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Preconditioners and Korovkin-type theorems
for infinite-dimensional bounded linear operators

via completely positive maps

by
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Abstract. The classical as well as noncommutative Korovkin-type theorems deal
with the convergence of positive linear maps with respect to different modes of con-
vergence, like norm or weak operator convergence etc. In this article, new versions of
Korovkin-type theorems are proved using the notions of convergence induced by strong,
weak and uniform eigenvalue clustering of matrix sequences with growing order. Such
modes of convergence were originally considered for the special case of Toeplitz matri-
ces and indeed the Korovkin-type approach, in the setting of preconditioning large linear
systems with Toeplitz structure, is well known. Here we extend this finite-dimensional ap-
proach to the infinite-dimensional context of operators acting on separable Hilbert spaces.
The asymptotics of these preconditioners are evaluated and analyzed using the concept
of completely positive maps. It is observed that any two limit points, under Kadison’s
BW-topology, of the same sequence of preconditioners are equal modulo compact opera-
tors. Moreover, this indicates the role of preconditioners in the spectral approximation of
bounded self-adjoint operators.

1. Introduction. The classical approximation theorem due to Korov-
kin [13] unified many approximation processes such as Bernstein polyno-
mial approximation of continuous real functions. This discovery inspired
several mathematicians to extend Korovkin’s theorem in many ways and
to several settings including function spaces, abstract Banach lattices, Ba-
nach algebras, Banach spaces, and so on. Such developments are referred to
as Korovkin-type approximation theory (see [1], [2] and references therein).
Noncommutative versions of Korovkin theorems can be found in many pa-
pers (see [2], [14], [15], [16], [21] and references therein, and refer to [17] for
new perspectives). In most of these developments, the underlying modes of
convergence have been the norm, strong or weak operator convergence of
linear operators on a Hilbert space.
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This paper deals with noncommutative Korovkin-type theorems using
the modes of convergence induced by strong, weak and uniform eigenvalue
clustering of matrix sequences with growing order. Such notions have al-
ready been used for the special case of Toeplitz matrices in connection with
the Frobenius optimal approximation of matrices of large size. This has been
widely considered in the numerical linear algebra literature for the design
of efficient solvers of complicated linear systems of large size (see [18], [20]).
More specifically, the approximation is constrained on spaces of low com-
plexity: as examples of high interest in several important applications (see
[7], [11] and references therein), we may mention algebras of matrices as-
sociated with fast transforms like Fourier, trigonometric, Hartley, wavelet
transforms ([12], [22]), or spaces with prescribed patterns of sparsity. In the
context of general linear systems, accompanied with the minimization in
Frobenius norm, these techniques were originally considered and studied by
Huckle (see [10] and references therein), while the specific adaptation in the
Toeplitz context began with the work of Tony Chan [8].

Recently, a unified structural analysis has been introduced by the third
author in connection with Korovkin theory [18]. More precisely, the analysis
of clustering of preconditioned systems which gives a measure for the ap-
proximation quality is reduced to a classical Korovkin test on a finite number
of very elementary symbols associated with equally elementary Toeplitz ma-
trices (Jordan matrices). Here we consider the same approach in an operator
theory context. The Korovkin-type approach used in the finite-dimensional
case, in the setting of preconditioning large linear systems with Toeplitz
structure, is translated into the infinite-dimensional context of operators
acting on separable Hilbert spaces.

This paper is structured as follows. In Section 2, basic definitions and
theorems including the notion of complete positivity are given. A formula-
tion of the problem and the new notions of convergence are introduced in
Section 3, using the ideas from [18]. In Section 4, new versions of noncom-
mutative Korovkin-type theorems are proved. The special cases of Toeplitz
operators and Frobenius optimal maps are considered in the next section.
We obtain more general and stronger versions of the developments of [18].
Finally, in the last section, we discuss the possible applications of the main
results.

2. Preliminaries. We begin with the classical Korovkin theorem.

Theorem 2.1. Let {Φn} be a sequence of positive linear maps on C[0, 1].
If

Φn(f)→ f for every f in the set {1, x, x2},
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then

Φn(f)→ f for every f in C[0, 1].

Here the convergence is the uniform convergence of sequences of func-
tions. For the noncommutative versions of this theorem, the notions of com-
pletely positive maps and Schwarz maps are needed.

Definition 2.2. Let A and B be C∗-algebras with identities 1A and 1B
respectively, and Φ : A→ B be a positive linear map such that Φ(1A)≤ 1B.
For each positive integer n, let Φn :Mn(A)→Mn(B) be defined as Φn(ai,j) =
(Φ(ai,j)) for every matrix (ai,j) ∈ Mn(A). If Φn is positive for each n, then
Φ is called a completely positive map (CP-map).

We now state a fundamental result, the Stinespring dilation theorem [19].

Theorem 2.3. Let A and B be C∗-algebras with identities 1A and 1B
respectively. Let Φ : A → B be a completely positive linear map such that
Φ(1A) ≤ 1B. Assume that B is a subalgebra of B(H) for some Hilbert space H.
Then there exists a representation π of A on a Hilbert space K and a bounded
linear map V from H to K such that Φ (a) = V ∗π (a)V for every a ∈ A.

Remark. It is known that if either A or B is commutative, then every
positive linear map is completely positive. Also the composition of two CP-
maps is again a CP-map. Now if CP(A,B) denotes the class of all completely
positive maps Φ from A to B such that Φ(1A) ≤ 1B and B is a subalgebra
of B(H), then it is well known that CP(A,B) is compact and convex in
Kadison’s BW-topology [3].

Recall that any positive linear map Φ : A→ B with Φ(1A) ≤ 1B, satisfies
the well known inequality of Kadison, namely,

Φ(a2) ≥ Φ(a)2 for every a such that a = a∗.

Definition 2.4. A positive linear map Φ from a C∗-algebra A to
a C∗-algebra B is called a Schwarz map if Φ(a∗a) ≥ Φ(a∗)Φ(a) for all a in A.

Remark. It can be easily seen that every completely positive map of
norm less than 1 is a Schwarz map. Also, every Schwarz map is clearly pos-
itive and contractive. If the C∗-algebra is commutative, then every positive
contractive map is a Schwarz map.

Remark. In the case of an arbitrary C∗-algebra A, a positive linear
map Ψ with Ψ(1) ≤ 1 was called a Jordan–Schwarz map in [5], since it
satisfies the inequality

Φ(a∗ ◦ a) ≥ Φ(a∗) ◦ Φ(a) for all a in A,

where ◦ is the Jordan product defined by a ◦ b = 1
2(ab+ ba).



98 K. Kumar et al.

Definition 2.5 ([5]). A ∗-closed and norm-closed subspace of a C∗-
algebra A, which is also closed with respect to the Jordan product, is called
a J∗-subalgebra of A.

Noncommutative versions of the classical Korovkin theorem have been
obtained by various researchers for positive maps, Schwarz maps and CP-
maps, in the settings of C∗-algebras and W ∗-algebras. A short survey of
these developments can be found in [17].

The concept of generalized Schwarz map was introduced by Uchiyama [21].
Below, the definition and an important inequality (Theorem 2.1 in [21]) are
given, which will play a crucial role in the proof of new versions of Korovkin-
type theorems.

Consider a binary operation ◦ in a C∗-algebra A, satisfying the following
conditions for all α, β ∈ C and x, y, z ∈ A:

(1) (αx+ βy) ◦ z = α(x ◦ z) + β(y ◦ z).
(2) (x ◦ y)∗ = y∗ ◦ x∗.
(3) x∗ ◦ x ≥ 0.
(4) There is a real number M such that ‖x ◦ y‖ ≤M‖x‖ ‖y‖.
(5) (x ◦ y) ◦ z = x ◦ (y ◦ z).
(6) x ◦ y = y ◦ x and x ◦ x = x2 if x = x∗.

Remark. Note that ◦ is bilinear and that the ordinary product satisfies
(5) and the Jordan product satisfies (6). Conversely if ◦ satisfies (6), then
◦ is the Jordan product.

Definition 2.6. A linear map Φ on a C∗-algebra A is called a generalized
Schwarz map with respect to the binary operation ◦ if Φ satisfies Φ(x∗) =
Φ(x)∗ and Φ(x∗) ◦ Φ(x) ≤ Φ(x∗ ◦ x) for every x ∈ A.

Remark. Note that a generalized Schwarz map Φ is not necessarily
positive. However, under pointwise product in function spaces and with
usual product of operators or matrices, all Schwarz maps are positive.

Theorem 2.7 ([21]). Let Φ be a generalized Schwarz map on a C∗-
algebra A with respect to ◦, and for f, g ∈ A, let

X = Φ(f∗ ◦ f)− Φ(f)∗ ◦ Φ(f) ≥ 0,

Y = Φ(g∗ ◦ g)− Φ(g)∗ ◦ Φ(g) ≥ 0,

Z = Φ(f∗ ◦ g)− Φ(f)∗ ◦ Φ(g).

Then

(2.1) |φ(Z)| ≤ |φ(X)|1/2|φ(Y )|1/2 for all states φ on A.
In particular,

(2.2) 1
2‖Z‖ ≤ ‖X‖

1/2‖Y ‖1/2.
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Remark. The above inequality holds for Schwarz maps with respect
to the usual product and for contractive positive maps with respect to the
Jordan product.

3. Formulation of the problem. The idea of preconditioners is used
in the numerical linear algebra literature to replace complicated large linear
systems by comparatively “simpler” ones. Here we introduce the notion
of preconditioners in the setting of bounded linear operators on separable
Hilbert spaces. We construct a sequence of completely positive maps using
the notions in [18].

Let H be a complex separable Hilbert space and let {Pn} be a sequence
of orthogonal projections on H such that

dim(Pn(H)) = n <∞ for each n = 1, 2, . . . ,

lim
n→∞

Pn(x) = x for every x in H.

Let {Un} be a sequence of unitary matrices over C, where Un is of order
n for each n. For each A ∈ B(H), consider the truncations An = PnAPn,
which can be regarded as n×n matrices in Mn(C), by restricting the domain
to the range of Pn. For each n, we define the commutative algebra MUn of
matrices as follows:

MUn = {A ∈Mn(C) : U∗nAUn complex diagonal}.

Recall that Mn(C) is a Hilbert space with the Frobenius norm,

‖A‖22 =
n∑

j,k=1

|Aj,k|2

induced by the classical Frobenius scalar product,

〈A,B〉 = trace(B∗A).

Observe that MUn is a closed convex set in Mn (C) and hence, for each
A ∈Mn (C), there exists a unique matrix PUn(A) in MUn such that

‖A−X‖22 ≥ ‖A− PUn(A)‖22 for every X ∈MUn .

Now we recall the following two lemmas, which reveal some fundamental
properties of PUn(·) for each n.

Lemma 3.1 ([18]). For A,B ∈ Mn(C) and α, β complex numbers, we
have

(3.1) PUn(A) = Unσ(U∗nAUn)U∗n,
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where σ(X) is the diagonal matrix having Xii as the diagonal elements,

PUn(αA+ βB) = αPUn(A) + βPUn(B),(3.2)

PUn(A∗) = PUn(A)∗,(3.3)

trace(PUn(A)) = trace(A),(3.4)

‖PUn(A)‖ = 1 (operator norm),(3.5)

‖PUn(A)‖F = 1 (Frobenius norm),(3.6)

‖A− PUn(A)‖2F = ‖A‖2F − ‖PUn(A)‖2F .(3.7)

Lemma 3.2 ([9]). If A is a Hermitian matrix, then the eigenvalues of
PUn(A) are contained in the closed interval [λ1(A), λn(A)], where λj(A) are
the eigenvalues of A arranged in nondecreasing order. Hence if A is positive
definite, then PUn(A) is positive definite as well.

Now, we introduce a completely positive map on B(H) as follows.

Definition 3.3. For each A ∈ B(H), Φn : B(H)→Mn (C) is defined as

Φn(A) = PUn(An),

where PUn(An) is as in Lemma 3.1, for each positive integer n.

A straightforward but crucial implication of Lemma 3.1 is the following
theorem.

Theorem 3.4. The maps Φn of Definition 3.3 are completely positive
maps on B(H) such that:

• ‖Φn‖ = 1 for each n.
• Φn is continuous in the strong operator topology for each n.
• Φn(I) = In for each n, where I is the identity operator on H.

Proof. From Lemma 3.2, it follows that PUn(·) is a positive linear map for
each n. Since MUn is a commutative Banach algebra, PUn(·) is a completely
positive map for each n. Hence Φn is a completely positive map, since it is the
composition of CP-maps (PUn(·) and the map which sends A to PnAPn).
Now, continuity in the strong operator topology follows easily from the
definition. Moreover

‖Φn‖ = sup
‖A‖=1, A∈B(H)

‖Φn(A)‖ = sup
‖A‖=1, A∈B(H)

‖PUn(An)‖ = 1

by (3.5). The last item of the theorem follows easily from (3.1).

3.1. Modified preconditioners. It is interesting to observe that the
notion of preconditioners can be modified by replacing ‘diagonal transfor-
mation’ by ‘block diagonal transformation’. This can be done with the use
of a ‘pinching function’, introduced in [6]. The details are as follows.
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Let M̃Un = {A ∈ Mn(C) : U∗nAUn is block diagonal}, where the block
diagonal is obtained for each A in Mn(C) by applying the pinching function
to A for each n (see [6] for the definition). To be more precise, let Pnk ,
k = 1, . . . ,mn, be pairwise orthogonal orthogonal projections in Mn(C)
such that

∑mn
k=1 Pnk = In, the identity matrix. The modified preconditioner

on Mn(C) takes values

(3.8) Ψn(A) =

mn∑
k=1

PnkAPnk for every A ∈Mn(C).

From Stinespring’s theorem, it is clear that each Ψn is a CP-map. Now,
if we define PUn(A) in a similar way with MUn replaced by M̃Un , we can
formulate an analogue of Lemma 3.1.

Lemma 3.5. For A,B ∈Mn(C) and α, β ∈ C, we have

PUn(A) = UnΨn(U∗nAUn)U∗n, where Ψn is as in (3.8),

PUn(αA+ βB) = αPUn(A) + βPUn(B),

PUn(A∗) = PUn(A)∗,

trace(PUn(A)) = trace(A),

‖PUn(A)‖ = 1 (operator norm),

‖PUn(A)‖F = 1 (Frobenius norm),

‖A− PUn(A)‖2F = ‖A‖2F − ‖PUn(A)‖2F .
We list some properties of the maps {Ψn} as we did in Theorem 3.4.

Theorem 3.6. The maps Ψn are completely positive maps on B(H) such
that:

• ‖Ψn‖ = 1 for each n.
• Ψn is continuous in the strong operator topology.
• Ψn(I) = In for each n, where I is the identity operator on H.
We may construct examples of modified preconditioners.

Example 3.7. Let Un be unitaries in Mn(C) as in Definition 3.8. For
each positive integer n, let Ũn be unitaries in B(H) defined as Un⊕ (I−Pn).
Observe that there are many interesting, concrete examples of unitaries Un
in [18]. For the sake of completeness, we recall some of them below.

Let v = {vn}n∈N with vn = (vnj)j≤n−1 be a sequence of trigonometric
functions on an interval I. Let S = {Sn}n∈N be a sequence of grids of n
points on I, say Sn = {xni : i = 0, 1, . . . , n−1}. Suppose that the generalized
Vandermonde matrix

Vn = (vnj(x
n
i ))n−1i,j=0

is a unitary matrix. Then the algebra of the form MUn is a trigonometric
algebra if Un=V ∗n with Vn a generalized trigonometric Vandermonde matrix.
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We get examples of trigonometric algebras with the following choice of
matrices Un and grid Sn:

Un = Fn =

(
1√
n
eijx

n
i

)
, i, j = 0, 1, . . . , n− 1,

Sn =

{
xni =

2iπ

n
: i = 0, 1, . . . , n− 1

}
⊂ I = [−π, π];

Un = Gn =

(√
2

n+ 1
sin(j + 1)xni

)
, i, j = 0, 1, . . . , n− 1,

Sn =

{
xni =

(i+ 1)π

n+ 1
: i = 0, 1, . . . , n− 1

}
⊂ I = [0, π];

Un = Hn =

(
1√
n

[sin(jxni ) + cos(jxni )]

)
, i, j = 0, 1, . . . , n− 1,

Sn =

{
xni =

2iπ

n
: i = 0, 1, . . . , n− 1

}
⊂ I = [−π, π].

3.2. Convergence of positive linear maps. We introduce different
notions of convergence of sequences of positive linear maps in B(H) in a
distributional sense. We recall from [18] the definitions of different notions
of convergence for preconditioners. To avoid confusion with the classical
notions of strong, weak and operator norm convergence, we speak about
strong cluster convergence, weak cluster convergence, and uniform cluster
convergence to mean the strong, weak and uniform convergence respectively
used in [18].

Definition 3.8. Let {An} and {Bn} be two sequences of n×nHermitian
matrices. We say that An −Bn converges to 0 in the strong cluster sense if
for any ε > 0, there exist integers N1,ε, N2,ε such that all the singular values
σj(An−Bn) lie in the interval [0, ε) except for at most N1,ε (independent of
the size n) singular values, for all n > N2,ε.

If the number N1,ε does not depend on ε, we say that An−Bn converges
to 0 in the uniform cluster sense. And if N1,ε depends on ε, n and is o(n),
we say that An −Bn converges to 0 in the weak cluster sense.

The following powerful lemma is due to Tyrtyshnikov [20, Lemma 3.1].

Lemma 3.9. Let {An} and {Bn} be two sequences of n × n Hermitian
matrices. If ‖An −Bn‖2F = O(1), then we have strong cluster convergence.
If ‖An −Bn‖2F = o(n), then the convergence is in the weak cluster sense.

Using the above notions, we introduce the new notions of convergence
of positive linear maps on B(H).

Definition 3.10. Let {Φn} be a sequence of positive linear maps on
B(H) and Pn be a sequence of projections on H with rank n that converges
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strongly to the identity. For a bounded self-adjoint operator A on H, we say
that {Φn(A)} converges to A in the strong distribution sense if the sequence
of matrices {PnΦn(A)Pn − PnAPn} converges to 0 in the strong cluster
sense.

Similarly we say that {Φn(A)} converges to A in the weak distribution
sense (uniform distribution sense respectively) if the sequence of matrices
{PnΦn(A)Pn − PnAPn} converges to 0 in the weak cluster sense (uniform
cluster sense respectively).

Remark. The above definitions depend on the choice of Pn’s, and make
sense for non-self-adjoint operators/matrices also. However, for technical
reasons we restrict to self-adjoint operators/matrices.

Remark. In the case of nets, the definitions are the same with conver-
gence in terms of directed sets.

4. Korovkin-type theorems. In this section, we will prove Korovkin-
type theorems for sequences of positive linear maps on B(H) with modes of
convergence in the distribution sense as introduced in the last section. The
particular example of preconditioners is considered in the next section.

Consider a sequence {Φn} of CP-maps in B(H) with ‖Φn‖ ≤ 1. By the
compactness of CP(B(H)) in Kadison’s BW-topology, {Φn} has limit points.
Let Ω be the set of all limit points of {Φn}. Next, we discuss some properties
of the limit points Φ in Ω. The relation between Φ(A) and A for A ∈ B(H)
is analyzed.

Lemma 4.1. Let Φ ∈ Ω and let {Φnα} be a subnet of {Φn} such that Φnα
converges to Φ in Kadison’s BW-topology. Then for each m, the truncations
Φm,nα(A) = PmΦnα(A)Pm converge uniformly in norm to PmΦ(A)Pm. That
is, limα ‖Φm,nα(A)− PmΦ(A)Pm‖ = 0.

Proof. This follows immediately since Pm is of finite rank and therefore,
on range(Pm), the weak, strong and operator norm topologies coincide.

Remark. For each A ∈ B(H), note that Anα −Φnα(A) converges in the
strong operator topology to A− Φ(A). Hence,

PmAnαPm − PmΦnα(A)Pm →
α
PmAPm − PmΦ(A)Pm

in the norm topology for each m.

The above observations can be used to deduce the following result.

Theorem 4.2. Let A ∈ B(H) be self-adjoint and suppose Φn(A) con-
verges to A in the uniform distribution sense of Definition 3.10. Then
A− Φ(A) is of finite rank.
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Proof. By assumption PnαΦnα(A)Pnα − Anα converges to 0 in the uni-
form cluster sense of Definition 3.8. Hence for each ε > 0, there exist a βε
in the directed set and N such that

#
(
σ(Anα − PnαΦnα(A)Pnα) ∩ R− (−ε, ε)

)
≤ N whenever α > βε.

Therefore by the Cauchy interlacing theorem,

#
(
σ(Pm(Anα−PnαΦnα(A)Pnα)Pm)∩R−(−ε, ε)

)
≤N if α>βε and nα≥m.

Now we take the limit over α; since we know by the above remark that
Pm(Anα − PUnα (Anα))Pm converges to Pm(A − Φ(A))Pm in the operator
norm topology for every m, we obtain

#
(
σ(Pm(A− Φ(A))Pm) ∩ R− (−ε, ε)

)
≤ N for every m.

Therefore R− (−ε, ε) contains no essential points of A−Φ(A) and hence by
Arveson’s Theorem [4, Theorem 2.3], it contains no essential spectral values
of A−Φ(A). That is, the essential spectrum σe(A−Φ(A)) is contained in the
interval (−ε, ε) for all ε > 0. This implies that σe(A − Φ(A)) = {0}. Hence
A− Φ(A) is compact and it has at most N eigenvalues. Hence it is of finite
rank by the spectral theorem.

The following corollary is an easy consequence of the above theorem.

Corollary 4.3. Under the assumptions that A ∈ B(H) is self-adjoint
and Φn(A) converges toA in the uniform distribution sense of Definition 3.10,
the following results hold:

• A is compact if and only if Φ(A) is compact.
• A is Fredholm if and only if Φ(A) is Fredholm.
• A is Hilbert–Schimidt if and only if Φ(A) is Hilbert–Schimidt.
• A is of finite rank if and only if Φ(A) is of finite rank.
• A has a gap in the essential spectrum σess(A) of A if and only if
σess(Φ(A)) has a gap.

In the next theorem, we observe that if the mode of convergence is strong,
then the change to preconditioners amounts to a compact perturbation.

Theorem 4.4. Let A ∈ B(H) be self-adjoint and suppose Φn(A) con-
verges to A in the strong distribution sense of Definition 3.10. Then A−Φ(A)
is compact.

Proof. The argument is much the same as in the proof of Theorem 4.2,
except that here the number of eigenvalues of (Anα − PnαΦnα(A)Pnα) out-
side (−ε, ε) is not bounded by a constant, but by a number N1,ε, which
depends on ε. Hence we can conclude that A − Φ(A) is compact, and can
have countably many eigenvalues.
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The following results are easy consequences of the above theorem:

Corollary 4.5. Assume that A ∈ B(H) is self-adjoint and Φn(A) con-
verges to A in the strong distribution sense of Definition 3.10. Then

• A is compact if and only if Φ(A) is compact.
• A is Fredholm if and only if Φ(A) is Fredholm.
• A has a gap in the essential spectrum σess(A) of A if and only if
σess(Φ(A)) has a gap.

Now we prove the noncommutative analogue of the remainder estimate
in the classical Korovkin-type theorems, as proved in [18].

Lemma 4.6. Let {A1, . . . , Am} be a finite set of operators in B(H) and
Φn be a sequence of positive linear Schwarz maps on B(H) such that, for
every n, ‖Φn‖ ≤ 1 and ‖Φn(A) − A‖ = O(θn) for every A in the set D =
{A1, . . . , Am,

∑m
k=1AkA

∗
k}, where θn → 0 as n→∞. Then ‖Φn(A)− A‖ =

O(θn) for every A in the algebra generated by {A1, . . . , Am}.

Proof. By linearity, we have

Φn

( m∑
k=1

AkA
∗
k

)
=

m∑
k=1

Φn(AkA
∗
k).

Also by adding and subtracting the term
∑m

k=1 Φn(Ak)Φn(Ak)
∗,

Φn

( m∑
k=1

AkA
∗
k

)
−

m∑
k=1

AkA
∗
k =

[
Φn

( m∑
k=1

AkA
∗
k

)
−

m∑
k=1

Φn(Ak)Φn(Ak)
∗
]

+
[ m∑
k=1

Φn(Ak)Φn(Ak)
∗ −

m∑
k=1

AkA
∗
k

]
.

The norm of the left side above as well as of the last term of the right side
are O(θn). The first term of the right side is

m∑
k=1

[Φn(AkA
∗
k)− Φn(Ak)Φn(Ak)

∗].

Hence its norm is O(θn). But each summand Φn(AkA
∗
k)−Φn(Ak)Φn(Ak)

∗ is
a nonnegative operator by the Schwarz inequality for positive linear maps.
Therefore the norm of each summand is O(θn). Also since each Φn is a
Schwarz map, by applying inequality (2.2) to the maps Φn for each n and
the operators Ak and Al, we get

(4.1) ‖Φn(A∗kAl)− Φn(Ak)
∗Φn(Al)‖ = O(θn).
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Also, we can estimate ‖Ak∗Al − Φn(Ak)
∗Φn(Al)‖ as follows:

‖A∗kAl − Φn(Ak)
∗Φn(Al)‖

= ‖(Ak − Φn(Ak) + Φn(Ak))
∗Al − Φn(Ak)

∗(Φn(Al)−Al +Al)‖
≤ ‖(Ak − Φn(Ak))

∗Al‖+ ‖Φn(Ak)
∗(Φn(Al)−Al)‖.

Now each of the terms on the right side is O(θn), by the assumption on
Ak, Al and since ‖Φn‖ ≤ 1. Therefore

(4.2) ‖A∗kAl − Φn(Ak)
∗Φn(Al)‖ = O(θn).

Also we have

‖Φn(A∗kAl)−A∗kAl‖
= ‖Φn(A∗kAl)− Φn(Ak)

∗Φn(Al) + Φn(Ak)
∗Φn(Al)−A∗kAl‖.

Applying (4.1) and (4.2) in the above identity, we get

‖Φn(A∗kAl)−A∗kAl‖ = O(θn).

Thus the assertion is proved for every operator of the form A∗kAl and hence
in the algebra generated by {A1, . . . , Am}.

Before proving more general Korovkin-type theorems, we prove the fol-
lowing lemma.

Lemma 4.7. Let {An} and {Bn} be two sequences of n × n Hermitian
matrices such that {An−Bn} converges to 0 in the strong (weak respectively)
cluster sense. Assume that {Bn} is positive definite and invertible such that
there exists a δ > 0 with

Bn ≥ δIn > 0 for all n.

Then for a given ε > 0, there exist positive integers N1,ε, N2,ε such that all
eigenvalues of B−1n An lie in the interval (1 − ε, 1 + ε) except possibly for
N1,ε = O(1) (N1,ε = o(n) respectively) eigenvalues for every n > N2,ε.

Proof. First we observe that, since {An − Bn} converges to 0 in the
strong (weak respectively) cluster sense, by definition, for any given ε > 0,
there exist integers N1,ε, N2,ε such that all eigenvalues of An − Bn lie in
(−ε, ε) except for at most N1,ε = O(1) (N1,ε = o(n) respectively) eigenvalues
whenever n ≥ N2,ε. Hence by the spectral theorem there exist orthogonal
projections Pn and Qn whose ranges are orthogonal such that

rank(Pn) + rank(Qn) = n, rank(Qn) ≤ N1,ε, ‖Pn(An −Bn)Pn‖ < ε,

and

An −Bn = Pn(An −Bn)Pn +Qn(An −Bn)Qn.
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Hence for ε1 = εδ > 0, there exist natural numbers N1,ε, N2,ε such that there
exists a decomposition

(4.3) An −Bn = Rn +Nn for all n ≥ N2,ε,

where the rank of Rn is bounded above by N1,ε and ‖Nn‖ ≤ ε1. Now let β
be an eigenvalue of B−1n An with x being the associated eigenvector of norm
one, so

B−1n An(x) = βx.

Hence

(An −Bn)(x) = (β − 1)Bn(x),

which implies that

〈(An −Bn)(x), x〉 = (β − 1)〈Bn(x), x〉,

so

β − 1 =
〈(An −Bn)(x), x〉
〈Bn(x), x〉

.

Now from the decomposition (4.3), we have

β − 1 =
〈(Rn +Nn)(x), x〉
〈Bn(x), x〉

=
〈Rn(x), x〉
〈Bn(x), x〉

+
〈Nn(x), x〉
〈Bn(x), x〉

.

Since ‖Nn‖ ≤ ε1 and Bn ≥ δIn > 0, the second term in the last sum is
less than ε1/δ = ε. Also since the rank of Rn is bounded above by N1,ε =
O(1) (o(n) respectively), there are only at most N1,ε linearly independent
vectors x for which Rn(x) 6= 0, by the rank-nullity theorem. Hence, except
for at most N1,ε = O(1) (o(n) respectively) eigenvalues,

|β − 1| ≤ ε.

This means that all eigenvalues of B−1n An lie in (1− ε, 1 + ε) except possibly
for N1,ε = O(1) (o(n) respectively) eigenvalues.

Now we prove our main result of this section, a noncommutative Korov-
kin-type theorem. Here ◦ denotes the Jordan product of operators or ma-
trices.

Theorem 4.8. Let {A1, . . . , Am} be a finite set of self-adjoint operators
on H, and Φn be a sequence of contractive positive maps on B(H) such that
Φn(A) converges to A in the strong (weak respectively) distribution sense
for A in {A1, . . . , Am, A

2
1, . . . , A

2
m}. In addition, assume that the difference

Pn(A2
k)Pn − (Pn(Ak)Pn)2 converges to the 0 matrix in the strong (weak re-

spectively) cluster sense, for each k. Then Φn(A) converges to A in the
strong (weak respectively) distribution sense for all A in the J∗-subalgebra A
generated by {A1, . . . , Am}.
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Proof. First we consider the following sequences of Hermitian matrices:

Xn = PnΦn(A2
k)Pn − (PnΦn(Ak)Pn)2 ≥ 0,

Yn = PnΦn(A2
l )Pn − (PnΦn(Al)Pn)2 ≥ 0,

Zn = PnΦn(Ak ◦Al)Pn − (PnΦn(Ak)Pn) ◦ (PnΦn(Al)Pn).

These sequences are norm bounded, in particular we have

(4.4) ‖Yn‖ < γ <∞ for all n, for some γ > 0.

Also if we write

Xn = PnΦn(A2
k)Pn − (PnΦn(Ak)Pn)2

= [PnΦn(A2
k)Pn − Pn(A2

k)Pn] + [Pn(A2
k)Pn − (Pn(Ak)Pn)2]

+ [(Pn(Ak)Pn)2 − (PnΦn(Ak)Pn)2],

the first two terms on the right converge to 0 in the strong (weak respec-
tively) cluster sense by assumption. Also since PnΦn(Ak)Pn − Pn(Ak)Pn =
Rn +Nn, where Rn and Nn are as in the proof of Lemma 4.7, we have

PnΦn(Ak)Pn − Pn(Ak)Pn = Rn +Nn,

so

(PnΦn(Ak)Pn −Rn)2 = (Pn(Ak)Pn +Nn)2.

From the above identity, we can deduce that (Pn(Ak)Pn)2− (PnΦn(Ak)Pn)2

= R′n+N ′n, where R′n has bounded rank and N ′n has small norm as required
for the convergence in the strong (weak respectively) cluster sense to 0.
Hence the third term also converges to the 0 matrix in the strong (weak
respectively) cluster sense. Therefore Xn converges to the 0 matrix in the
strong (weak respectively) cluster sense.

Now for each fixed x with ‖x‖ = 1, if we consider the state φx on B(H)
defined as

φx(A) = 〈A(x), x〉,
then by (2.1) applied to the contractive positive maps PnΦn(·)Pn, we get

(4.5) |〈Zn(x), x〉| ≤ |〈Xn(x), x〉|1/2|〈Yn(x), x〉|1/2.
Now let δ > 0 be given and ε = δ2/γ. As in the proof of Lemma 4.7,

there exist integers N1,ε = O(1) (o(n) respectively) and N2,ε such that

Xn = Nn +Rn for all n > N2,ε,

where ‖Nn‖ < ε and the rank of Rn is less than N1,ε = O(1) (o(n) respec-
tively). Applying this and (4.4) in (4.5), we get

|〈Zn(x), x〉| ≤ √γ [|〈Nn(x), x〉|1/2 + |〈Rn(x), x〉|1/2] for all n > N2,ε.

Since the rank of Rn is bounded above by N1,ε = O(1) (o(n) respec-
tively), there are only at most N1,ε linearly independent vectors x for which
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Rn(x) 6=0, by the rank-nullity theorem. Hence |〈Zn(x), x〉| ≤ δ except for
at most N1,ε = O(1) (o(n) respectively) linearly independent vectors x.
Therefore all eigenvalues of Zn, except for possibly N1,ε = O(1) (o(n) re-
spectively), lie in the interval (−δ, δ), whenever n > N2,ε. Since δ > 0 was
arbitrary, Zn converges to the 0 matrix in the strong (weak respectively)
cluster sense.

Now consider

PnΦn(Ak ◦Al)Pn − Pn(Ak ◦Al)Pn
= [PnΦn(Ak ◦Al)Pn − (PnΦn(Ak)Pn) ◦ (PnΦn(Al)Pn)]

+ [(PnΦn(Ak)Pn) ◦ (PnΦn(Al)Pn)− (Pn(Ak)Pn) ◦ (Pn(Al)Pn)]

+ [(Pn(Ak)Pn) ◦ (Pn(Al)Pn)− Pn(Ak ◦Al)Pn].

The first term on the right hand side is Zn and the last term is also in the
form of Zn for the positive contractive maps Pn(·)Pn on B(H). Therefore
both these terms converge to the 0 matrix in the strong (weak respectively)
cluster sense. By simple computation, the same can be proved for the middle
term. Hence the conclusion is proved for operators of the form Ak ◦Al.

The same proof can be repeated for operators of the form Aj ◦ (Ak ◦Al),
using the boundedness of Ak ◦Al and the convergence assumption on Aj in
the strong (weak respectively) cluster sense. Continuing like this inductively,
we see that the assertion is true for any operator which is a polynomial in
{A1, . . . , Am} with respect to the Jordan product.

Now for A ∈ A and ε > 0, let T be a polynomial in {A1, . . . , Am}, with
respect to the Jordan product, such that

‖A− T‖ < ε/3, ‖Φn(A)− Φn(T )‖ < ε/3.

Write

PnΦn(A)Pn−PnAPn = [PnΦn(A)Pn−PnΦn(T )Pn]+ [PnΦn(T )Pn−PnTPn]

+ [PnTPn − PnAPn].

The norm of the sum of the first and third terms is less than 2ε/3. The mid-
dle term PnΦn(T )Pn − PnTPn can be split into a term with norm less than
ε/3 and a term with constant rank independent of n (or of order o(n) respec-
tively) since T is a polynomial in {A1, . . . , Am}, with respect to the Jordan
product. Thus the sequence of matrices PnΦn(A)Pn−PnAPn converges to 0
in the strong (weak respectively) cluster sense.

Remark. Note that even if Ak and Al are self-adjoint, their composition
need not be self-adjoint. But the Jordan product of two self-adjoint elements
is self-adjoint. The proof of the above theorem uses this fact.
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5. Korovkin-type theory for Toeplitz operators. In this section,
we consider the case of the Toeplitz operator A = A(f), where f ∈ C[0, 2π]
and H = L2[0, 2π]. We get stronger versions of some of the results in [18].
First we recall the Korovkin-type results in [18]. The notation An(f) is used
to denote the finite Toeplitz matrix with symbol f.

Theorem 5.1 ([18]). Let f be a continuous periodic real-valued func-
tion. Then PUn(An(f)) − An(f) converges to 0 in the strong cluster sense
if PUn(An(p)) − An(p) converges to 0 in the strong cluster sense for all
trigonometric polynomials p.

Theorem 5.2 ([18]). Let f be a continuous periodic real-valued func-
tion. Then PUn(An(f)) − An(f) converges to 0 in the weak cluster sense if
PUn(An(p))−An(p) converges to 0 for all trigonometric polynomials p.

Before proving the general results, we prove the following lemma, the
remainder estimate version of the classical Korovkin theorem as proved in
[18], which is used to obtain more general versions of Theorems 5.1 and 5.2.
This lemma is the commutative version of Lemma 4.6.

Lemma 5.3. Let {g1, . . . , gm} be a finite set of continuous periodic func-
tions and Φn be a sequence of positive linear maps on C[0, 2π] such that, for
every n, ‖Φn‖ ≤ 1 and

Φn(g) = g +O(θn) for every g ∈ D =
{
g1, . . . , gm,

m∑
k=1

gkg
∗
k

}
,

where θn → 0 as n→∞. Then Φn(g) = g+O(θn) for every g in the algebra
generated by {g1, . . . , gm}.

Proof. The proof is obtained by replacing functions by operators, in the
proof of Lemma 4.6. Using linearity of Φn’s, we write

Φn

( m∑
k=1

gkg
∗
k

)
−

m∑
k=1

gkg
∗
k =

( m∑
k=1

Φn(gkg
∗
k)−

m∑
k=1

Φn(gk)Φn(gk)
∗
)

+
( m∑
k=1

Φn(gk)Φn(gk)
∗ −

m∑
k=1

gkg
∗
k

)
.

The left side above as well as the last term of the right side are O(θn). Hence
the first term of the right side,

n∑
k=1

[Φn(gkg
∗
k)− Φn(gk)Φn(gk)

∗],

is O(θn). But each summand Φn(gkg
∗
k) − Φn(gk)Φn(gk)

∗ is nonnegative by
the Schwarz inequality for positive linear maps. Therefore each summand
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is O(θn). Also since every positive contractive map in a commutative C∗-
algebra is a Schwarz map, each Φn is a Schwarz map. Therefore by applying
inequality (2.2) to the maps Φn for each n and the functions gk, gl, we get

Φn(g∗kgl)− Φn(gk)
∗Φn(gl) = O(θn).

Also, we observe that

Φn(gk)
∗Φn(gl)− g∗kgl = (g∗k +O(θn))(gl +O(θn))− g∗kgl = O(θn).

Using the above two identities, we deduce that

Φn(g∗kgl)−g∗kgl = [Φn(g∗kgl)−Φn(gk)
∗Φn(gl)]+[Φn(gk)

∗Φn(gl)−g∗kgl] = O(θn).

Therefore the assertion is proved for every function of the form g∗kgl and
hence in the algebra generated by {g1, . . . , gm}.

Now we prove some general versions of Theorems 5.1 and 5.2. The tech-
nique of the proof is the same as in Theorem 4.8. Still we provide all the
details.

Theorem 5.4. Let {g1, . . . , gm} be a finite set of real-valued continu-
ous 2π-periodic functions such that PUn(An(f)) − An(f) converges to 0
in the strong cluster sense for every f in {g1, . . . , gm, g21, . . . , g2m}. Then
PUn(An(f)) − An(f) converges to 0 in the strong cluster sense for all f in
the C∗-algebra A generated by {g1, . . . , gm}.

Proof. For any k, l = 1, . . . ,m, set.

Xn = PUn(An(g2k))− PUn(An(gk))
2 ≥ 0,

Yn = PUn(An(g2l ))− PUn(An(gl))
2 ≥ 0,

Zn = PUn(An(g∗k ◦ gl))− PUn(An(gk))
∗ ◦ PUn(An(gl)).

(Here ◦ denotes the usual pointwise product in the case of scalar-valued
functions and matrix product in the case of matrices.) Observe that Xn, Yn
and Zn are all Hermitian matrices of order n. It is clear that all the above
sequences of matrices are norm bounded; in particular, for all n,

(5.1) ‖Yn‖ < γ <∞.
Also if we write

Xn = Φn(g2k)− Φn(gk)
2 = [Φn(g2k)−An(g2k)] + [An(g2k)−An(gk)

2]

+ [An(gk)
2 − Φn(gk)

2],

the first term on the right hand side converges to 0 in the strong cluster
sense by assumption. The second term is

(5.2) An(g2k)−An(gk)
2 = PnH(gk)

2Pn +QnH(gk)
2Qn,

where Qn’s are projections and H(gk) is the Hankel operator, which is com-
pact, since the symbols are continuous. This equality is due to Widom [23,
p. 2]. Hence An(g2k) − An(gk)

2 can be written as the sum of sequences of
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matrices that are truncations of compact operators. But the complement
of any neighborhood of 0 contains only finitely many eigenvalues of a com-
pact operator. Also the truncations of a compact operator on a separable
Hilbert space converge to the operator in norm. Therefore we conclude that
An(g2k)−An(gk)

2 converges to the 0 matrix in the strong cluster sense.

Since Φn(gk) − An(gk) = Rn + Nn, where Rn and Nn are sequences
of matrices with the properties mentioned before, the third term can be
written as

An(gk)
2 − Φn(gk)

2 = An(gk)
2 − [An(gk) +Rn +Nn]

2
= R′n +N ′n,

where R′n and N ′n are sequences of matrices with bounded rank and small
norm respectively. Hence the third term also converges to the 0 matrix in the
strong cluster sense. Therefore Xn converges to the 0 matrix in the strong
cluster sense.

By similar arguments to the proof of Theorem 4.8, we conclude that Zn
converges to the 0 matrix in the strong cluster sense.

Now consider

PUn(An(gk ◦ gl))−An(gk ◦ gl)

= [PUn(An(gk ◦ gl))− PUn(An(gk))PUn(An(gl))]

+ [PUn(An(gk))PUn(An(gl))−An(gk)An(gl)]

+ [An(gk)An(gl)−An(gk ◦ gl)].
By similar arguments, we see that each term on the right hand side converges
to the 0 matrix in the strong cluster sense. Hence the assertion of the theorem
is proved for all functions of the form gkgl. Hence it is true for any function
in the algebra generated by {g1, . . . , gm}.

Now for f ∈ A and ε > 0, let g be a function in the algebra generated
by {g1, . . . , gm} such that

‖An(f)−An(g)‖ < ε/3, ‖PUn(An(g))− PUn(An(f))‖ < ε/3.

Write

An(f)− PUn(An(f)) = [An(f)−An(g)] + [An(g)− PUn(An(g))]

+ [PUn(An(g))− PUn(An(f))].

The norm of the sum of the first and third terms is less than 2ε/3. The
middle term An(g) − PUn(An(g)) can be split into a term with norm less
than ε/3 and a term with constant rank independent of n since g is in the
algebra generated by {g1, . . . , gm}.

Corollary 5.5. If PUn(An(f)) − An(f) converges to 0 in the strong
cluster sense for all f in {1, x, x2}, then it does so for all f in C[0, 2π].
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Corollary 5.6. Under the assumption of Theorem 5.4, if f ∈ A is
strictly positive, then for any ε > 0 and n large enough, the matrices
PUn(An(f))−1(An(f)) have eigenvalues in (1 − ε, 1 + ε) except for at most
Nε = O(1) outliers.

Proof. Since f ∈ A is strictly positive, An(f) is positive definite. This
implies that PUn(An(f)) is positive definite. Hence the proof is completed
by invoking Lemma 4.7.

Now we prove the exact analogue of Theorem 5.4 in the case of conver-
gence in the weak cluster sense. The proof is more or less the same apart
from some obvious modifications. However, all the details are provided.

Theorem 5.7. Let {g1, . . . , gm} be a finite set of real-valued continuous
2π-periodic functions such that PUn(An(f)) − An(f) converges to 0 in the
weak cluster sense for f in {g1, . . . , gm, g21, . . . , g2m}. Then PUn(An(f)) −
An(f) converges to 0 in the weak cluster sense for all f in the C∗-algebra A
generated by {g1, . . . , gm}.

Proof. The proof is the same as that of Theorem 5.4, except that the
splitting of terms must be as the sum of one with small norm and the other of
order o(n). We give the details below. Applying (2.2) with Φn = PUn(An(·))
and Xn, Yn, Zn as in the proof of Theorem 5.4, if we write

Xn = Φn(g2k)− Φn(gk)
2 = [Φn(g2k)−An(g2k)] + [An(g2k)−An(gk)

2]

+ [An(gk)
2 − Φn(gk)

2],

the first term on the right hand side converges to 0 in the weak cluster
sense by assumption. The second term, An(g2k)−An(gk)

2, converges to the
0 matrix in the strong cluster sense by the same argument in the proof of
Theorem 5.4, and hence it converges in the weak cluster sense. By a simple
computation, we find that the third term also converges to the 0 matrix in
the weak cluster sense. Hence Xn converges to the 0 matrix in the weak
cluster sense.

By similar arguments to the proof of Theorem 4.8, we conclude that Zn
converges to the 0 matrix in the weak cluster sense.

Now consider

PUn(An(gk ◦ gl))−An(gk ◦ gl)
= [PUn(An(gk ◦ gl))− PUn(An(gk))PUn(An(gl))]

+ [PUn(An(gk))PUn(An(gl))−An(gk)An(gl)]

+ [An(gk)An(gl)−An(gk ◦ gl)].
By similar arguments, each term on the right hand side converges to the
0 matrix in the weak cluster sense. Hence the conclusion is proved for all
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functions of the form gkgl. Hence it is true for any function in the algebra
generated by {g1, . . . , gm}.

Now for f ∈ A and ε > 0, let g be a function in the algebra generated
by {g1, . . . , gm} such that

‖An(f)−An(g)‖ < ε/3, ‖PUn(An(g))− PUn(An(f))‖ < ε/3.

Write

An(f)− PUn(An(f)) = [An(f)−An(g)] + [An(g)− PUn(An(g))]

+ [PUn(An(g))− PUn(An(f))].

The norm of the sum of the first and third terms is less than 2ε/3. The middle
term An(g)−PUn(An(g)) can be split into a term with norm less than ε/3 and
a term of order o(n), since g is in the algebra generated by {g1, . . . , gm}.

Corollary 5.8. With the hypotheses of Theorem 5.7, if f ∈ A is posi-
tive, then for any ε > 0 and n large enough, the matrices

PUn(An(f))−1(An(f))

have eigenvalues in (1− ε, 1 + ε) except at most Nε = o(n) outliers.

Proof. This follows easily from Lemma 4.7.

Remark. It is to be noted that Theorems 5.4 and 5.7 and their corollar-
ies are much stronger than the corresponding theorems in [18], where it has
been assumed that the convergence takes place on the algebra generated by
a test set. Here it is assumed that the convergence takes place only on the
test set, as in the classical Korovkin-type theorems. However, it is not clear
whether the assumption of convergence on g2k for each k can be replaced by
convergence of

∑n
k=1 g

2
k as in the usual case.

5.1. LPO sequences. It can also be observed that similar stronger
versions of Theorems 5.3 and 5.4 of [18] are valid. First we recall some of
the necessary preliminaries from [18].

The behavior of the eigenvalues of PUn(An(f)) has been studied in
[18] when Un is the sequence of generalized Vandermonde matrices (Ex-
ample 3.7). Recall that the jth row of Un is a vector of trigonometric func-

tions calculated at the grid point x
(n)
j . From Lemma 3.1, it follows that

the jth eigenvalue λj of PUn(An(f)) is σ(UnAn(f)U∗n)j,j . Thus λj is the

value of a trigonometric function at x = x
(n)
j . Now we consider the function

[Ln[Un](f)](x) obtained by replacing x
(n)
j by x in [0, 2π] in the expression

of λj . To make it precise, let v(x) denote the trigonometric function whose

values at the grid points {x(n)j } form the jth generic row of U∗n. We define
the linear operator Ln[Un] on C[0, 2π] as follows:

(5.3) Ln[Un](f) = v(x)An(f)v∗(x).
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Ln[Un](f) is the continuous expression of the diagonal elements ofUnAn(f)U∗n.
It is clear that Ln[Un] is a sequence of completely positive linear maps on
C[0, 2π] of norm less than or equal to 1.

We end this section with the proof of two results, which are stronger
versions of Theorems 5.3 and 5.4 of [18].

Theorem 5.9. Let Ln[Un](g) = g + εn(g) for every g in the finite set
{g1, . . . , gm,

∑m
k=1 g

2
k}, where each gk is a real-valued, continuous function

and εn(g) converges uniformly to 0. Then PUn(An(f)) − An(f) converges
to 0 in the weak cluster sense for all f in the C∗-algebra A generated
by {g1, . . . , gm}.

Proof. First we observe that Ln[Un](g) = g + εn(g) for every g in the
algebra generated by {g1, . . . , gm}, by Lemma 5.3. Also we have

(5.4) 0 ≤ ‖An(fl)− PUn(An(fl))‖2F = ‖An(fl)‖2F − ‖PUnAn(fl)‖2F
for every function fl in the algebra generated by {g1, . . . , gm}. Here ‖(·)‖F
denotes the Frobenius norm of matrices. Also since

Ln[Un](fl) = λi(PUn(An(fl))) = fl(x
n
i ) + εn(fl),

for every l, where λi(PUn(An(·))) are the eigenvalues of PUn(An(·)), we get

‖PUn(An(fl))‖2F =
n∑
i=1

λ2i (PUn(An(fl))) =
n∑
i=1

[(fl + εn(fl))(x
n
i )]2.

Hence

‖PUn(An(fl))‖2F =

n∑
i=1

f2l (xni ) + o(n).

Since {x(n)i } is quasiuniformly distributed (see [18] for definition), by Lemma
5.1 in [18] we get

(5.5)

n−1∑
i=0

[fl(x
(n)
i + εn(fl)(x

(n)
i )2] =

n

2π

2π�

0

f2l + o(n).

Also

‖An(fl)‖2F =

n∑
i=1

λi(An(fl))
2,

for every l, and hence by the Szegö–Tyrtyshnikov Theorem 5.1 in [18], we
find

(5.6) ‖An(fl)‖2F =
n

2π

2π�

0

f2l + o(n).

Now, from (5.4)–(5.6) we get

‖An(fl)− PUn(An(fl))‖2F = o(n)
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for every function fl in the algebra generated by {g1, . . . , gm}. Therefore
by Tyrtyshnikov’s Lemma 3.9, PUn(An(fl)) − An(fl) converges to 0 in the
weak cluster sense. Hence by Theorem 5.7, PUn(An(f)) − An(f) converges
to 0 in the weak cluster sense for every f in the C∗-algebra A generated
by {g1, . . . , gm}.

Theorem 5.10. With the assumptions in Theorem 5.9, if εn(g) =O(1/n)
for g in the finite set {g1, . . . , gm,

∑m
k=1 g

2
k} and if the “grid point algebra”

is uniformly distributed, then the convergence is in the strong cluster sense,
provided the test functions in the set {g1, . . . , gm} are Lipschitz continuous
and belong to the Krein algebra.

Proof. The proof can be obtained by replacing the polynomials p by
{g1, . . . , gn} in the proof of Theorem 5.4 in [18]. The idea is to replace the
o(n) term by constants in (5.5) and (5.6). For (5.5), we use the hypothesis
εn(g) = O(1/n) and that the “grid point algebra” is uniformly distributed.
For (5.6), we use Widom’s theorem ([18, Theorem 5.2] or see [24]). Thus we
attain

‖An(fl)− PUn(An(fl))‖2F = O(1).

This completes the proof due to Lemma 3.9.

6. Discussion of the main results. In this section, we discuss the
future possibilities and possible applications of the theory developed.

1. In Theorems 4.2 and 4.4, we considered one of the limit points Φ of Φn’s
in Kadison’s BW-topology. Here Φn(A) is a preconditioner for the truncation
An for each n. But it is not clear whether Φ(A) is a preconditioner of A for
at least one limit point φ of Φn. Theorems 4.2 and 4.4 imply that, for any
two limit points φ, ψ of the sequence Φn(·), φ(A) is a compact perturbation
of ψ(A). Hence φ(A) and ψ(A) have the same essential spectrum by Weyl’s
theorem.

2. Lemma 4.6 and Theorem 4.8 are of theoretical interest, since they
share the same spirit of the classical Korovkin theorem. Consequently, the
test on a finite number of elements guarantees the assertion on the whole
C∗-algebra generated by these elements. Theorem 4.8 partly answers the
following question. Suppose the usage of preconditioners works for a finite
number of self-adjoint operators on H. Does it work for any operator in the
C∗-algebra generated by these operators?

3. The results of Section 5 are stronger versions of the results in [18].
Theorems 5.4 and 5.7 concern arbitrary continuous functions, while in [18],
trigonometric polynomials were considered. Also the assumptions are re-
duced to a finite number of elements as in the classical Korovkin theorem.
As the third author observed in [18], we expect that Theorems 5.4, 5.7, 5.9
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and 5.10 can be used to obtain new preconditioners belonging to different
algebras. Corollaries 5.6 and 5.8 are expected to be useful in deriving and
analyzing good preconditioners for the conjugate gradient method.

4. Finally, we observe that the modified version (equation (3.8)) of pre-
conditioners obtained using the pinching function is closer to the operator
in the Frobenius norm. However, the computation of preconditioners con-
structed through a diagonal transformation is simpler.
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