Left quotients of a C^{*}-algebra, III: Operators on left quotients

by
Lawrence G. Brown (West Lafayette, IN) and Ngai-Ching Wong (Kaohsiung)

Abstract

Let L be a norm closed left ideal of a C^{*}-algebra A. Then the left quotient A / L is a left A-module. In this paper, we shall implement Tomita's idea about representing elements of A as left multiplications: $\pi_{p}(a)(b+L)=a b+L$. A complete characterization of bounded endomorphisms of the A-module A / L is given. The double commutant $\pi_{p}(A)^{\prime \prime}$ of $\pi_{p}(A)$ in $B(A / L)$ is described. Density theorems of von Neumann and Kaplansky type are obtained. Finally, a comprehensive study of relative multipliers of A is carried out.

1. Introduction. Let A be a C^{*}-algebra with Banach dual A^{*} and double dual $A^{* *}$. We also consider $A^{* *}$ as the enveloping W^{*}-algebra of A, as usual. Let L be a norm closed left ideal of A. The quotient A / L is a Banach space. Let $B(A / L)=B(A / L, A / L)$ be the Banach algebra of bounded linear operators from A / L into A / L. In [17, 18], Tomita initiated a program to study the left regular representation π_{p} of A on the Banach space A / L. More precisely, he considered the Banach algebra representation of A,

$$
\pi_{p}: A \rightarrow B(A / L)
$$

defined by

$$
\pi_{p}(a)(b+L)=a b+L, \quad a, b \in A
$$

The objective of this paper is to answer the following three questions raised by Tomita [18].

Q1: How do we describe $\pi_{p}(A)$? In other words, which properties of an operator T in $B(A / L)$ characterize that $T=\pi_{p}(t)$ for some t in A ?
Q2: How do we describe the commutant $\pi_{p}(A)^{\prime}$ and the double commutant $\pi_{p}(A)^{\prime \prime}$ of $\pi_{p}(A)$ in $B(A / L)$? Note that the commutant

[^0]$\pi_{p}(A)^{\prime}=\left\{T \in B(A / L): T \pi_{p}(a)=\pi_{p}(a) T\right.$ for all $\left.a \in A\right\}$ is the Banach algebra of bounded A-module maps when we consider A / L as a left A-module.
Q3: Do we have density theorems of von Neumann and Kaplansky type in this context? In other words, is it true that $\pi_{p}(A)$ (resp. its unit ball) is dense in $\pi_{p}(A)^{\prime \prime}$ (resp. its unit ball)?

In [17, 18], Tomita tried to represent elements of A / L as vector sections (he called them "vector fields") over a compact subset of the state space $S(A)$ (assuming that the C^{*}-algebra A has an identity). In [17], he defined the notion of a "vector field" as "a mapping of a state space into the dual space of the algebra which satisfies a suitable norm condition". However, due to insufficient tools, "unlike in abelian case, even in a compact space of pure states, the corresponding quotient space of non-commutative algebra A may not generally be represented as the totality of continuous fields on that space". Thus, his treatment in [18] of the left regular representation π_{p} based on his vector section representation does not work in general.

In Part I [20] of this series of papers, the second author offered another approach. It is well-known that closed left ideals L of a C^{*}-algebra A are in one-to-one correspondence with closed projections p in $A^{* *}$ such that A / L is isometrically isomorphic to $A p$ as Banach spaces and also as left A-modules (see Section (3). For an arbitrary closed projection p in $A^{* *}$ (and thus for an arbitrary closed left ideal L of A), we use the weak ${ }^{*}$ closed face $F(p)$ of the quasi-state space $Q(A)$ of A supported by p as the base space. We implement, in addition to the norm conditions of Tomita, an affine structure of vector sections. Then it was established that the quotient space $A / L(\cong A p)$ is isometrically isomorphic to the Banach space of all continuous admissible vector sections over $F(p)$ (see Theorem 3.4). Based on these new techniques, we are able to provide in this paper more satisfactory answers to the above three questions.

We begin with the W^{*}-algebra version in Section 2, in which we completely answer all three questions stated above. For example, if p is a (necessarily closed) projection in a W^{*}-algebra M then $\pi_{p}(M)^{\prime}$ consists of right multiplications induced by elements of $p M p$ and $\pi_{p}(M)^{\prime \prime}=\pi_{p}(M)$ (Theorem 2.3). In particular, all M-module maps T in $B(M p)$ are of the form $T(x p)=x p t p$ for some t in M.

However, the C^{*}-algebra case is much more difficult (due to lack of projections) and we need to develop some new tools. In [20], elements $b p$ of the Banach space $A p$ are interpreted as Hilbert space vector sections over $F(p)$. The main idea in this paper is to represent Banach space operators $\pi_{p}(a)$ in $B(A p)$ as Hilbert space operator sections (Definition 3.7), which is developed in Section 3. In particular, an operator T in $B(\overline{A p})$ is said
to be decomposable if T can be represented by an operator section (Definition 3.10). A simple way to verify the decomposability of T is to check if the condition $\varphi\left(a^{*} a\right)=0$ ensures $\varphi\left((\operatorname{Tap})^{*}(\operatorname{Tap})\right)=0$ whenever φ is a pure state supported by p and $a \in A$ (Theorem 3.13). In this case, T has to be a $\pi_{p}(t)$ for some t in $\operatorname{LM}(A, p)=\left\{x \in A^{* *}: x A p \subseteq A p\right\}$ (Corollary 3.14). This answers our first question Q1.

Various relative multipliers of A associated to p play important roles in the theory of left regular representations. $\operatorname{Beside} \operatorname{LM}(A, p)$, we shall introduce and study $\mathrm{RM}(A, p), \mathrm{M}(A, p)$ and $\mathrm{QM}(A, p)$ in Section 4. They behave in a similar way as the sets $\mathrm{LM}(A), \mathrm{RM}(A), \mathrm{M}(A)$ and $\mathrm{QM}(A)$ of classical multipliers of A. For example, they are closures of A in $A^{* *}$ under corresponding relative strict topologies (Theorem 4.3). The object studied by Tomita in [18] is essentially the closure of $\pi_{p}(A)$ in $B(A p)$ with respect to the so-called quotient(-double) strong topology, or Q^{*}-topology. In fact, the Q^{*}-topology is induced by the relative strict topology of $A^{* *}$. Thus, the closure of the Banach algebra $\pi_{p}(A)$ in $B(A p)$ in the Q^{*}-topology is the image of the C^{*}-algebra $\mathrm{M}(A, p)=\left\{x \in A^{* *}: x A p \subseteq A p, p A x \in p A\right\}$ under π_{p} (see Remark 4.5). Tomita expected that the double commutant $\pi_{p}(A)^{\prime \prime}$ of $\pi_{p}(A)$ in $B(\overline{A p})$ coincides with $\pi_{p}(\mathrm{M}(A, p))$. This is, however, not always true for an arbitrary projection p. In some important cases, we do have $\pi_{p}(A)^{\prime \prime}=\pi_{p}(\mathrm{LM}(A, p))$ (Theorem 4.8). A counterexample is Example 4.9 . This partially answers our second question Q2.

The classical density theorems of von Neumann and Kaplansky have counterparts in this context. Also in Section 4, we show that $\pi_{p}(A)$ (resp. its unit ball) is dense in $\pi_{p}(\mathrm{LM}(A, p))$ (resp. its unit ball) in the strong operator topology (SOT) as well as the weak operator topology (WOT) of $B(A p)$ (Theorem 4.4). This answers our last question Q3.

It is then interesting and useful to find a C^{*}-subalgebra \mathcal{A} of $A^{* *}$ such that $\operatorname{LM}(A, p)=\mathrm{LM}(\mathcal{A}), \operatorname{RM}(A, p)=\operatorname{RM}(\mathcal{A}), \mathrm{M}(A, p)=\mathrm{M}(\mathcal{A})$ and $\operatorname{QM}(A, p)$ $=\operatorname{QM}(\mathcal{A})$, and thus all good tools of multipliers apply (see e.g. [5]). Several examples and results are provided in Section 5 for the investigation of what \mathcal{A} should consist of (see especially Theorem 5.3).

Finally, we remark that the atomic part of $A p$ is studied in Part II [9] of this series of papers. Some interesting and new results in this direction are obtained in Section 6. For example, we show that if x is in $A^{* *}$ and $\pi_{p}(x)$ preserves continuous atomic parts, i.e., $z_{\mathrm{at}} x A p \subseteq z_{\mathrm{at}} A p$, then $z_{\mathrm{at}} x c(p) \in z_{\mathrm{at}} \mathrm{LM}(A, p)$, where $z_{\text {at }}$ is the maximal atomic projection in $A^{* *}$, and $c(p)$ is the central support of p in $A^{* *}$ (Theorem 6.2). In particular, when $p=1$, we have $z_{\mathrm{at}} x=z_{\mathrm{at}} l$ for some left multiplier l of A whenever $z_{\mathrm{at}} x A \subseteq z_{\mathrm{at}} A$ (Corollary 6.3). This supplements results of Shultz [16] and Brown [7. Similar results are obtained for other relative multipliers as well.
2. The left regular representation of a W^{*}-algebra. We provide a new elementary proof of the following result of Tomita [18.

Theorem 2.1 ([18]). Let π be a bounded homomorphism from a C^{*} algebra A into a Banach algebra B. Then $\pi(A)$ is topologically isomorphic to $A / \operatorname{ker} \pi$. If $\|\pi\| \leq 1$, then $\pi(A)$ is isometrically isomorphic to $A / \operatorname{ker} \pi$.

Proof. The kernel of π is a closed two-sided ideal of A. Since closed two-sided ideals of a C^{*}-algebra are automatically self-adjoint, by passing to the quotient, we can assume π is one-to-one. Assume that k is a positive number such that

$$
\|\pi(a)\| \leq k\|a\|
$$

for all a in A. It suffices to show that $\|\pi(a)\| \geq \frac{1}{k}\|a\|$ for all a in A. If $k=1$, then π is an isometry.

First assume that a is a positive element of A. We claim that $\|\pi(a)\|$ $\geq\|a\|$. Since A is a C^{*}-algebra and B is a Banach algebra,

$$
\|a\|=r_{\sigma}(a) \quad \text { and } \quad\|\pi(a)\| \geq r_{\sigma}(\pi(a))
$$

where r_{σ} denotes the spectral radius. We shall verify for the spectra that $\sigma(a) \subseteq \sigma(\pi(a)) \cup\{0\}$. For any positive λ in $\sigma(a)$ and $0<\varepsilon<\lambda$, let f be a continuous real-valued function on the compact set $\sigma(a)$ such that $f=1$ on $[\lambda-\varepsilon / 2, \lambda+\varepsilon / 2] \cap \sigma(a), f=0$ outside $(\lambda-\varepsilon, \lambda+\varepsilon)$ and $0 \leq f \leq 1$. In a similar manner, we can choose another continuous real-valued function g on $\sigma(a)$ such that $f g=g \neq 0$. Let $x=f(a)$ and $y=g(a)$. We have $x, y \in A$ and $x y=y \neq 0$. It follows that $\pi(x) \pi(y)=\pi(y) \neq 0$. Therefore, $\|\pi(x)\| \geq 1$. Now, $\|(a-\lambda) x\|<\varepsilon$ implies $\|(\pi(a)-\lambda) \pi(x)\|=\|\pi((a-\lambda) x)\|<k \varepsilon$. The fact that ε can be arbitrarily small ensures $\lambda \in \sigma(\pi(a))$, as asserted. Hence,

$$
\|\pi(a)\| \geq r_{\sigma}(\pi(a)) \geq r_{\sigma}(a)=\|a\|
$$

for all positive a in A.
In general, if $a \in A$ and $a \neq 0$,

$$
\|\pi(a)\| \geq \frac{\left\|\pi\left(a^{*} a\right)\right\|}{\left\|\pi\left(a^{*}\right)\right\|} \geq \frac{\left\|a^{*} a\right\|}{\left\|\pi\left(a^{*}\right)\right\|} \geq \frac{\|a\|^{2}}{k\|a\|}=\frac{1}{k}\|a\|
$$

Let p be a projection (all projections in this paper are assumed selfadjoint) in a W^{*}-algebra M. Let $c(p)$ be the central support of p in M. In other words, $c(p)$ is the minimum central projection in M such that $p c(p)=c(p) p=p$. Recall that π_{p} is the left regular representation of M into $B(M p)$, i.e.,

$$
\pi_{p}(x) y p=x y p, \quad y \in M
$$

Clearly, $\pi_{p}(c(p))=1$ in $B(M p)$. Hence, $\pi_{p}(t)=\pi_{p}(t c(p))$ for all t in M, and in fact $\operatorname{ker} \pi_{p}=M(1-c(p))$.

Lemma 2.2. Suppose $T \in B(M p)$. Then T commutes with all right multiplications $R_{p x p}$ for x in M if and only if there is a t in M such that $T=\pi_{p}(t)$. In this case, $\|T\|=\|t c(p)\|$.

Proof. We shall just verify necessity. Assume $T \in B(M p)$ such that $T R_{p x p}=R_{p x p} T$ for all $x \in M$. For every central projection z in M, we have

$$
\begin{aligned}
T(z x p) & =T(x p(p z p))=T\left(R_{p z p}(x p)\right) \\
& =R_{p z p}(T(x p))=(T x p) p z p=z(T x p), \quad x \in M
\end{aligned}
$$

In particular, $T(z M p) \subseteq z M p$. By passing to $c(p) M$, we can assume $c(p)=1$ and π_{p} is an isometry by Theorem 2.1 .

Let

$$
\begin{aligned}
& \mathcal{S}=\left\{S \in B(M p): S R_{p x p}=R_{p x p} S, \forall x \in M\right\} \\
& \mathcal{Q}=\left\{q \in M: q \text { is a projection and } S \pi_{p}(q) \in \pi_{p}(M), \forall S \in \mathcal{S}\right\}
\end{aligned}
$$

Claim 1. $p \in \mathcal{Q}$.
For S in \mathcal{S}, let $s=S(p) \in M p$. We have

$$
\begin{aligned}
\pi_{p}(s)(x p) & =s x p=S(p)(p x p)=R_{p x p} S(p) \\
& =S\left(R_{p x p}(p)\right)=S(p x p)=S \pi_{p}(p)(x p)
\end{aligned}
$$

for all $x p$ in $M p$. Therefore, $S \pi_{p}(p)=\pi_{p}(s) \in \pi_{p}(M)$. Hence, $p \in \mathcal{Q}$.
Claim 2. \mathcal{Q} is hereditary under the quasi-ordering \lesssim of projections.
Suppose $q \in \mathcal{Q}$ and $r \lesssim q$. In other words, $r=v^{*} v$ and $v v^{*} \leq q$ for some partial isometry v in M. Note that $r=v^{*} q v$. Since $\pi_{p}\left(v^{*}\right)$ is in \mathcal{S}, the operator $S \pi_{p}\left(v^{*}\right)$ belongs to \mathcal{S} whenever S does. As $q \in \mathcal{Q}$, for each S in \mathcal{S} there is an s^{\prime} in M such that

$$
\left(S \pi_{p}\left(v^{*}\right)\right) \pi_{p}(q)=\pi_{p}\left(s^{\prime}\right)
$$

Consequently,

$$
S(r x p)=S\left(v^{*} q v x p\right)=S \pi_{p}\left(v^{*}\right) \pi_{p}(q)(v x p)=s^{\prime} v x p, \quad \forall x \in M
$$

Set $s^{\prime \prime}=s^{\prime} v$. We have

$$
S \pi_{p}(r)=\pi_{p}\left(s^{\prime \prime}\right) \in \pi_{p}(M)
$$

Hence $r \in \mathcal{Q}$. Therefore, \mathcal{Q} is hereditary under \lesssim and, in particular, \mathcal{Q} contains all projections q such that $q \lesssim p$ by Claim 1.

Claim 3. \mathcal{S} is directed under the ordering \leq of projections.
We are going to show that \mathcal{Q} is even a lattice. First, it is clear that if q_{1}, \ldots, q_{n} in Q are mutually orthogonal then $q_{1}+\cdots+q_{n} \in \mathcal{Q}$. Moreover, if $q_{1}, q_{2} \in \mathcal{Q}$, we have

$$
q_{1} \vee q_{2}-q_{1} \sim q_{2}-q_{1} \wedge q_{2} \leq q_{2}
$$

Hence $q_{1} \vee q_{2}-q_{1} \in \mathcal{Q}$ by Claim 2, and consequently we have $q_{1} \vee q_{2}=$ $\left(q_{1} \vee q_{2}-q_{1}\right)+q_{1} \in \mathcal{Q}$.

Associate to each q in \mathcal{Q} a t_{q} in M such that

$$
T \pi_{p}(q)=\pi_{p}\left(t_{q}\right)
$$

Then $\left\|t_{q}\right\|=\left\|\pi_{p}\left(t_{q}\right)\right\| \leq\|T\|$ because π_{p} is an isometry. Since the net $\left\{t_{q}\right.$: $q \in \mathcal{Q}\}$ is bounded in the W^{*}-algebra M, some subnet $\left(t_{q_{\lambda}}\right)$ converges to some t in M with respect to the $\sigma\left(M, M_{*}\right)$ topology. For every $x p$ in $M p$, let q_{x} be the range projection of $x p$. Then $q_{x} \in \mathcal{Q}$ since $q_{x} \lesssim p$. Consequently, for large enough λ, we have $q_{x} \leq q_{\lambda}$ and thus

$$
T(x p)=T\left(q_{\lambda} x p\right)=T \pi_{p}\left(q_{\lambda}\right)(x p)=t_{q_{\lambda}} x p
$$

It follows that

$$
t x p=\lim t_{q_{\lambda}} x p=T(x p), \quad \forall x \in M
$$

Hence $\pi_{p}(t)=T$. Finally, $\|t\|=\left\|\pi_{p}(t)\right\|=\|T\|$ since π_{p} is an isometry.
Theorem 2.3. Let M be a W^{*}-algebra, p a projection in M and π_{p} the left regular representation of M on $M p$. Then the commutant of $\pi_{p}(M)$ in $B(M p)$ is

$$
\pi_{p}(M)^{\prime}=\left\{R_{p t p}: t \in M\right\}
$$

and the double commutant is

$$
\pi_{p}(M)^{\prime \prime}={\overline{\pi_{p}(M)}}^{\mathrm{SOT}}={\overline{\pi_{p}(M)}}^{\mathrm{WOT}}=\pi_{p}(M)
$$

Proof. Suppose $T \in \pi_{p}(M)^{\prime}$. Let $T p=t p \in M p$. Now

$$
T x p=T \pi_{p}(x) p=\pi_{p}(x) T p=\pi_{p}(x)(t p)=x t p, \quad \forall x \in M
$$

Since $(1-p) p=0$, we must have $(1-p) t p=0$, i.e., $t p=p t p$. Consequently, $T=R_{p t p}$. The opposite inclusion is obvious and thus we have $\pi_{p}(M)^{\prime}=$ $\left\{R_{p t p}: t \in M\right\}$. Since the double commutant of any subset of $B(M p)$ is closed in both the strong operator topology (SOT) and the weak operator topology (WOT) of $B(M p)$, the second assertion follows from Lemma 2.2 .
3. The left regular representation of a C^{*}-algebra. Let

$$
S(A)=\left\{\varphi \in A^{*}: \varphi \geq 0,\|\varphi\|=1\right\}
$$

be the state space and

$$
Q(A)=\left\{\varphi \in A^{*}: \varphi \geq 0,\|\varphi\| \leq 1\right\}
$$

be the quasi-state space of A equipped with the weak* topology. $Q(A)$ is a weak* compact convex set. A convex subset F of $Q(A)$ is called a face if both φ and ψ belong to F whenever $\varphi, \psi \in Q(A)$ and $\lambda \varphi+(1-\lambda) \psi \in F$ for some $0<\lambda<1$.

Recall that a projection p in $A^{* *}$ is closed if and only if the face

$$
F(p)=\{\varphi \in Q(A): \varphi(1-p)=0\}
$$

of $Q(A)$ supported by p is weak ${ }^{*}$ closed. The relation

$$
L=A^{* *}(1-p) \cap A
$$

establishes a one-to-one correspondence between closed projections in $A^{* *}$ and norm closed left ideals of A. Also, $L^{* *}=A^{* *}(1-p)$. Moreover, we have isometrical isomorphisms

$$
a+L \mapsto a p \quad \text { and } \quad x+L^{* *} \mapsto x p
$$

under which

$$
A / L \cong A p \quad \text { and } \quad(A / L)^{* *} \cong A^{* *} / L^{* *} \cong A^{* *} p,
$$

respectively, as Banach spaces and also as left A-modules ([12, 15, 1], see also [14, 3.11.9]).

From now on, p is always the unique closed projection in $A^{* *}$ associated to the norm closed left ideal $L=A^{* *}(1-p) \cap A$. For simplicity of notation, we write $A p$ for the left quotient A / L of the C^{*}-algebra A by L. Consequently, its Banach double dual $A^{* *} p$ is the quotient $A^{* *} / L^{* *}$. Denote by π_{p} the left regular representation of A on $A p$ defined by $\pi_{p}(a) b p=a b p$ (or equivalently, $\left.\pi_{p}(a)(b+L)=a b+L\right)$. As usual, π_{p} can be extended to the left regular representation of $A^{* *}$ into $B\left(A^{* *} p\right)$, denoted again by π_{p}, such that $\pi_{p}(x) y p=x y p$ (or equivalently, $\left.\pi_{p}(x)\left(y+L^{* *}\right)=x y+L^{* *}\right)$.

We note that

$$
\varphi(x)=\varphi(p x)=\varphi(x p)=\varphi(p x p), \quad \forall x \in A^{* *}, \forall \varphi \in F(p) .
$$

Let $\varphi \in F(p) \backslash\{0\}$. The GNS construction yields a cyclic representation $\left(\pi_{\varphi}, H_{\varphi}, \omega_{\varphi}\right)$ of A such that $\overline{\pi_{\varphi}(A) \omega_{\varphi}}=H_{\varphi}$ and $\varphi(x)=\left\langle\pi_{\varphi}(x) \omega_{\varphi}, \omega_{\varphi}\right\rangle_{\varphi}$ for all x in $A^{* *}$. Here π_{φ} also denotes the canonical extension of π_{φ} to $A^{* *}$, and $\langle\cdot, \cdot\rangle_{\varphi}$ is the inner product of the Hilbert space H_{φ} (see, e.g., [10, 2.4.4]). Set $H_{\varphi}=\{0\}$ for $\varphi=0$.

Notation. Write $x \omega_{\varphi}$ for $\pi_{\varphi}(x) \omega_{\varphi}$ in H_{φ} for all $x \in A^{* *}$ and $\varphi \in F(p)$.
There is a linear embedding of $A^{* *} p$ into the product space $\prod_{\varphi \in F(p)} H_{\varphi}$ defined by associating to each $x p$ in $A^{* *} p$ the vector section $\left(x \omega_{\varphi}\right)_{\varphi \in F(p)}$ in $\prod_{\varphi \in F(p)} H_{\varphi}$. Note that the fiber Hilbert spaces H_{φ} are not totally independent. In fact, we have

Lemma 3.1 ([20, 2.3]). For φ, ψ in $F(p)$ such that $0 \leq \psi \leq \lambda \varphi$ for some $\lambda>0$, we can define a bounded linear map

$$
T_{\psi \varphi}: H_{\varphi} \rightarrow H_{\psi}
$$

by sending $a \omega_{\varphi}$ to $a \omega_{\psi}$ for all $a \in A$. Moreover, $\left\|T_{\psi \varphi}\right\|^{2} \leq \lambda$ and

$$
T_{\psi \varphi}\left(x \omega_{\varphi}\right)=x \omega_{\psi}, \quad \forall x \in A^{* *} .
$$

Definition 3.2 ([20, 2.4]). A vector section $\left(x_{\varphi}\right)_{\varphi}$ in $\prod_{\varphi \in F(p)} H_{\varphi}$ is said to be admissible if

$$
T_{\psi \varphi} x_{\varphi}=x_{\psi}
$$

whenever $\varphi, \psi \in F(p)$ and $0 \leq \psi \leq \lambda \varphi$ for some $\lambda>0$.
Clearly, each $x p$ in $A^{* *} p$ induces an admissible vector section $\left(x \omega_{\varphi}\right)_{\varphi}$ in $\prod_{\varphi \in F(p)} H_{\varphi}$. They are exactly all of them.

Theorem 3.3 ([20, 3.1]). The image of the linear embedding $x p \mapsto$ $\left(x \omega_{\varphi}\right)_{\varphi}$ of $A^{* *} p$ into $\prod_{\varphi \in F(p)} H_{\varphi}$ coincides with the set of all admissible vector sections in $\prod_{\varphi \in F(p)} H_{\varphi}$. Moreover,

$$
\|x p\|=\sup _{\varphi \in F(p)}\left\|x \omega_{\varphi}\right\|_{H_{\varphi}}
$$

In particular, admissible vector sections are automatically bounded.
It is natural to ask which properties characterize those admissible vector sections arising from elements of $A p$. Recall the notion of a continuous field of Hilbert spaces [13, 11]. We equip $F(p)$ with the weak* topology inherited from A^{*}. Note that $\left\{a \omega_{\varphi}: a \in A\right\}$ is norm dense in H_{φ} for all $\varphi \in F(p)$, and the norm functions $\varphi \mapsto\left\|a \omega_{\varphi}\right\|_{\varphi}=\varphi\left(a^{*} a\right)^{1 / 2}$ are continuous on $F(p)$ for a in A. Consequently, the image of $A p$ under the embedding $A^{* *} p \hookrightarrow$ $\prod_{\varphi \in F(p)} H_{\varphi}$ defines a continuous structure of the field of Hilbert spaces $\left(F(p),\left\{H_{\varphi}\right\}_{\varphi}\right)$ with base space $F(p)$ and fiber Hilbert spaces H_{φ} for all $\varphi \in F(p)$. In this context:

- A vector section $\left(x_{\varphi}\right)_{\varphi \in F(p)}$ in $\prod_{\varphi \in F(p)} H_{\varphi}$ is bounded if

$$
\sup _{\varphi \in F(p)}\left\|x_{\varphi}\right\|_{H_{\varphi}}<\infty
$$

- A bounded vector section $\left(x_{\varphi}\right)_{\varphi \in F(p)}$ is weakly continuous if

$$
\varphi \mapsto\left\langle x_{\varphi}, a \omega_{\varphi}\right\rangle_{\varphi} \text { is continuous on } F(p) \text { for all } a p \text { in } A p
$$

- A weakly continuous vector section $\left(x_{\varphi}\right)_{\varphi \in F(p)}$ is continuous if

$$
\varphi \mapsto\left\langle x_{\varphi}, x_{\varphi}\right\rangle_{\varphi} \text { is also continuous on } F(p)
$$

Let us denote the continuous field of Hilbert spaces thus obtained by $(F(p)$, $\left.\left\{H_{\varphi}\right\}_{\varphi}, A p\right)$. The following result says that there are no more continuous admissible vector sections in $\left(F(p),\left\{H_{\varphi}\right\}_{\varphi}, A p\right)$ other than those arising from elements of $A p$.

Theorem 3.4 ([20, 3.2]). The image of Ap under the linear embedding $x p \mapsto\left(x \omega_{\varphi}\right)_{\varphi}$ of $A^{* *} p$ into $\prod_{\varphi \in F(p)} H_{\varphi}$ coincides with the set of all continuous admissible vector sections in the continuous field of Hilbert spaces
$\left(F(p),\left\{H_{\varphi}\right\}_{\varphi}, A p\right)$. Consequently,

$$
\begin{aligned}
& A p=\left\{x p \in A^{* *} p: \varphi \mapsto\left\langle x \omega_{\varphi}, x \omega_{\varphi}\right\rangle_{\varphi}=\varphi\left(x^{*} x\right)\right. \text { and } \\
& \varphi \mapsto\left\langle x \omega_{\varphi}, a \omega_{\varphi}\right\rangle_{\varphi}=\varphi\left(a^{*} x\right) \\
& \text { are continuous on } F(p), \forall a \in A\} \text {. }
\end{aligned}
$$

Let \mathcal{W}_{p} be the set of weakly continuous admissible vector sections in $\left(F(p),\left\{H_{\varphi}\right\}_{\varphi}, A p\right)$. In other words,

$$
\mathcal{W}_{p}=\left\{x p \in A^{* *} p: \varphi \mapsto\left\langle x \omega_{\varphi}, a \omega_{\varphi}\right\rangle_{\varphi}=\varphi\left(a^{*} x\right)\right.
$$

is continuous on $F(p), \forall a \in A\}$.
The following extension of Kadison function representation is useful for our work. The classical one deals with the case $p=1$ (see, e.g., [14, 3.10.3]). In the following, A_{sa} (resp. $A_{\mathrm{sa}}^{* *}$) denotes the set of all self-adjoint elements of $A\left(\right.$ resp. $\left.A^{* *}\right)$.

Proposition 3.5 ([5, 3.5]). $p A_{\mathrm{sa}} p$ (resp. $p A_{\mathrm{sa}}^{* *} p$) is isometrically linear and order isomorphic to the Banach space of all continuous (resp. bounded) real affine functionals of $F(p)$ vanishing at zero. In particular, for any x in $A^{* *}$, we have
$p x p \in p A p \quad$ if and only if $\quad \varphi \mapsto \varphi(p x p)=\varphi(x)$ is continuous on $F(p)$.
Corollary 3.6 ([20, 4.1]). Let $x p \in A^{* *} p$.
(1) $\mathcal{W}_{p}=\left\{x p \in A^{* *} p: p a^{*} x p \in p A p\right.$ for all $\left.a \in A\right\}$.
(2) $A p=\left\{x p \in A^{* *} p: p x^{*} x p \in p A p\right.$ and $p a^{*} x p \in p A p$ for all $\left.a \in A\right\}$.
(3) $A p=\left\{x p \in A^{* *} p: p w^{*} x p \in p A p\right.$ for all $\left.w p \in \mathcal{W}_{p}\right\}$.

Motivated by the fact that elements of $A^{* *} p$ are exactly the admissible vector sections in $\prod_{\varphi \in F(p)} H_{\varphi}$, we make the following definition.

Definition 3.7. Let T_{φ} be in $B\left(H_{\varphi}\right)$ for each φ in $F(p)$. The operator section $\left(T_{\varphi}\right)_{\varphi \in F(p)}$ is said to be admissible if

$$
T_{\psi \varphi} T_{\varphi}=T_{\psi} T_{\psi \varphi}
$$

whenever $\psi, \varphi \in F(p)$ such that $0 \leq \psi \leq \lambda \varphi$ for some $\lambda>0$.
LEMMA 3.8. Let $\left(T_{\varphi}\right)_{\varphi \in F(p)}$ be an operator section in $\prod_{\varphi \in F(p)} B\left(H_{\varphi}\right)$. The following are equivalent:
(1) $\left(T_{\varphi}\right)_{\varphi \in F(p)}$ is admissible.
(2) $\left(T_{\varphi}\right)_{\varphi \in F(p)}$ sends continuous admissible vector sections to admissible vector sections; that is, it induces a linear operator T from $A p$ into $A^{* *} p$.
(3) $\left(T_{\varphi}\right)_{\varphi \in F(p)}$ sends admissible vector sections to admissible vector sections; that is, it induces a linear operator T from $A^{* *} p$ into $A^{* *} p$.

Proof. Firstly, we note that the assertions in (2) and (3) follow from Theorems 3.3 and 3.4
$(3) \Rightarrow(2)$ is clear.
$(2) \Rightarrow(1)$. Suppose that $\left(T_{\varphi}\left(a \omega_{\varphi}\right)\right)_{\varphi \in F(p)}$ is admissible for each a in A. Hence there is an $x p$ in $A^{* *} p$ such that $x \omega_{\varphi}=T_{\varphi}\left(a \omega_{\varphi}\right)$ for all $\varphi \in F(p)$, by Theorem 3.3. Let $\psi, \varphi \in F(p)$ be such that $0 \leq \psi \leq \lambda \varphi$ for some $\lambda>0$. Then

$$
T_{\psi \varphi} T_{\varphi}\left(a \omega_{\varphi}\right)=T_{\psi \varphi}\left(x \omega_{\varphi}\right)=x \omega_{\psi}=T_{\psi}\left(a \omega_{\psi}\right)=T_{\psi} T_{\psi \varphi}\left(a \omega_{\varphi}\right)
$$

Since $\pi_{p}(A) \omega_{\varphi}$ is dense in $H_{\varphi}, T_{\psi \varphi} T_{\varphi}=T_{\psi} T_{\psi \varphi}$. As a result, $\left(T_{\varphi}\right)_{\varphi \in F(p)}$ is an admissible operator section.
$(1) \Rightarrow(3)$. We suppose that $\left(T_{\varphi}\right)_{\varphi \in F(p)}$ is an admissible operator section. We want to show that $y_{\varphi}=T_{\varphi}\left(x \omega_{\varphi}\right), \varphi \in F(p)$, defines an admissible vector section for each x in $A^{* *}$. Let $\psi, \varphi \in F(p)$ be such that $0 \leq \psi \leq \lambda \varphi$ for some $\lambda>0$. Observe that

$$
T_{\psi \varphi}\left(y_{\varphi}\right)=T_{\psi \varphi}\left(T_{\varphi}\left(x \omega_{\varphi}\right)\right)=T_{\psi}\left(T_{\psi \varphi}\left(x \omega_{\varphi}\right)\right)=T_{\psi}\left(x \omega_{\psi}\right)=y_{\psi}
$$

This proves the admissibility of $\left(y_{\varphi}\right)_{\varphi \in F(p)}$.
LEMMA 3.9. Every admissible operator section $\left(T_{\varphi}\right)_{\varphi \in F(p)}$ induces a unique bounded linear operator T in $B\left(A^{* *} p\right)$ such that the vector section representing $T(x p)$ is $\left(T_{\varphi}\left(x \omega_{\varphi}\right)\right)_{\varphi \in F(p)}$. In this case, we write $T=\left(T_{\varphi}\right)_{\varphi \in F(p)}$.

Proof. In view of the proof of Lemma 3.8, we can define $T: A^{* *} p \rightarrow A^{* *} p$ by

$$
T(x p) \omega_{\varphi}=T_{\varphi}\left(x \omega_{\varphi}\right), \quad \varphi \in F(p)
$$

We apply the closed graph theorem to establish the boundedness of T. Assume $x_{n} p \rightarrow x p$ and $T\left(x_{n} p\right) \rightarrow y p$ in norm. If $y p \neq T(x p)$ then there is a φ in $F(p)$ such that $y \omega_{\varphi} \neq T(x p) \omega_{\varphi}=T_{\varphi}\left(x \omega_{\varphi}\right)$. But they are both the limit of $T_{\varphi}\left(x_{n} \omega_{\varphi}\right)=T\left(x_{n} p\right) \omega_{\varphi}$, a contradiction. So $\|T\|<\infty$.

Definition 3.10. A bounded linear operator T in $B\left(A^{* *} p\right)$ is said to be decomposable if for each φ in $F(p)$ there is a T_{φ} in $B\left(H_{\varphi}\right)$ such that $(T x p) \omega_{\varphi}=T_{\varphi}\left(x \omega_{\varphi}\right)$ for all x in $A^{* *}$.

In other words, $T=\left(T_{\varphi}\right)_{\varphi \in F(p)}$ (cf. Lemma 3.9). Note that the operator section $\left(T_{\varphi}\right)_{\varphi \in F(p)}$ must be admissible in this case (Lemma 3.8).

It is clear that all operators T in $\pi_{p}\left(A^{* *}\right)$ are decomposable. In fact, $T=\pi_{p}(t)$ for some t in $A^{* *}$, and thus we can set $T_{\varphi}=\pi_{\varphi}(t)$ for all $\varphi \in F(p)$. We are going to prove that every decomposable operator in $B\left(A^{* *} p\right)$ arises in this way.

Lemma 3.11. Suppose that $\left(T_{\varphi}\right)_{\varphi \in F(p)}$ is an admissible section of operators in $\prod_{\varphi \in F(p)} B\left(H_{\varphi}\right)$. Then T_{φ} belongs to the double commutant $\pi_{\varphi}(A)^{\prime \prime}$ of $\pi_{\varphi}(A)$ in $B\left(H_{\varphi}\right)$ for each φ in $F(p)$.

Proof. Let $\varphi \in F(p)$ and q be a projection in $\pi_{\varphi}(A)^{\prime} \subseteq B\left(H_{\varphi}\right)$. Define a linear functional ψ on A by

$$
\psi(a)=\left\langle a \omega_{\varphi}, q \omega_{\varphi}\right\rangle_{\varphi} .
$$

It is easy to see that $\psi \in F(p)$ and $0 \leq \psi \leq \varphi$. Observe that for a, b in A,

$$
\begin{aligned}
\left\langle T_{\psi \varphi}^{*}\left(a \omega_{\psi}\right), b \omega_{\varphi}\right\rangle_{\varphi} & =\left\langle a \omega_{\psi}, T_{\psi \varphi}\left(b \omega_{\varphi}\right)\right\rangle_{\psi}=\left\langle a \omega_{\psi}, b \omega_{\psi}\right\rangle_{\psi} \\
& =\psi\left(b^{*} a\right)=\left\langle b^{*} a \omega_{\varphi}, q \omega_{\varphi}\right\rangle_{\varphi}=\left\langle a \omega_{\varphi}, b q \omega_{\varphi}\right\rangle_{\varphi} \\
& =\left\langle q a \omega_{\varphi}, b \omega_{\varphi}\right\rangle_{\varphi} .
\end{aligned}
$$

We thus have $q a \omega_{\varphi}=T_{\psi \varphi}^{*}\left(a \omega_{\psi}\right)$ for all a in A. In particular, $q H_{\varphi}=\overline{T_{\psi \varphi}^{*} H_{\psi}}$. The admissibility condition gives $T_{\psi \varphi} T_{\varphi}=T_{\psi} T_{\psi \varphi}$ and so $T_{\varphi}^{*} T_{\psi \varphi}^{*}=T_{\psi \varphi}^{*} T_{\psi}^{*}$. It follows that $q H_{\varphi}$ is invariant under T_{φ}^{*}. Applying the same argument to $1-q$, we can conclude that $q H_{\varphi}$ is a reducing subspace of T_{φ}^{*}. Hence $q T_{\varphi}^{*}=T_{\varphi}^{*} q$ for every projection q in the von Neumann algebra $\pi_{\varphi}(A)^{\prime}$. Consequently, $T_{\varphi}^{*} \in \pi_{\varphi}(A)^{\prime \prime}$ and thus $T_{\varphi} \in \pi_{\varphi}(A)^{\prime \prime}$ for each φ in $F(p)$.

Theorem 3.12. Let A be a C^{*}-algebra, p a closed projection in $A^{* *}$ with central support $c(p)$ and $T \in B\left(A^{* *} p\right)$. Then $T \in \pi_{p}\left(A^{* *}\right)$ if and only if T is decomposable. In this case, if $T=\left(T_{\varphi}\right)_{\varphi \in F(p)}=\pi_{p}(t)$ for some t in $A^{* *}$ then $\|T\|_{B\left(A^{* *} p\right)}=\sup _{\varphi \in F(p)}\left\|T_{\varphi}\right\|=\|t c(p)\|$.

Proof. We check sufficiency only. Suppose that T induces an admissible operator section $\left(T_{\varphi}\right)_{\varphi \in F(p)}$ in $\prod_{\varphi \in F(p)} B\left(H_{\varphi}\right)$. In view of Lemma 2.2 , we need only verify that T commutes with the right multiplications $R_{p x p}$ for all x in $A^{* *}$, i.e., for every y in $A^{* *}, T\left(R_{p x p} y p\right)=R_{p x p}(T y p)$. In other words,

$$
T(y p x p)=(T y p) x p,
$$

or equivalently,

$$
T(y p x p) \omega_{\varphi}=(T(y p) x p) \omega_{\varphi}, \quad \forall \varphi \in F(p) .
$$

By Lemma 3.11, for each φ in $F(p)$ we can choose a t_{φ} in $A^{* *}$ such that

$$
\pi_{\varphi}\left(t_{\varphi}\right)=T_{\varphi} .
$$

The admissibility of $\left(T_{\varphi}\right)_{\varphi \in F(p)}$ says that $T_{\psi} T_{\psi \varphi}=T_{\psi \varphi} T_{\varphi}$. Consequently,

$$
\pi_{\psi}\left(t_{\psi}\right) T_{\psi \varphi}=T_{\psi \varphi} \pi_{\varphi}\left(t_{\varphi}\right)
$$

whenever $\varphi, \psi \in F(p)$ satisfy $0 \leq \psi \leq \lambda \varphi$ for some $\lambda>0$. In this case,

$$
t_{\psi} y \omega_{\psi}=\pi_{\psi}\left(t_{\psi}\right) T_{\psi \varphi}\left(y \omega_{\varphi}\right)=T_{\psi \varphi} \pi_{\varphi}\left(t_{\varphi}\right)\left(y \omega_{\varphi}\right)=T_{\psi \varphi}\left(t_{\varphi} y \omega_{\varphi}\right)=t_{\varphi} y \omega_{\psi}
$$

for every y in $A^{* *}$, and thus

$$
\begin{equation*}
\pi_{\psi}\left(t_{\psi}\right)=\pi_{\psi}\left(t_{\varphi}\right) \quad \text { in } B\left(H_{\psi}\right) \tag{1}
\end{equation*}
$$

Moreover, we note that

$$
\begin{equation*}
p \omega_{\varphi}=\omega_{\varphi} \text { and } T(x p)=(T(x p)) p \in A^{* *} p, \quad \forall \varphi \in F(p), \forall x \in A^{* *} . \tag{2}
\end{equation*}
$$

For each x in $A^{* *}$ with $\|x\| \leq 1$ and φ in $F(p)$ we define ψ, ρ in $F(p)$ by

$$
\psi(\cdot)=\left\langle\cdot p x \omega_{\varphi}, p x \omega_{\varphi}\right\rangle_{\varphi} \quad \text { and } \quad \rho=\frac{\varphi+\psi}{2}
$$

Since $0 \leq \varphi \leq 2 \rho$ and $0 \leq \psi \leq 2 \rho$, by (1) we have

$$
\begin{equation*}
\pi_{\varphi}\left(t_{\varphi}\right)=\pi_{\varphi}\left(t_{\rho}\right) \quad \text { and } \quad \pi_{\psi}\left(t_{\psi}\right)=\pi_{\psi}\left(t_{\rho}\right) \tag{3}
\end{equation*}
$$

It follows that

$$
\begin{align*}
(T(y p x p)) \omega_{\varphi} & =T_{\varphi}\left(y p x \omega_{\varphi}\right)=\pi_{\varphi}\left(t_{\varphi}\right)\left(y p x \omega_{\varphi}\right) \tag{4}\\
& =\pi_{\varphi}\left(t_{\rho}\right)\left(y p x \omega_{\varphi}\right)=\left(t_{\rho} y p x\right) \omega_{\varphi}
\end{align*}
$$

Observe also that for every y in $A^{* *}$, by (2) and (3) we have

$$
\begin{aligned}
\left\langle(T y p) x \omega_{\varphi}, y p x \omega_{\varphi}\right\rangle_{\varphi} & =\left\langle(T y p) \omega_{\psi}, y \omega_{\psi}\right\rangle_{\psi}=\left\langle T_{\psi}\left(y \omega_{\psi}\right), y \omega_{\psi}\right\rangle_{\psi} \\
& =\left\langle\pi_{\psi}\left(t_{\psi}\right) y \omega_{\psi}, y \omega_{\psi}\right\rangle_{\psi}=\left\langle\pi_{\psi}\left(t_{\rho}\right) y \omega_{\psi}, y \omega_{\psi}\right\rangle_{\psi} \\
& =\left\langle t_{\rho} y p x \omega_{\varphi}, y p x \omega_{\varphi}\right\rangle_{\varphi}
\end{aligned}
$$

Therefore, $\left((T y p)-t_{\rho} y p\right) x \omega_{\varphi} \in\left(A^{* *} p x \omega_{\varphi}\right)^{\perp}$. Hence,

$$
(T y p) x \omega_{\varphi}=t_{\rho} y p x \omega_{\varphi}
$$

Consequently, by (4) we have

$$
(T(y p x p)) \omega_{\varphi}=t_{\rho} y p x \omega_{\varphi}=((T y p) x p) \omega_{\varphi}, \quad \forall \varphi \in F(p)
$$

and thus $T(y p x p)=(T y p) x p$, as asserted.
For the norm equalities, we choose a t in $A^{* *}$ by Lemma 2.2 such that $T=\pi_{p}(t)$ and

$$
\|T\|_{B\left(A^{* *} p\right)}=\|t c(p)\|=\sup _{\varphi \in F(p)}\left\|\pi_{\varphi}(t)\right\|=\sup _{\varphi \in F(p)}\left\|T_{\varphi}\right\|
$$

Let

$$
\mathrm{QM}(A, p)=\left\{x \in A^{* *}: p A x A p \subseteq p A p\right\}
$$

the Banach space of relative quasi-multipliers of A associated to p. By Corollary $3.6(1)$, for any x in $A^{* *}$, we have $x \in \mathrm{QM}(A, p)$ if and only if $\pi_{p}(x) \in B\left(A p, \mathcal{W}_{p}\right)$, that is, $\pi_{p}(x)$ sends continuous admissible vector sections to weakly continuous admissible vector sections in $\left(F(p),\left\{H_{\varphi}\right\}_{\varphi}, A p\right)$.

THEOREM 3.13. Let A be a C^{*}-algebra and p a closed projection in $A^{* *}$ with central support $c(p)$. Assume T in $B\left(A p, \mathcal{W}_{p}\right)$ satisfies the condition

$$
\varphi\left(a^{*} a\right)=0 \Rightarrow \varphi\left((T a p)^{*}(T a p)\right)=0
$$

whenever φ is a pure state in $F(p)$ and $a \in A$. Then T can be extended to a decomposable operator in $B\left(A^{* *} p\right)$, denoted again by T, such that $T=\pi_{p}(t)$ for some t in $\mathrm{QM}(A, p)$ and $\|T\|_{B\left(A p, \mathcal{W}_{p}\right)}=\|T\|_{B\left(A^{* *} p\right)}=\|t c(p)\|$.

Proof. We first recall that

$$
\left\|a \omega_{\varphi}\right\|^{2}=\left\langle a \omega_{\varphi}, a \omega_{\varphi}\right\rangle_{\varphi}=\varphi\left(a^{*} a\right), \quad \forall a \in A, \forall \varphi \in F(p)
$$

Let $X=F(p) \cap P(A)$, where $P(A)$ is the pure state space of A. By hypothesis and the Kadison transitivity theorem, for each φ in X we can define a linear $\operatorname{map} T_{\varphi}$ on $H_{\varphi}=A \omega_{\varphi}$ by

$$
T_{\varphi}\left(a \omega_{\varphi}\right)=(T(a p)) \omega_{\varphi}
$$

Let $\varphi \in X$ and $a \omega_{\varphi} \in H_{\varphi}$ such that $\left\|a \omega_{\varphi}\right\|=1$. Again by the Kadison transitivity theorem, there is a b in A such that $b \omega_{\varphi}=a \omega_{\varphi}$ and $\|b\|=1$. Hence

$$
\left\|T_{\varphi}\left(a \omega_{\varphi}\right)\right\|=\left\|T_{\varphi}\left(b \omega_{\varphi}\right)\right\|=\left\|(T(b p)) \omega_{\varphi}\right\| \leq\|T(b p)\| \leq\|T\|\|b p\| \leq\|T\|
$$

Therefore, $\left\|T_{\varphi}\right\| \leq\|T\|$ for every φ in X. Consequently, we have

$$
\sup _{\varphi \in X}\left\|T_{\varphi}\right\| \leq\|T\|
$$

Now assume φ belongs to \bar{X}, the weak* closure of X, and $a, b \in A$. Since $T(a p) \in \mathcal{W}_{p}$, the scalar functions $\psi \mapsto\left\|a \omega_{\psi}\right\|_{\psi}, \psi \mapsto\left\|b \omega_{\psi}\right\|_{\psi}$ and $\psi \mapsto\left\langle(T(a p)) \omega_{\psi}, b \omega_{\psi}\right\rangle_{\psi}$ are all continuous on $F(p)$. It follows that

$$
\left|\left\langle(T a p) \omega_{\varphi}, b \omega_{\varphi}\right\rangle_{\varphi}\right| \leq\left(\sup _{\psi \in X}\left\|T_{\psi}\right\|\right)\left\|a \omega_{\varphi}\right\|_{\varphi}\left\|b \omega_{\varphi}\right\|_{\varphi} \leq\|T\|\left\|a \omega_{\varphi}\right\|_{\varphi}\left\|b \omega_{\varphi}\right\|_{\varphi}
$$

Hence there exists T_{φ} in $B\left(H_{\varphi}\right)$ such that

$$
\begin{equation*}
T_{\varphi}\left(a \omega_{\varphi}\right)=(T(a p)) \omega_{\varphi}, \quad \forall a \in A, \forall \varphi \in \bar{X} \tag{5}
\end{equation*}
$$

Moreover, $\left\|T_{\varphi}\right\| \leq\|T\|$ for every φ in $\bar{X}=\overline{F(p) \cap P(A)}$.
Note that $X \cup\{0\}$ is the extreme boundary of the compact convex set $F(p)$. Consequently, continuous affine functionals of $F(p)$ assume extrema at points in X. From Proposition 3.5, we know that there is an order-preserving linear isometry from $p A_{\mathrm{sa}} p$ into $C_{\mathbb{R}}(\bar{X})$, the Banach space of continuous realvalued functions defined on the compact Hausdorff space \bar{X}. Hence each φ in $F(p)$ has a (non-unique) Hahn-Banach positive extension m_{φ} in the space $M(\bar{X})\left(\cong C_{\mathbb{R}}(\bar{X})^{*}\right)$ of regular finite Borel measures on \bar{X}. By handling real and imaginary parts separately, for each φ in $F(p)$ we can write

$$
\begin{equation*}
\varphi(a)=\varphi(p a p)=\int_{\bar{X}} \psi(p a p) d m_{\varphi}(\psi)=\int_{\bar{X}} \psi(a) d m_{\varphi}(\psi), \quad \forall a \in A \tag{6}
\end{equation*}
$$

For any a, b in A, since $T(a p) \in \mathcal{W}_{p}$, we have $p b^{*}(T(a p)) \in p A p$ by Corollary 3.6. Therefore, the barycenter formula (6) applies and gives

$$
\begin{aligned}
\left\langle T(a p) \omega_{\varphi}, b \omega_{\varphi}\right\rangle_{\varphi} & =\varphi\left(p b^{*}(T(a p))\right)=\int_{\frac{\bar{X}}{}} \psi\left(p b^{*}(T(a p))\right) d m_{\varphi}(\psi) \\
& =\int_{\bar{X}}\left\langle(T a p) \omega_{\psi}, b \omega_{\psi}\right\rangle_{\psi} d m_{\varphi}(\psi), \quad \forall \varphi \in F(p)
\end{aligned}
$$

Consequently, by (5) we have

$$
\begin{aligned}
&\left|\left\langle T(a p) \omega_{\varphi}, b \omega_{\varphi}\right\rangle_{\varphi}\right| \\
&=\left|\int_{\bar{X}}\left\langle T(a p) \omega_{\psi}, b \omega_{\psi}\right\rangle_{\psi} d m_{\varphi}(\psi)\right|=\left|\int_{\bar{X}}\left\langle T_{\psi}\left(a \omega_{\psi}\right), b \omega_{\psi}\right\rangle_{\psi} d m_{\varphi}(\psi)\right| \\
& \leq \int_{\bar{X}}\left\|T_{\psi}\right\|\left\|a \omega_{\psi}\right\|\left\|b \omega_{\psi}\right\| d m_{\varphi}(\psi) \\
& \leq\left(\sup _{\psi \in \bar{X}}\left\|T_{\psi}\right\|\right)\left(\int_{\bar{X}}\left\|a \omega_{\psi}\right\|^{2} d m_{\varphi}(\psi)\right)^{1 / 2}\left(\int_{\bar{X}}\left\|b \omega_{\psi}\right\|^{2} d m_{\varphi}(\psi)\right)^{1 / 2} \\
&=\left(\sup _{\psi \in \bar{X}}\left\|T_{\psi}\right\|\right)\left(\int_{\bar{X}} \psi\left(a^{*} a\right) d m_{\varphi}(\psi)\right)^{1 / 2}\left(\int_{\bar{X}} \psi\left(b^{*} b\right) d m_{\varphi}(\psi)\right)^{1 / 2} \\
&=\left(\sup _{\psi \in \bar{X}}\left\|T_{\psi}\right\|\right) \varphi\left(a^{*} a\right)^{1 / 2} \varphi\left(b^{*} b\right)^{1 / 2} \leq\|T\|\left\|a \omega_{\varphi}\right\|_{\varphi}\left\|b \omega_{\varphi}\right\|_{\varphi}
\end{aligned}
$$

Hence, a bounded linear operator T_{φ} in $B\left(H_{\varphi}\right)$ exists such that $T_{\varphi}\left(a \omega_{\varphi}\right)=$ $(T(a p)) \omega_{\varphi}$ for every a in A. Moreover,

$$
\left\|T_{\varphi}\right\| \leq\|T\|, \quad \forall \varphi \in F(p)
$$

At this point, we have shown that T can be written as an admissible section of operators $T=\left(T_{\varphi}\right)_{\varphi \in F(p)}$ in $\prod_{\varphi \in F(p)} B\left(H_{\varphi}\right)$ (cf. Lemma 3.8). Extend T to a bounded linear operator on $A^{* *} p$ as in Lemma 3.9. Consequently, by Theorem 3.12, there is a t in $A^{* *}$ such that $T=\pi_{p}(t)$ and $\|T\|_{B\left(A^{* *} p\right)}=$ $\sup _{\varphi \in F(p)}\left\|T_{\varphi}\right\|_{B\left(H_{\varphi}\right)}=\|t c(p)\|$. Since $T(A p) \subseteq \mathcal{W}_{p}$, we have $p b^{*}(T a p) \in p A p$ by Corollary 3.6. Hence $p A t A p \subseteq p A p$. As a result, $t \in \operatorname{QM}(A, p)$. Finally, we note that

$$
\|T\|_{B\left(A p, \mathcal{W}_{p}\right)} \leq\|T\|_{B\left(A^{* *} p\right)}=\sup _{\varphi \in F(p)}\left\|T_{\varphi}\right\|_{B\left(H_{\varphi}\right)} \leq\|T\|_{B\left(A p, \mathcal{W}_{p}\right)}
$$

Let

$$
\operatorname{LM}(A, p)=\left\{x \in A^{* *}: x A p \subseteq A p\right\}
$$

the Banach algebra of relative left multipliers of A associated to p.
Corollary 3.14. Let A be a C^{*}-algebra, p a closed projection in $A^{* *}$ with central support $c(p)$ and $T \in B(A p)$. The following are all equivalent:
(1) $T \in \pi_{p}(\operatorname{LM}(A, p))$.
(2) T is decomposable.
(3) $\varphi\left(a^{*} a\right)=0$ implies $\varphi\left((\text { Tap })^{*}(\right.$ Tap $\left.)\right)=0$ whenever φ is a pure state supported by p and a in A.

In this case, if $t \in \operatorname{LM}(A, p)$ is such that $T=\pi_{p}(t)$ then $\|T\|_{B(A p)}=\|t c(p)\|$.

Proof. The implication $(1) \Rightarrow(2)$ is trivial as $T_{\varphi}=\pi_{\varphi}(t)$ when $T=$ $\pi_{p}(t)$ with t in $\operatorname{LM}(A, p)$, while $(2) \Rightarrow(3)$ is straightforward. The implication $(3) \Rightarrow(1)$ follows from Theorem 3.13, which also provides the norm equalities.

4. Commutants and density theorems

Definition 4.1. Let A be a C^{*}-algebra and p a closed projection in $A^{* *}$. Recall that

$$
\begin{aligned}
\operatorname{LM}(A, p) & =\left\{x \in A^{* *}: x A p \subseteq A p\right\}, \\
\operatorname{RM}(A, p) & =\left\{x \in A^{* *}: p A x \subseteq p A\right\}, \\
\mathrm{M}(A, p) & =\left\{x \in A^{* *}: x A p \subseteq A p, p A x \subseteq p A\right\}, \\
\operatorname{QM}(A, p) & =\left\{x \in A^{* *}: p A x A p \subseteq p A p\right\}
\end{aligned}
$$

are, respectively, the sets of relative left multipliers, relative right multipliers, relative multipliers and relative quasi-multipliers associated to p. We define the relative left strict topology, relative right strict topology, relative strict topology and relative quasi-strict topology of $A^{* *}$ associated to p by the seminorms $x \mapsto\|x a p\|, x \mapsto\|p a x\|, x \mapsto\|x a p\|+\|p b x\|$ and $x \mapsto\|p a x b p\|$ for a, b in A.

Remarks 4.2.
(1) It is easy to see that $\operatorname{LM}(A) \subseteq \operatorname{LM}(A, p), \operatorname{RM}(A) \subseteq \operatorname{RM}(A, p), \ldots$, and all of them are norm closed subspaces of $A^{* *}$.
(2) $\mathrm{QM}(A, p)$ is $*$-invariant whereas $\mathrm{LM}(A, p)^{*}=\mathrm{RM}(A, p)$. Moreover, both $\mathrm{LM}(A, p)$ and $\mathrm{RM}(A, p)$ are Banach algebras, and $\mathrm{M}(A, p)=\mathrm{LM}(A, p)$ $\cap \operatorname{RM}(A, p)$ is a C^{*}-algebra.
(3) The relative strict topologies associated to p are Hausdorff if and only if the central support $c(p)$ of p equals 1 .

Theorem 4.3. Let A be a C^{*}-algebra and p a closed projection in $A^{* *}$. Then $\mathrm{LM}(A, p)$ (resp. $\mathrm{RM}(A, p), \mathrm{M}(A, p)$ and $\mathrm{QM}(A, p))$ coincides with the closure of A in $A^{* *}$ with respect to the relative left strict (resp. right strict, strict and quasi-strict) topology associated to p.

Moreover, the unit ball (resp. its self-adjoint part, positive part) of A is dense in the unit ball (resp. its self-adjoint part, positive part) of $\operatorname{LM}(A, p)$, $\mathrm{RM}(A, p), \mathrm{M}(A, p)$ and $\mathrm{QM}(A, p)$ in the corresponding relative strict topologies associated to p.

Proof. We only prove the assertion about relative left multipliers since all others follow in a similar manner. We denote by $B_{\mathrm{sa}}\left(\right.$ resp. $\left.B_{+}, B_{1}\right)$ the set of all self-adjoint elements (resp. positive elements, elements of norm not greater than 1) in B whenever B is a subset of A or $A^{* *}$.

Assume $x \in \operatorname{LM}(A, p)$. We want to show that x belongs to the relative left strict closure of A. Let $a_{1}, \ldots, a_{n} \in A$. Consider the convex set V in the direct sum $(A p)^{n}=A p \oplus \cdots \oplus A p$ given by

$$
V=\left\{\left(b a_{1} p, \ldots, b a_{n} p\right): b \in A\right\}
$$

(In case $x \in A_{1}^{* *}, x \in A_{\mathrm{sa}}^{* *} \cap A_{1}^{* *}$ or $x \in A_{+}^{* *} \cap A_{1}^{* *}$, in the definition of V we replace A by $A_{1}, A_{\text {sa }} \cap A_{1}$ or $A_{+} \cap A_{1}$, respectively.) Since $x \in \operatorname{LM}(A, p)$, we have $\tilde{x}=\left(x a_{1} p, \ldots, x a_{n} p\right) \in(A p)^{n}$. If $\tilde{x} \notin \bar{V}^{\|\cdot\|}$ then there is an \tilde{f} in $\left((A p)^{n}\right)^{*}$ such that

$$
\begin{equation*}
\operatorname{Re} \tilde{f}(\tilde{x})<-1 \leq \operatorname{Re} \tilde{f}(\tilde{b}), \quad \forall \tilde{b} \in V \tag{7}
\end{equation*}
$$

where $\underset{\tilde{b}}{\tilde{f}}=\left(b a_{1} p, \ldots, b a_{n} p\right)$. Since $(A p)^{*} \cong A^{* *} F(p)$ (see, e.g., [12]), we can write $\tilde{f}=f_{1} \oplus \cdots \oplus f_{n}$ such that $f_{k}=y_{k}^{*} \varphi_{k}$ for some y_{k} in $A^{* *}$ and φ_{k} in $F(p), k=1, \ldots, n$. Hence

$$
\begin{aligned}
& \tilde{f}(\tilde{x})=\sum_{k=1}^{n} f_{k}\left(x a_{k} p\right)=\sum_{k=1}^{n} \varphi_{k}\left(y_{k}^{*} x a_{k}\right)=\sum_{k=1}^{n}\left\langle x a_{k} \omega_{\varphi_{k}}, y_{k} \omega_{\varphi_{k}}\right\rangle_{\varphi_{k}} \\
& \tilde{f}(\tilde{b})=\sum_{k=1}^{n} f_{k}\left(b a_{k} p\right)=\sum_{k=1}^{n} \varphi_{k}\left(y_{k}^{*} b a_{k}\right)=\sum_{k=1}^{n}\left\langle b a_{k} \omega_{\varphi_{k}}, y_{k} \omega_{\varphi_{k}}\right\rangle_{\varphi_{k}}
\end{aligned}
$$

Let $\left\{b_{\lambda}\right\}_{\lambda}$ be a net in A such that b_{λ} converges to $x \sigma$-weakly. (In case $x \in A_{1}^{* *}, x \in A_{\mathrm{sa}}^{* *} \cap A_{1}^{* *}$ or $x \in A_{+}^{* *} \cap A_{1}^{* *}$, the Kaplansky density theorem (see, e.g., [14, 2.3.3]) enables us to choose b_{λ} 's from $A_{1}, A_{\mathrm{sa}} \cap A_{1}$ or $A_{+} \cap A_{1}$, respectively.) In particular,

$$
\left\langle b_{\lambda} a_{k} \omega_{\varphi_{k}}, y_{k} \omega_{\varphi_{k}}\right\rangle_{\varphi_{k}} \rightarrow\left\langle x a_{k} \omega_{\varphi_{k}}, y_{k} \omega_{\varphi_{k}}\right\rangle_{\varphi_{k}} \quad \text { for } k=1, \ldots n
$$

Therefore, $\tilde{f}\left(\tilde{b}_{\lambda}\right) \rightarrow \tilde{f}(\tilde{x})$ where $\tilde{b}_{\lambda}=\left(b_{\lambda} a_{1} p, \ldots, b_{\lambda} a_{n} p\right) \in V$. This contra$\operatorname{dicts}$ (7) and thus $\tilde{x} \in \bar{V}^{\|\cdot\|}$. This shows that for any positive ε and a_{1}, \ldots, a_{n} in A there is a b in A such that

$$
\left\|(x-b) a_{k} p\right\|<\varepsilon \quad \text { for } k=1, \ldots, n
$$

In other words, x belongs to the relative left strict closure of A. (In case x comes from $A_{1}^{* *}, A_{\mathrm{sa}}^{* *} \cap A_{1}^{* *}$ or $A_{+}^{* *} \cap A_{1}^{* *}$, we can choose b from $A_{1}, A_{\mathrm{sa}} \cap A_{1}$ or $A_{+} \cap A_{1}$, respectively.) Our assertion follows since the opposite inclusion is obvious.

Theorem 4.4. The closure of $\pi_{p}(A)$ in $B(A p)$ with respect to the strong operator topology (SOT) as well as the weak operator topology (WOT) coincides with $\pi_{p}(\mathrm{LM}(A, p))$. Moreover, the unit ball of $\pi_{p}(A)$ is SOT dense as well as WOT dense in the unit ball of $\pi_{p}(\operatorname{LM}(A, p))$.

Proof. It is well-known that a linear functional on $B(E)$, for E a Banach space, is continuous with respect to SOT if and only if it is continuous with respect to WOT. Since $\pi_{p}(A)$ is convex, its closures in $B(A p)$ with respect
to these topologies coincide. We are going to show that they are identical to $\pi_{p}(\operatorname{LM}(A, p))$.

Let $\left\{a_{\lambda}\right\}_{\lambda}$ be a net in A such that $\pi_{p}\left(a_{\lambda}\right)$ converges to some bounded linear operator T in SOT. By Corollary 3.14 , to see $T \in \pi_{p}(\operatorname{LM}(A, p))$ we just need to check whether the condition $\varphi\left(a^{*} a\right)=0$ implies $\varphi\left((\operatorname{Tap})^{*}(\operatorname{Tap})\right)=0$ whenever φ is a pure state in $F(p)$ and $a \in A$. In this case, $a p_{\varphi}=0$ where p_{φ} is the support projection of the pure state φ. Now

$$
(T a p) p_{\varphi}=\left(\lim \pi_{p}\left(a_{\lambda}\right) a p\right) p_{\varphi}=\lim a_{\lambda} a p_{\varphi}=0
$$

Hence $\varphi\left((T a p)^{*}(T a p)\right)=0$, as asserted. Thus

$$
{\overline{\pi_{p}(A)}}^{\mathrm{SOT}} \subseteq \pi_{p}(\mathrm{LM}(A, p))
$$

The opposite inclusion and other assertions follow from Theorem 4.3 since the strong operator topology of $B(A p)$ restricted to $\pi_{p}(\mathrm{LM}(A, p))$ coincides with the one induced by the relative left strict topology of $A^{* *}$ associated to p.

Remark 4.5. In [18], Tomita defined the notion of Q^{*}-topology. In fact, it is the double strong operator topology (DSOT) of $\pi_{p}(\mathrm{M}(A, p))$, which is defined by the seminorms

$$
\pi_{p}(x) \mapsto\|x a p\|+\left\|x^{*} a p\right\|, \quad \forall a \in A
$$

Since $\operatorname{RM}(A, p)^{*}=\operatorname{LM}(A, p)$ and $\mathrm{M}(A, p)=\mathrm{LM}(A, p) \cap \operatorname{RM}(A, p)$, Theorems 4.3 and 4.4 imply ${\overline{\pi_{p}(A)}}^{\mathrm{DSOT}}=\pi_{p}(\mathrm{M}(A, p))$. Moreover, the unit ball of $\pi_{p}(A)$ (resp. its self-adjoint part, positive part) is DSOT dense in the unit ball (resp. its self-adjoint part, positive part) of $\pi_{p}(\mathrm{M}(A, p))$. Another way to look at $\pi_{p}(\mathrm{M}(A, p))$ is to observe that it coincides with the family of all adjointable admissible operator sections $\left\{T_{\varphi}\right\}_{\varphi}$ in $\prod_{\varphi \in F(p)} B\left(H_{\varphi}\right)$. We say that $\left\{T_{\varphi}\right\}_{\varphi}$ is adjointable if the operator section $\left\{T_{\varphi}^{*}\right\}_{\varphi}$ is admissible (see Corollary 3.14). Tomita expected that in some situations the double commutant $\pi_{p}(A)^{\prime \prime}$ of $\pi_{p}(A)$ in $B(A p)$ is the C^{*}-algebra $\pi_{p}(\mathrm{M}(A, p))$. However, as indicated by Theorem 4.8 below, the Banach algebra $\pi_{p}(\mathrm{LM}(A, p))$ is a more appropriate object to look for.

Recall that a projection r in $A^{* *}$ is closed if the face $F(r)=\{\varphi \in Q(A)$: $\varphi(1-r)=0\}$ of $Q(A)$ supported by r is weak* closed, and r is compact if $F(r) \cap S(A)$ is weak ${ }^{*}$ closed [2]. An element h of $p A_{\mathrm{sa}}^{* *} p$ is called q-continuous on p (see [4]) if the spectral projection $E_{F}(h)$ (computed in $p A^{* *} p$) is closed for every closed subset F of \mathbb{R}. Also, h is called strongly q-continuous on p (see [5]) if, in addition, $E_{F}(h)$ is compact whenever F is closed and $0 \notin F$.

Lemma 4.6 ([5, 3.43]). Let $h \in p A_{\mathrm{sa}}^{* *} p$.
(1) h is strongly q-continuous on p if and only if $h=p a=a p$ for some a in A_{sa}.
(2) In case A is σ-unital, h is q-continuous on p if and only if $h=p x=$ xp for some x in $M(A)_{\mathrm{sa}}$.

In general, h in $p A^{* *} p$ is said to be q-continuous or strongly q-continuous if both $\operatorname{Re} h$ and $\operatorname{Im} h$ are. Denote by $\mathrm{QC}(p)$ (resp. $\mathrm{SQC}(p)$) the set of all q -continuous elements (resp. strongly q-continuous elements) on p. Observe that $\operatorname{SQC}(p)$ is always a C^{*}-algebra, and so is $\mathrm{QC}(p)$ if A is σ-unital. We say that p has MQC ("many q-continuous elements") or MSQC ("many strongly q-continuous elements") if $\mathrm{QC}(p)$ or $\operatorname{SQC}(p)$, respectively, is σ-weakly dense in $p A^{* *} p$ (see [8]).

Lemma 4.7 ([8, 3.1 and 3.3]). The following statements are all equivalent:
(1) p has $M S Q C$.
(2) $p A p=\mathrm{SQC}(p)$.
(3) $p A p$ is an algebra.
(4) $p A p$ is a Jordan algebra.
(5) $F(p)$ is isomorphic to the quasi-state space of a C^{*}-algebra.
(6) $p \in \mathrm{M}(A, p)$, i.e., $p A p \subseteq p A \cap A p$.
(7) $p \in \operatorname{QM}(A, p)$, i.e., $p A p A p \subseteq p A p$.

In this case,

$$
p A p A p=p A p=p A \cap A p=\operatorname{SQC}(p)
$$

When the closed projection p has MSQC, it shares many good properties with the projection 1 . Moreover, every central closed projection in $A^{* *}$ has MSQC.

The first part of the following theorem says that all bounded A-module maps in $B(A p)$ are right multiplications provided that A is σ-unital.

Theorem 4.8. Let A be a C^{*}-algebra, p a closed projection in $A^{* *}$ and π_{p} the left regular representation of A on $A p$. Denote by $\pi_{p}(A)^{\prime}$ the commutant and by $\pi_{p}(A)^{\prime \prime}$ the double commutant of $\pi_{p}(A)$ in $B(A p)$. Denote by \mathcal{Y} the set $\{x \in \mathrm{RM}(A): x p=p x p\}$. If A is σ-unital then

$$
\pi_{p}(A)^{\prime}=\left\{R_{p x p}: x \in \mathcal{Y}\right\}
$$

If A is σ-unital and p has $M Q C$ then also

$$
\pi_{p}(A)^{\prime \prime}=\pi_{p}(\operatorname{LM}(A, p))
$$

Here $R_{p x p}(a p):=a p x p=a x p$ for all $a \in A$ and $x \in \mathcal{Y}$.
Proof. It is clear that all right multiplications of the form $R_{p x p}$ with x in \mathcal{Y} commute with elements of $\pi_{p}(A)$. Conversely, assume $T \in \pi_{p}(A)^{\prime} \subseteq$ $B(A p)$. If $\left\{u_{\lambda}\right\}_{\lambda}$ is a (bounded) approximate unit of A, the bounded net $\left\{T\left(u_{\lambda} p\right)\right\}_{\lambda}$ in $A p$ has a weak* cluster point $x p$ in $A^{* *} p$. For each a in A, we see that axp is a weak* cluster point of $\left\{a T\left(u_{\lambda} p\right)\right\}_{\lambda}=\left\{T\left(a u_{\lambda} p\right)\right\}_{\lambda}$. But $T\left(a u_{\lambda} p\right) \rightarrow T(a p)$ in norm. It follows that $T(a p)=a x p \in A p$. Therefore,
$A x p=T(A p) \subseteq A p$. By [5, 3.9], we have $x p \in \operatorname{RM}(A) p$ if A is σ-unital. Moreover, if $a, b \in A$ and $a p=b p$ then $T(a p)=T(b p)$. This is equivalent to $a x p=b x p$. Consequently, $L x p=\{0\}$ where $L=A^{* *}(1-p) \cap A$, the norm closed left ideal of A related to the closed projection p. It follows that $L^{* *} x p=\{0\}$; i.e., $A^{* *}(1-p) x p=\{0\}$. This forces $(1-p) x p=0$. Therefore $x p=p x p$. Hence $T(a p)=a x p=a p x p=R_{p x p}(a p)$.

By Theorem 4.4, $\pi_{p}(\mathrm{LM}(A, p)) \subseteq \pi_{p}(A)^{\prime \prime}$. Let $T \in \pi_{p}(A)^{\prime \prime} \subseteq B(A p)$, $a \in A$ and φ be a pure state in $F(p)$. Assume that $\varphi\left(a^{*} a\right)=0$, or equivalently $a p_{\varphi}=0$, where p_{φ} is the support projection of φ in $A^{* *}$. Since p is assumed to have MQC and A is σ-unital, there is a net $\left\{m_{\lambda} p\right\}_{\lambda}$ with m_{λ} in $\mathrm{M}(A)$ such that

$$
\begin{equation*}
m_{\lambda} p=p m_{\lambda} \quad \text { and } \quad m_{\lambda} p \rightarrow p_{\varphi} \quad \sigma \text {-weakly } \tag{8}
\end{equation*}
$$

by Lemma 4.6. Hence, $a m_{\lambda} p \rightarrow a p_{\varphi}=0 \sigma$-weakly. In particular, $a m_{\lambda} p \rightarrow 0$ with respect to $\sigma\left(A p,(A p)^{*}\right)$ since $(A p)^{*} \cong(A / L)^{*} \cong L^{\circ}$ can be considered as a subspace of A^{*}, and the σ-weak topology of $A^{* *}$ coincides with $\sigma\left(A^{* *}, A^{*}\right)$. Here L° is the polar of the left ideal $L=A^{* *}(1-p) \cap A$ in A^{*}. As a bounded Banach space operator, T is $\sigma\left(A p,(A p)^{*}\right)-\sigma\left(A p,(A p)^{*}\right)$ continuous. Therefore, $T\left(a m_{\lambda} p\right) \rightarrow 0$ in the $\sigma\left(A p,(A p)^{*}\right)$ topology of $A p$ and thus also σ-weakly. On the other hand, the right multiplication $R_{p m_{\lambda} p}$ belongs to $\pi_{p}(A)^{\prime}$. As a result, by (8) we have

$$
\begin{aligned}
T\left(a m_{\lambda} p\right) & =T\left(a p m_{\lambda} p\right)=T R_{p m_{\lambda} p}(a p)=R_{p m_{\lambda} p} T(a p) \\
& =(T a p) p m_{\lambda} p \rightarrow(T a p) p_{\varphi} \quad \sigma \text {-weakly } .
\end{aligned}
$$

Therefore, $(\operatorname{Tap}) p_{\varphi}=0$, and hence $\varphi\left((\operatorname{Tap})^{*}(T a p)\right)=0$. Now, Corollary 3.14 implies $T \in \pi_{p}(\operatorname{LM}(A, p))$.

Although it follows from Theorem 4.4 that we always have $\pi_{p}(\mathrm{LM}(A, p))$ $\subseteq \pi_{p}(A)^{\prime \prime}$, the following example indicates that the inclusion can be strict in case p does not have MQC.

Example 4.9 (Based on an example given in [8, 3.4]). Let $A=C[0,1] \otimes$ \mathcal{K} where \mathcal{K} is the C^{*}-algebra of all compact operators on a separable infinitedimensional Hilbert space H. Let $\left\{e_{1}, e_{2}, \ldots\right\}$ be an orthonormal basis of H, and E_{n} the projection on $\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$. A closed projection in A is given by a projection-valued function $P:[0,1] \rightarrow B(H)$ such that if h is any weak cluster point of $P(y)$ as $y \rightarrow x$, then $h \leq P(x)$ [5, Section 5.G]. We observe that P describes the atomic part of a closed projection p in $A^{* *} \cong C[0,1]^{* *} \otimes B(H)$, and P determines p since a closed projection is determined by its atomic part. In our case p will equal its atomic part. We now define P.

For each $n=0,1,2, \ldots$ we construct recursively a countable subset S_{n} of $[0,1]$ and a unit vector $v(x)$ for each x in S_{n} with $\left\|E_{n} v(x)\right\| \leq n^{-1 / 2}$.

Step 0. Take $S_{0}=\{1 / 2\}$ and $v(1 / 2)=e_{1}$.
Step 1. Take $S_{1}=\left\{x_{1}, x_{2}, \ldots\right\}$ where the x_{j} 's are distinct, $x_{j} \neq 1 / 2$, and $x_{j} \rightarrow 1 / 2$ as $j \rightarrow \infty$. Let $v\left(x_{j}\right)=2^{-1 / 2} e_{1}+2^{-1 / 2} e_{j+1}$ for $j=$ $1,2, \ldots$.
Step $n(n>1)$. Write $S_{n-1}=\left\{x_{1}, x_{2}, \ldots\right\}$. Choose distinct $y_{i j}$'s from $[0,1]$ but outside $\bigcup_{k=0}^{n-1} S_{k}$ such that $\left|y_{i j}-x_{i}\right| \leq 2^{-(i+j)}$. Let $S_{n}=$ $\left\{y_{i j}: i, j=1,2, \ldots\right\}$ and $v\left(y_{i j}\right)=n^{-1 / 2} v\left(x_{i}\right)+\left(1-n^{-1}\right)^{1 / 2} w_{i j}$, where $w_{i j}$ is a unit vector such that $\left\langle w_{i j}, v\left(x_{i}\right)\right\rangle_{H}=0$ and $E_{i+j+n} w_{i j}=0$.
Let $S=\bigcup_{n=0}^{\infty} S_{n}$. Define a projection-valued function P on $[0,1]$ by setting $P(x)$ to be the projection on span $\{v(x)\}$ if $x \in S$, and $P(x)=0$ otherwise. It is shown in [8] that P describes a closed projection p in $A^{* *}$ which is atomic and abelian. Moreover, if h in $p A^{* *} p$ satisfies $h \in p A p$ and $h^{2} \in p A p$ then $h=0$. (In [8], this fact is used to show that $\operatorname{SQC}(p)=\{0\}$.)

Now consider the C^{*}-algebra $B=C[-1,1] \otimes \mathcal{K}$. Define a projectionvalued function Q on $[-1,1]$ by putting $Q(t):=P(|t|)$ for all $t \in[-1,1]$. It is clear that Q determines an atomic, abelian and closed projection q in $B^{* *}$ such that $k=0$ whenever $k \in q B^{* *} q$ with $k \in q B q$ and $k^{2} \in q B q$.

Let \tilde{A} be the C^{*}-algebra obtained by adjoining an identity to A and let $\tilde{p}=p+p_{\infty}$ where $p_{\infty}=0 \oplus 1$ in $\tilde{A}^{* *} \cong A^{* *} \oplus \mathbb{C}$. Thus $\tilde{p}=p \oplus 1$. In [8], it is shown that \tilde{p} is closed, and hence compact, in $\tilde{A}^{* *}$ and that $Q C(\tilde{p})=\mathbb{C} \tilde{p}$. Similarly, a compact projection $\tilde{q}=q+q_{\infty}$ in $\tilde{B}^{* *} \cong B^{* *} \oplus \mathbb{C}$ can be obtained such that $Q C(\tilde{q})=\mathbb{C} \tilde{q}$ and thus \tilde{q}, like \tilde{p}, does not have MQC.

We now consider the left regular representation $\pi_{\tilde{q}}: \tilde{B} \rightarrow B(\tilde{B} \tilde{q})$. Since \tilde{B} is unital, $\operatorname{RM}(\tilde{B})=\tilde{B}$ and thus

$$
\pi_{\tilde{q}}(\tilde{B})^{\prime}=\left\{R_{\tilde{x}}: \tilde{x}=\tilde{r} \tilde{q}=\tilde{q} \tilde{r} \tilde{q} \text { for some } \tilde{r} \text { in } \tilde{B}\right\}
$$

by Theorem 4.8. Suppose $\tilde{x}=\tilde{r} \tilde{q}=\tilde{q} \tilde{q} \tilde{q}$ for some \tilde{r} in \tilde{B}. Here $\tilde{r}=r+\lambda 1_{\tilde{B}}$ for some r in B and λ in \mathbb{C}. It follows from $\left(r+\lambda 1_{\tilde{B}}\right)\left(q+q_{\infty}\right)=\left(q+q_{\infty}\right)(r+$ $\left.\lambda 1_{\tilde{B}}\right)\left(q+q_{\infty}\right)$ that $r q=q r q \in q B q$. Now $(q r q)^{2}=q r q r q=q r^{2} q \in q B q$ implies $q r q=0$. Therefore,

$$
\tilde{x}=\tilde{q} \tilde{r} \tilde{q}=q r q+\lambda q+\lambda q_{\infty}=\lambda \tilde{q} .
$$

Consequently, $\pi_{\tilde{q}}(\tilde{B})^{\prime}=\mathbb{C} R_{\tilde{q}}$ and thus $\pi_{\tilde{q}}(\tilde{B})^{\prime \prime}=B(\tilde{B} \tilde{q})$, since the right multiplication $R_{\tilde{q}}$ induced by \tilde{q} is the identity in $B(\tilde{B} \tilde{q})$.

It is easy to see that $B(\tilde{B} \tilde{q}) \neq \pi_{\tilde{q}}(\operatorname{LM}(\tilde{B}, \tilde{q}))$. For example, we define an isometry T in $B(\tilde{B} \tilde{q})$ by

$$
T((\lambda+a) \tilde{q}):=(\lambda+\bar{a}) \tilde{q}, \quad \lambda \in \mathbb{C}, a \in B,
$$

where

$$
\bar{a}(t):=a(-t), \quad t \in[-1,1] .
$$

To see that T is not implemented as a left multiplication $\pi_{\tilde{q}}(\tilde{h})$ for any \tilde{h}
in $\operatorname{LM}(\tilde{B}, \tilde{q})$, we just need to show that T is not decomposable, by Corollary 3.14. Let $t \in(S \cup(-S))-\{0\}$, and φ_{t} be the corresponding pure state in $F(\tilde{q})$. Since there is b in B such that $\varphi_{t}\left(b^{*} b\right)=0$ but $\varphi_{-t}\left(b^{*} b\right) \neq 0$, it is clear that T is not decomposable.
5. The C^{*}-algebra associated to a closed projection. Recall that for a C^{*}-algebra A and a closed projection p in $A^{* *}$, the Banach space $A p$ (resp. \mathcal{W}_{p}) consists of all continuous (resp. weakly continuous) admissible vector sections in $A^{* *} p$ (see Theorem 3.4). It follows from Corollary 3.6 that for all x in $A^{* *}$ we have

$$
\pi_{p}(x) A p \subseteq A p \Leftrightarrow \pi_{p}\left(x^{*}\right) \mathcal{W}_{p} \subseteq \mathcal{W}_{p}
$$

We collect these facts in the following.

$$
\begin{aligned}
\operatorname{LM}(A, p) & =\left\{x \in A^{* *}: \pi_{p}(x) A p \subseteq A p\right\} \\
\operatorname{RM}(A, p) & =\left\{x \in A^{* *}: \pi_{p}(x) \mathcal{W}_{p} \subseteq \mathcal{W}_{p}\right\} \\
\operatorname{M}(A, p) & =\left\{x \in A^{* *}: \pi_{p}(x) A p \subseteq A p, \pi_{p}(x) \mathcal{W}_{p} \subseteq \mathcal{W}_{p}\right\} \\
\operatorname{QM}(A, p) & =\left\{x \in A^{* *}: \pi_{p}(x) A p \subseteq \mathcal{W}_{p}\right\}
\end{aligned}
$$

Since the kernel of π_{p} is $A^{* *}(1-c(p))$, the interesting parts of $\operatorname{LM}(A, p)$, $\operatorname{RM}(A, p), \mathrm{M}(A, p)$ and $\mathrm{QM}(A, p)$ are the ones cut down by $c(p)$. It is also interesting and useful to see if there exists a C^{*}-subalgebra \mathcal{B} of $A^{* *} c(p)$ such that

$$
\begin{align*}
\operatorname{LM}(A, p) c(p) & =\operatorname{LM}(\mathcal{B}) \tag{a}\\
\operatorname{RM}(A, p) c(p) & =\operatorname{RM}(\mathcal{B}) \tag{b}\\
\mathrm{M}(A, p) c(p) & =\operatorname{M}(\mathcal{B}) \tag{c}\\
\operatorname{QM}(A, p) c(p) & =\operatorname{QM}(\mathcal{B}) \tag{d}
\end{align*}
$$

Consider

$$
\mathcal{A}=\left\{x \in A^{* *}: \pi_{p}(x) \mathcal{W}_{p} \subseteq A p\right\}
$$

We think of $\mathcal{A} c(p)$ as a natural candidate for \mathcal{B}. It is easy to see that \mathcal{A} is an ideal of the C^{*}-algebra $\mathrm{M}(A, p)$. Moreover, $\operatorname{LM}(A, p) \mathcal{A} \subseteq \mathcal{A}, \mathcal{A} \operatorname{RM}(A, p)$ $\subseteq \mathcal{A}, \mathrm{M}(A, p) \mathcal{A}+\mathcal{A} \mathrm{M}(A, p) \subseteq \mathcal{A}$ and $\mathcal{A} \mathrm{QM}(A, p) \mathcal{A} \subseteq \mathcal{A}$.

EXAMPLE 5.1. If p is central, or equivalently if the ideal $L=A^{* *}(1-p)$ $\cap A$ is two-sided, then $A p \cong A / L$ as C^{*}-algebras. Consequently, we have $\mathcal{A} c(p)=A p$ and (a) (d) hold for $\mathcal{B}=\mathcal{A} c(p)$.

It follows from definitions and Corollary 3.6 that we have
Lemma 5.2. Let $x \in A^{* *}$.
(1) $x \in \mathcal{A}$ if and only if $p v^{*} x u p \in p A p$ for all $u p, v p \in \mathcal{W}_{p}$.
(2) $x \in \operatorname{LM}(A, p)$ if and only if $p v^{*} x a p \in p A p$ for all $a p \in A p$ and $v p \in \mathcal{W}_{p}$.
(3) $x \in \operatorname{RM}(A, p)$ if and only if $p b^{*} x u p \in p A p$ for all $u p \in \mathcal{W}_{p}$ and $b p \in A p$.
(4) $x \in \mathrm{M}(A, p)$ if and only if $p v^{*} x a p, p b^{*} x u p \in p A p$ for all $a p, b p \in A p$ and $u p, v p \in \mathcal{W}_{p}$.
(5) $x \in \operatorname{QM}(A, p)$ if and only if $p b^{*} x a p \in p A p$ for all $a p, b p \in A p$.

THEOREM 5.3. The following conditions are all equivalent and each of them implies (a)-(d) for $\mathcal{B}=\mathcal{A} c(p)$:
(1) $\pi_{p}(\mathcal{A}) A p$ is norm dense in $A p$.
(2) $\pi_{p}(\mathcal{A}) \mathcal{W}_{p}$ is norm dense in $A p$.
(3) \mathcal{A} is non-degenerately represented on H_{univ}, that is, $\overline{\pi_{\varphi}(\mathcal{A}) H_{\varphi}}=$ H_{φ} for all $\varphi \in Q(A)$, where $H_{\text {univ }}=\bigoplus_{2}\left\{H_{\varphi}: \varphi \in Q(A)\right\}$ is the underlying Hilbert space of the universal representation of A.
(4) \mathcal{A} is σ-weakly dense in $A^{* *}$.
(5) $\pi_{\varphi}(\mathcal{A}) \neq\{0\}$ for all pure states φ in $F(p)$.

Proof. (1) $\Rightarrow(2)$ is trivial.
$(2) \Rightarrow(3)$: Since \mathcal{A} contains $A^{* *}(1-c(p))$, we may assume φ is supported by $c(p)$. Now, since $\pi_{p}(\mathcal{A}) \mathcal{W}_{p}$ is norm dense in $A p$, we see that $\pi_{\varphi}(\mathcal{A})\left(\mathcal{W}_{p} H_{\varphi}\right)$ is dense in $\pi_{\varphi}(A p) H_{\varphi}=A p H_{\varphi}$, which is dense in $A^{* *} p H_{\varphi}$. Let $q=v^{*} p v$ be a projection for some partial isometry v in $A^{* *}$. We see that $q H_{\varphi}=v^{*} p v H_{\varphi} \subseteq$ $A^{* *} p H_{\varphi}$. Hence $\pi_{\varphi}(\mathcal{A}) H_{\varphi}$ is also dense in H_{φ}, and this gives (3).
$(3) \Rightarrow(4)$ follows from the fact that $A \mathcal{A} \subseteq \mathcal{A}$.
$(4) \Rightarrow(5)$ is obvious.
$(5) \Rightarrow(1)$: Suppose the norm closure $\overline{\pi_{p}(\mathcal{A}) A p} \neq A p$. Choose a non-zero φ in $(A p)^{*}$ such that $\varphi\left(\pi_{p}(\mathcal{A}) A p\right)=\{0\}$. Let $\left\{v_{\lambda}\right\}_{\lambda}$ be a positive increasing approximate identity in the C^{*}-subalgebra \mathcal{A} of $A^{* *}$, and note that $v_{\lambda} \nearrow q$ for some projection q in $A^{* *}$. For every a in $A, p a^{*} v_{\lambda} a p \nearrow p a^{*} q a p$. Note that $p a^{*} v_{\lambda} a p \in p A p$. It follows from the continuity of $p a^{*} v_{\lambda} a p$ that $p a^{*} q a p$ is lower semicontinuous on $F(p)$. Since $A \mathcal{A} \subseteq \mathcal{A}$, we see that $\overline{\pi_{\psi}(\mathcal{A}) H_{\psi}}$ is an invariant subspace for $\pi_{\psi}(A)$ for every ψ in $F(p)$. For each pure state ψ in $F(p)$, the hypothesis $\pi_{\psi}(\mathcal{A}) \neq\{0\}$ implies $\overline{\pi_{\psi}(\mathcal{A}) H_{\psi}}=H_{\psi}$ and hence $\pi_{\psi}(q)=1$. Therefore, the non-positive lower semicontinuous affine function

$$
\psi \mapsto \psi\left(p a^{*}(q-1) a p\right), \quad \psi \in F(p)
$$

vanishes on the extreme boundary $(F(p) \cap P(A)) \cup\{0\}$ of the weak* compact convex set $F(p)$, where $P(A)$ is the pure state space of A. It follows that $p a^{*}(q-1) a p=0$. We then have $q a p=a p$ for every a in A. Consequently,

$$
\varphi(a p)=\varphi(q a p)=\lim \varphi\left(v_{\lambda} a p\right)=0, \quad \forall a \in A
$$

This contradiction establishes the implication.
From now on, we assume these equivalent conditions are satisfied and we are going to verify (a) to (d). We prove only that $\operatorname{LM}(\mathcal{B}) \subseteq \operatorname{LM}(A, p) c(p)$
since the opposite inclusion is obvious and the other assertions will follow similarly. Note that we can consider $\operatorname{LM}(\mathcal{B})$ as a subset of $A^{* *} c(p)$ (cf. [3, 4.3]).

Let x be a non-zero element of $\operatorname{LM}(\mathcal{B})$ and $\varepsilon>0$. For each a in A, it follows from (2) that there exist $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n}$ in \mathcal{A} and $w_{1} p, \ldots, w_{n} p$ in $\mathcal{W}_{p} \subseteq A^{* *} p$ such that

$$
\left\|a p-\sum_{k=1}^{n} \mathfrak{a}_{k} w_{k} p\right\|<\frac{\varepsilon}{\|x\|} .
$$

Hence

$$
\left\|x a p-\sum_{k=1}^{n} x \mathfrak{a}_{k} w_{k} p\right\|<\varepsilon
$$

Since $x \in \operatorname{LM}(\mathcal{B}) \subseteq A^{* *} c(p), x \mathfrak{a}_{k}=x\left(\mathfrak{a}_{k} c(p)\right) \in x(\mathcal{A} c(p))=x \mathcal{B} \subseteq \mathcal{B}$. Note that elements of $\pi_{p}(\mathcal{B})$ send \mathcal{W}_{p} into $A p$. Consequently, $\pi_{p}\left(x \mathfrak{a}_{k}\right) w_{k} p \in A p$ for $k=1, \ldots, n$. It follows that $x a p \in \overline{A p}=A p$. That is, $x \in \operatorname{LM}(A, p)$. Since $x=x c(p)$, we have $x \in \operatorname{LM}(A, p) c(p)$, too.

Corollary 5.4. If p has $M S Q C$ then (a)-(d) are satisfied for $\mathcal{B}=\mathcal{A} c(p)$. Moreover, $A p+p A \subseteq \mathcal{A}$ in this case.

Proof. By Theorem 5.3, it suffices to show that $\pi_{p}(\mathcal{A}) p=A p$ (since $\left.p \in \mathcal{W}_{p}\right)$. One inclusion is easy:

$$
\pi_{p}(\mathcal{A}) p \subseteq \pi_{p}(\mathcal{A}) \mathcal{W}_{p} \subseteq A p
$$

For the opposite inclusion, as well as the assertion $A p+p A \subseteq \mathcal{A}$, it suffices to show that $A p \subseteq \mathcal{A}$. To this end, let $u p, v p \in \mathcal{W}_{p}$ and $a \in A$. Observe that

$$
\begin{aligned}
p u^{*}(a p v p) & =\left(p a^{*} u p\right)^{*} v p \\
& \in(p A p)^{*} v p \\
& =p A p v p \\
& \subseteq p A v p \quad \text { since } p A p \subseteq p A \text { as } p \text { has MSQC } \\
& \subseteq p A p
\end{aligned}
$$

Hence $a p \in \mathcal{A}$ by Lemma 5.2 .
We remark that the inclusion in Corollary 5.4 does not hold if p fails to have MSQC (see Example 5.7). Even when p does have MSQC, the inclusion can be strict (see Example 5.8). The rest of this section is devoted to a few assorted results and examples about what \mathcal{A} contains.

Proposition 5.5. Let $B=p A^{* *} p \cap \mathrm{QM}(A, p)$. Then \mathcal{A} contains the norm closure of the linear space spanned by $A B A$.

Proof. Since \mathcal{A} is a C^{*}-algebra, we only need to prove that if $a, c \in A$, $b \in B$ then $a b c \in \mathcal{A}$. It is equivalent to show that $p u^{*} a b c v p \in p A p$ for every
$u p, v p$ in \mathcal{W}_{p}, by Lemma 5.2. In fact,

$$
\begin{aligned}
p u^{*} a b c v p & =p u^{*} a p b p c v p & & \text { since } b \in p A^{* *} p \\
& \in p A p b p A p & & \text { since } u p, v p \in \mathcal{W}_{p} \\
& =p A b A p & & \text { since } b \in p A^{* *} p \\
& \subseteq p A p & & \text { since } b \in \mathrm{QM}(A, p) .
\end{aligned}
$$

Corollary 5.6. Let $C=\operatorname{SQC}(p) \cap \mathrm{M}(A, p)$. Then \mathcal{A} contains C as a C^{*}-subalgebra.

Proof. Note that C is a C^{*}-algebra. In particular, $C=C^{3}$. The assertion now follows from Proposition 5.5 since $C \subseteq p A^{* *} p \cap \mathrm{QM}(A, p)$ and $C^{3} \subseteq$ $A C A$ (see Lemma 4.6).

To convince the readers that B and C in Proposition 5.5 and Corollary 5.6 can be non-zero, we present the following example. In particular, the closed span of $A B A$ is the whole of \mathcal{A}, and C is only a proper subalgebra of \mathcal{A} in this example.

Example 5.7. In this example, A is a separable scattered C^{*}-algebra and p is a closed projection in $A^{* *}$ with central support $c(p)=1$. But p does not have MSQC. We shall see that (a)-(d) are all satisfied here. In fact, $\mathcal{A}=A, \operatorname{LM}(A, p)=\operatorname{LM}(A), \operatorname{RM}(A, p)=\operatorname{RM}(A), \mathrm{M}(A, p)=\mathrm{M}(A)$ and $\mathrm{QM}(A, p)=\mathrm{QM}(A)$. Moreover, B and C are both non-zero. Furthermore, $A B A$ is norm dense in \mathcal{A} but $A p \nsubseteq \mathcal{A}$ (cf. Corollary 5.4).

Let A be the C^{*}-subalgebra of $c \otimes M_{2}$ consisting of all sequences of 2×2 matrices $x=\left(x_{n}\right)_{n \geq 1}$ such that

$$
x_{n}=\left(\begin{array}{ll}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right) \rightarrow\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right) .
$$

We observe that $A^{* *}$ can be represented as the C^{*}-algebra of all uniformly bounded sequences of 2×2 matrices plus a copy of \mathbb{C}. More precisely, every element of $A^{* *}$ is of the form $x=\left(x_{n}\right)_{n=1}^{\infty}$ where

$$
x_{n}=\left(\begin{array}{ll}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right), \quad n=1,2, \ldots, \quad \text { and } \quad x_{\infty}=a \in \mathbb{C}
$$

The norm of $A^{* *}($ and $A)$ is given by $\|x\|:=\sup _{1 \leq n \leq \infty}\left\|x_{n}\right\|<\infty$. Put

$$
p_{n}=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), \quad n=1,2, \ldots, \quad \text { and } \quad p_{\infty}=1 \in \mathbb{C}
$$

Then $p=\left(p_{n}\right)_{n=1}^{\infty}$ is a closed projection in $A^{* *}$ and $c(p)=1$. Let $x=$ $\left(x_{n}\right)_{n=1}^{\infty} \in A^{* *}$, with notation as above. We have:
(1) $x \in A p \Leftrightarrow x_{n}=\frac{1}{2}\left(\begin{array}{ll}u_{n} & u_{n} \\ v_{n} & v_{n}\end{array}\right)$ with $u_{n} \rightarrow a$ and $v_{n} \rightarrow 0$.
(2) $x \in \mathcal{W}_{p} \Leftrightarrow x_{n}=\frac{1}{2}\left(\begin{array}{ll}u_{n} & u_{n} \\ v_{n} & v_{n}\end{array}\right)$ with $u_{n} \rightarrow a$.
(3) $x \in p A^{* *} p \Leftrightarrow x_{n}=\frac{1}{4}\left(\begin{array}{c}s_{n} s_{n} \\ s_{n}\end{array} s_{n}\right)$ for some uniformly bounded scalars s_{n}.
(4) $x \in p A p \Leftrightarrow x_{n}=\frac{1}{4}\left(\begin{array}{c}s_{n} \\ s_{n} \\ s_{n} \\ s_{n}\end{array}\right)$ for some scalars $s_{n} \rightarrow a$.
(5) $x \in \operatorname{SQC}(p) \Leftrightarrow x_{n}=\frac{1}{4}\binom{s_{n} s_{n}}{s_{n} s_{n}}$ for some scalars $s_{n} \rightarrow a=0$.
(6) $x \in \operatorname{LM}(A)=\operatorname{LM}(A, p) \Leftrightarrow a_{n} \rightarrow a$ and $c_{n} \rightarrow 0$.
(7) $x \in \operatorname{RM}(A)=\mathrm{RM}(A, p) \Leftrightarrow a_{n} \rightarrow a$ and $b_{n} \rightarrow 0$.
(8) $x \in \mathrm{M}(A)=\mathrm{M}(A, p) \Leftrightarrow a_{n} \rightarrow a$ and $b_{n}, c_{n} \rightarrow 0$.
(9) $x \in \mathrm{QM}(A)=\mathrm{QM}(A, p) \Leftrightarrow a_{n} \rightarrow a$.
(10) $x \in A=\mathcal{A} \Leftrightarrow a_{n} \rightarrow a$ and $b_{n}, c_{n}, d_{n} \rightarrow 0$.

Since $p A p \neq \operatorname{SQC}(p)$, we see that p does not have MSQC by Lemma 4.7. It is clear that both $B=\mathrm{QM}(A, p) \cap p A^{* *} p$ and $C=\mathrm{SQC}(p) \cap \mathrm{M}(A, p)=\mathrm{SQC}(p)$ are non-zero. In addition, the closed span $\overline{A B A}$ equals $A=\mathcal{A}$.

Example 5.8. In this example we shall see that $\operatorname{LM}(A, p) \neq \operatorname{LM}(A)$ etc., and \mathcal{A} is neither a subset nor a superset of A even when p has MSQC and its central support $c(p)$ is 1 . However, (a) to (d) are all satisfied.

Let A be the C^{*}-subalgebra of $c \otimes M_{2}$ given by

$$
A=\left\{\left\{\left(\begin{array}{ll}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right)\right\}_{n \geq 1}:\left(\begin{array}{cc}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right) \rightarrow\left(\begin{array}{cc}
a & 0 \\
0 & d
\end{array}\right)\right\} .
$$

Let $p=\left(p_{n}\right) \in A^{* *}$ with

$$
p_{n}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad n=1,2, \ldots, \quad \text { and } \quad p_{\infty}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Then p is a closed projection in $A^{* *}$. Let $x=\left(x_{n}\right) \in A^{* *}$ with

$$
x_{n}=\left(\begin{array}{cc}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right), \quad n=1,2, \ldots, \quad \text { and } \quad x_{\infty}=\left(\begin{array}{cc}
a & 0 \\
0 & d
\end{array}\right) .
$$

We have:
(1) $x \in A p \Leftrightarrow x_{n}=\left(\begin{array}{ll}a_{n} & 0 \\ c_{n} & 0\end{array}\right)$ with $a_{n} \rightarrow a$ and $c_{n} \rightarrow 0$.
(2) $x \in \mathcal{W}_{p} \Leftrightarrow x_{n}=\left(\begin{array}{cc}a_{n} & 0 \\ c_{n} & 0\end{array}\right)$ with $a_{n} \rightarrow a$.
(3) $x \in p A p \Leftrightarrow x_{n}=\left(\begin{array}{cc}a_{n} & 0 \\ 0 & 0\end{array}\right)$ with $a_{n} \rightarrow a$.
(4) $x \in \operatorname{LM}(A, p) \Leftrightarrow a_{n} \rightarrow a$ and $c_{n} \rightarrow 0$.
(5) $x \in \operatorname{RM}(A, p) \Leftrightarrow a_{n} \rightarrow a$ and $b_{n} \rightarrow 0$.
(6) $x \in \mathrm{M}(A, p) \Leftrightarrow a_{n} \rightarrow a$ and $b_{n}, c_{n} \rightarrow 0$.
(7) $x \in \operatorname{QM}(A, p) \Leftrightarrow a_{n} \rightarrow a$.
(8) $x \in \mathcal{A} \Leftrightarrow a_{n} \rightarrow a$ and $b_{n}, c_{n}, d_{n} \rightarrow 0$.

We first note that $c(p)=1$. Since $p A p$ is an algebra, p has MSQC by Lemma 4.7. Thus, (a) (d) are satisfied for $\mathcal{B}=\mathcal{A}$. On the other hand, obviously we have $A \nsubseteq \mathcal{A}$. We also want to point out that \mathcal{A} is not contained in A, either. For example, the element $x=\left(x_{n}\right)$ of $\mathcal{A} \subseteq A^{* *}$ given by $x_{n}=0, n=1,2, \ldots$, and $x_{\infty}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ does not belong to $\overline{A .}$. It is clear that $\operatorname{LM}(A, p) \neq \operatorname{LM}(A)=A$ etc., since A is unital.

Example 5.9. Consider the C^{*}-algebra $A=c \otimes \mathcal{K}$ and

$$
A^{* *}=\left\{\left(h_{n}\right): h_{n} \in B(H), 1 \leq n \leq \infty,\|h\|=\sup \left\|h_{n}\right\|<\infty\right\}
$$

Let $\left\{e_{1}, e_{2}, \ldots\right\}$ be an orthonormal basis of the Hilbert space H. Let

$$
v_{n}=\frac{1}{\sqrt{2}} e_{1}+\frac{1}{\sqrt{2}} e_{n+1}, \quad n<\infty, \quad \text { and } \quad v_{\infty}=e_{1}
$$

and

$$
p_{n}=v_{n} \otimes v_{n}, \quad n=1,2, \ldots, \infty
$$

Then $p=\left(p_{n}\right)$ is a closed projection in $A^{* *}$ without MSQC (cf. [8]) and the central support $c(p)$ of p is 1 . We have
(1) $A p=\left\{\left(x_{n} p_{n}\right) \in A^{* *} p: x_{n} v_{n} \xrightarrow{\|\cdot\|} \frac{1}{\sqrt{2}} x_{\infty} e_{1}\right\}$.
(2) $\mathcal{W}_{p}=\left\{\left(x_{n} p_{n}\right) \in A^{* *} p: x_{n} v_{n} \xrightarrow{\text { weakly }} \frac{1}{\sqrt{2}} x_{\infty} e_{1}\right\}$.
(3) $p A p=\left\{\left(p_{n} b_{n} p_{n}\right):\left\langle b_{n} v_{n}, v_{n}\right\rangle \rightarrow \frac{1}{2}\left\langle b_{\infty} e_{1}, e_{1}\right\rangle\right\}$.
(4) $\operatorname{LM}(A)=\operatorname{LM}(A, p)=\left\{\left(t_{n}\right) \in A^{* *}: t_{n} \xrightarrow{\mathrm{SOT}} t_{\infty}\right\}$.
(5) $\operatorname{RM}(A)=\operatorname{RM}(A, p)=\left\{\left(t_{n}\right) \in A^{* *}: t_{n}^{*} \xrightarrow{\mathrm{SOT}} t_{\infty}^{*}\right\}$.
(6) $\mathrm{M}(A)=\mathrm{M}(A, p)=\left\{\left(t_{n}\right) \in A^{* *}: t_{n} \xrightarrow{\mathrm{DSOT}} t_{\infty}\right\}$.
(7) $\mathrm{QM}(A)=\operatorname{QM}(A, p)=\left\{\left(t_{n}\right) \in A^{* *}: t_{n} \xrightarrow{\mathrm{WOT}} t_{\infty}\right\}$.
(8) $\mathcal{A}=\left\{\left(t_{n}\right) \in A^{* *}: t_{n} \xrightarrow{\|\cdot\|} t_{\infty}, t_{\infty} \in \mathcal{K}\right\}$.

By Theorem 5.3 and the fact that $A \subseteq \mathcal{A}$, the equations $\operatorname{LM}(A, p)=\operatorname{LM}(\mathcal{A})$ etc. are satisfied in this case. This can also be verified by direct calculation.

REmark 5.10. In [6], it is shown that for two separable C^{*}-algebras A_{1} and A_{2}, the multiplier algebras $\mathrm{M}\left(A_{1}\right)$ and $\mathrm{M}\left(A_{2}\right)$ are isomorphic if and only if A_{1} and A_{2} are isomorphic. In fact, $A_{1}\left(\right.$ resp. $\left.A_{2}\right)$ is the largest separable closed, two-sided ideal of $\mathrm{M}\left(A_{1}\right)$ (resp. $\mathrm{M}\left(A_{2}\right)$). However, in the inseparable case, this may not be true. A perhaps less artificial illustration to this fact than usual is provided by Example 5.9, since $\mathrm{M}(A)=\mathrm{M}(\mathcal{A}), A$ is separable and \mathcal{A} is not separable.
6. Atomic parts of relative multipliers. In the following, $z=z_{\text {at }}$ denotes the maximal atomic projection in $A^{* *}$; in other words, z is the smallest central projection in $A^{* *}$ supporting all pure states of A.

Lemma 6.1. Let $x p$ and $y p$ be in \mathcal{W}_{p}. If $z x p=z y p$ then $x p=y p$. Moreover, we have $\|x p\|=\|z x p\|$. In other words, weakly continuous vector sections are determined by their atomic parts.

Proof. For each a in A, the continuous affine function $\varphi \mapsto \varphi\left(a^{*}(x-y)\right)$ on $F(p)$ vanishes at all pure states in $F(p)$. Consequently, it is identically zero on $F(p)$. As a result, $p A(x-y) p=\{0\}$, and thus $x p=y p$. For the norm equality, we note that the bounded affine function $\varphi \mapsto \varphi\left(x^{*} x\right)$ is lower semicontinuous on the weak* compact convex set $F(p)$ [9, Lemma 2.1]. It follows from the Krein-Milman theorem that

$$
\|x p\|^{2} \leq \sup \left\{\varphi\left(x^{*} x\right): \varphi \text { is a pure state in } F(p)\right\}=\|z x p\|^{2} \leq\|x p\|^{2} .
$$

The following theorem says that if the operator section $\pi_{p}(x)$ preserves the continuity of the atomic part of every vector section in $A^{* *} p$ then x itself must have an appropriate atomic part.

Theorem 6.2. Let x be an element of $A^{* *}$.
(1) $z x A p \subseteq z A p$ if and only if $z x \in z \operatorname{LM}(A, p)$.
(2) $z x \mathcal{W}_{p} \subseteq z \mathcal{W}_{p}$ if and only if $z x \in z \operatorname{RM}(A, p)$.
(3) $z x A p \subseteq z A p$ and $z x \mathcal{W}_{p} \subseteq z \mathcal{W}_{p}$ if and only if $z x \in z \mathrm{M}(A, p)$.
(4) $z x A p \in z \mathcal{W}_{p}$ if and only if $z x \in z \operatorname{QM}(A, p)$.
(5) $z x \mathcal{W}_{p} \subseteq z A p$ if and only if $z x \in z \mathcal{A}$.

Proof. The sufficiency is obvious and thus we verify the necessity only. Suppose first that $z x A p \subseteq z \mathcal{W}_{p}$. By Lemma 6.1, we can define a linear map T from $A p$ into \mathcal{W}_{p}. More precisely, we set $T a p=u p$ if $z x a p=$ zup. Moreover, $\|T\| \leq\|x\|$ since $\|z y p\|=\|y p\|$ for all $y p$ in \mathcal{W}_{p}. Suppose that φ is a pure state in $F(p)$ and a is in A such that $\varphi\left(a^{*} a\right)=0$. Then $\varphi\left((T a p)^{*}(T a p)\right)=\varphi\left(u^{*} u\right)=\varphi\left((z u p)^{*}(z u p)\right)=\varphi\left((x a p)^{*}(x a p)\right)=$ $\varphi\left(p a^{*} x^{*} x a p\right) \leq\|x\|^{2} \varphi\left(a^{*} a\right)=0$. By Theorem 3.13 , there is a relative quasimultiplier q in $\mathrm{QM}(A, p)$ such that $T a p=q a p$ for all a in A. Therefore $z x a p=z T a p=z q a p$ for all a in A. Consequently, $z(x-q) A p=\{0\}$, and thus $z x c(p)=z q \in z \operatorname{QM}(A, p)$.

Consider next the case $z x A p \subseteq z A p$. A similar argument yields a bounded linear map T from $A p$ into $A p$ (by restricting the co-domain of T). We thus have an l in $A^{* *} c(p)$ such that $l a p=T a p \in A p$ for all a in A. Consequently, $l \in \operatorname{LM}(A, p)$, and thus $z x c(p)=z l \in z \operatorname{LM}(A, p)$.

For the case $z x \mathcal{W}_{p} \subseteq z \mathcal{W}_{p}$, we note that $z x^{*} A p \subseteq z A p$. To see this, we observe that $z p y^{*} x^{*} a p=\left(p a^{*} z x y p\right)^{*} \in z p A p$ for all $y p$ in \mathcal{W}_{p}, and quote [9, Theorem 1.7], which says $z u p \in z A p$ if and only if $z p A u p \subseteq z p A p$ and $z p u^{*} u p \in z p A p$. Hence there is a relative left multiplier l in $A^{* *}$ such that $z x^{*}=z l$. By setting $r=l^{*}$, we have $z x=z r \in z \mathrm{RM}(A, p)$. The case where $z x \mathcal{W}_{p} \subseteq z A p$ is similar.

Finally, we suppose that $z x A p \subseteq z A p$ and $z x \mathcal{W}_{p} \subseteq z \mathcal{W}_{p}$. By the above observation, there is an l in $\operatorname{LM}(A, p)$ and an r in $\operatorname{RM}(A, p)$ such that $z x=$ $z l=z r$. Now, $p a_{1}(l-r) a_{2} p$ belongs to $p A p$ and vanishes at each pure state in $F(p)$ for all a_{1}, a_{2} in A. It follows that $p A(l-r) A p=\{0\}$. Therefore, $l c(p)=r c(p)$, and thus $z x \in \mathrm{M}(A, p)$.

The following is the special case when $p=1$.
Corollary 6.3. Let x be an element of $A^{* *}$.
(1) If $z x A \subseteq z A$ then $z x=z l$ for some left multiplier l of A in $A^{* *}$.
(2) If $z x \operatorname{RM}(A) \subseteq z \mathrm{RM}(A)$ then $z x=z r$ for some right multiplier r of A in $A^{* *}$.
(3) If $z x A \subseteq z A$ and $z x \operatorname{RM}(A) \subseteq z \mathrm{RM}(A)$ then $z x=z m$ for some multiplier m of A in $A^{* *}$.
(4) If $z x A \subseteq z \operatorname{RM}(A)$ then $z x=z q$ for some quasi-multiplier q of A in $A^{* *}$.
(5) If $z x \operatorname{RM}(A) \subseteq z A$ then $z x=z a$ for some a in A.

Acknowledgements. This paper, together with [20, 9], is based on the doctoral dissertation [19] of the second author under the supervision of the first author. A motivation of this project arises from Edward Effros. He suggested to the first author to study the second part [18] of Tomita's seminal work, following his success in [12] working with the first part [17].

Finally, we would like to express our appreciation to the referee for his/her careful reading and many useful comments and suggestions.

This reaserch was partially supported by Taiwan National Science Council: NSC 99-2115-M-110-007-MY3.

References

[1] C. A. Akemann, Left ideal structure of C^{*}-algebras, J. Funct. Anal. 6 (1970), 305317.
[2] C. A. Akemann, A Gelfand representation theory for C^{*}-algebras, Pacific J. Math. 39 (1971), 1-11.
[3] C. A. Akemann and G. K. Pedersen, Complications of semicontinuity in C^{*}-algebra theory, Duke Math. J. 40 (1973), 785-795.
[4] C. A. Akemann, G. K. Pedersen and J. Tomiyama, Multipliers of C^{*}-algebras, J. Funct. Anal. 13 (1973), 277-301.
[5] L. G. Brown, Semicontinuity and multipliers of C^{*}-algebras, Canad. J. Math. 40 (1988), 865-988.
[6] L. G. Brown, Determination of A from $\mathrm{M}(A)$ and related matters, C. R. Math. Rep. Acad. Sci. Canada 10 (1988), 273-278.
[7] L. G. Brown, Complements to various Stone-Weierstrass theorems for C^{*}-algebras and a theorem of Shultz, Comm. Math. Phys. 143 (1992), 405-413.
[8] L. G. Brown, MASA's and certain type I closed faces of C^{*}-algebras, in: Contemp. Math. 449, Amer. Math. Soc., Providence, RI, 2008, 69-98.
[9] L. G. Brown and N.-C. Wong, Left quotients of C^{*}-algebras, II: Atomic parts of left quotients, J. Operator Theory 44 (2000), 207-222.
[10] J. Dixmier, C^{*}-algebras, North-Holland, Amsterdam, 1977.
[11] J. Dixmier et A. Douady, Champs continus d'espaces hilbertiens et de C^{*}-algèbres, Bull. Soc. Math. France 91 (1963), 227-284.
[12] E. G. Effros, Order ideals in a C^{*}-algebra and its dual, Duke Math. J. 30 (1963), 391-412.
[13] J. M. G. Fell, The structure of algebras of operator fields, Acta Math. 106 (1961), 233-280.
[14] G. K. Pedersen, C^{*}-algebras and Their Automorphism Groups, Academic Press, London, 1979.
[15] R. T. Prosser, On the ideal structure of operator algebras, Mem. Amer. Math. Soc. 45 (1963).
[16] F. W. Shultz, Pure states as a dual object for C^{*}-algebras, Comm. Math. Phys. 82 (1982), 497-509.
[17] M. Tomita, Spectral theory of operator algebras, I, Math. J. Okayama Univ. 9 (1959), 63-98.
[18] M. Tomita, Spectral theory of operator algebras, II, Math. J. Okayama Univ. 10 (1960), 19-60.
[19] N.-C. Wong, The left quotient of a C^{*}-algebra and its representation through a continuous field of Hilbert spaces, Ph.D. thesis, Purdue Univ., West Lafayette, IN, 1991.
[20] N.-C. Wong, Left quotients of a C^{*}-algebra, I: Representation via vector sections, J. Operator Theory 32 (1994), 185-201.

Lawrence G. Brown
Department of Mathematics
Purdue University
West Lafayette, IN 47907, U.S.A.
E-mail: lgb@math.purdue.edu

Ngai-Ching Wong Department of Applied Mathematics National Sun Yat-sen University Kaohsiung, 80424, Taiwan, R.O.C. E-mail: wong@math.nsysu.edu.tw

[^0]: 2010 Mathematics Subject Classification: 46L05, 46L45.
 Key words and phrases: C^{*}-algebras, continuous fields of Hilbert spaces, left regular representations, multipliers, density theorems.

