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Left quotients of a C∗-algebra,
III: Operators on left quotients

by

Lawrence G. Brown (West Lafayette, IN) and
Ngai-Ching Wong (Kaohsiung)

Abstract. Let L be a norm closed left ideal of a C∗-algebra A. Then the left quotient
A/L is a left A-module. In this paper, we shall implement Tomita’s idea about representing
elements of A as left multiplications: πp(a)(b+ L) = ab+ L. A complete characterization
of bounded endomorphisms of the A-module A/L is given. The double commutant πp(A)′′

of πp(A) in B(A/L) is described. Density theorems of von Neumann and Kaplansky type
are obtained. Finally, a comprehensive study of relative multipliers of A is carried out.

1. Introduction. Let A be a C∗-algebra with Banach dual A∗ and
double dual A∗∗. We also consider A∗∗ as the enveloping W ∗-algebra
of A, as usual. Let L be a norm closed left ideal of A. The quotient A/L
is a Banach space. Let B(A/L) = B(A/L,A/L) be the Banach algebra of
bounded linear operators from A/L into A/L. In [17, 18], Tomita initiated
a program to study the left regular representation πp of A on the Banach
space A/L. More precisely, he considered the Banach algebra representation
of A,

πp : A→ B(A/L),

defined by

πp(a)(b+ L) = ab+ L, a, b ∈ A.

The objective of this paper is to answer the following three questions raised
by Tomita [18].

Q1: How do we describe πp(A)? In other words, which properties of an
operator T in B(A/L) characterize that T = πp(t) for some t in A?

Q2: How do we describe the commutant πp(A)′ and the double com-
mutant πp(A)′′ of πp(A) in B(A/L)? Note that the commutant
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πp(A)′ = {T ∈ B(A/L) : Tπp(a) = πp(a)T for all a ∈ A} is the
Banach algebra of bounded A-module maps when we consider A/L
as a left A-module.

Q3: Do we have density theorems of von Neumann and Kaplansky type
in this context? In other words, is it true that πp(A) (resp. its unit
ball) is dense in πp(A)′′ (resp. its unit ball)?

In [17, 18], Tomita tried to represent elements of A/L as vector sections
(he called them “vector fields”) over a compact subset of the state space
S(A) (assuming that the C∗-algebra A has an identity). In [17], he defined
the notion of a “vector field” as “a mapping of a state space into the dual
space of the algebra which satisfies a suitable norm condition”. However,
due to insufficient tools, “unlike in abelian case, even in a compact space of
pure states, the corresponding quotient space of non-commutative algebra
A may not generally be represented as the totality of continuous fields on
that space”. Thus, his treatment in [18] of the left regular representation πp
based on his vector section representation does not work in general.

In Part I [20] of this series of papers, the second author offered another
approach. It is well-known that closed left ideals L of a C∗-algebra A are in
one-to-one correspondence with closed projections p in A∗∗ such that A/L is
isometrically isomorphic to Ap as Banach spaces and also as left A-modules
(see Section 3). For an arbitrary closed projection p in A∗∗ (and thus for an
arbitrary closed left ideal L of A), we use the weak∗ closed face F (p) of the
quasi-state spaceQ(A) of A supported by p as the base space. We implement,
in addition to the norm conditions of Tomita, an affine structure of vector
sections. Then it was established that the quotient space A/L (∼= Ap) is
isometrically isomorphic to the Banach space of all continuous admissible
vector sections over F (p) (see Theorem 3.4). Based on these new techniques,
we are able to provide in this paper more satisfactory answers to the above
three questions.

We begin with the W ∗-algebra version in Section 2, in which we com-
pletely answer all three questions stated above. For example, if p is a (nec-
essarily closed) projection in a W ∗-algebra M then πp(M)′ consists of right
multiplications induced by elements of pMp and πp(M)′′ = πp(M) (The-
orem 2.3). In particular, all M -module maps T in B(Mp) are of the form
T (xp) = xptp for some t in M .

However, the C∗-algebra case is much more difficult (due to lack of pro-
jections) and we need to develop some new tools. In [20], elements bp of
the Banach space Ap are interpreted as Hilbert space vector sections over
F (p). The main idea in this paper is to represent Banach space operators
πp(a) in B(Ap) as Hilbert space operator sections (Definition 3.7), which
is developed in Section 3. In particular, an operator T in B(Ap) is said
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to be decomposable if T can be represented by an operator section (Defini-
tion 3.10). A simple way to verify the decomposability of T is to check if
the condition ϕ(a∗a) = 0 ensures ϕ((Tap)∗(Tap)) = 0 whenever ϕ is a pure
state supported by p and a ∈ A (Theorem 3.13). In this case, T has to be
a πp(t) for some t in LM(A, p) = {x ∈ A∗∗ : xAp ⊆ Ap} (Corollary 3.14).
This answers our first question Q1.

Various relative multipliers of A associated to p play important roles in
the theory of left regular representations. Beside LM(A, p), we shall intro-
duce and study RM(A, p), M(A, p) and QM(A, p) in Section 4. They behave
in a similar way as the sets LM(A), RM(A), M(A) and QM(A) of classical
multipliers of A. For example, they are closures of A in A∗∗ under corre-
sponding relative strict topologies (Theorem 4.3). The object studied by
Tomita in [18] is essentially the closure of πp(A) in B(Ap) with respect to
the so-called quotient(-double) strong topology, or Q∗-topology. In fact, the
Q∗-topology is induced by the relative strict topology of A∗∗. Thus, the clo-
sure of the Banach algebra πp(A) in B(Ap) in the Q∗-topology is the image
of the C∗-algebra M(A, p) = {x ∈ A∗∗ : xAp ⊆ Ap, pAx ∈ pA} under πp
(see Remark 4.5). Tomita expected that the double commutant πp(A)′′ of
πp(A) in B(Ap) coincides with πp(M(A, p)). This is, however, not always
true for an arbitrary projection p. In some important cases, we do have
πp(A)′′ = πp(LM(A, p)) (Theorem 4.8). A counterexample is Example 4.9.
This partially answers our second question Q2.

The classical density theorems of von Neumann and Kaplansky have
counterparts in this context. Also in Section 4, we show that πp(A) (resp.
its unit ball) is dense in πp(LM(A, p)) (resp. its unit ball) in the strong
operator topology (SOT) as well as the weak operator topology (WOT) of
B(Ap) (Theorem 4.4). This answers our last question Q3.

It is then interesting and useful to find a C∗-subalgebra A of A∗∗ such
that LM(A, p)=LM(A), RM(A, p)=RM(A), M(A, p)=M(A) and QM(A, p)
= QM(A), and thus all good tools of multipliers apply (see e.g. [5]). Several
examples and results are provided in Section 5 for the investigation of what
A should consist of (see especially Theorem 5.3).

Finally, we remark that the atomic part of Ap is studied in Part II
[9] of this series of papers. Some interesting and new results in this direc-
tion are obtained in Section 6. For example, we show that if x is in A∗∗

and πp(x) preserves continuous atomic parts, i.e., zatxAp ⊆ zatAp, then
zatxc(p) ∈ zat LM(A, p), where zat is the maximal atomic projection in A∗∗,
and c(p) is the central support of p in A∗∗ (Theorem 6.2). In particular,
when p = 1, we have zatx = zatl for some left multiplier l of A when-
ever zatxA ⊆ zatA (Corollary 6.3). This supplements results of Shultz [16]
and Brown [7]. Similar results are obtained for other relative multipliers as
well.
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2. The left regular representation of a W ∗-algebra. We provide a
new elementary proof of the following result of Tomita [18].

Theorem 2.1 ([18]). Let π be a bounded homomorphism from a C∗-
algebra A into a Banach algebra B. Then π(A) is topologically isomorphic
to A/kerπ. If ‖π‖ ≤ 1, then π(A) is isometrically isomorphic to A/kerπ.

Proof. The kernel of π is a closed two-sided ideal of A. Since closed
two-sided ideals of a C∗-algebra are automatically self-adjoint, by passing
to the quotient, we can assume π is one-to-one. Assume that k is a positive
number such that

‖π(a)‖ ≤ k‖a‖
for all a in A. It suffices to show that ‖π(a)‖ ≥ 1

k‖a‖ for all a in A. If k = 1,
then π is an isometry.

First assume that a is a positive element of A. We claim that ‖π(a)‖
≥ ‖a‖. Since A is a C∗-algebra and B is a Banach algebra,

‖a‖ = rσ(a) and ‖π(a)‖ ≥ rσ(π(a)),

where rσ denotes the spectral radius. We shall verify for the spectra that
σ(a) ⊆ σ(π(a)) ∪ {0}. For any positive λ in σ(a) and 0 < ε < λ, let f be
a continuous real-valued function on the compact set σ(a) such that f = 1
on [λ− ε/2, λ+ ε/2] ∩ σ(a), f = 0 outside (λ− ε, λ+ ε) and 0 ≤ f ≤ 1. In
a similar manner, we can choose another continuous real-valued function g
on σ(a) such that fg = g 6= 0. Let x = f(a) and y = g(a). We have x, y ∈ A
and xy = y 6= 0. It follows that π(x)π(y) = π(y) 6= 0. Therefore, ‖π(x)‖ ≥ 1.
Now, ‖(a − λ)x‖ < ε implies ‖(π(a) − λ)π(x)‖ = ‖π((a − λ)x)‖ < kε. The
fact that ε can be arbitrarily small ensures λ ∈ σ(π(a)), as asserted. Hence,

‖π(a)‖ ≥ rσ(π(a)) ≥ rσ(a) = ‖a‖
for all positive a in A.

In general, if a ∈ A and a 6= 0,

‖π(a)‖ ≥ ‖π(a∗a)‖
‖π(a∗)‖

≥ ‖a∗a‖
‖π(a∗)‖

≥ ‖a‖
2

k‖a‖
=

1

k
‖a‖.

Let p be a projection (all projections in this paper are assumed self-
adjoint) in a W ∗-algebra M . Let c(p) be the central support of p in M .
In other words, c(p) is the minimum central projection in M such that
pc(p) = c(p)p = p. Recall that πp is the left regular representation of M into
B(Mp), i.e.,

πp(x)yp = xyp, y ∈M.

Clearly, πp(c(p)) = 1 in B(Mp). Hence, πp(t) = πp(tc(p)) for all t in M , and
in fact kerπp = M(1− c(p)).
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Lemma 2.2. Suppose T ∈ B(Mp). Then T commutes with all right mul-
tiplications Rpxp for x in M if and only if there is a t in M such that
T = πp(t). In this case, ‖T‖ = ‖tc(p)‖.

Proof. We shall just verify necessity. Assume T ∈ B(Mp) such that
TRpxp = RpxpT for all x ∈M . For every central projection z in M , we have

T (zxp) = T (xp(pzp)) = T (Rpzp(xp))

= Rpzp(T (xp)) = (Txp)pzp = z(Txp), x ∈M.

In particular, T (zMp) ⊆ zMp. By passing to c(p)M , we can assume c(p) = 1
and πp is an isometry by Theorem 2.1.

Let

S = {S ∈ B(Mp) : SRpxp = RpxpS, ∀x ∈M},
Q = {q ∈M : q is a projection and Sπp(q) ∈ πp(M), ∀S ∈ S}.

Claim 1. p ∈ Q.

For S in S, let s = S(p) ∈Mp. We have

πp(s)(xp) = sxp = S(p)(pxp) = RpxpS(p)

= S(Rpxp(p)) = S(pxp) = Sπp(p)(xp)

for all xp in Mp. Therefore, Sπp(p) = πp(s) ∈ πp(M). Hence, p ∈ Q.

Claim 2. Q is hereditary under the quasi-ordering . of projections.

Suppose q ∈ Q and r . q. In other words, r = v∗v and vv∗ ≤ q for
some partial isometry v in M . Note that r = v∗qv. Since πp(v

∗) is in S, the
operator Sπp(v

∗) belongs to S whenever S does. As q ∈ Q, for each S in S
there is an s′ in M such that

(Sπp(v
∗))πp(q) = πp(s

′).

Consequently,

S(rxp) = S(v∗qvxp) = Sπp(v
∗)πp(q)(vxp) = s′vxp, ∀x ∈M.

Set s′′ = s′v. We have

Sπp(r) = πp(s
′′) ∈ πp(M).

Hence r ∈ Q. Therefore, Q is hereditary under . and, in particular, Q con-
tains all projections q such that q . p by Claim 1.

Claim 3. S is directed under the ordering ≤ of projections.

We are going to show that Q is even a lattice. First, it is clear that if
q1, . . . , qn in Q are mutually orthogonal then q1 + · · ·+ qn ∈ Q. Moreover, if
q1, q2 ∈ Q, we have

q1 ∨ q2 − q1 ∼ q2 − q1 ∧ q2 ≤ q2.
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Hence q1 ∨ q2 − q1 ∈ Q by Claim 2, and consequently we have q1 ∨ q2 =
(q1 ∨ q2 − q1) + q1 ∈ Q.

Associate to each q in Q a tq in M such that

Tπp(q) = πp(tq).

Then ‖tq‖ = ‖πp(tq)‖ ≤ ‖T‖ because πp is an isometry. Since the net {tq :
q ∈ Q} is bounded in the W ∗-algebra M , some subnet (tq

λ
) converges to

some t in M with respect to the σ(M,M∗) topology. For every xp in Mp, let
qx be the range projection of xp. Then qx ∈ Q since qx . p. Consequently,
for large enough λ, we have qx ≤ qλ and thus

T (xp) = T (q
λ
xp) = Tπp(qλ)(xp) = tq

λ
xp.

It follows that

txp = lim tq
λ
xp = T (xp), ∀x ∈M.

Hence πp(t) = T . Finally, ‖t‖ = ‖πp(t)‖ = ‖T‖ since πp is an isometry.

Theorem 2.3. Let M be a W ∗-algebra, p a projection in M and πp the
left regular representation of M on Mp. Then the commutant of πp(M) in
B(Mp) is

πp(M)′ = {Rptp : t ∈M},
and the double commutant is

πp(M)′′ = πp(M)
SOT

= πp(M)
WOT

= πp(M).

Proof. Suppose T ∈ πp(M)′. Let Tp = tp ∈Mp. Now

Txp = Tπp(x)p = πp(x)Tp = πp(x)(tp) = xtp, ∀x ∈M.

Since (1− p)p = 0, we must have (1− p)tp = 0, i.e., tp = ptp. Consequently,
T = Rptp. The opposite inclusion is obvious and thus we have πp(M)′ =
{Rptp : t ∈ M}. Since the double commutant of any subset of B(Mp) is
closed in both the strong operator topology (SOT) and the weak operator
topology (WOT) of B(Mp), the second assertion follows from Lemma 2.2.

3. The left regular representation of a C∗-algebra. Let

S(A) = {ϕ ∈ A∗ : ϕ ≥ 0, ‖ϕ‖ = 1}
be the state space and

Q(A) = {ϕ ∈ A∗ : ϕ ≥ 0, ‖ϕ‖ ≤ 1}
be the quasi-state space of A equipped with the weak∗ topology. Q(A) is
a weak∗ compact convex set. A convex subset F of Q(A) is called a face if
both ϕ and ψ belong to F whenever ϕ,ψ ∈ Q(A) and λϕ + (1 − λ)ψ ∈ F
for some 0 < λ < 1.
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Recall that a projection p in A∗∗ is closed if and only if the face

F (p) = {ϕ ∈ Q(A) : ϕ(1− p) = 0}
of Q(A) supported by p is weak∗ closed. The relation

L = A∗∗(1− p) ∩A
establishes a one-to-one correspondence between closed projections in A∗∗

and norm closed left ideals of A. Also, L∗∗ = A∗∗(1− p). Moreover, we have
isometrical isomorphisms

a+ L 7→ ap and x+ L∗∗ 7→ xp

under which

A/L ∼= Ap and (A/L)∗∗ ∼= A∗∗/L∗∗ ∼= A∗∗p,

respectively, as Banach spaces and also as left A-modules ([12, 15, 1], see
also [14, 3.11.9]).

From now on, p is always the unique closed projection in A∗∗ associated
to the norm closed left ideal L = A∗∗(1− p)∩A. For simplicity of notation,
we write Ap for the left quotient A/L of the C∗-algebra A by L. Conse-
quently, its Banach double dual A∗∗p is the quotient A∗∗/L∗∗. Denote by
πp the left regular representation of A on Ap defined by πp(a)bp = abp (or
equivalently, πp(a)(b + L) = ab + L). As usual, πp can be extended to the
left regular representation of A∗∗ into B(A∗∗p), denoted again by πp, such
that πp(x)yp = xyp (or equivalently, πp(x)(y + L∗∗) = xy + L∗∗).

We note that

ϕ(x) = ϕ(px) = ϕ(xp) = ϕ(pxp), ∀x ∈ A∗∗, ∀ϕ ∈ F (p).

Let ϕ ∈ F (p) \ {0}. The GNS construction yields a cyclic representation
(πϕ, Hϕ, ωϕ) of A such that πϕ(A)ωϕ = Hϕ and ϕ(x) = 〈πϕ(x)ωϕ, ωϕ〉ϕ for
all x in A∗∗. Here πϕ also denotes the canonical extension of πϕ to A∗∗, and
〈·, ·〉ϕ is the inner product of the Hilbert space Hϕ (see, e.g., [10, 2.4.4]). Set
Hϕ = {0} for ϕ = 0.

Notation. Write xωϕ for πϕ(x)ωϕ in Hϕ for all x ∈ A∗∗ and ϕ ∈ F (p).

There is a linear embedding of A∗∗p into the product space
∏
ϕ∈F (p)Hϕ

defined by associating to each xp in A∗∗p the vector section (xωϕ)ϕ∈F (p) in∏
ϕ∈F (p)Hϕ. Note that the fiber Hilbert spaces Hϕ are not totally indepen-

dent. In fact, we have

Lemma 3.1 ([20, 2.3]). For ϕ,ψ in F (p) such that 0 ≤ ψ ≤ λϕ for some
λ > 0, we can define a bounded linear map

Tψϕ : Hϕ → Hψ

by sending aωϕ to aωψ for all a ∈ A. Moreover, ‖Tψϕ‖2 ≤ λ and

Tψϕ(xωϕ) = xωψ, ∀x ∈ A∗∗.
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Definition 3.2 ([20, 2.4]). A vector section (xϕ)ϕ in
∏
ϕ∈F (p)Hϕ is said

to be admissible if

Tψϕxϕ = xψ

whenever ϕ,ψ ∈ F (p) and 0 ≤ ψ ≤ λϕ for some λ > 0.

Clearly, each xp in A∗∗p induces an admissible vector section (xωϕ)ϕ in∏
ϕ∈F (p)Hϕ. They are exactly all of them.

Theorem 3.3 ([20, 3.1]). The image of the linear embedding xp 7→
(xωϕ)ϕ of A∗∗p into

∏
ϕ∈F (p)Hϕ coincides with the set of all admissible

vector sections in
∏
ϕ∈F (p)Hϕ. Moreover,

‖xp‖ = sup
ϕ∈F (p)

‖xωϕ‖Hϕ .

In particular, admissible vector sections are automatically bounded.

It is natural to ask which properties characterize those admissible vector
sections arising from elements of Ap. Recall the notion of a continuous field
of Hilbert spaces [13, 11]. We equip F (p) with the weak∗ topology inherited
from A∗. Note that {aωϕ : a ∈ A} is norm dense in Hϕ for all ϕ ∈ F (p),
and the norm functions ϕ 7→ ‖aωϕ‖ϕ = ϕ(a∗a)1/2 are continuous on F (p)
for a in A. Consequently, the image of Ap under the embedding A∗∗p ↪→∏
ϕ∈F (p)Hϕ defines a continuous structure of the field of Hilbert spaces

(F (p), {Hϕ}ϕ) with base space F (p) and fiber Hilbert spaces Hϕ for all
ϕ ∈ F (p). In this context:

• A vector section (xϕ)ϕ∈F (p) in
∏
ϕ∈F (p)Hϕ is bounded if

sup
ϕ∈F (p)

‖xϕ‖Hϕ <∞.

• A bounded vector section (xϕ)ϕ∈F (p) is weakly continuous if

ϕ 7→ 〈xϕ, aωϕ〉ϕ is continuous on F (p) for all ap in Ap.

• A weakly continuous vector section (xϕ)ϕ∈F (p) is continuous if

ϕ 7→ 〈xϕ, xϕ〉ϕ is also continuous on F (p).

Let us denote the continuous field of Hilbert spaces thus obtained by (F (p),
{Hϕ}ϕ, Ap). The following result says that there are no more continuous
admissible vector sections in (F (p), {Hϕ}ϕ, Ap) other than those arising from
elements of Ap.

Theorem 3.4 ([20, 3.2]). The image of Ap under the linear embedding
xp 7→ (xωϕ)ϕ of A∗∗p into

∏
ϕ∈F (p)Hϕ coincides with the set of all con-

tinuous admissible vector sections in the continuous field of Hilbert spaces
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(F (p), {Hϕ}ϕ, Ap). Consequently,

Ap = {xp ∈ A∗∗p : ϕ 7→ 〈xωϕ, xωϕ〉ϕ = ϕ(x∗x) and

ϕ 7→ 〈xωϕ, aωϕ〉ϕ = ϕ(a∗x)

are continuous on F (p), ∀a ∈ A}.
Let Wp be the set of weakly continuous admissible vector sections in

(F (p), {Hϕ}ϕ, Ap). In other words,

Wp = {xp ∈ A∗∗p : ϕ 7→ 〈xωϕ, aωϕ〉ϕ = ϕ(a∗x)

is continuous on F (p), ∀a ∈ A}.
The following extension of Kadison function representation is useful for

our work. The classical one deals with the case p = 1 (see, e.g., [14, 3.10.3]).
In the following, Asa (resp. A∗∗sa ) denotes the set of all self-adjoint elements
of A (resp. A∗∗).

Proposition 3.5 ([5, 3.5]). pAsap (resp. pA∗∗sap) is isometrically linear
and order isomorphic to the Banach space of all continuous (resp. bounded)
real affine functionals of F (p) vanishing at zero. In particular, for any x
in A∗∗, we have

pxp ∈ pAp if and only if ϕ 7→ ϕ(pxp) = ϕ(x) is continuous on F (p).

Corollary 3.6 ([20, 4.1]). Let xp ∈ A∗∗p.

(1) Wp = {xp ∈ A∗∗p : pa∗xp ∈ pAp for all a ∈ A}.
(2) Ap = {xp ∈ A∗∗p : px∗xp ∈ pAp and pa∗xp ∈ pAp for all a ∈ A}.
(3) Ap = {xp ∈ A∗∗p : pw∗xp ∈ pAp for all wp ∈ Wp}.
Motivated by the fact that elements of A∗∗p are exactly the admissible

vector sections in
∏
ϕ∈F (p)Hϕ, we make the following definition.

Definition 3.7. Let Tϕ be in B(Hϕ) for each ϕ in F (p). The operator
section (Tϕ)ϕ∈F (p) is said to be admissible if

TψϕTϕ = TψTψϕ

whenever ψ,ϕ ∈ F (p) such that 0 ≤ ψ ≤ λϕ for some λ > 0.

Lemma 3.8. Let (Tϕ)ϕ∈F (p) be an operator section in
∏
ϕ∈F (p) B(Hϕ).

The following are equivalent:

(1) (Tϕ)ϕ∈F (p) is admissible.
(2) (Tϕ)ϕ∈F (p) sends continuous admissible vector sections to admissible

vector sections; that is, it induces a linear operator T from Ap into
A∗∗p.

(3) (Tϕ)ϕ∈F (p) sends admissible vector sections to admissible vector sec-
tions; that is, it induces a linear operator T from A∗∗p into A∗∗p.
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Proof. Firstly, we note that the assertions in (2) and (3) follow from
Theorems 3.3 and 3.4.

(3)⇒(2) is clear.
(2)⇒(1). Suppose that (Tϕ(aωϕ))ϕ∈F (p) is admissible for each a in A.

Hence there is an xp in A∗∗p such that xωϕ = Tϕ(aωϕ) for all ϕ ∈ F (p), by
Theorem 3.3. Let ψ,ϕ ∈ F (p) be such that 0 ≤ ψ ≤ λϕ for some λ > 0.
Then

TψϕTϕ(aωϕ) = Tψϕ(xωϕ) = xωψ = Tψ(aωψ) = TψTψϕ(aωϕ).

Since πp(A)ωϕ is dense in Hϕ, TψϕTϕ = TψTψϕ. As a result, (Tϕ)ϕ∈F (p) is
an admissible operator section.

(1)⇒(3). We suppose that (Tϕ)ϕ∈F (p) is an admissible operator section.
We want to show that yϕ = Tϕ(xωϕ), ϕ ∈ F (p), defines an admissible vector
section for each x in A∗∗. Let ψ,ϕ ∈ F (p) be such that 0 ≤ ψ ≤ λϕ for some
λ > 0. Observe that

Tψϕ(yϕ) = Tψϕ(Tϕ(xωϕ)) = Tψ(Tψϕ(xωϕ)) = Tψ(xωψ) = yψ.

This proves the admissibility of (yϕ)ϕ∈F (p).

Lemma 3.9. Every admissible operator section (Tϕ)ϕ∈F (p) induces a
unique bounded linear operator T in B(A∗∗p) such that the vector section
representing T (xp) is (Tϕ(xωϕ))ϕ∈F (p). In this case, we write T =(Tϕ)ϕ∈F (p).

Proof. In view of the proof of Lemma 3.8, we can define T : A∗∗p→ A∗∗p
by

T (xp)ωϕ = Tϕ(xωϕ), ϕ ∈ F (p).

We apply the closed graph theorem to establish the boundedness of T . As-
sume xnp→ xp and T (xnp)→ yp in norm. If yp 6= T (xp) then there is a ϕ
in F (p) such that yωϕ 6= T (xp)ωϕ = Tϕ(xωϕ). But they are both the limit
of Tϕ(xnωϕ) = T (xnp)ωϕ, a contradiction. So ‖T‖ <∞.

Definition 3.10. A bounded linear operator T in B(A∗∗p) is said to
be decomposable if for each ϕ in F (p) there is a Tϕ in B(Hϕ) such that
(Txp)ωϕ = Tϕ(xωϕ) for all x in A∗∗.

In other words, T = (Tϕ)ϕ∈F (p) (cf. Lemma 3.9). Note that the operator
section (Tϕ)ϕ∈F (p) must be admissible in this case (Lemma 3.8).

It is clear that all operators T in πp(A
∗∗) are decomposable. In fact,

T = πp(t) for some t in A∗∗, and thus we can set Tϕ = πϕ(t) for all ϕ ∈ F (p).
We are going to prove that every decomposable operator in B(A∗∗p) arises
in this way.

Lemma 3.11. Suppose that (Tϕ)ϕ∈F (p) is an admissible section of oper-
ators in

∏
ϕ∈F (p)B(Hϕ). Then Tϕ belongs to the double commutant πϕ(A)′′

of πϕ(A) in B(Hϕ) for each ϕ in F (p).
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Proof. Let ϕ ∈ F (p) and q be a projection in πϕ(A)′ ⊆ B(Hϕ). Define a
linear functional ψ on A by

ψ(a) = 〈aωϕ, qωϕ〉ϕ .

It is easy to see that ψ ∈ F (p) and 0 ≤ ψ ≤ ϕ. Observe that for a, b in A,〈
T ∗ψϕ(aωψ), bωϕ

〉
ϕ

= 〈aωψ, Tψϕ(bωϕ)〉ψ = 〈aωψ, bωψ〉ψ
= ψ(b∗a) = 〈b∗aωϕ, qωϕ〉ϕ = 〈aωϕ, bqωϕ〉ϕ
= 〈qaωϕ, bωϕ〉ϕ .

We thus have qaωϕ = T ∗ψϕ(aωψ) for all a in A. In particular, qHϕ = T ∗ψϕHψ.
The admissibility condition gives TψϕTϕ = TψTψϕ and so T ∗ϕT

∗
ψϕ = T ∗ψϕT

∗
ψ. It

follows that qHϕ is invariant under T ∗ϕ. Applying the same argument to 1−q,
we can conclude that qHϕ is a reducing subspace of T ∗ϕ. Hence qT ∗ϕ = T ∗ϕq
for every projection q in the von Neumann algebra πϕ(A)′. Consequently,
T ∗ϕ ∈ πϕ(A)′′ and thus Tϕ ∈ πϕ(A)′′ for each ϕ in F (p).

Theorem 3.12. Let A be a C∗-algebra, p a closed projection in A∗∗ with
central support c(p) and T ∈ B(A∗∗p). Then T ∈ πp(A∗∗) if and only if T
is decomposable. In this case, if T = (Tϕ)ϕ∈F (p) = πp(t) for some t in A∗∗

then ‖T‖B(A∗∗p) = supϕ∈F (p) ‖Tϕ‖ = ‖tc(p)‖.
Proof. We check sufficiency only. Suppose that T induces an admissible

operator section (Tϕ)ϕ∈F (p) in
∏
ϕ∈F (p)B(Hϕ). In view of Lemma 2.2, we

need only verify that T commutes with the right multiplications Rpxp for all
x in A∗∗, i.e., for every y in A∗∗, T (Rpxpyp) = Rpxp(Typ). In other words,

T (ypxp) = (Typ)xp,

or equivalently,

T (ypxp)ωϕ = (T (yp)xp)ωϕ, ∀ϕ ∈ F (p).

By Lemma 3.11, for each ϕ in F (p) we can choose a tϕ in A∗∗ such that

πϕ(tϕ) = Tϕ.

The admissibility of (Tϕ)ϕ∈F (p) says that TψTψϕ = TψϕTϕ. Consequently,

πψ(tψ)Tψϕ = Tψϕπϕ(tϕ)

whenever ϕ,ψ ∈ F (p) satisfy 0 ≤ ψ ≤ λϕ for some λ > 0. In this case,

tψyωψ = πψ(tψ)Tψϕ(yωϕ) = Tψϕπϕ(tϕ)(yωϕ) = Tψϕ(tϕyωϕ) = tϕyωψ

for every y in A∗∗, and thus

(1) πψ(tψ) = πψ(tϕ) in B(Hψ).

Moreover, we note that

(2) pωϕ = ωϕ and T (xp) = (T (xp))p ∈ A∗∗p, ∀ϕ ∈ F (p), ∀x ∈ A∗∗.
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For each x in A∗∗ with ‖x‖ ≤ 1 and ϕ in F (p) we define ψ, ρ in F (p) by

ψ(·) = 〈 · pxωϕ, pxωϕ〉ϕ and ρ =
ϕ+ ψ

2
.

Since 0 ≤ ϕ ≤ 2ρ and 0 ≤ ψ ≤ 2ρ, by (1) we have

(3) πϕ(tϕ) = πϕ(tρ) and πψ(tψ) = πψ(tρ).

It follows that

(T (ypxp))ωϕ = Tϕ(ypxωϕ) = πϕ(tϕ)(ypxωϕ)(4)

= πϕ(tρ)(ypxωϕ) = (tρypx)ωϕ.

Observe also that for every y in A∗∗, by (2) and (3) we have

〈(Typ)xωϕ, ypxωϕ〉ϕ = 〈(Typ)ωψ, yωψ〉ψ = 〈Tψ(yωψ), yωψ〉ψ
= 〈πψ(tψ)yωψ, yωψ〉ψ = 〈πψ(tρ)yωψ, yωψ〉ψ
= 〈tρypxωϕ, ypxωϕ〉ϕ .

Therefore, ((Typ)− tρyp)xωϕ ∈ (A∗∗pxωϕ)⊥. Hence,

(Typ)xωϕ = tρypxωϕ.

Consequently, by (4) we have

(T (ypxp))ωϕ = tρypxωϕ = ((Typ)xp)ωϕ, ∀ϕ ∈ F (p),

and thus T (ypxp) = (Typ)xp, as asserted.
For the norm equalities, we choose a t in A∗∗ by Lemma 2.2 such that

T = πp(t) and

‖T‖B(A∗∗p) = ‖tc(p)‖ = sup
ϕ∈F (p)

‖πϕ(t)‖ = sup
ϕ∈F (p)

‖Tϕ‖.

Let
QM(A, p) = {x ∈ A∗∗ : pAxAp ⊆ pAp},

the Banach space of relative quasi-multipliers of A associated to p. By
Corollary 3.6(1), for any x in A∗∗, we have x ∈ QM(A, p) if and only if
πp(x) ∈ B(Ap,Wp), that is, πp(x) sends continuous admissible vector sec-
tions to weakly continuous admissible vector sections in (F (p), {Hϕ}ϕ, Ap).

Theorem 3.13. Let A be a C∗-algebra and p a closed projection in A∗∗

with central support c(p). Assume T in B(Ap,Wp) satisfies the condition

ϕ(a∗a) = 0 ⇒ ϕ((Tap)∗(Tap)) = 0

whenever ϕ is a pure state in F (p) and a ∈ A. Then T can be extended to a
decomposable operator in B(A∗∗p), denoted again by T , such that T = πp(t)
for some t in QM(A, p) and ‖T‖B(Ap,Wp) = ‖T‖B(A∗∗p) = ‖tc(p)‖.

Proof. We first recall that

‖aωϕ‖2 = 〈aωϕ, aωϕ〉ϕ = ϕ(a∗a), ∀a ∈ A, ∀ϕ ∈ F (p).
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LetX = F (p)∩P (A), where P (A) is the pure state space of A. By hypothesis
and the Kadison transitivity theorem, for each ϕ in X we can define a linear
map Tϕ on Hϕ = Aωϕ by

Tϕ(aωϕ) = (T (ap))ωϕ.

Let ϕ ∈ X and aωϕ ∈ Hϕ such that ‖aωϕ‖ = 1. Again by the Kadison
transitivity theorem, there is a b in A such that bωϕ = aωϕ and ‖b‖ = 1.
Hence

‖Tϕ(aωϕ)‖ = ‖Tϕ(bωϕ)‖ = ‖(T (bp))ωϕ‖ ≤ ‖T (bp)‖ ≤ ‖T‖ ‖bp‖ ≤ ‖T‖.

Therefore, ‖Tϕ‖ ≤ ‖T‖ for every ϕ in X. Consequently, we have

sup
ϕ∈X
‖Tϕ‖ ≤ ‖T‖.

Now assume ϕ belongs to X, the weak∗ closure of X, and a, b ∈ A.
Since T (ap) ∈ Wp, the scalar functions ψ 7→ ‖aωψ‖ψ, ψ 7→ ‖bωψ‖ψ and
ψ 7→ 〈(T (ap))ωψ, bωψ〉ψ are all continuous on F (p). It follows that

|〈(Tap)ωϕ, bωϕ〉ϕ| ≤
(

sup
ψ∈X
‖Tψ‖

)
‖aωϕ‖ϕ‖bωϕ‖ϕ ≤ ‖T‖ ‖aωϕ‖ϕ‖bωϕ‖ϕ.

Hence there exists Tϕ in B(Hϕ) such that

(5) Tϕ(aωϕ) = (T (ap))ωϕ, ∀a ∈ A, ∀ϕ ∈ X.

Moreover, ‖Tϕ‖ ≤ ‖T‖ for every ϕ in X = F (p) ∩ P (A).

Note that X ∪ {0} is the extreme boundary of the compact convex set
F (p). Consequently, continuous affine functionals of F (p) assume extrema at
points in X. From Proposition 3.5, we know that there is an order-preserving
linear isometry from pAsap into CR(X), the Banach space of continuous real-
valued functions defined on the compact Hausdorff space X. Hence each ϕ
in F (p) has a (non-unique) Hahn–Banach positive extension mϕ in the space
M(X) (∼= CR(X)∗) of regular finite Borel measures on X. By handling real
and imaginary parts separately, for each ϕ in F (p) we can write

(6) ϕ(a) = ϕ(pap) =
�

X

ψ(pap) dmϕ(ψ) =
�

X

ψ(a) dmϕ(ψ), ∀a ∈ A.

For any a, b in A, since T (ap) ∈ Wp, we have pb∗(T (ap)) ∈ pAp by Corol-
lary 3.6. Therefore, the barycenter formula (6) applies and gives

〈T (ap)ωϕ, bωϕ〉ϕ = ϕ(pb∗(T (ap))) =
�

X

ψ(pb∗(T (ap))) dmϕ(ψ)

=
�

X

〈(Tap)ωψ, bωψ〉ψ dmϕ(ψ), ∀ϕ ∈ F (p).
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Consequently, by (5) we have

|〈T (ap)ωϕ, bωϕ〉ϕ|

=
∣∣∣ �
X

〈T (ap)ωψ, bωψ〉ψ dmϕ(ψ)
∣∣∣ =

∣∣∣ �
X

〈Tψ(aωψ), bωψ〉ψ dmϕ(ψ)
∣∣∣

≤
�

X

‖Tψ‖ ‖aωψ‖ ‖bωψ‖ dmϕ(ψ)

≤
(

sup
ψ∈X
‖Tψ‖

)( �
X

‖aωψ‖2 dmϕ(ψ)
)1/2( �

X

‖bωψ‖2 dmϕ(ψ)
)1/2

=
(

sup
ψ∈X
‖Tψ‖

)( �
X

ψ(a∗a) dmϕ(ψ)
)1/2( �

X

ψ(b∗b) dmϕ(ψ)
)1/2

=
(

sup
ψ∈X
‖Tψ‖

)
ϕ(a∗a)1/2ϕ(b∗b)1/2 ≤ ‖T‖ ‖aωϕ‖ϕ‖bωϕ‖ϕ.

Hence, a bounded linear operator Tϕ in B(Hϕ) exists such that Tϕ(aωϕ) =
(T (ap))ωϕ for every a in A. Moreover,

‖Tϕ‖ ≤ ‖T‖, ∀ϕ ∈ F (p).

At this point, we have shown that T can be written as an admissible sec-
tion of operators T = (Tϕ)ϕ∈F (p) in

∏
ϕ∈F (p)B(Hϕ) (cf. Lemma 3.8). Extend

T to a bounded linear operator on A∗∗p as in Lemma 3.9. Consequently, by
Theorem 3.12, there is a t in A∗∗ such that T = πp(t) and ‖T‖B(A∗∗p) =
supϕ∈F (p) ‖Tϕ‖B(Hϕ) = ‖tc(p)‖. Since T (Ap) ⊆ Wp, we have pb∗(Tap) ∈ pAp
by Corollary 3.6. Hence pAtAp ⊆ pAp. As a result, t ∈ QM(A, p). Finally,
we note that

‖T‖B(Ap,Wp) ≤ ‖T‖B(A∗∗p) = sup
ϕ∈F (p)

‖Tϕ‖B(Hϕ) ≤ ‖T‖B(Ap,Wp).

Let

LM(A, p) = {x ∈ A∗∗ : xAp ⊆ Ap},

the Banach algebra of relative left multipliers of A associated to p.

Corollary 3.14. Let A be a C∗-algebra, p a closed projection in A∗∗

with central support c(p) and T ∈ B(Ap). The following are all equivalent:

(1) T ∈ πp(LM(A, p)).
(2) T is decomposable.
(3) ϕ(a∗a) = 0 implies ϕ((Tap)∗(Tap)) = 0 whenever ϕ is a pure state

supported by p and a in A.

In this case, if t ∈ LM(A, p) is such that T = πp(t) then ‖T‖B(Ap) = ‖tc(p)‖.
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Proof. The implication (1)⇒(2) is trivial as Tϕ = πϕ(t) when T =
πp(t) with t in LM(A, p), while (2)⇒(3) is straightforward. The implication
(3)⇒(1) follows from Theorem 3.13, which also provides the norm equali-
ties.

4. Commutants and density theorems

Definition 4.1. Let A be a C∗-algebra and p a closed projection in A∗∗.
Recall that

LM(A, p) = {x ∈ A∗∗ : xAp ⊆ Ap},
RM(A, p) = {x ∈ A∗∗ : pAx ⊆ pA},

M(A, p) = {x ∈ A∗∗ : xAp ⊆ Ap, pAx ⊆ pA},
QM(A, p) = {x ∈ A∗∗ : pAxAp ⊆ pAp}

are, respectively, the sets of relative left multipliers, relative right multipli-
ers, relative multipliers and relative quasi-multipliers associated to p. We
define the relative left strict topology, relative right strict topology, relative
strict topology and relative quasi-strict topology of A∗∗ associated to p by the
seminorms x 7→ ‖xap‖, x 7→ ‖pax‖, x 7→ ‖xap‖ + ‖pbx‖ and x 7→ ‖paxbp‖
for a, b in A.

Remarks 4.2.

(1) It is easy to see that LM(A) ⊆ LM(A, p), RM(A) ⊆ RM(A, p), . . . ,
and all of them are norm closed subspaces of A∗∗.

(2) QM(A, p) is ∗-invariant whereas LM(A, p)∗ = RM(A, p). Moreover,
both LM(A, p) and RM(A, p) are Banach algebras, and M(A, p) = LM(A, p)
∩ RM(A, p) is a C∗-algebra.

(3) The relative strict topologies associated to p are Hausdorff if and
only if the central support c(p) of p equals 1.

Theorem 4.3. Let A be a C∗-algebra and p a closed projection in A∗∗.
Then LM(A, p) (resp. RM(A, p), M(A, p) and QM(A, p)) coincides with the
closure of A in A∗∗ with respect to the relative left strict (resp. right strict,
strict and quasi-strict) topology associated to p.

Moreover, the unit ball (resp. its self-adjoint part, positive part) of A is
dense in the unit ball (resp. its self-adjoint part, positive part) of LM(A, p),
RM(A, p), M(A, p) and QM(A, p) in the corresponding relative strict topolo-
gies associated to p.

Proof. We only prove the assertion about relative left multipliers since
all others follow in a similar manner. We denote by Bsa (resp. B+, B1) the
set of all self-adjoint elements (resp. positive elements, elements of norm not
greater than 1) in B whenever B is a subset of A or A∗∗.
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Assume x ∈ LM(A, p). We want to show that x belongs to the relative
left strict closure of A. Let a1, . . . , an ∈ A. Consider the convex set V in the
direct sum (Ap)n = Ap⊕ · · · ⊕Ap given by

V = {(ba1p, . . . , banp) : b ∈ A}.
(In case x ∈ A∗∗1 , x ∈ A∗∗sa ∩A∗∗1 or x ∈ A∗∗+ ∩A∗∗1 , in the definition of V we
replace A by A1, Asa ∩ A1 or A+ ∩ A1, respectively.) Since x ∈ LM(A, p),

we have x̃ = (xa1p, . . . , xanp) ∈ (Ap)n. If x̃ /∈ V
‖·‖

then there is an f̃ in
((Ap)n)∗ such that

(7) Re f̃(x̃) < −1 ≤ Re f̃(b̃), ∀b̃ ∈ V,
where b̃ = (ba1p, . . . , banp). Since (Ap)∗ ∼= A∗∗F (p) (see, e.g., [12]), we can
write f̃ = f1 ⊕ · · · ⊕ fn such that fk = y∗kϕk for some yk in A∗∗ and ϕk in
F (p), k = 1, . . . , n. Hence

f̃(x̃) =

n∑
k=1

fk(xakp) =

n∑
k=1

ϕk(y
∗
kxak) =

n∑
k=1

〈xakωϕk , ykωϕk〉ϕk ,

f̃(b̃) =

n∑
k=1

fk(bakp) =

n∑
k=1

ϕk(y
∗
kbak) =

n∑
k=1

〈bakωϕk , ykωϕk〉ϕk .

Let {bλ}λ be a net in A such that bλ converges to x σ-weakly. (In case
x ∈ A∗∗1 , x ∈ A∗∗sa ∩ A∗∗1 or x ∈ A∗∗+ ∩ A∗∗1 , the Kaplansky density theorem
(see, e.g., [14, 2.3.3]) enables us to choose bλ’s from A1, Asa∩A1 or A+∩A1,
respectively.) In particular,

〈bλakωϕk , ykωϕk〉ϕk → 〈xakωϕk , ykωϕk〉ϕk for k = 1, . . . n.

Therefore, f̃(b̃λ) → f̃(x̃) where b̃λ = (bλa1p, . . . , bλanp) ∈ V . This contra-

dicts (7) and thus x̃ ∈ V ‖·‖. This shows that for any positive ε and a1, . . . , an
in A there is a b in A such that

‖(x− b)akp‖ < ε for k = 1, . . . , n.

In other words, x belongs to the relative left strict closure of A. (In case x
comes from A∗∗1 , A∗∗sa ∩A∗∗1 or A∗∗+ ∩A∗∗1 , we can choose b from A1, Asa ∩A1

or A+ ∩A1, respectively.) Our assertion follows since the opposite inclusion
is obvious.

Theorem 4.4. The closure of πp(A) in B(Ap) with respect to the strong
operator topology (SOT ) as well as the weak operator topology (WOT ) co-
incides with πp(LM(A, p)). Moreover, the unit ball of πp(A) is SOT dense
as well as WOT dense in the unit ball of πp(LM(A, p)).

Proof. It is well-known that a linear functional on B(E), for E a Banach
space, is continuous with respect to SOT if and only if it is continuous with
respect to WOT. Since πp(A) is convex, its closures in B(Ap) with respect



Left quotients of a C∗-algebra, III 205

to these topologies coincide. We are going to show that they are identical
to πp(LM(A, p)).

Let {aλ}λ be a net in A such that πp(aλ) converges to some bounded
linear operator T in SOT. By Corollary 3.14, to see T ∈ πp(LM(A, p)) we just
need to check whether the condition ϕ(a∗a) = 0 implies ϕ((Tap)∗(Tap)) = 0
whenever ϕ is a pure state in F (p) and a ∈ A. In this case, apϕ = 0 where
pϕ is the support projection of the pure state ϕ. Now

(Tap)pϕ = (limπp(aλ)ap)pϕ = lim aλapϕ = 0.

Hence ϕ((Tap)∗(Tap)) = 0, as asserted. Thus

πp(A)
SOT ⊆ πp(LM(A, p)).

The opposite inclusion and other assertions follow from Theorem 4.3 since
the strong operator topology of B(Ap) restricted to πp(LM(A, p)) coincides
with the one induced by the relative left strict topology of A∗∗ associated
to p.

Remark 4.5. In [18], Tomita defined the notion of Q∗-topology. In fact,
it is the double strong operator topology (DSOT) of πp(M(A, p)), which is
defined by the seminorms

πp(x) 7→ ‖xap‖+ ‖x∗ap‖, ∀a ∈ A.
Since RM(A, p)∗ = LM(A, p) and M(A, p) = LM(A, p) ∩ RM(A, p), Theo-

rems 4.3 and 4.4 imply πp(A)
DSOT

= πp(M(A, p)). Moreover, the unit ball
of πp(A) (resp. its self-adjoint part, positive part) is DSOT dense in the unit
ball (resp. its self-adjoint part, positive part) of πp(M(A, p)). Another way
to look at πp(M(A, p)) is to observe that it coincides with the family of all
adjointable admissible operator sections {Tϕ}ϕ in

∏
ϕ∈F (p)B(Hϕ). We say

that {Tϕ}ϕ is adjointable if the operator section {T ∗ϕ}ϕ is admissible (see
Corollary 3.14). Tomita expected that in some situations the double com-
mutant πp(A)′′ of πp(A) in B(Ap) is the C∗-algebra πp(M(A, p)). However,
as indicated by Theorem 4.8 below, the Banach algebra πp(LM(A, p)) is a
more appropriate object to look for.

Recall that a projection r in A∗∗ is closed if the face F (r) = {ϕ ∈ Q(A) :
ϕ(1 − r) = 0} of Q(A) supported by r is weak∗ closed, and r is compact if
F (r)∩S(A) is weak∗ closed [2]. An element h of pA∗∗sap is called q-continuous
on p (see [4]) if the spectral projection EF (h) (computed in pA∗∗p) is closed
for every closed subset F of R. Also, h is called strongly q-continuous on p
(see [5]) if, in addition, EF (h) is compact whenever F is closed and 0 /∈ F .

Lemma 4.6 ([5, 3.43]). Let h ∈ pA∗∗sap.

(1) h is strongly q-continuous on p if and only if h = pa = ap for some
a in Asa.
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(2) In case A is σ-unital, h is q-continuous on p if and only if h = px =
xp for some x in M(A)sa.

In general, h in pA∗∗p is said to be q-continuous or strongly q-continuous
if both Reh and Imh are. Denote by QC(p) (resp. SQC(p)) the set of all
q-continuous elements (resp. strongly q-continuous elements) on p. Observe
that SQC(p) is always a C∗-algebra, and so is QC(p) if A is σ-unital. We say
that p has MQC (“many q-continuous elements”) or MSQC (“many strongly
q-continuous elements”) if QC(p) or SQC(p), respectively, is σ-weakly dense
in pA∗∗p (see [8]).

Lemma 4.7 ([8, 3.1 and 3.3]). The following statements are all equiva-
lent:

(1) p has MSQC.
(2) pAp = SQC(p).
(3) pAp is an algebra.
(4) pAp is a Jordan algebra.
(5) F (p) is isomorphic to the quasi-state space of a C∗-algebra.
(6) p ∈ M(A, p), i.e., pAp ⊆ pA ∩Ap.
(7) p ∈ QM(A, p), i.e., pApAp ⊆ pAp.

In this case,
pApAp = pAp = pA ∩Ap = SQC(p).

When the closed projection p has MSQC, it shares many good properties
with the projection 1. Moreover, every central closed projection in A∗∗ has
MSQC.

The first part of the following theorem says that all bounded A-module
maps in B(Ap) are right multiplications provided that A is σ-unital.

Theorem 4.8. Let A be a C∗-algebra, p a closed projection in A∗∗ and
πp the left regular representation of A on Ap. Denote by πp(A)′ the commu-
tant and by πp(A)′′ the double commutant of πp(A) in B(Ap). Denote by Y
the set {x ∈ RM(A) : xp = pxp}. If A is σ-unital then

πp(A)′ = {Rpxp : x ∈ Y}.
If A is σ-unital and p has MQC then also

πp(A)′′ = πp(LM(A, p)).

Here Rpxp(ap) := apxp = axp for all a ∈ A and x ∈ Y.

Proof. It is clear that all right multiplications of the form Rpxp with x
in Y commute with elements of πp(A). Conversely, assume T ∈ πp(A)′ ⊆
B(Ap). If {uλ}λ is a (bounded) approximate unit of A, the bounded net
{T (uλp)}λ in Ap has a weak∗ cluster point xp in A∗∗p. For each a in A,
we see that axp is a weak∗ cluster point of {aT (uλp)}λ = {T (auλp)}λ. But
T (auλp) → T (ap) in norm. It follows that T (ap) = axp ∈ Ap. Therefore,
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Axp = T (Ap) ⊆ Ap. By [5, 3.9], we have xp ∈ RM(A)p if A is σ-unital.
Moreover, if a, b ∈ A and ap = bp then T (ap) = T (bp). This is equivalent
to axp = bxp. Consequently, Lxp = {0} where L = A∗∗(1 − p) ∩ A, the
norm closed left ideal of A related to the closed projection p. It follows that
L∗∗xp = {0}; i.e., A∗∗(1− p)xp = {0}. This forces (1− p)xp = 0. Therefore
xp = pxp. Hence T (ap) = axp = apxp = Rpxp(ap).

By Theorem 4.4, πp(LM(A, p)) ⊆ πp(A)′′. Let T ∈ πp(A)′′ ⊆ B(Ap),
a ∈ A and ϕ be a pure state in F (p). Assume that ϕ(a∗a) = 0, or equivalently
apϕ = 0, where pϕ is the support projection of ϕ in A∗∗. Since p is assumed
to have MQC and A is σ-unital, there is a net {mλp}λ with mλ in M(A)
such that

(8) mλp = pmλ and mλp→ pϕ σ-weakly

by Lemma 4.6. Hence, amλp→ apϕ = 0 σ–weakly. In particular, amλp→ 0
with respect to σ(Ap, (Ap)∗) since (Ap)∗ ∼= (A/L)∗ ∼= L◦ can be consid-
ered as a subspace of A∗, and the σ-weak topology of A∗∗ coincides with
σ(A∗∗, A∗). Here L◦ is the polar of the left ideal L = A∗∗(1−p)∩A in A∗. As
a bounded Banach space operator, T is σ(Ap, (Ap)∗)-σ(Ap, (Ap)∗) continu-
ous. Therefore, T (amλp) → 0 in the σ(Ap, (Ap)∗) topology of Ap and thus
also σ-weakly. On the other hand, the right multiplication Rpmλp belongs
to πp(A)′. As a result, by (8) we have

T (amλp) = T (apmλp) = TRpmλp(ap) = RpmλpT (ap)

= (Tap)pmλp→ (Tap)pϕ σ-weakly.

Therefore, (Tap)pϕ = 0, and hence ϕ((Tap)∗(Tap)) = 0. Now, Corollary
3.14 implies T ∈ πp(LM(A, p)).

Although it follows from Theorem 4.4 that we always have πp(LM(A, p))
⊆ πp(A)′′, the following example indicates that the inclusion can be strict
in case p does not have MQC.

Example 4.9 (Based on an example given in [8, 3.4]). Let A = C[0, 1]⊗
K where K is the C∗-algebra of all compact operators on a separable infinite-
dimensional Hilbert space H. Let {e1, e2, . . .} be an orthonormal basis of H,
and En the projection on span{e1, . . . , en}. A closed projection in A is given
by a projection-valued function P : [0, 1] → B(H) such that if h is any
weak cluster point of P (y) as y → x, then h ≤ P (x) [5, Section 5.G].
We observe that P describes the atomic part of a closed projection p in
A∗∗ ∼= C[0, 1]∗∗ ⊗ B(H), and P determines p since a closed projection is
determined by its atomic part. In our case p will equal its atomic part. We
now define P .

For each n = 0, 1, 2, . . . we construct recursively a countable subset Sn
of [0, 1] and a unit vector v(x) for each x in Sn with ‖Env(x)‖ ≤ n−1/2.
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Step 0. Take S0 = {1/2} and v(1/2) = e1.

Step 1. Take S1 = {x1, x2, . . .} where the xj ’s are distinct, xj 6= 1/2,
and xj → 1/2 as j → ∞. Let v(xj) = 2−1/2e1 + 2−1/2ej+1 for j =
1, 2, . . . .

Step n (n > 1). Write Sn−1 = {x1, x2, . . .}. Choose distinct yij ’s from

[0, 1] but outside
⋃n−1
k=0 Sk such that |yij − xi| ≤ 2−(i+j). Let Sn =

{yij : i, j = 1, 2, . . .} and v(yij) = n−1/2v(xi) + (1− n−1)1/2wij , where
wij is a unit vector such that 〈wij , v(xi)〉H = 0 and Ei+j+nwij = 0.

Let S =
⋃∞
n=0 Sn. Define a projection-valued function P on [0, 1] by setting

P (x) to be the projection on span {v(x)} if x ∈ S, and P (x) = 0 otherwise.
It is shown in [8] that P describes a closed projection p in A∗∗ which is
atomic and abelian. Moreover, if h in pA∗∗p satisfies h ∈ pAp and h2 ∈ pAp
then h = 0. (In [8], this fact is used to show that SQC(p) = {0}.)

Now consider the C∗-algebra B = C[−1, 1] ⊗ K. Define a projection-
valued function Q on [−1, 1] by putting Q(t) := P (|t|) for all t ∈ [−1, 1]. It
is clear that Q determines an atomic, abelian and closed projection q in B∗∗

such that k = 0 whenever k ∈ qB∗∗q with k ∈ qBq and k2 ∈ qBq.
Let Ã be the C∗-algebra obtained by adjoining an identity to A and let

p̃ = p + p∞ where p∞ = 0 ⊕ 1 in Ã∗∗ ∼= A∗∗ ⊕ C. Thus p̃ = p ⊕ 1. In [8], it
is shown that p̃ is closed, and hence compact, in Ã∗∗ and that QC(p̃) = Cp̃.
Similarly, a compact projection q̃ = q+q∞ in B̃∗∗ ∼= B∗∗⊕C can be obtained
such that QC(q̃) = Cq̃ and thus q̃, like p̃, does not have MQC.

We now consider the left regular representation πq̃ : B̃ → B(B̃q̃). Since

B̃ is unital, RM(B̃) = B̃ and thus

πq̃(B̃)′ = {Rx̃ : x̃ = r̃q̃ = q̃r̃q̃ for some r̃ in B̃}
by Theorem 4.8. Suppose x̃ = r̃q̃ = q̃r̃q̃ for some r̃ in B̃. Here r̃ = r + λ1B̃
for some r in B and λ in C. It follows from (r+λ1B̃)(q+q∞) = (q+q∞)(r+

λ1B̃)(q + q∞) that rq = qrq ∈ qBq. Now (qrq)2 = qrqrq = qr2q ∈ qBq
implies qrq = 0. Therefore,

x̃ = q̃r̃q̃ = qrq + λq + λq∞ = λq̃.

Consequently, πq̃(B̃)′ = CRq̃ and thus πq̃(B̃)′′ = B(B̃q̃), since the right

multiplication Rq̃ induced by q̃ is the identity in B(B̃q̃).

It is easy to see that B(B̃q̃) 6= πq̃(LM(B̃, q̃)). For example, we define an

isometry T in B(B̃q̃) by

T ((λ+ a)q̃) := (λ+ a)q̃, λ ∈ C, a ∈ B,
where

a(t) := a(−t), t ∈ [−1, 1].

To see that T is not implemented as a left multiplication πq̃(h̃) for any h̃
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in LM(B̃, q̃), we just need to show that T is not decomposable, by Corol-
lary 3.14. Let t ∈ (S ∪ (−S))− {0}, and ϕt be the corresponding pure state
in F (q̃). Since there is b in B such that ϕt(b

∗b) = 0 but ϕ−t(b
∗b) 6= 0, it is

clear that T is not decomposable.

5. The C∗-algebra associated to a closed projection. Recall that
for a C∗-algebra A and a closed projection p in A∗∗, the Banach space Ap
(resp. Wp) consists of all continuous (resp. weakly continuous) admissible
vector sections in A∗∗p (see Theorem 3.4). It follows from Corollary 3.6 that
for all x in A∗∗ we have

πp(x)Ap ⊆ Ap ⇔ πp(x
∗)Wp ⊆ Wp.

We collect these facts in the following.

LM(A, p) = {x ∈ A∗∗ : πp(x)Ap ⊆ Ap},
RM(A, p) = {x ∈ A∗∗ : πp(x)Wp ⊆ Wp},

M(A, p) = {x ∈ A∗∗ : πp(x)Ap ⊆ Ap, πp(x)Wp ⊆ Wp},
QM(A, p) = {x ∈ A∗∗ : πp(x)Ap ⊆ Wp}.

Since the kernel of πp is A∗∗(1 − c(p)), the interesting parts of LM(A, p),
RM(A, p), M(A, p) and QM(A, p) are the ones cut down by c(p). It is also
interesting and useful to see if there exists a C∗-subalgebra B of A∗∗c(p)
such that

LM(A, p)c(p) = LM(B),(a)

RM(A, p)c(p) = RM(B),(b)

M(A, p)c(p) = M(B),(c)

QM(A, p)c(p) = QM(B).(d)

Consider
A = {x ∈ A∗∗ : πp(x)Wp ⊆ Ap}.

We think of Ac(p) as a natural candidate for B. It is easy to see that A is
an ideal of the C∗–algebra M(A, p). Moreover, LM(A, p)A ⊆ A, ARM(A, p)
⊆ A, M(A, p)A+AM(A, p) ⊆ A and AQM(A, p)A ⊆ A.

Example 5.1. If p is central, or equivalently if the ideal L = A∗∗(1− p)
∩ A is two-sided, then Ap ∼= A/L as C∗-algebras. Consequently, we have
Ac(p) = Ap and (a)–(d) hold for B = Ac(p).

It follows from definitions and Corollary 3.6 that we have

Lemma 5.2. Let x ∈ A∗∗.
(1) x ∈ A if and only if pv∗xup ∈ pAp for all up, vp ∈ Wp.
(2) x ∈ LM(A, p) if and only if pv∗xap ∈ pAp for all ap ∈ Ap and

vp ∈ Wp.
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(3) x ∈ RM(A, p) if and only if pb∗xup ∈ pAp for all up ∈ Wp and
bp ∈ Ap.

(4) x ∈ M(A, p) if and only if pv∗xap, pb∗xup ∈ pAp for all ap, bp ∈ Ap
and up, vp ∈ Wp.

(5) x ∈ QM(A, p) if and only if pb∗xap ∈ pAp for all ap, bp ∈ Ap.

Theorem 5.3. The following conditions are all equivalent and each of
them implies (a)–(d) for B = Ac(p):

(1) πp(A)Ap is norm dense in Ap.
(2) πp(A)Wp is norm dense in Ap.

(3) A is non-degenerately represented on Huniv, that is, πϕ(A)Hϕ =
Hϕ for all ϕ ∈ Q(A), where Huniv =

⊕
2{Hϕ : ϕ ∈ Q(A)} is the

underlying Hilbert space of the universal representation of A.
(4) A is σ-weakly dense in A∗∗.
(5) πϕ(A) 6= {0} for all pure states ϕ in F (p).

Proof. (1)⇒(2) is trivial.
(2)⇒(3): Since A contains A∗∗(1− c(p)), we may assume ϕ is supported

by c(p). Now, since πp(A)Wp is norm dense in Ap, we see that πϕ(A)(WpHϕ)
is dense in πϕ(Ap)Hϕ = ApHϕ, which is dense in A∗∗pHϕ. Let q = v∗pv be a
projection for some partial isometry v in A∗∗. We see that qHϕ = v∗pvHϕ ⊆
A∗∗pHϕ. Hence πϕ(A)Hϕ is also dense in Hϕ, and this gives (3).

(3)⇒(4) follows from the fact that AA ⊆ A.
(4)⇒(5) is obvious.
(5)⇒(1): Suppose the norm closure πp(A)Ap 6= Ap. Choose a non-zero

ϕ in (Ap)∗ such that ϕ(πp(A)Ap) = {0}. Let {vλ}λ be a positive increasing
approximate identity in the C∗-subalgebra A of A∗∗, and note that vλ ↗ q
for some projection q in A∗∗. For every a in A, pa∗vλap ↗ pa∗qap. Note
that pa∗vλap ∈ pAp. It follows from the continuity of pa∗vλap that pa∗qap
is lower semicontinuous on F (p). Since AA ⊆ A, we see that πψ(A)Hψ is
an invariant subspace for πψ(A) for every ψ in F (p). For each pure state

ψ in F (p), the hypothesis πψ(A) 6= {0} implies πψ(A)Hψ = Hψ and hence
πψ(q) = 1. Therefore, the non-positive lower semicontinuous affine function

ψ 7→ ψ(pa∗(q − 1)ap), ψ ∈ F (p),

vanishes on the extreme boundary (F (p)∩P (A))∪{0} of the weak∗ compact
convex set F (p), where P (A) is the pure state space of A. It follows that
pa∗(q − 1)ap = 0. We then have qap = ap for every a in A. Consequently,

ϕ(ap) = ϕ(qap) = limϕ(vλap) = 0, ∀a ∈ A.
This contradiction establishes the implication.

From now on, we assume these equivalent conditions are satisfied and
we are going to verify (a) to (d). We prove only that LM(B) ⊆ LM(A, p)c(p)
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since the opposite inclusion is obvious and the other assertions will fol-
low similarly. Note that we can consider LM(B) as a subset of A∗∗c(p) (cf.
[3, 4.3]).

Let x be a non-zero element of LM(B) and ε > 0. For each a in A,
it follows from (2) that there exist a1, . . . , an in A and w1p, . . . , wnp in
Wp ⊆ A∗∗p such that ∥∥∥ap− n∑

k=1

akwkp
∥∥∥ < ε

‖x‖
.

Hence ∥∥∥xap− n∑
k=1

xakwkp
∥∥∥ < ε.

Since x ∈ LM(B) ⊆ A∗∗c(p), xak = x(akc(p)) ∈ x(Ac(p)) = xB ⊆ B. Note
that elements of πp(B) send Wp into Ap. Consequently, πp(xak)wkp ∈ Ap
for k = 1, . . . , n. It follows that xap ∈ Ap = Ap. That is, x ∈ LM(A, p).
Since x = xc(p), we have x ∈ LM(A, p)c(p), too.

Corollary 5.4. If p has MSQC then (a)–(d) are satisfied for B=Ac(p).
Moreover, Ap+ pA ⊆ A in this case.

Proof. By Theorem 5.3, it suffices to show that πp(A)p = Ap (since
p ∈ Wp). One inclusion is easy:

πp(A)p ⊆ πp(A)Wp ⊆ Ap.
For the opposite inclusion, as well as the assertion Ap+ pA ⊆ A, it suffices
to show that Ap ⊆ A. To this end, let up, vp ∈ Wp and a ∈ A. Observe that

pu∗(apvp) = (pa∗up)∗vp

∈ (pAp)∗vp

= pApvp

⊆ pAvp since pAp ⊆ pA as p has MSQC

⊆ pAp.
Hence ap ∈ A by Lemma 5.2.

We remark that the inclusion in Corollary 5.4 does not hold if p fails to
have MSQC (see Example 5.7). Even when p does have MSQC, the inclusion
can be strict (see Example 5.8). The rest of this section is devoted to a few
assorted results and examples about what A contains.

Proposition 5.5. Let B = pA∗∗p ∩ QM(A, p). Then A contains the
norm closure of the linear space spanned by ABA.

Proof. Since A is a C∗-algebra, we only need to prove that if a, c ∈ A,
b ∈ B then abc ∈ A. It is equivalent to show that pu∗abcvp ∈ pAp for every
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up, vp in Wp, by Lemma 5.2. In fact,

pu∗abcvp = pu∗apbpcvp since b ∈ pA∗∗p
∈ pApbpAp since up, vp ∈ Wp

= pAbAp since b ∈ pA∗∗p
⊆ pAp since b ∈ QM(A, p).

Corollary 5.6. Let C = SQC(p) ∩M(A, p). Then A contains C as a
C∗-subalgebra.

Proof. Note that C is a C∗-algebra. In particular, C = C3. The assertion
now follows from Proposition 5.5 since C ⊆ pA∗∗p ∩ QM(A, p) and C3 ⊆
ACA (see Lemma 4.6).

To convince the readers that B and C in Proposition 5.5 and Corol-
lary 5.6 can be non-zero, we present the following example. In particular,
the closed span of ABA is the whole of A, and C is only a proper subalgebra
of A in this example.

Example 5.7. In this example, A is a separable scattered C∗-algebra
and p is a closed projection in A∗∗ with central support c(p) = 1. But p does
not have MSQC. We shall see that (a)–(d) are all satisfied here. In fact,
A = A, LM(A, p) = LM(A), RM(A, p) = RM(A), M(A, p) = M(A) and
QM(A, p) = QM(A). Moreover, B and C are both non-zero. Furthermore,
ABA is norm dense in A but Ap 6⊆ A (cf. Corollary 5.4).

Let A be the C∗-subalgebra of c⊗M2 consisting of all sequences of 2×2
matrices x = (xn)n≥1 such that

xn =

(
an bn

cn dn

)
→
(
a 0

0 0

)
.

We observe that A∗∗ can be represented as the C∗-algebra of all uniformly
bounded sequences of 2× 2 matrices plus a copy of C. More precisely, every
element of A∗∗ is of the form x = (xn)∞n=1 where

xn =

(
an bn

cn dn

)
, n = 1, 2, . . . , and x∞ = a ∈ C.

The norm of A∗∗ (and A) is given by ‖x‖ := sup1≤n≤∞ ‖xn‖ <∞. Put

pn =
1

2

(
1 1

1 1

)
, n = 1, 2, . . . , and p∞ = 1 ∈ C.

Then p = (pn)∞n=1 is a closed projection in A∗∗ and c(p) = 1. Let x =
(xn)∞n=1 ∈ A∗∗, with notation as above. We have:

(1) x ∈ Ap⇔ xn = 1
2

(
un un
vn vn

)
with un → a and vn → 0.
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(2) x ∈ Wp ⇔ xn = 1
2

(
un un
vn vn

)
with un → a.

(3) x ∈ pA∗∗p⇔ xn = 1
4

(
sn sn
sn sn

)
for some uniformly bounded scalars sn.

(4) x ∈ pAp⇔ xn = 1
4

(
sn sn
sn sn

)
for some scalars sn → a.

(5) x ∈ SQC(p)⇔ xn = 1
4

(
sn sn
sn sn

)
for some scalars sn → a = 0.

(6) x ∈ LM(A) = LM(A, p) ⇔ an → a and cn → 0.

(7) x ∈ RM(A) = RM(A, p) ⇔ an → a and bn → 0.

(8) x ∈ M(A) = M(A, p) ⇔ an → a and bn, cn → 0.

(9) x ∈ QM(A) = QM(A, p) ⇔ an → a.

(10) x ∈ A = A ⇔ an → a and bn, cn, dn → 0.

Since pAp 6= SQC(p), we see that p does not have MSQC by Lemma 4.7. It is
clear that both B = QM(A, p)∩pA∗∗p and C = SQC(p)∩M(A, p) = SQC(p)
are non-zero. In addition, the closed span ABA equals A = A.

Example 5.8. In this example we shall see that LM(A, p) 6= LM(A)
etc., and A is neither a subset nor a superset of A even when p has MSQC
and its central support c(p) is 1. However, (a) to (d) are all satisfied.

Let A be the C∗-subalgebra of c⊗M2 given by

A =

{{(
an bn

cn dn

)}
n≥1

:

(
an bn

cn dn

)
→
(
a 0

0 d

)}
.

Let p = (pn) ∈ A∗∗ with

pn =

(
1 0

0 0

)
, n = 1, 2, . . . , and p∞ =

(
1 0

0 1

)
.

Then p is a closed projection in A∗∗. Let x = (xn) ∈ A∗∗ with

xn =

(
an bn

cn dn

)
, n = 1, 2, . . . , and x∞ =

(
a 0

0 d

)
.

We have:

(1) x ∈ Ap⇔ xn =
(
an 0
cn 0

)
with an → a and cn → 0.

(2) x ∈ Wp ⇔ xn =
(
an 0
cn 0

)
with an → a.

(3) x ∈ pAp⇔ xn =
(
an 0
0 0

)
with an → a.

(4) x ∈ LM(A, p)⇔ an → a and cn → 0.

(5) x ∈ RM(A, p)⇔ an → a and bn → 0.

(6) x ∈ M(A, p)⇔ an → a and bn, cn → 0.

(7) x ∈ QM(A, p)⇔ an → a.

(8) x ∈ A ⇔ an → a and bn, cn, dn → 0.
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We first note that c(p) = 1. Since pAp is an algebra, p has MSQC
by Lemma 4.7. Thus, (a)–(d) are satisfied for B = A. On the other hand,
obviously we have A 6⊆ A. We also want to point out that A is not contained
in A, either. For example, the element x = (xn) of A ⊆ A∗∗ given by
xn = 0, n = 1, 2, . . . , and x∞ =

(
0 0
0 1

)
does not belong to A. It is clear that

LM(A, p) 6= LM(A) = A etc., since A is unital.

Example 5.9. Consider the C∗-algebra A = c⊗K and

A∗∗ = {(hn) : hn ∈ B(H), 1 ≤ n ≤ ∞, ‖h‖ = sup ‖hn‖ <∞}.
Let {e1, e2, . . .} be an orthonormal basis of the Hilbert space H. Let

vn =
1√
2
e1 +

1√
2
en+1, n <∞, and v∞ = e1,

and

pn = vn ⊗ vn, n = 1, 2, . . . ,∞.
Then p = (pn) is a closed projection in A∗∗ without MSQC (cf. [8]) and the
central support c(p) of p is 1. We have

(1) Ap =
{

(xnpn) ∈ A∗∗p : xnvn
‖·‖−−→ 1√

2
x∞e1

}
.

(2) Wp =
{

(xnpn) ∈ A∗∗p : xnvn
weakly−−−−→ 1√

2
x∞e1

}
.

(3) pAp =
{

(pnbnpn) : 〈bnvn, vn〉 → 1
2〈b∞e1, e1〉

}
.

(4) LM(A) = LM(A, p) = {(tn) ∈ A∗∗ : tn
SOT−−−→ t∞}.

(5) RM(A) = RM(A, p) = {(tn) ∈ A∗∗ : t∗n
SOT−−−→ t∗∞}.

(6) M(A) = M(A, p) = {(tn) ∈ A∗∗ : tn
DSOT−−−−→ t∞}.

(7) QM(A) = QM(A, p) = {(tn) ∈ A∗∗ : tn
WOT−−−→ t∞}.

(8) A = {(tn) ∈ A∗∗ : tn
‖·‖−−→ t∞, t∞ ∈ K}.

By Theorem 5.3 and the fact that A ⊆ A, the equations LM(A, p) = LM(A)
etc. are satisfied in this case. This can also be verified by direct calculation.

Remark 5.10. In [6], it is shown that for two separable C∗-algebras A1

and A2, the multiplier algebras M(A1) and M(A2) are isomorphic if and only
if A1 and A2 are isomorphic. In fact, A1 (resp. A2) is the largest separable
closed, two-sided ideal of M(A1) (resp. M(A2)). However, in the inseparable
case, this may not be true. A perhaps less artificial illustration to this fact
than usual is provided by Example 5.9, since M(A) = M(A), A is separable
and A is not separable.

6. Atomic parts of relative multipliers. In the following, z = zat
denotes the maximal atomic projection in A∗∗; in other words, z is the
smallest central projection in A∗∗ supporting all pure states of A.
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Lemma 6.1. Let xp and yp be in Wp. If zxp = zyp then xp = yp.
Moreover, we have ‖xp‖ = ‖zxp‖. In other words, weakly continuous vector
sections are determined by their atomic parts.

Proof. For each a in A, the continuous affine function ϕ 7→ ϕ(a∗(x− y))
on F (p) vanishes at all pure states in F (p). Consequently, it is identically
zero on F (p). As a result, pA(x − y)p = {0}, and thus xp = yp. For the
norm equality, we note that the bounded affine function ϕ 7→ ϕ(x∗x) is lower
semicontinuous on the weak∗ compact convex set F (p) [9, Lemma 2.1]. It
follows from the Krein–Milman theorem that

‖xp‖2 ≤ sup{ϕ(x∗x) : ϕ is a pure state in F (p)} = ‖zxp‖2 ≤ ‖xp‖2.

The following theorem says that if the operator section πp(x) preserves
the continuity of the atomic part of every vector section in A∗∗p then x itself
must have an appropriate atomic part.

Theorem 6.2. Let x be an element of A∗∗.

(1) zxAp ⊆ zAp if and only if zx ∈ z LM(A, p).
(2) zxWp ⊆ zWp if and only if zx ∈ zRM(A, p).
(3) zxAp ⊆ zAp and zxWp ⊆ zWp if and only if zx ∈ zM(A, p).
(4) zxAp ∈ zWp if and only if zx ∈ zQM(A, p).
(5) zxWp ⊆ zAp if and only if zx ∈ zA.

Proof. The sufficiency is obvious and thus we verify the necessity only.
Suppose first that zxAp ⊆ zWp. By Lemma 6.1, we can define a linear
map T from Ap into Wp. More precisely, we set Tap = up if zxap =
zup. Moreover, ‖T‖ ≤ ‖x‖ since ‖zyp‖ = ‖yp‖ for all yp in Wp. Sup-
pose that ϕ is a pure state in F (p) and a is in A such that ϕ(a∗a) = 0.
Then ϕ((Tap)∗(Tap)) = ϕ(u∗u) = ϕ((zup)∗(zup)) = ϕ((xap)∗(xap)) =
ϕ(pa∗x∗xap) ≤ ‖x‖2ϕ(a∗a) = 0. By Theorem 3.13, there is a relative quasi-
multiplier q in QM(A, p) such that Tap = qap for all a in A. Therefore
zxap = zTap = zqap for all a in A. Consequently, z(x − q)Ap = {0}, and
thus zxc(p) = zq ∈ zQM(A, p).

Consider next the case zxAp⊆zAp. A similar argument yields a bounded
linear map T from Ap into Ap (by restricting the co-domain of T ). We thus
have an l in A∗∗c(p) such that lap = Tap ∈ Ap for all a in A. Consequently,
l ∈ LM(A, p), and thus zxc(p) = zl ∈ z LM(A, p).

For the case zxWp ⊆ zWp, we note that zx∗Ap ⊆ zAp. To see this, we
observe that zpy∗x∗ap = (pa∗zxyp)∗ ∈ zpAp for all yp in Wp, and quote
[9, Theorem 1.7], which says zup ∈ zAp if and only if zpAup ⊆ zpAp and
zpu∗up ∈ zpAp. Hence there is a relative left multiplier l in A∗∗ such that
zx∗ = zl. By setting r = l∗, we have zx = zr ∈ zRM(A, p). The case where
zxWp ⊆ zAp is similar.
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Finally, we suppose that zxAp ⊆ zAp and zxWp ⊆ zWp. By the above
observation, there is an l in LM(A, p) and an r in RM(A, p) such that zx =
zl = zr. Now, pa1(l− r)a2p belongs to pAp and vanishes at each pure state
in F (p) for all a1, a2 in A. It follows that pA(l − r)Ap = {0}. Therefore,
lc(p) = rc(p), and thus zx ∈ M(A, p).

The following is the special case when p = 1.

Corollary 6.3. Let x be an element of A∗∗.

(1) If zxA ⊆ zA then zx = zl for some left multiplier l of A in A∗∗.
(2) If zxRM(A) ⊆ zRM(A) then zx = zr for some right multiplier r of

A in A∗∗.
(3) If zxA ⊆ zA and zxRM(A) ⊆ zRM(A) then zx = zm for some

multiplier m of A in A∗∗.
(4) If zxA ⊆ zRM(A) then zx = zq for some quasi-multiplier q of A

in A∗∗.
(5) If zxRM(A) ⊆ zA then zx = za for some a in A.
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