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On the algebra of smooth operators

by

Tomasz Ciaś (Poznań)

Abstract. Let s be the space of rapidly decreasing sequences. We give the spectral
representation of normal elements in the Fréchet algebra L(s′, s) of so-called smooth op-
erators. We also characterize closed commutative ∗-subalgebras of L(s′, s) and establish
a Hölder continuous functional calculus in this algebra. The key tool is the property (DN)
of s.

1. Introduction. The space s of rapidly decreasing sequences plays a
significant role in the structure theory of nuclear Fréchet spaces. One of the
most explicit examples of this is provided by the Kōmura–Kōmura theorem
which implies that a Fréchet space is nuclear if and only if it is isomorphic
to some closed subspace of sN (see e.g. [12, Cor. 29.9]). The space s has
also many interesting representations. For instance, it is isomorphic as a
Fréchet space to the Schwartz space S(Rn) of rapidly decreasing smooth
functions, the space D(K) of test functions with support in a compact set
K ⊂ Rn such that int(K) 6= ∅, the space C∞(M) of smooth functions on a
compact smooth manifold M , the space C∞[0, 1] of smooth functions on the
interval [0, 1]. Finally, the space s and all of the spaces above are Fréchet
commutative algebras with pointwise multiplication. However, these alge-
bras do not have to be isomorphic as algebras (for instance, s and C∞[0, 1]
with pointwise multiplication are not isomorphic as algebras).

A natural candidate for the “noncommutative s” is the algebra L(s′, s) of
so-called smooth operators, where multiplication is just the composition of
operators (note that s ⊆ s′ continuously). It appears in K-theory for Fréchet
algebras ([13, Def. 2.1], [1, Ex. 2.12], [6, p. 144], [10]) and in C∗-dynamical
systems ([8, Ex. 2.6]). The algebra L(s′, s) is also an example of a dense
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smooth subalgebra of a C∗-algebra (namely, it is a dense subalgebra of the
C∗-algebra K(`2) of compact operators on `2) which is especially impor-
tant in noncommutative geometry (see [1], [2], [4, pp. 23, 183–184]). From
the philosophical point of view C∗-algebras just correspond to analogues of
topological spaces whereas some of their dense smooth subalgebras play the
role of smooth structures.

Representations of s may lead to representations of the algebra L(s′, s).
Many of them are collected in [7, Th. 2.1]. For example, L(s′, s) is isomor-
phic as a Fréchet ∗-algebra to the following ∗-algebras of continuous linear
operators with appropriate multiplication and involution: L(S ′(Rn),S(Rn)),
L(E ′(M), C∞(M)), L(E ′[0, 1], C∞[0, 1]), where S ′(Rn) is the space of tem-
pered distributions, M ⊂ Rn is a compact smooth manifold, E ′(M) is the
space of distributions on M , and E ′[0, 1] is the space of distributions with
support in [0, 1]. Two extra representations of L(s′, s) are also worth men-
tioning: the algebra of rapidly decreasing matrices

K :=
{

(ξj,k)j,k∈N : sup
j,k∈N

|ξj,k|jqkq <∞ for all q ∈ N0

}
with matrix multiplication and conjugation of the transpose as involution
(see e.g. [4, p. 238], [13, Def. 2.1]), and also the algebra S(R2) equipped
with the Volterra convolution (f · g)(x, y) :=

	
R f(x, z)g(z, y) dz and the

involution f∗(x, y) := f(y, x) (see e.g. [1, Ex. 2.12]).

The purpose of this paper is to present some spectral, algebra and func-
tional calculus properties of the algebra of smooth operators. The results
are derived from the basic theory of nuclear Fréchet spaces and the theory
of bounded operators on a separable Hilbert space. The heart of the paper
is the theorem on the spectral representation of normal elements in L(s′, s)
(Theorem 3.1). In the proof we use the fact that the operator norm ‖·‖`2→`2
is a dominating norm on L(s′, s) (Proposition 3.2). As a by-product we ob-
tain a kind of spectral description of normal elements of L(s′, s) among
those of K(`2) (Corollary 3.6). Next, we characterize closed commutative
∗-subalgebras of L(s′, s). We prove that every such subalgebra is generated
by a single operator and also by its spectral projections (Theorem 4.8), and
moreover that it is a Köthe algebra with pointwise multiplication. To do this,
we show that every closed commutative ∗-subalgebra of L(s′, s) has a cano-
nical Schauder basis (Lemma 4.4). Finally, we establish a Hölder-continuous
functional calculus in L(s′, s) (Corollary 5.1) and we prove the functional
calculus theorem for normal elements in this algebra (Theorem 5.2).

By a Fréchet space we mean a complete metrizable locally convex space.
A Fréchet algebra is a Fréchet space which is an algebra with continuous
multiplication. A Fréchet ∗-algebra is a Fréchet algebra with an involu-
tion.
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We use the standard notation and terminology. All the notions from
functional analysis are explained in [12] and those from topological algebras
in [9] or [17].

2. Preliminaries. Throughout the paper, N will denote the set of nat-
ural numbers {1, 2, . . .} and N0 := N ∪ {0}.

By projection on `2 we always mean a continuous orthogonal (i.e., self-
adjoint) projection.

We define the space of rapidly decreasing sequences as the Fréchet space

s :=
{
ξ = (ξj)j∈N ∈ CN : ∀q ∈ N0 |ξ|q :=

( ∞∑
j=1

|ξj |2j2q
)1/2

<∞
}

with the topology corresponding to the system (|·|q)q∈N0 of norms. Its strong
dual is isomorphic to the space of slowly increasing sequences

s′ :=
{
ξ = (ξj)j∈N ∈ CN : ∃q ∈ N0 |ξ|′q :=

( ∞∑
j=1

|ξj |2j−2q
)1/2

<∞
}

equipped with the inductive limit topology given by the system (| · |′q)q∈N0

of norms.
Every η ∈ s′ corresponds to the continuous functional ξ 7→ 〈ξ, η〉 on s,

where

〈ξ, η〉 :=

∞∑
j=1

ξjηj .

Furthermore, by the Cauchy–Schwarz inequality we get

|〈ξ, η〉| ≤ |ξ|q|η|′q
for all q ∈ N0, ξ ∈ s and η ∈ s′ with |η|′q <∞.

For 1 ≤ p < ∞ and a Köthe matrix (aj,q)j∈N, q∈N0 we define the Köthe
space

λp(aj,q) :=
{
ξ = (ξj)j∈N ∈ CN : ∀q ∈ N0 |ξ|p,q :=

( ∞∑
j=1

|ξjaj,q|p
)1/p

<∞
}

and for p =∞,

λ∞(aj,q) :=
{
ξ = (ξj)j∈N ∈ CN : ∀q ∈ N0 |ξ|∞,q := sup

j∈N
|ξj |aj,q <∞

}
with the topology generated by the norms (| · |p,q)q∈N0 (see e.g. [12, Def.
p. 326]). Note that these spaces are sometimes Fréchet ∗-algebras with point-
wise multiplication.

Now, s is just the Köthe space λ2(jq). Moreover, since s is a nuclear
Fréchet space, it is isomorphic to any Köthe space λp(jq) for 1 ≤ p ≤ ∞
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(see e.g. [12, Prop. 28.16, Ex. 29.4 (1)]). We use `2-norms to simplify further
computations, for example we have | · |0 = | · |′0 = ‖ · ‖`2 .

It is well known that the space L(s′, s) of continuous linear operators
from s′ to s with the fundamental system of norms (‖ · ‖q)q∈N0 ,

‖x‖q := sup
|ξ|′q≤1

|xξ|q,

is isomorphic to s as a Fréchet space. Moreover, L(s′, s) is isomorphic to
s ⊗̂ s, the completed tensor product of s (see [11, §41.7 (5)]).

The canonical inclusion j : s ↪→ s′ is continuous. Hence, for x, y ∈
L(s′, s),

x · y := x ◦ j ◦ y
is in L(s′, s) as well and with this operation L(s′, s) is a Fréchet algebra.

The diagram

`2 ↪→ s′ → s ↪→ `2

defines the canonical (continuous) embedding of the algebra L(s′, s) in the
algebra L(`2) of continuous linear operators on the Hilbert space `2. In fact,
this inclusion acts into the space K(`2) of compact operators on `2, and the
sequence of singular numbers of elements in L(s′, s) belongs to s (see [7,
Prop. 3.1, Cor. 3.2]). Therefore, L(s′, s) can be regarded as some class of
compact operators on `2. Clearly, multiplication in L(s′, s) coincides with
composition in L(`2), and further L(s′, s) is invariant under the hilbertian
involution x 7→ x∗.

To see this, consider the Fréchet ∗-algebra of rapidly decreasing matrices

K :=
{
Ξ = (ξj,k)j,k∈N : |||Ξ|||q := sup

j,k∈N
|ξj,k|jqkq <∞ for all q ∈ N0

}
with matrix multiplication, with involution defined by ((ξj,k)j,k∈N)∗ :=
(ξk,j)j,k∈N and with (||| · |||q)q∈N0 as its fundamental sequence of norms. By
[7, Th. 2.1], Φ : L(s′, s)→ K, Φ(x) := (〈xek, ej〉)j,k∈N, is an algebra isomor-
phism and we have

Φ(x)∗ =
(
〈xej , ek〉

)
j,k∈N = (〈x∗ek, ej〉)j,k∈N.

Hence, x∗ = Φ−1(Φ(x)∗) ∈ L(s′, s) and Φ is even a ∗-isomorphism. Clearly,
for every matrix Ξ ∈ K and q ∈ N0, |||Ξ∗|||q = |||Ξ|||q, thus the hilbertian
involution is continuous on L(s′, s).

The Fréchet algebra L(s′, s) with the involution ∗ is called the algebra of
smooth operators. We will also consider the algebra with unit

L̃(s′, s) := {x+ λ1 : x ∈ L(s′, s), λ ∈ C},

where 1 is the identity operator on `2. We endow the algebra L̃(s′, s) with
the product topology.
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Now, we shall recall some basic spectral properties of the algebra L(s′, s).
For the sake of convenience, we state the following definition.

Definition 2.1. We say that a sequence (λn)n∈N ⊂ C is a sequence of
eigenvalues of an infinite-dimensional compact operator x on `2 if it satisfies
the following conditions:

(i) {λn}n∈N is the set of eigenvalues of x without zero;
(ii) |λ1| ≥ |λ2| ≥ · · · > 0 and if two eigenvalues have the same absolute

value, then we can order them in an arbitrary way;
(iii) the number of occurrences of the eigenvalue λn is equal to its geo-

metric multiplicity (i.e., the dimension of the space ker(λn1− x)).

Proposition 2.3 below is well known (see e.g. [10]) and it is a simple
consequence of Proposition 2.2. However, Propositions 2.2 and 2.3 also follow
from [3, Prop. A.2.8]. Straightforward proofs of Propositions 2.2 and 2.4 can
be found in [7, Th. 3.3, Cor. 3.5].

Proposition 2.2. An operator in L̃(s′, s) is invertible if and only if it
is invertible in L(`2).

Proposition 2.3. The algebra L̃(s′, s) is a Q-algebra, i.e., the set of
invertible elements is open.

Proposition 2.4. The spectrum of x in L(s′, s) equals the spectrum of
x in L(`2) and it consists of zero and the set of eigenvalues. If moreover
x is infinite-dimensional, then the sequence of eigenvalues of x (see Defini-
tion 2.1) belongs to s.

The first part of the following proposition is also known (see e.g. [13,
Lemma 2.2]). We give a simple proof that the norms ‖·‖q are submultiplica-
tive.

Proposition 2.5. The algebra L(s′, s) is locally m-convex, i.e., it has a
fundamental system of submultiplicative norms. Moreover, ‖xy‖q≤‖x‖q‖y‖q
for every q ∈ N0.

Proof. Let x, y ∈ L(s′, s) and let Bq, B
′
q denote the closed unit ball for

the norms | · |q, | · |′q, respectively. Clearly, y(B′q) ⊆ ‖y‖qBq and Bq ⊆ B′q.
Hence

‖xy‖q = sup
|ξ|′q≤1

|x(y(ξ))|q = sup
η∈y(B′q)

|x(η)|q ≤ sup
η∈‖y‖qBq

|x(η)|q

= ‖y‖q sup
η∈Bq

|x(η)|q ≤ ‖y‖q sup
η∈B′q

|x(η)|q = ‖x‖q‖y‖q.

3. Spectral representation. In this section we prove the following
theorem on the spectral representation of normal elements in L(s′, s).
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Theorem 3.1. Every infinite-dimensional normal operator x in L(s′, s)
has a unique spectral representation x =

∑∞
n=1 λnPn, where (λn)n∈N is a de-

creasing (in modulus) sequence in s of nonzero pairwise different elements,
(Pn)n∈N is a sequence of nonzero pairwise orthogonal finite-dimensional pro-
jections belonging to L(s′, s) (i.e., the canonical inclusion of Pn into L(`2)
is a projection onto `2) and the series converges absolutely in L(s′, s). More-
over, (|λn|θ‖Pn‖q)n∈N ∈ s for all q ∈ N0 and all θ ∈ (0, 1].

To prove this result, we need some preparation. Recall (see [12, Def. on
p. 359 and Lemma 29.10]) that a Fréchet space (X, (‖ · ‖q)q∈N0) has the
property (DN) if there is a continuous norm ‖ · ‖ on X such that for any
q ∈ N0 and θ ∈ (0, 1) there are r ∈ N0 and C > 0 such that for all x ∈ X,

‖x‖q ≤ C‖x‖1−θ‖x‖θr.

The norm ‖ · ‖ is called a dominating norm.

The following result is closely related to the result of K. Piszczek [14,
Th. 4]. For convenience, we give a more straightforward proof.

Proposition 3.2. The norm ‖·‖`2→`2 is a dominating norm on L(s′, s).

Proof. Clearly, ‖ · ‖`2→`2 = ‖ · ‖0. By [16, Th. 4.3] (see the proof), the
conclusion is equivalent to the condition

∀q, θ > 0 ∃r, C > 0 ∀h > 0 ‖ · ‖q ≤ C
(
hθ‖ · ‖r +

1

h
‖ · ‖0

)
.

From Hölder’s inequality, the norm | · |0 is a dominating norm on s. Hence,
again by [16, Th. 4.3], we get

∀q, η > 0 ∃r,D0 > 0 ∀k > 0 | · |q ≤ D0

(
kη| · |r +

1

k
| · |0

)
.

Now, by the bipolar theorem (see e.g. [12, Th. 22.13]), we obtain (following
the proof of [12, Lemma 29.13]) an equivalent condition

(3.1) ∀q, η > 0 ∃r,D > 0 ∀k > 0 U◦q ⊂ D
(
kηU◦r +

1

k
U◦0

)
,

where Uq := {ξ ∈ s : |ξ|q ≤ 1} and U◦q is its polar. If θ > 0 and h ∈ (0, 1] are

given, we define η := 2θ + 1 and k :=
√
h. Since k2η ≤ kη−1, we obtain

U◦q ⊗ U◦q := {x⊗ y : x, y ∈ U◦q } ⊂ D
(
kηU◦r +

1

k
U◦0

)
⊗D

(
kηU◦r +

1

k
U◦0

)
⊂ D2

(
k2ηU◦r ⊗ U◦r + 2kη−1U◦r ⊗ U◦r +

1

k2
U◦0 ⊗ U◦0

)
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⊂ 3D2

(
kη−1U◦r ⊗ U◦r +

1

k2
U◦0 ⊗ U◦0

)
= 3D2

(
hθU◦r ⊗ U◦r +

1

h
U◦0 ⊗ U◦0

)
.

Since r and D in condition (3.1) can be chosen so that q ≤ r and D ≥ 1, we
obtain

U◦q ⊗ U◦q ⊂ U◦r ⊗ U◦r ⊂ 3D2

(
hθU◦r ⊗ U◦r +

1

h
U◦0 ⊗ U◦0

)
for h > 1, whence

∀q, θ > 0 ∃r, C > 0 ∀h > 0 U◦q ⊗ U◦q ⊂ C
(
hθU◦r ⊗ U◦r +

1

h
U◦0 ⊗ U◦0

)
.

Therefore,

sup
z∈U◦q⊗U◦q

|z(x)| ≤ C sup

{
|z(x)| : z ∈ hθU◦r ⊗ U◦r +

1

h
U◦0 ⊗ U◦0

}
= C sup

{
|(z′ + z′′)(x)| : z′ ∈ hθU◦r ⊗ U◦r , z′′ ∈

1

h
U◦0 ⊗ U◦0

}
≤ C sup

{
|z′(x)|+ |z′′(x)| : z′ ∈ hθU◦r ⊗ U◦r , z′′ ∈

1

h
U◦0 ⊗ U◦0

}
= C

(
hθ sup

z∈U◦r⊗U◦r
|z(x)|+ 1

h
sup

z∈U◦0⊗U◦0
|z(x)|

)
for all x :=

∑n
j=1 xj ⊗ yj ∈ s⊗ s.

Let χ : s ⊗ s → L(s′, s), χ(
∑n

j=1 xj ⊗ yj)(z) :=
∑n

j=1 z(yj)xj . We have,
for all p ∈ N0,

sup
z∈U◦p⊗U◦p

∣∣∣z( n∑
j=1

xj ⊗ yj
)∣∣∣ = sup

{∣∣∣ n∑
j=1

z1(xj)z2(yj)
∣∣∣ : z1, z2 ∈ U◦p

}
= sup

{∣∣∣z1( n∑
j=1

z2(yj)xj

)∣∣∣ : z1, z2 ∈ U◦p
}

= sup
{∣∣∣ n∑

j=1

z(yj)xj

∣∣∣
p

: z ∈ U◦p
}

= sup
{∣∣∣χ( n∑

j=1

xj ⊗ yj
)

(z)
∣∣∣
p

: z ∈ U◦p
}

=
∥∥∥χ( n∑

j=1

xj ⊗ yj
)∥∥∥

p
.

Hence∥∥∥χ( n∑
j=1

xj ⊗ yj
)∥∥∥

q
≤ C

(
hθ
∥∥∥χ( n∑

j=1

xj ⊗ yj
)∥∥∥

r
+

1

h

∥∥∥χ( n∑
j=1

xj ⊗ yj
)∥∥∥

0

)
.

Finally, since the set {χ(
∑n

j=1 xj ⊗ yj) : xj , yj ∈ s, n ∈ N} is dense in

L(s′, s), we obtain

‖x‖q ≤ C
(
hθ‖x‖r +

1

h
‖x‖0

)
for all x ∈ L(s′, s).
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Lemma 3.3. Let (E, (‖ · ‖q)q∈N0) be a Fréchet space with the property
(DN) and let ‖ · ‖p be a dominating norm. If (xn)n∈N ⊂ E and (λn)n∈N ⊂ C
satisfy the conditions

(i) supn∈N ‖xn‖p <∞,
(ii) ∀q ∈ N0 supn∈N |λn| ‖xn‖q <∞,

then
∀q ∈ N0 ∀θ ∈ (0, 1] sup

n∈N
|λn|θ‖xn‖q <∞.

Moreover, for any other sequence (yn)n∈N ⊂ E satisfying conditions (i) and
(ii) we have

∀q ∈ N0 ∀q′ ∈ N0 ∀θ ∈ (0, 1] sup
n∈N
|λn|θ‖xn‖q‖yn‖q′ <∞.

Proof. Fix q ∈ N0 and θ ∈ (0, 1). Since ‖ · ‖p is a dominating norm on E,
we obtain, for some C > 0 and r ∈ N0,

(3.2) ‖xn‖q ≤ C‖xn‖1−θp ‖xn‖θr
for all n ∈ N. Let C1 := supn∈N ‖xn‖p < ∞, C2 := supn∈N |λn| ‖xn‖q < ∞.
Then by (3.2),

|λn|θ‖xn‖q ≤ C‖xn‖1−θp (|λn| ‖xn‖r)θ ≤ CC1−θ
1 Cθ2 =: C3,

where C3 does not depend on n.
To prove the second assertion we also fix q′ ∈ N0 and let (yn)n∈N ⊂ E

satisfy conditions (i) and (ii). We have

|λn|θ‖xn‖q‖yn‖q′ = (|λn|θ/2‖xn‖q)(|λn|θ/2‖yn‖q′)
and from the first part of the proof,

sup
n∈N
|λn|θ/2‖xn‖q <∞ and sup

n∈N
|λn|θ/2‖yn‖q′ <∞,

so we are done.

Proposition 3.4. Let N be a finite set or N. If (Pn)n∈N is a sequence of
pairwise orthogonal finite-dimensional projections on `2, (λn)n∈N ⊂ C \ {0}
and x :=

∑
n∈N λnPn ∈ L(s′, s) (the series converging in the norm ‖·‖`2→`2),

then (Pn)n∈N ⊂ L(s′, s).

Proof. Since Pn = 1
λn
x ◦ Pn, it follows that Pn : `2 → s. On the other

hand, Pn = Pn ◦ 1
λn
x, so Pn extends to Pn : s′ → `2. Hence Pn = Pn ◦ Pn :

s′ → s.

Lemma 3.5. Let (λn)n∈N be a decreasing (in modulus) sequence of non-
zero complex numbers and let (Pn)n∈N be a sequence of nonzero pairwise
orthogonal finite-dimensional projections on `2. Moreover, assume that the
series

∑∞
n=1 λnPn converges in the norm ‖ · ‖`2→`2 and its limit belongs to

L(s′, s). Then (λn)n∈N ∈ s, (Pn)n∈N ⊂ L(s′, s) and the series converges



Algebra of smooth operators 153

absolutely in L(s′, s). Moreover, (|λn|θ‖Pn‖q)n∈N ∈ s for all q ∈ N0 and
θ ∈ (0, 1].

Proof. By Proposition 2.4, the sequence of eigenvalues of the operator
x :=

∑∞
n=1 λnPn belongs to s. Clearly, λn is an eigenvalue of

∑∞
n=1 λnPn

and the number of its occurrences is less than or equal to the geometric
multiplicity, so (λn)n∈N is, likewise, in s.

By Proposition 3.4, Pn ∈ L(s′, s). We will show that (|λn|θ‖Pn‖q)n∈N ∈ s
for all q ∈ N0 and θ ∈ (0, 1], which implies that the series

∑∞
n=1 λnPn

converges absolutely in L(s′, s). Consider the operator Tx : L(`2)→ L(s′, s)
which sends z ∈ L(`2) to the following composition (in L(s′, s)):

s′
x→ s ↪→ `2

z→ `2 ↪→ s′
x→ s.

By the closed graph theorem for Fréchet spaces (see e.g. [12, Th. 24.31]),
Tx is continuous and since the sequence (Pn)n∈N is bounded in L(`2), the
sequence (λ2nPn)n∈N = (TxPn)n∈N is bounded in L(s′, s), i.e.,

(3.3) sup
n∈N
|λn|2‖Pn‖q <∞

for all q ∈ N0.
Let (en)n∈N be the canonical orthonormal basis in `2 and let En : s′ → s,

Enξ := ξnen,

for ξ = (ξn)n∈N ∈ s′ and n ∈ N. Clearly, each En is a projection in L(s′, s).
Moreover,

(3.4) ‖En‖q = sup
|ξ|′q≤1

|Enξ|q = sup
|ξ|′q≤1

|ξnen|q = sup
|ξ|′q≤1

|ξn|·|en|q = nq ·nq = n2q.

Since (λn)n∈N ∈ s, we have

(3.5) sup
n∈N
|λn|2‖En‖q <∞

for q ∈ N0.
By Proposition 3.2, ‖ · ‖`2→`2 is a dominating norm on L(s′, s), and of

course ‖Pn‖`2→`2 = ‖En‖`2→`2 = 1 for n ∈ N. Thus, from (3.3)–(3.5) and
Lemma 3.3 (applied to the sequences (λ2n)n∈N, (Pn)n∈N and (En)n∈N) we get

sup
n∈N
|λn|2θ‖Pn‖qn2q

′
= sup

n∈N
|λn|2θ‖Pn‖q‖En‖q′ <∞

for all θ ∈ (0, 1] and q, q′ ∈ N0. Hence, (|λn|θ‖Pn‖q) ∈ s for all q ∈ N0 and
θ ∈ (0, 1].

Now, it is not hard to prove the main theorem of this section.

Proof of Theorem 3.1. Let x be a normal infinite-dimensional operator
in L(s′, s). The operator x (as an operator on `2) is compact (see [7, Prop.
3.1]), thus by the spectral theorem for normal compact operators (see e.g.
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[5, Th. 7.6]), x =
∑∞

n=1 λnPn, where (λn)n∈N is a decreasing null sequence
of nonzero pairwise different elements, (Pn)n∈N is a sequence of nonzero
pairwise orthogonal finite-dimensional projections and the series converges
in the norm ‖ · ‖`2→`2 . Now, the conclusion follows by Lemma 3.5.

As a corollary, we get a characterization of normal operators in L(s′, s)
among compact operators on `2.

Corollary 3.6. Let x be a compact infinite-dimensional normal opera-
tor on `2 with spectral representation x =

∑∞
n=1 λnPn (the series converges

in norm ‖ · ‖`2→`2). Then the following assertions are equivalent:

(i) x ∈ L(s′, s) (as an operator on `2);
(ii) Pn ∈ L(s′, s) for n ∈ N and (|λn|θ‖Pn‖q)n∈N ∈ s for all q ∈ N0 and

every θ ∈ (0, 1];
(iii) Pn ∈ L(s′, s) for n ∈ N, (λn)n∈N ∈ s and supn∈N |λn| ‖Pn‖q < ∞

for all q ∈ N0;
(iv) Pn ∈ L(s′, s) for n ∈ N and

∑∞
n=1 |λn| ‖Pn‖q <∞ for all q ∈ N0.

Moreover, if x =
∑N

n=1 λnPn is a finite-dimensional operator on `2, then
x ∈ L(s′, s) if and only if Pn ∈ L(s′, s) for n = 1, . . . , N .

Proof. The implication (i)⇒(ii) follows directly from Theorem 3.1. The
implications (ii)⇒(iii) and (iv)⇒(i) are obvious.

(iii)⇒(iv). We have

∞∑
n=1

|λn| ‖Pn‖q ≤ sup
n∈N
|λn|1/2‖Pn‖q ·

∞∑
n=1

|λn|1/2 <∞,

because, by Lemma 3.3, supn∈N |λn|1/2‖Pn‖q <∞ and s ⊂
⋂
p>0 `p.

The finite case is an immediate consequence of Proposition 3.4.

4. Closed commutative ∗-subalgebras. The aim of this section is to
describe all closed commutative ∗-subalgebras of L(s′, s) (see Theorem 4.8)
and to identify maximal ones among them (see Theorem 4.10).

We will need the following lemma.

Lemma 4.1. Let A be a subalgebra of the algebra Ã over C. Let N ∈ N,
a1, . . . , aN ∈ Ã, λ1, . . . , λN ∈ C, aj 6= 0, a2j = aj, ajak = 0 for j 6= k, λj 6= 0
and λj 6= λk for j 6= k. Then a1, . . . , aN ∈ A whenever λ1a1+· · ·+λNaN ∈A.

Proof. We use induction on N . The case N = 1 is trivial.

Assume that the conclusion holds for all M < N . Let a := λ1a1 + · · ·
+ λNaN ∈ A. We have

λ21a1 + · · ·+ λ2NaN = a2 ∈ A,
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and, on the other hand,

λNλ1a1 + · · ·+ λ2NaN = λNa ∈ A,
so

(λ21 − λNλ1)a1 + · · ·+ (λ2N−1 − λNλN−1)aN−1 = a2 − λNa ∈ A.
Since λj 6= 0 and λj 6= λN for j ∈ {1, . . . , N − 1}, we have λ2j − λNλj =

λj(λj − λN ) 6= 0 for j ∈ {1, . . . , N − 1}. If λ2j − λNλj are pairwise different
then, from the inductive assumption, a1, . . . , aN−1 ∈ A so aN ∈ A as well.

Assume that these numbers are not pairwise different. We define an
equivalence relation R on the set {1, . . . , N − 1} in the following way:

jRk ⇔ λj(λj − λN ) = λk(λk − λN ).

Let I1, . . . , IN1 denote the equivalence classes which contain not less than
two elements and let I0 := {i1, . . . , iN0} be the remaining indices. From our
assumption, I1 6= ∅. For j ∈ {1, . . . , N1} and k ∈ Ij let

λ′j := λk(λk − λN ),

and let
a′j :=

∑
n∈Ij

an.

We also define

λ′N1+1 := λi1(λi1 − λN ), λ′N1+2 := λi2(λi2 − λN ), . . . , λ′N1+N0

:= λiN0
(λiN0

− λN )

and
a′N1+1 := ai1 , a′N1+2 := ai2 , . . . , a

′
N1+N0

:= aiN0
.

Clearly, 1 ≤ N ′ := N1+N0 < N , a′j 6= 0, a′2j = a′j , a
′
ja
′
k = 0, λ′j 6= 0, λ′j 6= λ′k

for j, k ∈ {1, . . . , N ′}, j 6= k, and

λ′1a
′
1 + · · ·+ λ′N ′a

′
N ′ = a2 − λNa ∈ A.

From the inductive assumption, a′1 ∈ A, hence∑
n∈I1

λnan =
∑
n∈I1

an ·
N∑
n=1

λnan = a′1a ∈ A.

Again, from the inductive assumption, an ∈ A for n ∈ I1, and therefore∑
n∈{1,...,N}\I1 λnan∈A. Once again, from the inductive assumption, an ∈ A

for n ∈ {1, . . . , N} \ I1. Thus a1, . . . , aN ∈ A, which completes the proof.

Proposition 4.2. Let A be a closed ∗-subalgebra of L(s′, s) (not nec-
essary commutative) and let x be an infinite-dimensional normal operator
in L(s′, s) with spectral representation x =

∑∞
n=1 λnPn. Then x ∈ A if and

only if Pn ∈ A for all n ∈ N.
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Proof. Let N0 := 0, N1 := sup{n ∈ N : |λn| = |λ1|} and for j = 2, 3, . . .
let Nj := sup{n ∈ N : |λn| = |λNj−1+1|}. Since (|λn|)n∈N is a null sequence,
we have Nj <∞.

By Theorem 3.1, if Pn ∈ A for all n ∈ N then x ∈ A. To prove
the converse assume that x ∈ A. Then x∗ =

∑∞
n=1 λnPn ∈ A so xx∗ =∑∞

n=1 |λn|2Pn ∈ A, whence

yk :=

∞∑
n=1

(
|λn|
|λ1|

)2k

Pn =

(
xx∗

|λ1|2

)k
∈ A

for all k ∈ N. Hence for q and k arbitrary we get

‖yk − (P1 + · · ·+ PN1)‖q =

∥∥∥∥ ∞∑
n=1

(
|λn|
|λ1|

)2k

Pn − (P1 + · · ·+ PN1)

∥∥∥∥
q

=

∥∥∥∥ ∞∑
n=N1+1

(
|λn|
|λ1|

)2k

Pn

∥∥∥∥
q

≤
∞∑

n=N1+1

(
|λn|
|λ1|

)2k

‖Pn‖q

≤ 1

|λ1|

(
|λN1+1|
|λ1|

)2k−1 ∞∑
n=N1+1

|λn| ‖Pn‖q.

By Theorem 3.1,
∑∞

n=N1+1 |λn| ‖Pn‖q <∞, and moreover |λN1+1|/|λ1| < 1.
Thus

‖yk − (P1 + · · ·+ PN1)‖q → 0

as k →∞. Therefore, since A is closed, we conclude that P1+ · · ·+PN1 ∈ A.
Consequently,

∞∑
n=N1+1

|λn|2Pn = xx∗ − |λ1|2(P1 + · · ·+ PN1) ∈ A;

hence, proceeding by induction, PNj+1 + · · ·+ PNj+1 ∈ A for j ∈ N0, so

Nj+1∑
n=Nj+1

λnPn = (PNj+1 + · · ·+ PNj+1)x ∈ A.

Finally, by Lemma 4.1, Pn ∈ A for n ∈ N.

Proposition 4.3. For every othonormal system (en)n∈N in `2 and se-
quence (λn)n∈N ∈ c0, the series

∑∞
n=1 λn〈·, en〉en converges in the norm

‖ · ‖`2→`2.

Proof. This is a simple consequence of the Pythagorean theorem and the
Bessel inequality.

Lemma 4.4. Let A be a commutative subalgebra of L(s′, s). Let P denote
the set of nonzero projections belonging to A and letM be the set of minimal
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elements in P with respect to the order relation

∀P,Q ∈ P P � Q ⇔ PQ = QP = P.

Then

(i) M is an at most countable family of pairwise orthogonal projections
belonging to L(s′, s) such that

∀P ∈ P ∃P ′1, . . . , P ′m ∈M P = P ′1 + · · ·+ P ′m.

(ii) If A is also a closed ∗-subalgebra of L(s′, s), then M is a Schauder
basis in A.

Proof. (i) By the definition

M = {P ∈ P : ∀Q ∈ P (Q � P ⇒ Q = P )}.
Firstly, we will show that

(4.1) ∀P ∈ P ∃P ′1, . . . , P ′m ∈M P = P ′1 + · · ·+ P ′m.

Take P ∈ P. If P ∈ M, then we are done. Otherwise, there is Q ∈ P
such that Q � P , Q 6= P . Of course, P − Q ∈ P. If Q,P − Q ∈ M, then
P = Q + (P − Q) is the desired decomposition. Otherwise, we decompose
Q or P − Q into smaller projections as was done above for P . Since P is
finite-dimensional, after finitely many steps we finish our procedure.

Next, we shall prove that projections inM are pairwise orthogonal. Let
P,Q ∈ M, P 6= Q, and suppose, to derive a contradiction, that PQ 6= 0.
Since A is commutative,

(PQ)2 = P 2Q2 = PQ

and thus PQ ∈ P. Moreover,

P (PQ) = P 2Q = PQ

so PQ � P . Now, PQ 6= P implies that P /∈ M and if PQ = P then
Q /∈M, which is a contradiction.

Finally, since projections in M are pairwise orthogonal (as projections
on `2), M is at most countable.

(ii) Let x ∈ A. If x is finite-dimensional and
∑N

n=1 µnQn is its spectral
decomposition, then from (i) and Lemma 4.1, x is a linear combination of
projections in M.

Assume that x is infinite-dimensional and let x =
∑∞

n=1 µnQn (the spec-
tral representation of x). Since A is a closed commutative ∗-subalgebra of
L(s′, s), by Proposition 4.2, Qn ∈ A for n ∈ N. Next, from (i),

∀n ∈ N ∃Q(n)
1 , . . . , Q

(n)
ln
∈M Qn =

ln∑
j=1

Q
(n)
j .



158 T. Ciaś

Hence

x =
∞∑
n=1

ln∑
j=1

µnQ
(n)
j .

For l0 = 0, j = l0 + l1 + · · · + ln−1 + k, 1 ≤ k ≤ ln let Pj := Q
(n)
k and let

λj := µn. Consider the series
∑∞

n=1 λnPn. Clearly, if the series converges in
L(s′, s) then its limit is x. To prove this we shall first show that the series
converges in the norm ‖ · ‖`2→`2 .

Since Pn is an (orthogonal) projection of finite dimension dn, we have

Pn =
∑dn

j=1〈·, e
(n)
j 〉e

(n)
j for every orthonormal basis (e

(n)
j )dnj=1 of the image of

Pn. For d0 = 0, j = d0 + d1 + · · · + dn−1 + k, 1 ≤ k ≤ dn let ej := e
(n)
k

and let λ′j := λn. By Proposition 4.3, the series
∑∞

j=1 λ
′
j〈·, ej〉ej converges

in the norm ‖ · ‖`2→`2 . Hence
∑∞

n=1 λnPn converges in the norm ‖ · ‖`2→`2
because (

∑N
n=1 λnPn)N∈N is a subsequence of the sequence of partial sums

of the series
∑∞

j=1 λ
′
j〈·, ej〉ej .

Now, by Lemma 3.5, x =
∑∞

n=1 λnPn and the series converges absolutely
in L(s′, s). This shows that every operator in A is represented by an abso-
lutely convergent series

∑∞
n=1 λ

′′
nP
′′
n with P ′′n ∈M. To prove the uniqueness

of this representation assume that
∑∞

n=1 λ
′′
nP
′′
n = 0. Then

λ′′mP
′′
m = P ′′m

∞∑
n=1

λ′′nP
′′
n = 0,

so λ′′m = 0 for m ∈ N. This shows that the sequence of coefficients is unique,
hence M is a Schauder basis in A.

For a closed commutative ∗-subalgebra A of L(s′, s) the Schauder basis
M from the preceding lemma will be called the canonical Schauder basis
(of A).

For a subset Z of L(s′, s) we will denote by alg(Z) the closed ∗-subalgebra
of L(s′, s) generated by Z and by lin(Z) the closure (in L(s′, s)) of the linear

span of Z. If A is a closed ∗-subalgebra of L(s′, s), then Â denotes the set
of nonzero ∗-multiplicative functionals on A.

Corollary 4.5. The set Â of nonzero ∗-multiplicative functionals on a
closed commutative ∗-subalgebra A of L(s′, s) is exactly the set of coefficient
functionals with respect to the canonical Schauder basis of A.

Proof. Clearly, every coefficient functional is ∗-multiplicative. Conver-
sely, if ϕ is a nonzero ∗-multiplicative functional on A and {Pn}n∈N is the
canonical Schauder basis then ϕ(Pn) = ϕ(P 2

n) = (ϕ(Pn))2, thus ϕ(Pn) = 0
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or ϕ(Pn) = 1. Suppose that ϕ(Pn) = ϕ(Pm) = 1 for n 6= m. Then

2 = ϕ(Pn) + ϕ(Pm) = ϕ(Pn + Pm) = ϕ((Pn + Pm)2) = (ϕ(Pn + Pm))2

= (ϕ(Pn) + ϕ(Pm))2 = 4,

a contradiction. Hence, there is at most one n ∈ N such that ϕ(Pn) = 1. If
ϕ(Pn) = 0 for all n ∈ N then, since {Pn}n∈N is a basis, ϕ = 0, a contradiction.
Thus, there is exactly one n ∈ N such that ϕ(Pn) = 1, and ϕ(Pm) = 0 for
m 6= n, i.e., ϕ is a coefficient functional.

Proposition 4.6. If {Pn}n∈N is a family of pairwise orthogonal pro-
jections belonging to L(s′, s), then

alg({Pn}n∈N ) = lin({Pn}n∈N )

and it is a commutative ∗-algebra.

Proof. Clearly, lin({Pn}n∈N ) ⊆ alg({Pn}n∈N ) and lin({Pn}n∈N ) is a
commutative ∗-algebra. By the continuity of multiplication and involution,
lin({Pn}n∈N ) is a commutative ∗-algebra as well. Hence, lin({Pn}n∈N ) =
alg({Pn}n∈N ).

Proposition 4.7. Every sequence {Pn}n∈N ⊂ L(s′, s) of nonzero pair-
wise orthogonal projections is a basic sequence in L(s′, s), i.e., it is a (cano-
nical) Schauder basis of the Fréchet space (∗-algebra) lin({Pn}n∈N ).

Proof. Let M be the canonical Schauder basis of A := alg({Pn}n∈N )
which consists of all projections which are minimal with respect to the order
relation described in Lemma 4.4. If we show that {Pn}n∈N =M, then, by
Proposition 4.6, we get the conclusion.

Fix n ∈ N and assume that Q � Pn for some nonzero projection Q ∈ A,
i.e., QPn = Q. Since A = lin({Pn}n∈N ), we have

Q = lim
j→∞

Mj∑
k=1

λ
(j)
k Pk

for some Mj ∈ N and λ
(j)
k ∈ C. From the continuity of algebra multiplication

and scalar multiplication, we get

Q = QPn =
(

lim
j→∞

Mj∑
k=1

λ
(j)
k Pk

)
Pn = lim

j→∞

( Mj∑
k=1

λ
(j)
k PkPn

)
= lim

j→∞
λ(j)n Pn

=
(

lim
j→∞

λ(j)n

)
Pn = λnPn,

where λn := limj→∞ λ
(j)
n ∈ C. Since Q is a nonzero projection, we deduce

that λn = 1 and Q = Pn. Hence {Pn}n∈N ⊆M.
Now, suppose that there is a projection Q in M \ {Pn}n∈N . We have

already proved that {Pn}n∈N ⊆ M, hence by Lemma 4.4(i), Qx = 0 for
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all x ∈ lin({Pn}n∈N ). By continuity of multiplication, Qx = 0 for every
x ∈ lin({Pn}n∈N ) = A. In particular, Q = Q2 = 0, a contradiction. Hence,
{Pn}n∈N =M.

Closed commutative ∗-subalgebras of L(s′, s) are, in some sense, quite
simple: each of them is generated by a single operator and also by its spec-
tral projections. From nuclearity we also get the following sequence space
representations.

Theorem 4.8. Every closed commutative infinite-dimensional ∗-subal-
gebra A of L(s′, s) has a (canonical) Schauder basis {Pn}n∈N consisting of
pairwise othogonal finite-dimensional minimal projections (see Lemma 4.4)
such that

A = alg({Pn}n∈N) ∼= λ1(‖Pn‖q) = λ∞(‖Pn‖q)
as Fréchet ∗-algebras. Moreover, there is an operator x ∈ A with spectral
representation x =

∑∞
n=1 λnPn such that A = alg(x).

Proof. By Lemma 4.4, A has a Schauder basis with the desired proper-
ties. By Proposition 4.6, A = lin({Pn}n∈N) = alg({Pn}n∈N) and since A is
a nuclear Fréchet space with Schauder basis {Pn}n∈N, we deduce that

A ∼= λ1(‖Pn‖q) = λ∞(‖Pn‖q)
as Fréchet spaces (see e.g. [12, Cor. 28.13, Prop. 28.16]). Since on the linear
span of {Pn}n∈N multiplication (resp. involution) corresponds to pointwise
multiplication (resp. conjugation) in λ1(‖Pn‖q), the isomorphism is also a
∗-algebra isomorphism where the Köthe space is equipped with pointwise
multiplication.

Now, we shall show that there is a decreasing sequence (λn)n∈N of pos-
itive numbers such that the series

∑∞
n=1 λnPn is absolutely convergent in

L(s′, s). To do so, choose a sequence (Cq)q∈N such that Cq≥max1≤n≤q ‖Pn‖q.
Clearly, Cq/‖Pn‖q ≥ 1 for q ≥ n, so

inf
q∈N

Cq
‖Pn‖q

≥ min

{
C1

‖Pn‖1
, . . . ,

Cn−1
‖Pn‖n−1

, 1

}
> 0

for n ∈ N. Let λ1 := 1 and let

λn := min

{
1

n2
inf
q∈N

Cq
‖Pn‖q

,
λn−1

2

}
.

Then λn > 0, the sequence (λn)n∈N is strictly decreasing and
∞∑
n=1

λn‖Pn‖q ≤
∞∑
n=1

1

n2
inf
r∈N

Cr
‖Pn‖r

‖Pn‖q ≤ Cq
∞∑
n=1

1

n2
<∞.

Consequently, x :=
∑∞

n=1 λnPn ∈ L(s′, s) and this series is the spectral
representation of x. Moreover, since Pn ∈ A for n ∈ N and A is closed, we
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have x ∈ A. Finally, the equality alg(x) = alg({Pn}n∈N) is a consequence of
Proposition 4.2.

A commutative closed ∗-subalgebra A of L(s′, s) is said to be maximal
commutative if it is not properly contained in any larger closed commutative
∗-subalgebra of L(s′, s). We say that a sequence {Pn}n∈N of nonzero pairwise
orthogonal projections in L(s′, s) is complete if there is no nonzero projection
P in L(s′, s) such that PnP = 0 for every n ∈ N. For a subset Z of L(s′, s),
the set Z ′ := {x ∈ L(s′, s) : xy = yx for all y ∈ Z} is called the commutant
of Z.

Proposition 4.9. For every self-adjoint subset Z of L(s′, s), the com-
mutant Z ′ is a closed ∗-subalgebra of L(s′, s).

Proof. Clearly, if x, y commute with every z ∈ Z then λx, x+ y, xy and
x∗ commute as well. Hence, from the continuity of the algebra operations
and the involution, Z ′ is a closed ∗-subalgebra of L(s′, s).

Theorem 4.10. For a closed commutative ∗-subalgebra A of L(s′, s) the
following assertions are equivalent:

(i) A is maximal commutative;
(ii) the canonical Schauder basis {Pn}n∈N of A is a complete sequence

of pairwise orthogonal one-dimensional projections belonging to
L(s′, s);

(iii) A = A′.

Proof. (i)⇒(ii). Suppose that for some m ∈ N the projection Pm is
not one-dimensional. Then there are two nonzero pairwise orthogonal pro-
jections Q1, Q2 ∈ L(s′, s) such that Pm = Q1 + Q2. By Proposition 4.6,
lin({Pn : n 6= m} ∪ {Q1, Q2}) is a closed commutative ∗-subalgebra of
L(s′, s), and clearly

A = lin({Pn}n∈N) ⊆ lin({Pn : n 6= m} ∪ {Q1, Q2}).
By Proposition 4.7, {Pn}n∈N is the canonical Schauder basis of A, and {Pn :
n 6= m} ∪ {Q1, Q2} is the canonical Schauder basis of lin({Pn : n 6= m} ∪
{Q1, Q2}), so

A 6= lin({Pn : n 6= m} ∪ {Q1, Q2}).
Thus, A is not maximal, a contradiction.

If P ∈ L(s′, s) is a nonzero projection orthogonal to all Pn, then, using
similar arguments, we find that lin({Pn}n∈N∪{P}) is a closed commutative
∗-subalgebra of L(s′, s) properly containing A, a contradiction.

(ii)⇒(iii). Since A is commutative, we have A ⊂ A′. Now, suppose that
there is x ∈ A′ \A. By Proposition 4.9, x∗ ∈ A′ so x+ x∗, x− x∗ ∈ A′, and
moreover x∗ /∈ A. Since x = 1

2(x + x∗) + 1
2(x − x∗), we have x + x∗ /∈ A or

x−x∗ /∈ A. Without loss of generality assume that x+x∗ /∈ A. The operator
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x + x∗ is self-adjoint, hence it has a spectral representation
∑∞

m=1 µmQm.
Then, by Propositions 4.2 and 4.9, Qm ∈ A′ for all m ∈ N and there exists
m0 for which Qm0 /∈ A (otherwise x + x∗ ∈ A). Let J := {n : Pn � Qm0}
(see the definition of � in Lemma 4.4). Since Qm0 is finite-dimensional, J
is finite. One can easily check that Qm0 −

∑
j∈J Pj is a projection (if J = ∅,

then
∑

j∈J Pj := 0). Moreover,

(4.2)
(
Qm0 −

∑
j∈J

Pj

)
Pk = 0

for all k ∈ N. Indeed, if k ∈ J , then from the definition of �, Qm0Pk = Pk,
so (

Qm0 −
∑
j∈J

Pj

)
Pk = Qm0Pk − Pk = 0.

Let k /∈ J . We have Qm0Pk = PkQm0 because Qm0 ∈ A′. This implies that
Qm0Pk is a projection and imQm0Pk = imQm0 ∩ imPk. Therefore, since the
Pk are one-dimensional, we have Qm0Pk = Pk or Qm0Pk = 0. But, by our
assumption, Qm0Pk 6= Pk, so Qm0Pk = 0. Now,(

Qm0 −
∑
j∈J

Pj

)
Pk = Qm0Pk = 0.

Since the sequence (Pn)n∈N is complete, (4.2) implies that

Qm0 −
∑
j∈J

Pj = 0.

Hence Qm0 ∈ A, a contradiction.
(iii)⇒(i). Follows directly from the definition of the commutant of A.

Remark 4.11. (i) Since (Pn)n∈N is a sequence of pairwise orthogonal
one-dimensional projections, we have Pn = 〈·, en〉en, where (en)n∈N ⊂ s
is an orthonormal system in `2. Then λ∞(‖Pn‖q) = λ∞(|en|q) as Fréchet
∗-algebras. Indeed, from the Hölder inequality, if ξ ∈ s and q ∈ N0, then

|ξ|2q ≤ |ξ|`2 |ξ|2q.
Hence

1 ≤ |en|q ≤ |en|2q = ‖Pn‖q = |en|2q ≤ |en|2q.
This implies that λ∞(‖Pn‖q) = λ∞(|en|q) as Fréchet spaces, and, since the
algebra operations are the same in both algebras, λ∞(‖Pn‖q) = λ∞(|en|q)
as Fréchet ∗-algebras.

(ii) The sequence (en)n∈N from the previous item need not be an or-
thonormal basis of `2. Indeed, let (en)n∈N be an orthonormal basis of `2
such that en ∈ s for n ∈ N \ {1} and e1 /∈ s. Clearly, (en)n∈N\{1} is not
an orthonormal basis of `2 and (〈·, en〉en)n∈N\{1} is a complete sequence in
L(s′, s).
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(iii) Applying the Kuratowski–Zorn lemma, one can easily prove that
every closed commutative ∗-subalgebra of L(s′, s) is contained in some max-
imal commutative ∗-subalgebra of L(s′, s). If {Pn}n∈N is a sequence of pair-
wise orthogonal finite-dimensional projections, then, by Proposition 4.6,
alg({Pn}n∈N) is a closed commutative ∗-subalgebra of L(s′, s) so it is con-
tained in some maximal commutative ∗-subalgebra alg({Qn}n∈N) of L(s′, s),
where {Qn}n∈N is a complete sequence of one-dimensional projections in
L(s′, s) (see Theorems 4.8 and 4.10). Now, applying Lemma 4.4(i), it is
easy to show that the sequence {Pn}n∈N can be extended to some complete
sequence of projections belonging to L(s′, s).

Corollary 4.12. Let A be one of the following Fréchet ∗-algebras with
pointwise multiplication:

(i) the algebra S(Rn) of rapidly decreasing smooth functions;
(ii) the algebra D(K) of test functions with support in a compact set

K ⊂ Rn such that int(K) 6= ∅;
(iii) the algebra C∞a (M) of smooth functions on a compact smooth man-

ifold M vanishing at a ∈M ;
(iv) the algebra C∞a (Ω) of smooth functions on Ω vanishing at a ∈ Ω,

where Ω 6= ∅ is an open bounded subset of Rn with C1-boundary;
(v) the algebra Ea(K) of Whitney jets on a compact set K ⊂ Rn with

the extension property, flat at a ∈ K and such that int(K) 6= ∅.
Then A is isomorphic to s as a Fréchet space but it is not isomorphic to
any closed commutative ∗-subalgebra of L(s′, s) as a Fréchet ∗-algebra.

Proof. It is well known that the spaces from items (i)–(v) are isomorphic
to s as Fréchet spaces (see e.g. [12, Ch. 31], [15, Satz 4.1]).

To prove the second assertion let us compare the relevant sets of ∗-
multiplicative functionals. If A is one of the spaces from items (i)–(v),
then every point evaluation functional on A is ∗-multiplicative and since
the underlying space has the cardinality c of the continuum, the cardinality
of the set of ∗-multiplicative functionals on A is not less than c. On the
other hand, by Corollary 4.5, the set of ∗-multiplicative functionals on any
infinite-dimensional closed commutative ∗-subalgebra of L(s′, s) is at most
countable, hence none of the spaces from items (i)–(v) is isomorphic to A.

It is clear that the algebra s with pointwise multiplication is a ∗-subal-
gebra of L(s′, s) (consider, for example, diagonal operators). The previous
corollary shows that this is not the case for many other interesting Fréchet
∗-algebras isomorphic to s (as Fréchet spaces). This leads to the following:

Open Problem 4.13. Is every closed commutative ∗-subalgebra of
L(s′, s) ∗-isomorphic to some closed ∗-subalgebra of s with pointwise multi-
plication?
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By Theorem 4.10 and Remark 4.11, this problem is equivalent to the
following:

Open Problem 4.14. Let (en)n∈N be an orthonormal system in `2 such
that (en)n∈N ⊂ s and (〈·, en〉en)n∈N is a complete sequence in L(s′, s). Is the
algebra λ∞(|en|q) isomorphic to some closed ∗-subalgebra of s?

5. Functional calculus. If x is a normal operator in L(s′, s) ⊂ K(`2)
and f is a continuous function on the spectrum σ(x) of x vanishing at
zero, then the continuous functional calculus for normal operators provides
a uniquely determined operator f(x) ∈ K(`2) (see e.g. [12, Prop. 17.20]). In
this section, we want to describe those functions f for which f(x) is again
in L(s′, s).

From the general theory of Fréchet locally m-convex algebras we get the
holomorphic functional calculus on L(s′, s) (see Prop. 2.5 and [13, Lemma
1.3], [17, Th. 12.16]). More precisely, if x is an arbitrary operator in L(s′, s)
and f is a holomorphic function on an open neighborhood U of σ(x) with
f(0) = 0, then f(x) ∈ L(s′, s), and moreover the map Φ : H0(U)→ L(s′, s),
f 7→ f(x), is a continuous homomorphism (H0(U) stands for the space of
holomorphic functions vanishing at zero).

Recall that a function f : X → C (X ⊂ C, 0 ∈ X) is Hölder continuous
at zero if there are θ ∈ (0, 1] and C > 0 such that |f(t) − f(0)| ≤ C|t|θ
for all t in a neighborhood of 0. As a consequence of Theorem 3.1 we get
the following Hölder continuous functional calculus for normal operators in
L(s′, s).

Corollary 5.1. If x ∈ L(s′, s) ⊂ K(`2) is normal, then for every
function f : σ(x) → C Hölder continuous at zero with f(0) = 0, we have
f(x) ∈ L(s′, s) as well. In particular, for every normal operator x ∈ L(s′, s)
with σ(x) ⊂ [0,∞) and θ ∈ (0,∞), we have xθ ∈ L(s′, s).

Proof. Let x =
∑

n∈N λnPn be a normal operator in L(s′, s) with non-
negative spectrum and let θ ∈ (0,∞). If θ ∈ (0, 1], then, by Theorem 3.1,
xθ =

∑∞
n=1 λ

θ
nPn ∈ L(s′, s), and for θ ∈ (1,∞) we have xθ = xbθc · xθ−bθc ∈

L(s′, s), where bθc is the floor of θ.

Now, let x =
∑

n∈N λnPn ∈ L(s′, s) be normal and let f : σ(x) → C be

Hölder continuous at zero with f(0) = 0. Then |f | ≤ C| · |θ for some C > 0
and θ ∈ (0, 1]. Hence

∑
n∈N ‖f(λn)Pn‖q ≤ C

∑
n∈N |λn|θ‖Pn‖q < ∞ so, by

Corollary 3.6, f(x) ∈ L(s′, s).

For a normal operator x in L(s′, s) with spectral representation x =∑∞
n=1 λnPn, we define the function space

Cs(σ(x)) := {f : σ(x)→ C : f(0) = 0, (f(λn))n∈N ∈ λ∞(‖Pn‖q)}.



Algebra of smooth operators 165

It is easy to show that the space Cs(σ(x)) with the system (cq)q∈N0 , cq(f) :=
supn∈N |f(λn)| ‖Pn‖q, of seminorms, pointwise multiplication and conjuga-
tion is a Fréchet ∗-algebra.

Theorem 5.2. If x =
∑∞

n=1 λnPn is an infinite-dimensional normal
operator in L(s′, s), then the map

Φ : Cs(σ(x))→ alg(x), Φ(f) := f(x) :=

∞∑
n=1

f(λn)Pn,

is a Fréchet algebra isomorphism such that Φ(id) = x and Φ(f) = Φ(f)∗.

Proof. By Theorem 4.8, Φ is well defined, and of course Φ(id) = x and
Φ(f) = Φ(f)∗. The space alg(x) is a nuclear Fréchet space (as a closed
subspace of the nuclear Fréchet space L(s′, s)) so λ∞(‖Pn‖q) ∼= alg(x) (see
Theorem 4.8) is a nuclear Fréchet space as well. Thus, by the Grothendieck–
Pietsch theorem (see e.g. [12, Th. 28.15]), for given q ∈ N0 one can find
r ∈ N0 such that C :=

∑∞
n=1 ‖Pn‖q/‖Pn‖r <∞. Hence

‖Φ(f)‖q ≤
∞∑
n=1

|f(λn)| ‖Pn‖q =
∞∑
n=1

|f(λn)| ‖Pn‖r
‖Pn‖q
‖Pn‖r

≤ sup
n∈N
|f(λn)| ‖Pn‖r ·

∞∑
n=1

‖Pn‖q
‖Pn‖r

= Ccr(f)

and thus Φ is continuous.
Clearly, Φ is injective. To prove that it is also surjective, take y ∈ alg(x).

By Theorem 4.8, (Pn)n∈N is a Schauder basis, so there is a sequence (µn)n∈N
such that y =

∑∞
n=1 µnPn. Let g(λn) := µn for n ∈ N. Then

sup
n∈N
|g(λn)| ‖Pn‖q = sup

n∈N
|µn| ‖Pn‖q <∞,

hence g ∈ Cs(σ(x)), and of course, Φ(g) = y.

Acknowledgements. The author is greatly indebted to Pawe l Domań-
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