived from (2.3) with τ(N) =
wN for a large class of weights w.

Theorem 3.8. Let w be a weight on [0, 1] such that qwr+1 ≤ wr (r =
1, 2, . . . ) for some q > 1 and let ϕ be a quasi-concave function on [0, 1].
Suppose there exist C > 0 and 1 ≤ p ≤ ∞ such that ϕ satisfies (2.3) with
τ(N) = wN (N = 1, 2 . . . ). Then, for any sequence (τr)

∞
r=1 of reals such that

0 < τr ≤ wr (r = 1, 2, . . . ), estimate (3.9) holds.

Proof. We present the proof for 1 ≤ p <∞ since the case p =∞ needs
only minor changes.

Firstly, it is easy to see that condition (2.3) can be extended as follows:
we can find a (possibly different) constant C > 0 such that for every real
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z ≥ 1 and τ(z) := τ([z]) we have

(3.10)
ϕ(zt)

ϕ(t)

C
≈ z1/p if 0 < t ≤ τ(z).

Let us show that for every m ∈ N there is a constant C(m) > 0 such
that for all even N ∈ N satisfying Nm ≤ qN/2 and all z ∈ [1, N ] we have

(3.11)
ϕ(zmt)

ϕ(t)

C(m)
≈ zm/p if 0 < t ≤ τ(N).

In fact, by assumption, τ(N/2) ≥ qN/2τ(N), whence

zkt ≤ zmt ≤ Nmτ(N) ≤ qN/2τ(N) ≤ τ(N/2) ≤ 1 (k = 0, 1, . . . ,m)

provided that t ≤ τ(N). Therefore, using the quasi-concavity of ϕ and the
equivalence (3.10) for max(1, z/2) we obtain

ϕ(zkt)

ϕ(zk−1t)
≈ ϕ(max(1, z/2)zk−1t)

ϕ(zk−1t)
≈ z1/p if 0 < t ≤ τ(N),

with an equivalence constant depending on p. Multiplying these relations
for all k = 1, . . . ,m, we come to (3.11).

Next, let

ϕ0(s) = lim sup
t→0+

ϕ(ts)

ϕ(t)
for s > 0.

Clearly, condition (3.10) implies ϕ0(s) ≈ s1/p (s > 0). On the other hand,
in view of Boyd’s result [Bo71] (see also [Ma85, Theorem 2.2]), ϕ0(s) ≥ sγϕ
if 0 < s ≤ 1 and ϕ0(s) ≥ sδϕ if s > 1. Since γϕ ≤ δϕ it follows that
γϕ = δϕ = 1/p > 0. Therefore, there exist A > 0 and κ > 0 such that

(3.12) sup
0<s≤1

ϕ(st)

ϕ(s)
≤ Atκ for all 0 ≤ t ≤ 1.

Let us prove that (3.9) is a consequence of (3.11) and (3.12). Take a
natural number m0 ≥ 2 such that κm0 > 1 and consider an arbitrary
sequence (τr)

∞
r=1 satisfying τr ≤ wr, r = 1, 2, . . . . Since the non-increasing

rearrangement (τ∗r )∞r=1 of this sequence also satisfies τ∗r ≤ wr for r = 1, 2, . . . ,
we can assume without loss of generality that the sequence (τr)

∞
r=1 is itself

non-increasing. Further, set I = {r ∈ N : τr r
m0 ≥ τ1} and J = N \ I.

Clearly, 1 ∈ I. By (3.12) and the choice of m0,

ϕ
(∑
r∈J

τr

)
≤ ϕ

( ∞∑
r=2

τ1
rm0

)
≤ A

( ∞∑
r=2

r−m0

)κ
ϕ(τ1) ≤ C1ϕ(τ1).

Analogously,∑
r∈J

ϕp(τr) ≤
∞∑
r=2

ϕp(τ1/r
m0) ≤ Ap

∞∑
r=2

r−p κm0ϕp(τ1) ≤ C2 ϕ
p(τ1).

Thus, it is sufficient to prove equivalence (3.9) for (τr)r∈I .
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If card I <∞ then there is nothing to prove. So, assume that card I =∞.
Choose a positive integer i0 ∈ I, i0 ≥ 2, such that for N = 2 [i0/2] we have
Nm0 ≤ qN/2. Denote δr = (τr/τi0)1/m0 for r ∈ I ∩ {1, . . . , i0}. Then, by the
definition of I, δr ≤ (τ1/τi0)1/m0 ≤ i0 ≤ 2N . Applying (3.11) in the case
m = m0, z = max(1, δr/2) for all r ∈ I, r ≤ i0, we get

ϕ(τr)

ϕ(τi0)
=
ϕ(δm0

r τi0)

ϕ(τi0)
≈ δm0/p

r =

(
τr
τi0

)1/p

,

with an equivalence constant depending on m0 and p. The last formula
implies that ∑

r∈I∩{1,...,i0}

ϕp(τr) ≈
ϕp(τi0)

τi0

∑
r∈I∩{1,...,i0}

τr.

On the other hand, setting δ := (
∑

r∈I∩{1,...,i0} τr/τi0)1/(m0+1) we get

δ ≤
( ∑
r∈I∩{1,...,i0}

τ1/τi0

)1/(m0+1)
≤ i0.

Therefore, again by (3.11), we obtain

ϕp(τi0)

τi0

∑
r∈I∩{1,...,i0}

τr = δm0+1ϕp(τi0) ≈ ϕp(δm0+1τi0)

= ϕp
( ∑
r∈I∩{1,...,i0}

τr

)
,

with a constant depending on m0 and p. Combining the above formulas and
noting that i0 can be arbitrarily large, we conclude that equivalence (3.9)
holds and the proof is complete.

Theorem 3.8 allows us to construct non-trivial quasi-concave functions
satisfying condition (3.9) for a large class of weights. For example, let w(t) =
1/t (0 < t ≤ 1). In this case wr = 2−r, r = 1, 2, . . . . Define ϕ(t) = t log (e/t)
(0 < t ≤ 1). Obviously, ϕ is quasi-concave. Elementary calculations show
that (2.3) holds for ϕ with p = 1 and τ(N) = wN = 2−N (N = 1, 2, . . . ).
Thus, by Theorem 3.8, ϕ satisfies (3.9).

4. w-decomposable Lorentz and Marcinkiewicz spaces. For 1 ≤
p < ∞ and any increasing concave function ϕ with ϕ(0) = 0, the Lorentz
space Λp,ϕ consists of all classes of measurable functions x on [0, 1] such that

‖x‖Λp,ϕ =

( 1�

0

[x∗(t)ϕ(t)]p
dt

t

)1/p

<∞.

The space Λp,ϕ was investigated by Sharpley [Sh72] and Raynaud [Ra92],
who proved that if 0 < γϕ ≤ δϕ < 1, then Λp,ϕ is a symmetric space on [0, 1]
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with an equivalent norm

‖x‖?Λp,ϕ =

( 1�

0

[x∗∗(t)ϕ(t)]p
dt

t

)1/p

,

where x∗∗(t) = 1
t

	t
0 x
∗(s) ds (cf. [Sh72, Lemma 3.1]). Moreover, if γϕ > 0,

then applying [KPS82, Corollary 3, p. 57] to ψ = ϕp (1 ≤ p < ∞) (see
also [Ma85, Theorem 6.4(a)]), we conclude that there exists a constant K =
K(p) ≥ 1 such that

(4.1) K−1ϕp(t) ≤
t�

0

ϕp(s)

s
ds ≤ Kϕp(t) (0 < t ≤ 1).

Therefore, the fundamental function ϕΛp,ϕ(t) is equivalent to ϕ(t). Inequal-
ities (4.1) also imply that, if γϕ > 0, then Λ1,ϕ coincides with the Lorentz
space Λϕ with the norm

‖x‖Λϕ :=

1�

0

x∗(t) dϕ(t).

Recall also that the Köthe dual of the Lorentz space Λϕ is isometric to the
Marcinkiewicz space Mϕ̃ with ϕ̃(t) = t/ϕ(t) and its norm is

‖x‖Mϕ̃ = sup
0<t≤1

ϕ̃(t)x∗∗(t) = sup
0<t≤1

1

ϕ(t)

t�

0

x∗(s) ds

(cf. [KPS82, Theorem 5.2, p. 112]).

We will prove that condition (3.9) is necessary and sufficient for Lorentz
and Marcinkiewicz spaces to be w-decomposable. We start by proving a
specific geometric property of Lorentz spaces.

Proposition 4.1. Let ϕ be an increasing non-negative concave function
on [0, 1] such that γϕ > 0, and let 1 ≤ p < ∞. Then for every b > 1 there
exists a constant C = C(b, ϕ, p) > 0 with the following property: for any
two-sided non-decreasing sequence (aj)

+∞
j=−∞ of reals from [0, 1] such that

the function x =
∑+∞

j=−∞ b
−jχ(aj−1,aj ] belongs to Λp,ϕ, we have

(4.2) ‖x‖pΛp,ϕ
C
≈

+∞∑
j=−∞

b−pjϕp(aj − aj−1).

Proof. Since γϕ > 0, there exist κ > 0 and A > 0 such that inequality
(3.12) holds. Choose a constant C1 = C1(ϕ) > 1 satisfying

(4.3)
(C1 + 1)κ

A
≥ 2K2,
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where K is the constant from (4.1), and denote by I the set of all indices
j ∈ Z such that aj − aj−1 ≥ C1aj−1. We prove the following equivalences:

(4.4)

aj�

aj−1

ϕp(t)

t
dt ≈ ϕp(aj − aj−1), j ∈ I,

and, if b > C1 + 1,

‖x‖pΛp,ϕ ≈
∑
j∈I

b−pj
aj�

aj−1

ϕp(t)

t
dt,(4.5)

+∞∑
j=−∞

b−pjϕp(aj − aj−1) ≈
∑
j∈I

b−pjϕp(aj − aj−1),(4.6)

with constants which depend only on b, ϕ and p.

First, if j ∈ I then, by (3.12) and (4.3),

ϕ(aj) ≥ ϕ((C1 + 1)aj−1) ≥
(C1 + 1)κ

A
ϕ(aj−1) ≥ 2K2 ϕ(aj−1).

Combining this with (4.1) and

(4.7) ϕ(aj) ≤ ϕ(aj − aj−1) + ϕ(aj−1) ≤ 2ϕ(aj − aj−1),
we obtain

1

2K
ϕp(aj − aj−1) ≤

1

2K
ϕp(aj) ≤

1

2K
[2ϕp(aj)− (2K2)p ϕp(aj−1)]

≤ 1

2K
[2ϕp(aj)− 2K2ϕp(aj−1)] =

ϕp(aj)

K
−Kϕp(aj−1)

≤
aj�

0

ϕp(t)

t
dt−

aj−1�

0

ϕp(t)

t
dt =

aj�

aj−1

ϕp(t)

t
dt

≤
aj�

0

ϕp(t)

t
dt ≤ Kϕp(aj) ≤ 2pKϕp(aj − aj−1),

which implies (4.4).

Now, assuming b > C1 + 1, we show that the set I is unbounded from
below. In fact, otherwise there is j0 ∈ Z such that aj−aj−1 < C1aj−1 for all
j ≤ j0. Then aj0 ≤ (C1 + 1)j0−j aj (j ≤ j0) and by (4.1) and the concavity
of ϕ,

‖x‖pΛp,ϕ ≥ sup
j≤j0

b−pj
aj�

0

ϕp(t)

t
dt ≥ 1

K
sup
j≤j0

b−pjϕp(aj)

≥ 1

K
sup
j≤j0

(C1 + 1)p(j−j0)

bpj
ϕp(aj0) =∞.
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Therefore, for a given i /∈ I we can find k = max{j < i : j ∈ I}. Further,
from the definition of I it follows that ai < (C1+1)i−k ak. Since ϕ is concave
and 2ak−1 ≤ ak, we get

ai�

ai−1

ϕp(t)

t
dt ≤

(C1+1)i−kak�

ak

ϕp(t)

t
dt

≤ ϕp−1((C1 + 1)i−kak)

(C1+1)i−kak�

ak

ϕ(t)

t
dt

≤ 2p−1(C1 + 1)(p−1)(i−k)ϕp−1
(
ak
2

) (C1+1)i−kak�

ak

ϕ(t)

t
dt

≤ 2p−1(C1 + 1)p(i−k)ϕp−1
(
ak
2

)
ak
ϕ(ak)

ak

≤ 2p(C1 + 1)p(i−k)ϕp−1
(
ak
2

) ak�

ak/2

ϕ(t)

t
dt

≤ 2p(C1 + 1)p(i−k)
ak�

ak/2

ϕp(t)

t
dt

≤ 2p(C1 + 1)p(i−k)
ak�

ak−1

ϕp(t)

t
dt

and so

b−pi
ai�

ai−1

ϕp(t)

t
dt ≤ 2p

(
C1 + 1

b

)p(i−k)
b−pk

ak�

ak−1

ϕp(t)

t
dt.

Since b > C1 + 1 we obtain (4.5).

In a similar way, applying (4.7) for j = k, we get

b−piϕp(ai − ai−1) ≤ b−pi(C1 + 1)p(i−k)ϕp(ak)

≤ 2p
(
C1 + 1

b

)p(i−k)
b−pkϕp(ak − ak−1),

which implies (4.6).

Relations (4.4)–(4.6) imply (4.2), so we have proved the statement for
b > C1 + 1. To extend this result to all b > 1 it suffices to prove the
following: whenever (4.2) holds for some b > 1 and every non-decreasing
sequence (aj)

+∞
j=−∞ with constant C, it is automatically fulfilled for b1/2

with a constant not exceeding 2pbpC. Indeed, if
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y =
+∞∑
j=−∞

b−j/2χ(aj−1,aj ] and z =
+∞∑
j=−∞

b−jχ(a2j−2,a2j ],

then

‖y‖pΛp,ϕ =
+∞∑
j=−∞

b−pj/2
aj�

aj−1

ϕp(t)
dt

t

=
+∞∑
j=−∞

b−p(2j−1)/2
a2j−1�

a2j−2

ϕp(t)
dt

t
+

+∞∑
j=−∞

b−pj
a2j�

a2j−1

ϕp(t)
dt

t

bp/2

≈
+∞∑
j=−∞

b−pj
a2j�

a2j−2

ϕp(t)
dt

t
= ‖z‖pΛp,ϕ .

On the other hand,

b−pjϕp(a2j − a2j−2)
2pbp/2

≈ b−pjϕp(a2j − a2j−1)
+ b−p(2j−1)/2ϕp(a2j−1 − a2j−2),

so we get an analog of (4.2) for y, and b1/2, and the proof is complete.

Remark 4.2. For the space Λ1,ϕ = Λϕ the result can also be proved by
using the following well-known formula (cf. [KPS82, formula 5.1, p. 108]):

‖x‖Λϕ =
+∞∑
j=−∞

(b−j − b−j−1)ϕ(aj).

As above, for a given weight w, let Mk = {t ∈ [0, 1] : w(t) ∈ [2k, 2k+1)}
(k ∈ Z) and let (wr)

∞
r=1 be the non-increasing rearrangement of the sequence

(m(Mk))
+∞
k=−∞.

Theorem 4.3. Let ϕ be an increasing concave function on [0, 1] such
that γϕ > 0 and 1 ≤ p <∞, and let w be a weight on [0, 1]. Then the Lorentz
space X := Λp,ϕ is w-decomposable if and only if ϕ satisfies condition (3.9).

Proof. If X = Λp,ϕ is w-decomposable then, by Corollary 3.6, the rela-
tion (3.9) holds for the fundamental function ϕX . Since, as mentioned above,
ϕ ≈ ϕX , (3.9) is fulfilled for ϕ as well.

Conversely, suppose that ϕ satisfies (3.9). Let n ∈ N and x1, . . . , xn
be non-negative functions from X satisfying (3.8). Evidently, there exist

x′1, . . . , x
′
n ∈ X taking values in {2−k}∞k=−∞∪{0} and such that xi(t)

2
≈ x′i(t)

(0 < t ≤ 1). Clearly, m(suppx′i) = m(suppxi) ≤ wi (1 ≤ i ≤ n) and

m
{
t :

n∑
i=1

x′i(t) = 2−k
}

=

n∑
i=1

m{t : x′i(t) = 2−k}
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for all integers k. Therefore, applying (3.9), we get

(4.8)
n∑
i=1

ϕp(m{t : x′i(t) = 2−k}) ≈ ϕp
(
m
{
t :

n∑
i=1

x′i(t) = 2−k
})

(k ∈ Z).

On the other hand, Proposition 4.1 yields

(4.9) ‖x′i‖
p
X ≈

+∞∑
k=−∞

2−pkϕp(m{t : x′i(t) = 2−k}) (1 ≤ i ≤ n)

and

(4.10)
∥∥∥ n∑
i=1

x′i

∥∥∥p
X
≈

+∞∑
k=−∞

2−pkϕp
(
m
{
t :

n∑
i=1

x′i(t) = 2−k
})

with a constant which depends only on ϕ and p. Combining (4.9) and (4.10)
with (4.8), we obtain (3.5) for x′i and so for xi.

In particular, from the above theorem and a remark after Theorem
3.8 it follows that the Lorentz space Λϕ generated by ϕ(t) = t log (e/t)
is 1/t-decomposable and therefore the Banach couple (Λ(ϕ), Λ(ϕ)(1/t)) is
K-monotone.

Theorem 4.4. Suppose that ϕ is an increasing concave function on [0, 1]
such that γϕ > 0 and 1 ≤ p <∞. The following conditions are equivalent:

(a) There exists a weight w on [0, 1] such that the Lorentz space Λp,ϕ is
w-decomposable.

(b) ϕ is equivalent to a function regularly varying at zero of order p.

Proof. First, if X := Λp,ϕ is w-decomposable for some weight w on
[0, 1], then, by Corollary 3.7, as in the proof of the previous theorem, ϕ is
equivalent to a function regularly varying at zero of order p.

Conversely, suppose that ϕ is equivalent to such a function, that is,
ϕ satisfies (2.3) for some τ(N) (N = 1, 2, . . . ). Consider a family (MN )∞N=1
of pairwise disjoint measurable subsets of [0, 1] withm(M2) = min(τ(2), 1/4)
and

m(MN ) = min(τ(N),m(MN−1)/2), N > 2,

and let M1 := [0, 1] \
⋃∞
N=2MN . Set w(t) := 2N for all t ∈MN and N ∈ N.

Clearly, m(MN+1) ≤ m(MN )/2 (N ∈ N). Therefore, by Theorem 3.8, ϕ sat-
isfies (3.9) for any sequence (τN )∞N=1 majorized by (m(MN ))∞N=1, and it
remains to apply Theorem 4.3.

It is obvious that Lp-spaces (1 ≤ p ≤ ∞) are w-decomposable for every
weight w. On the other hand, we now show that for an arbitrary weight w
there exist w-decomposable Lorentz spaces Λϕ different from L1.
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Theorem 4.5. Let w be an arbitrary weight on [0, 1]. Then there exists
an increasing concave function ϕ such that the space Λϕ is w-decomposable
and Λϕ 6= L1.

Proof. As above, let Mk = {t ∈ [0, 1] : w(t) ∈ [2k, 2k+1)} for k ∈ Z and
(wr)

∞
r=1 be the non-increasing rearrangement of (m(Mk))

+∞
k=−∞. Define

G(α) :=

∞∑
r=1

min{α,wr}, α ≥ 0.

Then G(1) = 1, G(0) = 0 and G is increasing and continuous at zero.

Let (tk)
∞
k=0 be a sequence from (0, 1] such that t0 = 1, 0 < tk < tk−1/3

for k ≥ 1 and

(4.11) G(tk+1) ≤ 2−ktk, k = 0, 1, . . . .

Then we set ϕ′k(t) = maxi=0,1,...,k{2iχ[0,ti](t)}, k = 0, 1, . . . , and ϕ′(t) =
limk→∞ ϕ

′
k(t) (0 < t ≤ 1). It is easy to see that ϕ′k and ϕ′ are non-increasing

functions on (0, 1]. Moreover, since

tkϕ
′(tk) = tk 2k ≤ 2

3 tk−1 2k−1 = 2
3 tk−1ϕ

′(tk−1)

it follows that

1�

0

ϕ′(t) dt ≤
∞∑
k=0

ϕ′(tk)tk ≤
∞∑
k=0

(
2
3

)k
<∞.

Therefore, the function ϕ(t) :=
	t
0 ϕ
′(s) ds is well-defined, increasing and con-

cave on (0, 1]. We shall prove that the Lorentz space Λϕ is w-decomposable.

In view of Theorem 4.3, it suffices to show that for some constant C ≥ 1
and any sequence (dr)

∞
r=1 of reals such that 0 < dr ≤ wr (r = 1, 2, . . . ),

ϕ
( ∞∑
r=1

dr

)
≤
∞∑
r=1

ϕ(dr) ≤ Cϕ
( ∞∑
r=1

dr

)
.

Note that the left hand inequality is an immediate consequence of the
concavity of ϕ. Further, since ϕk(t) :=

	t
0 ϕ
′
k(s) ds ↑ ϕ(t), it follows that

limk→∞
∑∞

r=1 ϕk(dr) =
∑∞

r=1 ϕ(dr). Therefore, it is enough to prove that

(4.12)

∑∞
r=1 ϕk(dr)

ϕk
(∑∞

r=1 dr
) ≤ 3, k ≥ 0.

Noting that
∑∞

r=1 dr ≤ t0 = 1, we set

k0 := max
{
k = 0, 1, 2, . . . :

∞∑
r=1

dr ≤ tk
}
.
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From the definition of ϕk it follows that

(4.13) ϕk

( ∞∑
r=1

dr

)
= 2k

∞∑
r=1

dr =
∞∑
r=1

ϕk(dr) if 0 ≤ k ≤ k0.

Since tk0+1 <
∑∞

r=1 dr ≤ tk0 , again by the definition of ϕk we have

(4.14)

∞∑
r=1

ϕk0+1(dr) ≤ 2k0+1
∞∑
r=1

dr ≤ 2ϕk0+1

( ∞∑
r=1

dr

)
.

Let k > k0 be arbitrary. The inequality
∑∞

r=1 dr > tk implies that

(4.15) ϕk

( ∞∑
r=1

dr

)
> ϕk(tk) = 2ktk.

Moreover, since

ϕk+1(dr) =

{
2k+1dr = 2ϕk(dr) if dr ≤ tk+1,

2ktk+1 + ϕk(dr) if dr > tk+1,

we obtain
∞∑
r=1

ϕk+1(dr)−
∞∑
r=1

ϕk(dr) =

∞∑
r=1

min(2ktk+1, 2
kdr) ≤ 2kG(tk+1).

Hence, for any k > k0, by (4.15) and (4.11), we obtain∑∞
r=1 ϕk+1(dr)

ϕk+1

(∑∞
r=1 dr

) ≤ ∑∞
r=1 ϕk(dr)

ϕk
(∑∞

r=1 dr
) +

∑∞
r=1 ϕk+1(dr)−

∑∞
r=1 ϕk(dr)

ϕk
(∑∞

r=1 dr
)

≤
∑∞

r=1 ϕk(dr)

ϕk
(∑∞

r=1 dr
) +

G(tk+1)

tk
≤
∑∞

r=1 ϕk(dr)

ϕk
(∑∞

r=1 dr
) + 2−k.

Applying the last estimate together with (4.13) and (4.14), we obtain (4.12).
It is easy to see that ϕ(t) is not equivalent to t, and therefore Λϕ 6= L1.

Remark 4.6. Theorem 4.5 can be easily extended to all spaces Λp,ψ
with p ∈ (1,∞). Indeed, let w be an arbitrary weight on [0, 1] and ϕ be
the function from the proof of Theorem 4.5. Set ψ := ϕ1/p. Clearly, ψ is
an increasing concave function not equivalent to t1/p. Therefore, we have
Λp,ψ 6= Lp. Since (3.9) is fulfilled for ψ as well, Theorem 4.3 shows that Λp,ψ
is w-decomposable.

Our next goal is to prove analogous results for Marcinkiewicz spaces Mϕ.
To make use of the duality of Lorentz and Marcinkiewicz spaces we will need
the following statement which is of interest in its own right.

Theorem 4.7. Let X be a Banach lattice on a σ-finite measure space
(Ω,Σ, µ) with suppX = Ω which has the Fatou property, and let w be a
non-trivial weight on Ω. Then the couple (X,X(w)) is K-monotone if and
only if (X ′, X ′(w)) is K-monotone, where X ′ is the Köthe dual of X.
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This follows from Theorem 3.1 proved in [Ti11] and the following result.

Theorem 4.8. Let X be a Banach lattice on a σ-finite measure space
(Ω,Σ, µ) with suppX = Ω which has the Fatou property, and let w be a
non-trivial weight on Ω. Then X is w-decomposable if and only if its Köthe
dual X ′ is w-decomposable.

Proof. Suppose that X is w-decomposable. Let n ∈ N and the functions
x′1, . . . , x

′
n, y′1, . . . , y

′
n ∈ X ′ satisfy (3.1) (with the norm of X ′) and (3.2).

Take x ∈ X with ‖x‖X = 1 such that suppx ⊂
⋃n
i=1 suppx′i and∥∥∥ n∑

i=1

x′i

∥∥∥
X′
≤ 2

�

Ω

∣∣∣ n∑
i=1

x′i(t)x(t)
∣∣∣ dµ.

Now, consider yi ∈ X such that supp yi ⊂ supp y′i, ‖yi‖X = ‖xχsuppx′i
‖X

and

‖y′i‖X′ ≤
2

‖yi‖X

�

Ω

|y′i(t)yi(t)| dµ, 1 ≤ i ≤ n.

Then, by hypothesis,∥∥∥ n∑
i=1

yi

∥∥∥
X
≤ C

∥∥∥ n∑
i=1

xχsuppx′i

∥∥∥
X

= C,

and therefore∥∥∥ n∑
i=1

y′i

∥∥∥
X′
≥ 1

C

�

Ω

∣∣∣ n∑
i=1

yi(t)

n∑
j=1

y′j(t)
∣∣∣ dµ =

1

C

n∑
i=1

�

Ω

|y′i(t)yi(t)| dµ

≥ 1

2C

n∑
i=1

‖y′i‖X′‖yi‖X =
1

2C

n∑
i=1

‖x′i‖X′‖xχsuppx′i
‖X

≥ 1

2C

n∑
i=1

�

Ω

|x′i(t)x(t)χsuppx′i
(t)| dµ ≥ 1

4C

∥∥∥ n∑
i=1

x′i

∥∥∥
X′
.

Certainly, the same argument can be applied to get the opposite estimate.

Since M ′ϕ = Λϕ̃ (cf. [KPS82, p. 117]) and δϕ + γϕ̃ = 1 for any increasing
concave function ϕ on [0, 1] (cf. [KPS82, Theorem 4.12, p. 107] or [Ma85,
p. 28]), by Theorems 4.3, 4.4 and 4.8 we immediately obtain the following
statements.

Corollary 4.9. Let ϕ be an increasing concave function on [0, 1] such
that δϕ < 1 and let w be a weight on [0, 1]. Then the Marcinkiewicz space
Mϕ is w-decomposable if and only if ϕ̃(t) = t/ϕ(t) satisfies (3.9) with p = 1.

Corollary 4.10. If ϕ is an increasing concave function on [0, 1] such
that δϕ < 1, then the space Mϕ is w-decomposable for some weight w on
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[0, 1] if and only if ϕ is equivalent to a function regularly varying at zero of
order ∞.

In [Ka93], Kalton proved that if X and Y are symmetric sequence spaces
with the Fatou property such that the couple (X,Y (w)) is K-monotone for
some non-trivial weight w, then X = lp and Y = lq with 1 ≤ p, q ≤ ∞. The
results in this section and Theorem 3.1 show that in the case of symmetric
function spaces on [0, 1] the situation is completely different. The following
theorems present new examples of K-monotone Banach couples of weighted
Lorentz and Marcinkiewicz function spaces. The first theorem follows from
Theorem 3.1, Theorem 4.4, Theorem 4.5 and Remark 2 and the second one
from Theorem 3.1, Theorem 4.8 on duality and Corollary 4.10.

Theorem 4.11. If ϕ is an increasing concave function on [0, 1] such
that γϕ > 0 and 1 ≤ p < ∞, then the weighted couple (Λp,ϕ, Λp,ϕ(w)) is
K-monotone for some (non-trivial) weight w on [0, 1] if and only if ϕ is
equivalent to a function regularly varying at zero of order p. On the other
hand, for an arbitrary weight w on [0, 1] and 1 ≤ p < ∞ there exists an
increasing concave function ϕ on [0, 1] such that the couple (Λp,ϕ, Λp,ϕ(w))
is K-monotone and Λp,ϕ 6= Lp.

Theorem 4.12. If ϕ is an increasing concave function on [0, 1] such
that δϕ < 1, then the weighted couple (Mϕ,Mϕ(w)) is K-monotone for some
(non-trivial) weight w on [0, 1] if and only if ϕ is equivalent to a function
regularly varying at zero of order ∞.

5. w-decomposable Orlicz spaces. As we have seen in the previous
section, in order to check w-decomposability for Lorentz spaces, it is enough
to consider only characteristic functions (Theorem 4.3). In this section we
will prove that in the case of Orlicz spaces it is sufficient to examine scalar
multiples of characteristic functions.

As above, for a weight w on [0, 1] let Mk := {t ∈ [0, 1] : w(t) ∈ [2k, 2k+1)}
(k ∈ Z), let (wr)

∞
r=1 be the non-increasing rearrangement of the sequence

(m(Mk))
+∞
k=−∞ and let {M̄r}∞r=1 denote any rearrangement of the sets Mk

such that m(M̄r) = wr, r = 1, 2, . . .

Theorem 5.1. Let F be an Orlicz function satisfying the ∆2-condition
for large u and let w be a weight on [0, 1]. Then the Orlicz space LF =
LF [0, 1] is w-decomposable if and only if there exists p ∈ [1,∞) such that
for any n ∈ N and all measurable sets Ak ⊂ Mk and reals ck (1 ≤ k ≤ n)
we have

(5.1)
∥∥∥ n∑
k=1

ckχAk

∥∥∥p
LF
≈

n∑
k=1

‖ckχAk‖
p
LF
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with a constant independent of ck, Ak (1 ≤ k ≤ n) and n ∈ N. If, in addi-
tion, the complementary function F ∗ satisfies the ∆2-condition for large u,
then the w-decomposability of LF implies that F is equivalent to an Orlicz
function an regularly varying at ∞ of order p.

Proof. Suppose first that LF is w-decomposable. By Proposition 3.2,
there is p ∈ [1,∞] such that (3.5) holds for X = LF , which implies (5.1).
Since F satisfies the ∆2-condition for large u > 0, we have αX > 0. There-
fore, by Corollary 3.7, p <∞.

Conversely, let n ∈ N and yk ∈ LF with supp yk ⊂ M̄k for 1 ≤ k ≤ n.
We may (and will) assume that yk are positive bounded functions and

(5.2)

n∑
k=1

‖yk‖pLF = 1.

Taking into account Theorem 3.3, we need to show that

(5.3)
∥∥∥ n∑
k=1

yk

∥∥∥p
LF
≈ 1

with a constant independent of n and yk. For each 1 ≤ k ≤ n we set

ck =
‖yk‖LF

2ϕLF (m(supp yk))
, ỹk(t) :=

{
yk(t) if yk(t) ≥ ck,
0 if yk(t) < ck.

Applying (5.1) to Ak = supp yk and taking into account the definition of ck
and (5.2) we get∥∥∥ n∑

k=1

ckχsupp yk

∥∥∥p
LF
≤ C1

n∑
k=1

cpkϕLF (m(supp yk))
p

= C1

n∑
k=1

2−p‖yk‖pLF = 2−pC1.

Up to equivalence of norms the Orlicz space LF = LF [0, 1] depends only on
the behaviour of F for large enough u > 0. Therefore, we may assume that
F (2u) ≤ C2F (u) for all u > 0. Then, from the last inequality it follows that

(5.4)
n∑
k=1

m(supp yk)F (ck) ≤ C3,

where C3 is a constant independent of n and yk. Moreover, from the defini-
tion of ck and ỹk we have

(5.5)
‖ỹk‖LF ≤ ‖yk‖LF and ‖ỹk‖LF ≥ ‖yk‖LF − ‖ckχsupp yk‖LF = 1

2‖yk‖LF .
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Next, let us show that there is rk ∈ [ck, supt ỹk(t)] such that

(5.6) F (rk) = F

(
rk

‖ỹk‖LF

) 1�

0

F (ỹk(t)) dt.

In fact, consider the function

Hk(t) :=
F (ỹk(t))

F (ỹk(t)/‖ỹk(t)‖LF )
, t ∈ supp ỹk.

From the equality
	1
0 F
( ỹk(t)
‖ỹk(t)‖LF

)
dt = 1 it follows that

inf
t∈supp ỹk

Hk(t) ≤
1�

0

F [ỹk(t)] dt ≤ sup
t∈supp ỹk

Hk(t).

Thus, since inft∈supp ỹk ỹk(t) ≥ ck, by the continuity of F , equality (5.6)
holds for some rk ∈ [ck, supt ỹk(t)].

Next, define dk ∈ [0, 1] (k = 1, . . . , n) as follows:

dk =

{
ϕ−1LF (‖ỹk‖LF /rk) if ‖ỹk‖LF ≤ rkϕLF (m(supp yk)),

m(supp yk) if ‖ỹk‖LF > rkϕLF (m(supp yk)).

Clearly,

(5.7) rkϕLF (dk) ≤ ‖ỹk‖LF .

On the other hand, since rk ≥ ck, we obtain

(5.8) rkϕLF (dk) ≥ 1
2‖ỹk‖LF ,

whence dk ≥ ϕ−1LF (‖ỹk‖LF /(2rk)). Hence, taking into account that F satisfies
the ∆2-condition with constant C2 for all u > 0, the formula ϕLF (t) =
1/F−1(1/t) (see [KR61, formula (9.23), p. 79 of the English version] or
[Ma89, Corollary 5, p. 58]) and (5.6), we have

(5.9) dkF (rk) ≥
F (rk)

F (2rk/‖ỹk‖LF )
≥ 1

C2

F (rk)

M(rk/‖ỹk‖LF )
=

1

C2

1�

0

F [ỹk(t)] dt.

Conversely, from the equality 1/dk = F (1/ϕLF (dk)), (5.7) and (5.6) it
follows that

(5.10) dkF (rk) =
F (rk)

F (1/ϕLF (dk))
≤ F (rk)

F (rk/‖ỹk‖LF )
=

1�

0

F [ỹk(t)] dt.

Now, by the definition of dk, we have dk ≤ m(supp yk). Therefore, we can de-
fine the scalar multiples of characteristic functions fk(t) := rkχBk(t), where
Bk ⊂ supp yk and m(Bk) = dk. According to (5.7), (5.8) and (5.5),

1
4‖yk‖LF ≤ ‖fk‖LF ≤ ‖yk‖LF , k = 1, . . . , n.
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Therefore, in view of (5.1) and (5.2), we obtain∥∥∥ n∑
k=1

fk

∥∥∥p
LF
≈

n∑
k=1

‖fk‖pLF ≈
n∑
k=1

‖yk‖pLF = 1,

with constants which depend only on p. Hence, as F satisfies the ∆2-
condition, we conclude that (5.3) will be proved once we show that∥∥∥ n∑

k=1

yk

∥∥∥
LF
≈
∥∥∥ n∑
k=1

fk

∥∥∥
LF

with constants independent of n and yk. Since the functions fk (respectively,
yk) are pairwise disjoint, in view of estimate (5.10) we find that

1�

0

F
[ n∑
k=1

fk(t)
]
dt =

n∑
k=1

dkF (rk) ≤
n∑
k=1

1�

0

F (ỹk(t)) dt

≤
1�

0

F
[ n∑
k=1

yk(t)
]
dt.

Conversely, by (5.9) and (5.4), we get

1�

0

F
[ n∑
k=1

yk(t)
]
dt ≤

n∑
k=1

1�

0

F [ỹk(t)] dt+

n∑
k=1

m(supp yk)F (ck)

≤ C2

1�

0

F
[ n∑
k=1

fk(t)
]
dt+ C3,

and we come to the desired result.
In order to obtain the second assertion of the theorem it is sufficient to

apply Corollary 3.6, Lemmas 2.1 and 2.2, Proposition 2.3 and the elementary
observation that condition (a) in that proposition implies the equivalence of
F to an Orlicz function which is regularly varying at ∞ of order p.

Remark 5.2. Arguing in the same way as in the proof of Theorem 5.1
we may obtain the following result: Let F be an Orlicz function satisfying
the ∆2-condition for large u, and let 1 < p, q <∞. The Orlicz space LF [0, 1]
satisfies the upper p-estimate, respectively the lower q-estimate, if and only
if there exists a constant C > 0 such that for any n ∈ N, all pairwise disjoint
measurable sets Ak and all reals ck, we have∥∥∥ n∑

k=1

ckχAk

∥∥∥
LF
≤ C

( n∑
k=1

‖ckχAk‖
p
LF

)1/p
,

respectively, ( n∑
k=1

‖ckχAk‖
q
LF

)1/q
≤ C

∥∥∥ n∑
k=1

ckχAk

∥∥∥
LF
.
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However, an inspection of the proof of results from [KMP97, pp. 120–
121 and 124]) shows that the first of these inequalities is equivalent to either
of the following conditions: the Orlicz space LF [0, 1] is p-convex; LF [0, 1]
satisfies the upper p-estimate; there exists an Orlicz function F1 equivalent
to F for large arguments such that F1(u

1/p) is a convex function on [0,∞).
At the same time, the second condition above is equivalent to each of the
following: LF [0, 1] is q-concave; LF [0, 1] satisfies the lower q-estimate; there
exists an Orlicz function F1 equivalent to F for large arguments such that
F1(u

1/q) is a concave function on [0,∞).

The following result is analogous to Theorem 4.4 for Lorentz spaces.

Theorem 5.3. Let F be an Orlicz function equivalent to an Orlicz func-
tion which is regularly varying at ∞ of order p ∈ [1,∞). Then there is a
weight w on [0, 1] such that the Orlicz space LF is w-decomposable, and
consequently the couple (LF , LF (w)) is K-monotone.

Proof. By Corollary 3.5, it is sufficient to find a sequence {∆k}∞k=1 of
pairwise disjoint intervals from [0, 1] such that for any n ∈ N and x1, . . . , xn
∈ X satisfying suppxi ⊂ ∆i (1 ≤ i ≤ n), relation (3.5) holds.

First, since F is equivalent to an Orlicz function regularly varying at ∞
of order p, Lemma 1 and a simple compactness argument (see also [Ka93,
Lemma 6.1]) show that there exists a constant C1 > 1 such that for every
k ∈ N there is vk > 0 such that for all v ≥ vk and u ∈ [k−2/8, 1],

(5.11) F (uv)
C1≈ upF (v).

Let v > 0, ε > 0 be arbitrary, and let ∆ be a subinterval of [0, 1] such that
m(∆) ≤ ε/F (v). Moreover, suppose that z ∈ LF , z ≥ 0 and supp z ⊂ ∆.
Then �

{t∈∆: z(t)≤v}

F [z(t)] dt ≤ F (v)m(∆) ≤ ε.

Let {∆k}∞k=1 be a sequence of disjoint subintervals of [0, 1] such that

m(∆k) ≤ 2−k−1(F (vk))
−1 (k = 1, 2, . . . ).

Then, as noted above, for every z ∈ LF such that z ≥ 0 and supp z ⊂ ∆k,
we have

(5.12)
�

{t∈∆k: z(t)≤vk}

F [z(t)] dt ≤ 2−k−1 (k = 1, 2, . . . ).

Suppose that {xk}∞k=1 is an arbitrary sequence from LF such that xk ≥ 0
and suppxk ⊂ ∆k (k = 1, 2, . . . ). To prove (3.5) we assume that∥∥∥ n∑

i=1

xi

∥∥∥
LF

= 1,
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or equivalently

(5.13)

n∑
i=1

�

∆i

F [xi(t)] dt = 1.

If λi := ‖xi‖LF (i = 1, 2, . . . ), then 0 ≤ λi ≤ 1 and

(5.14)
�

∆i

F

[
xi(t)

λi

]
dt = 1 (i = 1, 2, . . . ).

Denote I1 := {i = 1, . . . , n : λi ≤ i−2/8} and I2 := {1, . . . , n} \ I1. Then

(5.15)
∑
i∈I1

λpi ≤
1

8

∑
i∈I1

i−2p ≤ 1

4
.

Now, let i ∈ I2, i.e., λi ≥ i−2/8. Then, if xi(t) ≥ λivi, from (5.11) it follows
that

(5.16) C−11 λpiF

[
xi(t)

λi

]
≤ F [xi(t)] ≤ C1λ

p
iF

[
xi(t)

λi

]
.

Moreover, by (5.12) and (5.14), we have
�

{t∈∆i:xi(t)>λivi}

F

[
xi(t)

λi

]
dt = 1−

�

{t∈∆i:xi(t)≤λivi}

F
[xi(t)
λi

]
dt

≥ 1− 2−i−1 ≥ 3/4,

whence, taking into account the left hand inequality of (5.16), we obtain
�

∆i

F [xi(t)] dt ≥ C−11 λpi

�

{t∈∆i:xi(t)>λivi}

F

[
xi(t)

λi

]
dt ≥ 3

4C
−1
1 λpi , i ∈ I2.

Combining this with (5.13) and (5.15), we get

n∑
i=1

λpi =
∑
i∈I1

λpi +
∑
i∈I2

λpi ≤
1
4 + 4

3C1

n∑
i=1

�

∆i

F [xi(t)] dt ≤ 2C1,

and the first inequality in (3.5) is proved.

On the other hand, using the right hand inequality of (5.16) and (5.14),
we infer that

∑
i∈I2

�

{t∈∆i:xi(t)>λivi}

F [xi(t)] dt ≤ C1

∑
i∈I2

λpi

�

{t∈∆i:xi(t)>λivi}

F

[
xi(t)

λi

]
dt

(5.17)

≤ C1

n∑
i=1

λpi .
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At the same time, by (5.12) and the convexity of F , we obtain∑
i∈I2

�

{t∈∆i:xi(t)≤λivi}

F [xi(t)] dt ≤
∑
i∈I2

λi
�

{t∈∆i:xi(t)≤λivi}

F

[
xi(t)

λi

]
dt

≤
∞∑
i=1

2−i−1 =
1

2
,

and, by (5.14) and the definition of I1,∑
i∈I1

�

∆i

F [xi(t)] dt ≤
∑
i∈I1

λi
�

∆i

F

[
xi(t)

λi

]
dt ≤ 1

4
.

Hence, taking into account (5.13), we get∑
i∈I2

�

{t∈∆i:xi(t)>λivi}

F [xi(t)] dt = 1−
∑
i∈I2

�

{t∈∆i:xi(t)≤λivi}

F [xi(t)] dt

−
∑
i∈I1

�

∆i

F [xi(t)] dt ≥
1

4
.

From this and (5.17) it follows that
∑n

i=1 λ
p
i ≥ 1/(4C1), and so the proof of

(3.5) is complete.

6. Ultrasymmetric Orlicz spaces and w-decomposability. In the
previous sections we have examined the problem of K-monotonicity of
weighted couples generated by Lorentz, Marcinkiewicz and Orlicz spaces.
We have seen that a central role in this question is played by the notion
of w-decomposibility. It turns out that studying that property in a natural
way leads to so-called ultrasymmetric Orlicz spaces.

Recall that a symmetric space X on [0, 1] is ultrasymmetric if X is an
interpolation space between the Lorentz space ΛϕX and the Marcinkiewicz
space MϕX . These spaces were studied by Pustylnik [Pu03], who proved
that they embrace all possible generalizations of Lorentz–Zygmund spaces
and have a simple analytical description. Moreover, one could substitute
ultrasymmetric spaces into almost all results concerning classical spaces such
as Lorentz–Zygmund spaces, and so they are very useful in applications (see,
for example, Pustylnik [Pu05] and [Pu06]).

Pustylnik asked about a description of ultrasymmetric Orlicz spaces (see
[Pu03, p. 172]). In the case of reflexive Orlicz spaces this problem was solved
in [AM08]: such a space is ultrasymmetric if and only if it coincides (up to
equivalence of norms) with a Lorentz space Λp,ϕ for some 1 < p < ∞ and
some increasing concave function ϕ on [0, 1].

As said above, the class of w-decomposable symmetric spaces is closely
related to the class of ultrasymmetric Orlicz spaces. Our next theorem shows
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that when the weight w changes sufficiently fast, any w-decomposable sym-
metric space with non-trivial Boyd indices is an ultrasymmetric Orlicz space.

Again, as above, for a weight w defined on [0, 1], let Mk := {t ∈ [0, 1] :
w(t) ∈ [2k, 2k+1)} (k ∈ Z) and let (wk)

∞
k=1 be the non-increasing rearrange-

ment of (m(Mk))
+∞
k=−∞.

Theorem 6.1. Let X be a symmetric space on [0, 1] with non-trivial
Boyd indices and w be a weight on [0, 1] satisfying the condition:

(6.1) there are k0 ∈ N and c0 > 0 such that wk2
k ≥ c0 for k ≥ k0.

(a) If X is w-decomposable, then X is an ultrasymmetric Orlicz space.
(b) If X has the Fatou property and (X,X(w)) is a K-monotone couple,

then X is an ultrasymmetric Orlicz space.

Proof. (a) Firstly, taking into account the boundedness of the dila-
tion operator and Theorem 3.3, a symmetric space X is w-decomposable
if and only if it is v-decomposable, where v(u) = w(cu) for some c > 0.
Therefore, we may assume that c0 = 1. Denote Ik := [2−k, 2−k+1) and
χ̄Ik := χIk/ϕ(2−k) (k = 1, 2, . . . ), where ϕ is the fundamental function
of X. From (6.1) it follows that m(supp χ̄Ik) ≤ wk for all k ≥ k0. Applying
Corollary 3.4 to scalar multiples of χ̄Ik (k ≥ k0), we find that (χ̄Ik)∞k=k0
spans lp for some p ∈ [1,∞) (p 6= ∞ because the Boyd indices of X are
non-trivial). Obviously, replacing (χ̄Ik)∞k=k0 with (χ̄Ik)∞k=1 does not affect
this property, so for all ak ∈ R (k = 1, 2, . . . ),∥∥∥ ∞∑

k=1

akχ̄Ik

∥∥∥
X
≈ ‖(ak)‖lp .

Then, taking into account [AM08, Proposition 2], we get

X = (L1, L∞)Klp((ϕ(2−k)2−k)∞k=1)
.

By Corollary 3.7, δϕ = βX < 1. Therefore, limt→∞ ‖σt‖X→X/t = 0, and
we can apply [KPS82, Theorem II.6.6, p. 137], in the case when A is the
identity operator, to obtain

‖x‖X ≈ ‖(ϕ(2−k)x∗∗(2−k))∞k=1‖lp ≈ ‖(ϕ(2−k)x∗(2−k))∞k=1‖lp

≈
( 1�

0

[x∗(t)ϕ(t)]p
dt

t

)1/p

,

and we conclude that

(6.2) X = Λp,ϕ.

Next, denote

F (u) =

u�

0

F̃ (t)

t
dt, where F̃ (t) =

{
t/ϕ−1(1) if 0 ≤ t ≤ 1,

1/ϕ−1(1/t) if t ≥ 1.
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Since F̃ (t)/t is increasing on (0,∞), F (u) is a convex function and for u > 0
we have

F̃ (u/2) ≤
u�

u/2

F̃ (t)

t
dt ≤ F (u) ≤ F̃ (u).

Moreover, by Corollary 3.7, we have γϕ = αX > 0, which implies that F̃
satisfies the ∆2-condition for all u > 0. Therefore, for all u > 0,

F (u) ≥ F̃ (u/2) ≥ cF̃ (u),

that is, the functions F and F̃ are equivalent on (0,∞).

Now, we recall the following definition due to Kalton [Ka93] (see also
[AM08], where the notion is used): For an Orlicz function F and 1 ≤ p
< ∞, define the function Ψ∞F,p(u,C) for 0 < u ≤ 1 and C > 1 to be the
supremum (possibly ∞) of all N such that there exist 1 ≤ a1 < · · · < aN
with ak/ak−1 ≥ 2 for k = 2, . . . , N such that for all k either Fak(u) ≥ Cup

or up ≥ CFak(u), where Fa(u) := F (au)/F (a) for a, u > 0.

To complete the proof it suffices to verify that for some C0, C1, r > 0 we
have

Ψ∞F,p(u,C0) ≤ C1u
−r for all u ∈ (0, 1].

Indeed, once this is done, we can apply [AM08, Theorem 1] to conclude that
the Orlicz space LF is ultrasymmetric and coincides with the Lorentz space
Λp,ψ generated by some increasing concave function ψ. Since the fundamen-
tal function of LF is equivalent to ϕ, we have LF = Λp,ϕ, and, in view of
(6.2), the proof is complete.

Since F and F̃ are equivalent, by [AM08, Lemma 1] it is sufficient to
show the inequality for F̃ , i.e., to prove that for some C0, C1, r > 0,

(6.3) Ψ∞
F̃ ,p

(u,C0) ≤ C1u
−r for all u ∈ (0, 1].

In view of w-decomposability, Corollary 3.7, Lemma 2.2 and the inequal-
ity wk ≥ 2−k, there is a constant C > 0 such that for any l = 1, 2, . . . ,

ϕ(lt)

ϕ(t)

C
≈ l1/p if 0 < t ≤ 2−l.

Since 0 < αX ≤ βX < 1 it follows that 0 < γϕ ≤ δϕ < 1. Therefore, from

the definition of F̃ it follows that both F̃ and its complementary function
satisfy the ∆2-condition. Hence, by Proposition 2.3 and the definition of F̃
once more, there exists a constant C1 > 0 such that, for any l ∈ N and all
x ≥ F̃−1(2l),

1

C1l
≤ F̃ (xl−1/p)

F̃ (x)
≤ C1

l
.
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By standard arguments, there are constants C2 > 0 and C3 > 0 such that

(6.4) C−12 up ≤ F̃ (ua)

F̃ (a)
≤ C2u

p

for all 0 < u ≤ 1 and any a satisfying F̃ (a) ≥ C32
u−p .

Suppose that 1 ≤ a1 < · · · < aN with ak/ak−1 ≥ 2 for k = 2, . . . , N such
that for all k,

either
F̃ (uak)

F̃ (ak)
≥ 2C2u

p or
F̃ (uak)

F̃ (ak)
≤ 1

2C2
up.

Then, by (6.4), we have F̃ (aN ) ≤ C32
u−p , which implies F̃ (a12

N−1) ≤
C32

u−p . Hence, N ≤ C4u
−p, that is, Ψ∞

F̃ ,p
(u, 2C2) ≤ C4u

−p (0 < u ≤ 1),

and (6.3) is proved.
(b) This part follows immediately from (a) and Theorem 3.1.

Using equality (6.2) from the proof of Theorem 6.1, we obtain the fol-
lowing corollary.

Corollary 6.2. Let X be a symmetric space on [0, 1] and w be a weight
on [0, 1] satisfying (6.1). Assume that either X is w-decomposable, or X has
the Fatou property and (X,X(w)) is a K-monotone couple. If ϕX(t) = t1/p

for some 1 < p <∞, then X = Lp.

Remark 6.3. Using Krivine’s theorem and the arguments from the be-
ginning of the proof of Theorem 6.1, one can prove the last assertion for
p = 1 and p =∞ as well.

Remark 6.4. It is well known that there is an Orlicz function F reg-
ularly varying at ∞ such that the Orlicz space LF is not ultrasymmetric
(see [Ka93]). Thus, Theorems 4.4 and 5.3 show that condition (6.1) on w is
essential in Theorem 6.1 and Corollary 6.2.

Remark 6.5. Conversely, if LF is an ultrasymmetric reflexive Orlicz
space on [0, 1], then there is a weight w on [0, 1] such that LF is w-decompos-
able, and equivalently the Banach couple (LF , LF (w)) is K-monotone. In
fact, in that case F is regularly varying at∞ of order p ∈ (1,∞) (cf. [AM08])
and we can apply Theorem 5.3.

Examples. Theorem 5.3 guarantees that a weighted couple (LF , LF (w))
of Orlicz spaces on [0, 1] is K-monotone for some weight w on [0, 1] if F is
equivalent to an Orlicz function which is regularly varying at ∞ of order
p ∈ [1,∞). We present some examples of such Orlicz functions below.

1. The function F (u) = up(1 + |lnu|) for p ≥ (3 +
√

5)/2 is an Orlicz
function on (0,∞) which is regularly varying at ∞ of order p (cf. [Ma85,
Example 4]).
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2. The function F (u) = up[1 + c sin(p lnu)] for 0 < c < 1/
√

2 and p ≥
(1−
√

2c/
√

1− 2c2)−1 is an Orlicz function on (0,∞) which is not regularly
varying but it is equivalent to up and 1

4u
p ≤ F (u) ≤ 2up for all u > 0

(cf. [Ma85, Example 10] and [Ma89, Example 5, p. 93] with c = 1/
√

5 and
p ≥ 6).

3. Let F be an Orlicz function equivalent for large u to the function

F̃ (u) = up(lnu)q1(ln lnu)q2 . . . (ln . . . lnu)qn ,

where p ∈ (1,∞) and q1, . . . , qn are arbitrary real numbers. It is easy to see
that F is equivalent to a function regularly varying at∞ of order p (in fact,
the corresponding Orlicz space LF is even ultrasymmetric [AM08]).

4. Some more examples of Orlicz functions that are equivalent to some
functions regularly varying at ∞ of order p are given by Kalton [Ka93].
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