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Sharp estimates of the Jacobi heat kernel

by

Adam Nowak (Wrocław) and Peter Sjögren (Göteborg)

Abstract. The heat kernel associated with the setting of the classical Jacobi poly-
nomials is defined by an oscillatory sum which cannot be computed explicitly, in contrast
to the situation for the other two classical systems of orthogonal polynomials. We de-
duce sharp estimates giving the order of magnitude of this kernel, for type parameters
α, β ≥ −1/2. Using quite different methods, Coulhon, Kerkyacharian and Petrushev re-
cently also obtained such estimates. As an application of the bounds, we show that the
maximal operator of the multi-dimensional Jacobi heat semigroup satisfies a weak type
(1, 1) inequality. We also obtain sharp estimates of the Poisson–Jacobi kernel.

1. Introduction. Let Pα,βn , n = 0, 1, 2, . . . , be the classical Jacobi poly-
nomials with type parameters α, β > −1, as defined in Szegö’s monograph
[26]. The Jacobi heat kernel is given by

(1) Gα,βt (x, y) =

∞∑
n=0

exp(−tn(n+ α+ β + 1))
Pα,βn (x)Pα,βn (y)

hα,βn
,

where x, y ∈ [−1, 1], t > 0, and hα,βn =
	1
−1[P

α,β
n (x)]2(1− x)α(1 + x)β dx are

normalizing constants. The numbers n(n+α+β+1) here are the eigenvalues
of the Jacobi differential operator, and it is well known that this kernel gives
the solution of the initial-value problem for the Jacobi heat equation, as
explained below.

Our main result reads as follows.

Theorem A. Assume that α, β ≥ −1/2. Given any T > 0, there exist
positive constants C, c1 and c2, depending only on α, β and T , such that
1

C
[t+ θϕ]−α−1/2[t+ (π − θ)(π − ϕ)]−β−1/2 1√

t
exp

(
−c1

(θ − ϕ)2

t

)
≤ Gα,βt (cos θ, cosϕ)

≤ C[t+ θϕ]−α−1/2[t+ (π − θ)(π − ϕ)]−β−1/2 1√
t
exp

(
−c2

(θ − ϕ)2

t

)
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for θ, ϕ ∈ [0, π] and 0 < t ≤ T . Moreover,

C−1 ≤ Gα,βt (x, y) ≤ C

for x, y ∈ [−1, 1] and t ≥ T , and Gα,βt (x, y) → 1/hα,β0 as t → ∞, uniformly
in x, y ∈ [−1, 1].

Thus we obtain a qualitatively sharp description of the behavior of
Gα,βt (x, y). The restriction on α and β is imposed by the methods used.

The multi-dimensional Jacobi heat kernel is a tensor product of one-
dimensional kernels, and Theorem A provides similar bounds also in the
multi-dimensional setting. As an application, we prove that the maximal
operator of the multi-dimensional Jacobi semigroup satisfies a weak type
(1, 1) estimate (see Theorem 5.1). This complements analogous results in the
Hermite and Laguerre polynomial settings, which were obtained in dimension
one by Muckenhoupt [16], and in arbitrary finite dimension by the second
author [24] and Dinger [10], respectively. For the Laguerre case, see also the
authors’ paper [19].

The heat kernels associated with the other two families of classical or-
thogonal polynomials have been known explicitly for a long time. Already
in 1866, Mehler [15] established the formula

∞∑
n=0

Hn(x)Hn(y)

2nn!
rn =

1√
1− r2

exp

(
2xyr − (x2 + y2)r2

1− r2

)
, |r| < 1,

which makes it possible to sum the heat kernel related to the Hermite poly-
nomials Hn. In the case of the Laguerre polynomials Lαn, the relevant bilinear
generating function is the Hille–Hardy formula

∞∑
n=0

n!

Γ (n+ α+ 1)
Lαn(x)L

α
n(y)r

n

=
1

1− r
exp

(
−(x+ y)r

1− r

)
(xyr)−α/2Iα

(
2
√
xyr

1− r

)
,

where |r| < 1, α > −1 and Iα is the modified Bessel function of the first kind.
This identity was found in 1926 by Hille [13] and independently rediscovered
later by Hardy [12] (see [28]). An analogue of these formulas in the Jacobi
setting is Bailey’s formula
∞∑
n=0

Pα,βn (cos θ)Pα,βn (cosϕ)

hα,βn
rn =

21−γΓ (γ)

Γ (α+ 1)Γ (β + 1)

1− r
(1 + r)γ

× F4

(
γ

2
,
γ + 1

2
;α+ 1, β + 1;

(
2 sin θ

2 sin
ϕ
2

r1/2 + r−1/2

)2

,

(
2 cos θ2 cos

ϕ
2

r1/2 + r−1/2

)2)
,

where |r| < 1, α, β > −1, γ = α + β + 2 and F4 is Appel’s hypergeometric
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function of two variables. This generating function was first stated in 1935
without proof in Bailey’s tract [1]. The proof is a straightforward consequence
of Watson’s formula for hypergeometric functions [27] and was published
slightly later [2].

However, in contrast with the Hermite and Laguerre cases, Bailey’s for-
mula does not enable one to compute the Jacobi heat kernel. This is because
the eigenvalues n(n+α+β+1) occurring in the defining series are not linear
in n. It is known that in the four simple special cases α, β = ±1/2, the kernel
Gα,βt (x, y) can be written by means of non-oscillating series. The argument
is based on the periodized Gauss–Weierstrass kernel and simple initial-value
problems for the classical heat equation in an interval. No further elementary
representation for G±1/2,±1/2t (x, y) seems to be possible. This indicates that
there is little hope of deriving a closed formula for the Jacobi heat kernel
for general α and β similar to those of Mehler, Hille and Hardy, and Bailey.
The estimates in Theorem A are therefore a natural and desirable substitute
for an exact expression. These estimates have also been obtained recently for
α, β > −1 by Coulhon, Kerkyacharian and Petrushev [6] by means of Dirich-
let spaces and other tools. Nevertheless, our paper was written independently
in 2011 (see [22]) and presents a completely different approach, of indepen-
dent interest. Further, it is worth noting that Demni and Zani [8] have de-
duced a formula for the kernel involving a sum different from that in (1).

The Jacobi polynomials cover as special cases several other classical fam-
ilies of orthogonal polynomials, including Chebyshev, Legendre and Gegen-
bauer (also called ultraspherical) polynomials. Special instances of the Jacobi
heat kernel exist at least implicitly in the literature since the 19th century,
and the question of describing its behavior was an open problem, even though
perhaps never stated explicitly in written form. Additional motivation comes
from the fact that Gα,βt (x, y) is also the transition probability density for
the Jacobi diffusion process, which has important applications in stochastic
modeling in physics, economics and genetics; see [8, 14] and references given
there. According to our knowledge, the behavior of Gα,βt (x, y) has not been
investigated until recently, except for its positivity. Bochner [3] proved that
the ultraspherical heat kernel is non-negative. Strict positivity in the general
Jacobi case was shown by Karlin and McGregor [14]. Some later results on
the positivity can be found in Gasper [11] and Bochner [4].

We also take the opportunity, see the Appendix, to describe the behav-
ior of the Poisson–Jacobi kernel, which is essentially the sum occurring in
Bailey’s formula. However, the representation in terms of Appel’s function
F4 does not seem to be very useful for this purpose. Instead we employ a
double integral representation that was derived recently by the authors [23]
from a product formula due to Dijksma and Koornwinder [9].
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For short times t, a direct analytic treatment of the heavily oscillating
series defining Gα,βt (x, y) is practically impossible. Therefore, we develop
a method combining several ingredients. These are, among others, the al-
ready mentioned product formula of Dijksma and Koornwinder and a result-
ing reduction formula, transference of heat kernel estimates from a sphere,
a comparison principle relating heat kernels for different type parameters,
the semigroup property and, finally, a rough estimate of the series defining
Gα,βt (x, y).

The paper is organized as follows. In Section 2 we introduce three related
Jacobi settings appearing in the literature, and explain how the associated
heat kernels are connected. Section 3 contains the auxiliary results that form
the main tools for our proof of Theorem A. Several of them are interesting
in their own right. Section 4 is devoted to the proof of Theorem A. Maximal
operators of multi-dimensional Jacobi semigroups are treated in Section 5; by
means of Theorem A, we prove weak type (1, 1) estimates for these operators.
Finally, in the Appendix we prove sharp estimates for the Poisson–Jacobi
kernel.

Throughout the paper we use standard notation. The letter C will stand
for many different positive constants independent of significant quantities.
When writing estimates, we use the notation X . Y to indicate that X ≤
CY . We write X ' Y when simultaneously X . Y and Y . X. The
notation '' is introduced at the beginning of Section 4. Tracing the proof
of Theorem A, it is easy to verify that the constants in the statement come
out as claimed.

2. Preliminaries. Given α, β > −1, the one-dimensional Jacobi poly-
nomials of type α, β are defined for n ∈ N and −1 < x < 1 by the Rodrigues
formula (cf. [26, (4.3.1)])

Pα,βn (x) =
(−1)n

2nn!
(1− x)−α(1 + x)−β

dn

dxn
[(1− x)α+n(1 + x)β+n].

Note that each Pα,βn is a polynomial of degree n.
We will consider three closely related settings of orthogonal systems based

on Jacobi polynomials. All of them have deep roots in the existing litera-
ture. Below we briefly introduce each setting, for the sake of simplicity in
dimension one. Multi-dimensional analogues arise in a standard way as ten-
sor products of one-dimensional systems.

Pure polynomial setting. In this case the relevant system{Pα,βn : n≥ 0}
is formed directly by Jacobi polynomials. This system is an orthogonal basis
in L2(d%α,β), where %α,β is the beta-type measure given by

d%α,β(x) = (1− x)α(1 + x)βdx
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in the interval [−1, 1]. Each Pα,βn is an eigenfunction of the Jacobi differential
operator

Jα,β = −(1− x2) d
2

dx2
− [β − α− (α+ β + 2)x]

d

dx
;

more precisely

Jα,βPα,βn = n(n+ α+ β + 1)Pα,βn , n ≥ 0.

The operator Jα,β is symmetric and non-negative in L2(d%α,β) on the domain
C2
c (−1, 1), and has a natural self-adjoint extension whose spectral resolution

is given by the Pα,βn ; see [20] for details. The semigroup Tα,βt = exp(−tJα,β)
is a symmetric diffusion semigroup in the sense of [25, Chapter 3]; in partic-
ular, Tα,βt 1 = 1. It is also the transition semigroup for the Jacobi diffusion
process, which has already received attention; cf. [14] and references there.
Some aspects of harmonic analysis in the multi-dimensional Jacobi pure
polynomial setting were investigated by the authors in [20].

The integral representation of Tα,βt , valid for f ∈ L1(d%α,β), is

Tα,βt f(x) =

1�

−1
Gα,βt (x, y)f(y) d%α,β(y),

where the Jacobi heat kernel is given by the oscillating series (1). The normal-
izing constants hα,βn := ‖Pα,βn ‖2L2(d%α,β)

in (1) are given by (cf. [26, (4.3.3)])

(2) hα,βn =
2α+β+1Γ (n+ α+ 1)Γ (n+ β + 1)

(2n+ α+ β + 1)Γ (n+ α+ β + 1)Γ (n+ 1)
,

where for n = 0 and α+β = −1 the product (2n+α+β+1)Γ (n+α+β+1)

must be replaced by Γ (α+β+2). Notice that 1/hα,βn ' n, n ≥ 1. As already
mentioned, Gα,βt (x, y) is strictly positive for x, y ∈ [−1, 1] and t > 0. Further,
Gα,βt (x, y) is continuous (and even smooth) in (t, x, y) ∈ (0,∞)× [−1, 1]2, as
well as in (α, β) ∈ (−1,∞)2. This can be verified by analyzing the defining
series, using the corresponding continuity properties of Jacobi polynomials
and the bound

|Pα,βn (x)| . (n+ 1)C , n ≥ 0, x ∈ [−1, 1]

(see Section 3). By [20, Proposition 3.3], Tα,βt f(x) is for any f ∈ L1(d%α,β)
a C∞ function of (t, x) ∈ (0,∞)× (−1, 1) satisfying the heat equation

(∂t + Jα,β)Tα,βt f(x) = 0, x ∈ (−1, 1), t > 0.

Finally, we note that (see [20, p. 347]) for f ∈ C[−1, 1],

lim
t→0+

Tα,βt f(x) = f(x), x ∈ [−1, 1],
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and the convergence is uniform in x. All these facts will be used in what
follows.

Trigonometric polynomial setting. This framework emerges if one
applies the natural and convenient trigonometric parametrization x = cos θ,
θ ∈ [0, π], to the Jacobi polynomials. We consider the normalized trigono-
metric polynomials

Pα,βn (θ) = 2(α+β+1)/2(hα,βn )−1/2Pα,βn (cos θ).

The system {Pα,βn : n ≥ 0} is orthonormal and complete in L2(dµα,β), where

dµα,β(θ) =

(
sin

θ

2

)2α+1(
cos

θ

2

)2β+1

dθ

in [0, π]. Each Pα,βn is an eigenfunction of the differential operator

J α,β = − d2

dθ2
− α− β + (α+ β + 1) cos θ

sin θ

d

dθ
+

(
α+ β + 1

2

)2

;

indeed,

J α,βPα,βn =

(
n+

α+ β + 1

2

)2

Pα,βn , n ≥ 0.

The operator J α,β has a natural self-adjoint extension whose spectral
resolution is given by the Pα,βn ; see [23] for details. The semigroup T α,βt =
exp(−tJ α,β) has the integral representation

T α,βt f(θ) =

π�

0

Gα,βt (θ, ϕ)f(ϕ) dµα,β(ϕ),

valid for f ∈ L1(dµα,β), with the heat kernel defined by

Gα,βt (θ, ϕ) =

∞∑
n=0

e−t(n+
α+β+1

2
)2Pα,βn (θ)Pα,βn (ϕ).

Note that J α,β is obtained by transforming Jα,β according to the change of
variable x = cos θ and introducing the zero order term. The latter modifi-
cation leads to eigenvalues which are squares, and therefore the oscillating
series defining the one-dimensional Poisson–Jacobi kernel in this setting,

Hα,βt (θ, ϕ) =
∞∑
n=0

e−t|n+
α+β+1

2
|Pα,βn (θ)Pα,βn (ϕ),

can be represented in a more convenient way; in particular, Bailey’s formula
applies. On the other hand, the semigroup T α,βt is submarkovian, but not
Markovian in general.

Several fundamental harmonic analysis operators related to the Jacobi
trigonometric polynomial setting were studied recently by the authors [23].
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The ultraspherical case was widely investigated from a slightly different per-
spective in the seminal paper of Muckenhoupt and Stein [18], which in 1965
initiated the development in harmonic analysis known as harmonic analy-
sis of orthogonal expansions. In both cases, the analysis was based on the
one-dimensional Poisson–Jacobi kernel; see [23] for further facts and refer-
ences.

Trigonometric ‘function’ setting. This context originates naturally
in connection with transplantation problems for Jacobi expansions (see for
instance [17, 5] and references there) and is derived from the previous set-
ting by modifying the Jacobi trigonometric polynomials so as to make the
resulting system orthogonal with respect to Lebesgue measure dθ in [0, π].
More precisely, we consider the functions

φα,βn (θ) =

(
sin

θ

2

)α+1/2(
cos

θ

2

)β+1/2

Pα,βn (θ), n ≥ 0.

Then the system {φα,βn : n ≥ 0} is an orthonormal basis in L2(dθ). The
associated differential operator is (cf. [26, Section 4.24])

Jα,β = − d2

dθ2
+

(α− 1/2)(α+ 1/2)

4 sin2 θ2
+

(β − 1/2)(β + 1/2)

4 cos2 θ2

and we have

Jα,βφα,βn =

(
n+

α+ β + 1

2

)2

φα,βn , n ≥ 0.

The semigroup Tα,βt = exp(−tJα,β), generated by the natural self-adjoint
extension of Jα,β , has the integral representation, valid for f ∈ L2(dθ),

Tα,βt f(θ) =

π�

0

Gα,β
t (θ, ϕ)f(ϕ) dϕ,

where

Gα,β
t (θ, ϕ) =

∞∑
n=0

e−t(n+
α+β+1

2 )
2

φα,βn (θ)φα,βn (ϕ).

Note that Tα,βt is not defined on all Lp(dθ), 1 < p < ∞, if α < −1/2 or
β < −1/2.

The Poisson–Jacobi kernel in the Jacobi trigonometric ‘function’ setting
is defined by

Hα,β
t (θ, ϕ) =

∞∑
n=0

e−t|n+
α+β+1

2
|φα,βn (θ)φα,βn (ϕ).

Observe that there is a simple analytic connection between the heat kernels
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in the three Jacobi frameworks. In fact, we have

Gα,β
t (θ, ϕ) =

(
sin

θ

2
sin

ϕ

2

)α+1/2(
cos

θ

2
cos

ϕ

2

)β+1/2

Gα,βt (θ, ϕ)(3)

= 2α+β+1e−t(
α+β+1

2 )
2(

sin
θ

2
sin

ϕ

2

)α+1/2(
cos

θ

2
cos

ϕ

2

)β+1/2

×Gα,βt (cos θ, cosϕ).

Similarly, for the Poisson–Jacobi kernels,

Hα,β
t (θ, ϕ) =

(
sin

θ

2
sin

ϕ

2

)α+1/2(
cos

θ

2
cos

ϕ

2

)β+1/2

Hα,βt (θ, ϕ).

Thus kernel estimates can be translated between the Jacobi settings.

3. Preparatory results. In this section, we prove several results that
will be important ingredients of the proof of Theorem A. They are of inde-
pendent interest, and so some of them are stated in slightly greater generality
than actually needed for our present purposes.

It is convenient to introduce a compact notation for objects related to
the ultraspherical setting, i.e., when the Jacobi parameters are equal, say
α = β = λ. In such cases, the sub- or superscript λ, λ will be shortened to λ;
for instance

P λn := P λ,λn , %λ := %λ,λ, hλn := hλ,λn .

Notice that this convention differs somewhat from the standard notation for
the classical ultraspherical (Gegenbauer) polynomials Cλn (cf. [26, Section
4.7]). In fact we have (see [26, (4.7.1)])

(4) Cλn(x) =
Γ (λ+ 1/2)

Γ (2λ)

Γ (n+ 2λ)

Γ (n+ λ+ 1/2)
P λ−1/2n (x), λ > −1/2, λ 6= 0.

Reduction formula. The following product formula for Jacobi polyno-
mials was derived by Dijksma and Koornwinder [9]:

Pα,βn (1− 2s2)Pα,βn (1− 2t2) =
Γ (α+ β + 1)Γ (n+ α+ 1)Γ (n+ β + 1)

πn!Γ (n+ α+ β + 1)Γ (α+ 1/2)Γ (β + 1/2)

×
1�

−1

1�

−1
Cα+β+1
2n

(
ust+ v

√
1− s2

√
1− t2

)
(1− u2)α−1/2(1− v2)β−1/2 du dv.

This formula is valid for α, β > −1/2. We shall write it in a more suitable
form which, by a limiting argument, will be valid for all α, β ≥ −1/2.

Let Πα be the probability measure on the interval [−1, 1] defined for
α > −1/2 by

dΠα(u) =
Γ (α+ 1)√
π Γ (α+ 1/2)

(1− u2)α−1/2 du.
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In the limit case α = −1/2, we put

Π−1/2 =
1
2(δ−1 + δ1),

where δ±1 denotes a point mass at ±1. Note that Π−1/2 is the weak limit of
Πα as α→ −1/2. We now rewrite the above product formula with s = sin θ

2

and t = sin ϕ
2 , using (4), the relation between Pα,βn and Pα,βn , the fact that

(cf. [26, (4.1.1)])
P λn (1) =

Γ (n+ λ+ 1)

Γ (n+ 1)Γ (λ+ 1)

and the expression (2) for hα,βn . After some computations, one finds that

Pα,βn (θ)Pα,βn (ϕ) =

√
π Γ (α+ β + 3/2)

Γ (α+ 1)Γ (β + 1)

� �
dΠα(u) dΠβ(v)

×
P
α+β+1/2
2n

(
u sin θ

2 sin
ϕ
2 + v cos θ2 cos

ϕ
2

)
P
α+β+1/2
2n (1)

h
α+β+1/2
2n

.

This formula holds for all α, β ≥ −1/2, since Jacobi polynomials are contin-
uous functions of their type parameters (see [26, (4.21.2)]).

Multiplying both sides above by exp
(
−t
(
n+ α+β+1

2

)2) and summing over
n ≥ 0 we get

Gα,βt (θ, ϕ) =

√
π Γ (α+ β + 3/2)

Γ (α+ 1)Γ (β + 1)
e−t(α+β+1)2/4

� �
dΠα(u) dΠβ(v)

×
∞∑
n=0

e−tn(n+α+β+1) P
α+β+1/2
2n

(
u sin θ

2 sin
ϕ
2 + v cos θ2 cos

ϕ
2

)
P
α+β+1/2
2n (1)

h
α+β+1/2
2n

.

Writing tn(n+α+β+1) = (t/4)2n[2n+(α+β+1/2)+(α+β+1/2)+1] and
taking into account that ultraspherical polynomials of even (odd) orders are
even (odd) functions (cf. [26, (4.7.4)]), we see that the last series represents
the even part with respect to the first variable of the ultraspherical heat
kernel, with the second variable fixed at the endpoint 1. Since for symmetry
reasons the corresponding odd part gives no contribution to the integral, we
end up with the following reduction formula.

Theorem 3.1. Let α, β ≥ −1/2. Then, for all θ, ϕ ∈ [0, π] and t > 0,

Gα,βt (cos θ, cosϕ)

= Cα,β
� �
G
α+β+1/2
t/4

(
u sin

θ

2
sin

ϕ

2
+ v cos

θ

2
cos

ϕ

2
, 1

)
dΠα(u) dΠβ(v),

with the constant Cα,β =
√
πΓ (α+ β + 3/2)/(2α+β+1Γ (α+ 1)Γ (β + 1)).

Thus we have expressed the general Jacobi heat kernel in terms of the
ultraspherical one. The relation between the type parameters here will be
essential for our arguments to prove the heat kernel estimates.
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Connection with the spherical heat kernel. We now consider the
Jacobi polynomial setting in the half-integer ultraspherical case, that is,
when

α = β = N/2− 1, N = 1, 2, . . . .

It is well known that this situation is closely connected with expansions in
spherical harmonics on the Euclidean unit sphere of dimension N (see for
instance [14, Section III]). In particular, there exists a relation between the
heat kernels in the two settings, which we indicate below.

For N ≥ 1, let SN be the unit sphere in RN+1 and denote by σN the stan-
dard (non-normalized) area measure on SN . The Laplace–Beltrami operator
∆N on SN is symmetric and non-positive in C∞(SN ) ⊂ L2(dσN ). The clas-
sical system of spherical harmonics on SN is an orthogonal basis in L2(dσN )
of eigenfunctions of ∆N . The spherical heat semigroup UNt = exp(t∆N ),
generated by the self-adjoint extension of ∆N , has an integral representa-
tion

UNt f(ξ) =
�

SN

KN
t (ξ, η)f(η) dσN (η), ξ ∈ SN , t > 0,

for f ∈ L2(dσN ). The spherical heat kernel KN
t (ξ, η) can be expressed ex-

plicitly as an oscillatory series of spherical harmonics (see [14, p. 176]). By
general theory (cf. [7, Theorem 5.2.1]), KN

t (ξ, η) is a strictly positive and
continuous (even smooth) function of (t, ξ, η) ∈ (0,∞)× SN × SN .

It is well known that the zonal case in the context of ∆N and expansions
with respect to spherical harmonics reduces to the ultraspherical setting in
the interval [−1, 1] with the type parameter λ = N/2 − 1. Indeed, let F be
a zonal function on SN , say F = f ◦ ψ, where

ψ(ξ) = ξ1, ξ ∈ SN ,

is the zonal projection onto the diameter of SN determined by the first
coordinate axis. Then the expansion of F in spherical harmonics reduces to
the expansion of f in ultraspherical polynomials P λn of type λ = N/2 − 1.
The associated heat semigroups are related in a similar way, as stated below.

Lemma 3.2. Assume that N ≥ 1 and λ = N/2−1. Then for f ∈ L2(d%λ),

(T λt f) ◦ ψ(ξ) = UNt (f ◦ ψ)(ξ), ξ ∈ SN , t > 0.

Proof. Observe that the semigroups considered consist of L2-bounded
linear operators, which for each t > 0 map L2 into the subspaces of con-
tinuous functions on [−1, 1] and SN , respectively. Moreover, f ∈ L2(d%λ) if
and only if f ◦ ψ ∈ L2(dσN ). Therefore, since linear combinations of ultra-
spherical polynomials are dense in L2(d%λ), we may assume that f = P λk for
some k.
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The identity we must prove has roots in the fact that the ultraspherical
operator Jλ is essentially the zonal part of the Laplace–Beltrami operator
∆N on SN . Indeed, writing the differential operator ∆N in hyperspherical
coordinates on SN (see [14, p. 175]) one easily verifies that

(JλP λk ) ◦ ψ = −∆N (P
λ
k ◦ ψ).

Since P λk is an eigenfunction of Jλ, we see that P λk ◦ψ is an eigenfunction of
−∆N , with the same eigenvalue. For smooth functions, the self-adjoint ex-
tension of ∆N coincides with the differential operator, and we conclude that

(T λt P
λ
k ) ◦ ψ(ξ) = e−tk(k+2λ+1)P λk ◦ ψ(ξ) = UNt (P λk ◦ ψ)(ξ), ξ ∈ SN ,

as desired.
We now establish a connection between the ultraspherical and spherical

heat kernels.
Theorem 3.3. Assume that N ≥ 1 and λ = N/2− 1. Then

Gλt (x, y) =
�

SN−1

KN
t (ξ, (y, ζ

√
1− y2)) dσN−1(ζ),

where x, y ∈ [−1, 1], t > 0 and ξ ∈ ψ−1({x}) is arbitrary.

Proof. Let f be a polynomial on [−1, 1]. By Lemma 3.2,
1�

−1
Gλt (ψ(ξ), y)f(y)(1− y2)λ dy =

�

SN

KN
t (ξ, η)f ◦ ψ(η) dσN (η).

To treat the last integral, we introduce zonal coordinates on SN ,

Ψ : [−1, 1]× SN−1 → SN , Ψ(y, ζ) = (y, ζ
√

1− y2).
Then for reasonable functions F ,

�

SN

F (ξ) dσN (ξ) =

1�

−1

�

SN−1

F ◦ Ψ(y, ζ) dσN−1(ζ) (1− y2)N/2−1 dy.

Therefore,
1�

−1
Gλt (ψ(ξ), y)f(y)(1− y2)λ dy

=

1�

−1

�

SN−1

KN
t (ξ, (y, ζ

√
1− y2)) dσN−1(ζ) f(y)(1− y2)λ dy.

Since polynomials are dense in C[−1, 1] and the kernels in question are con-
tinuous functions of their arguments, it follows that

Gλt (ψ(ξ), y) =
�

SN−1

KN
t (ξ, (y, ζ

√
1− y2)) dσN−1(ζ)

for t > 0, y ∈ [−1, 1] and ξ ∈ SN .
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The case y = 1 and ξ = (x,
√
1− x2, 0, . . . , 0) of Theorem 3.3 reveals

a particularly simple relation between the ultraspherical and spherical heat
kernels.

Corollary 3.4. Let λ = N/2− 1 for some N ∈ {1, 2, . . .}. Then

Gλt (x, 1) = σN−1(S
N−1) KN

t

((
x,
√

1− x2, 0, . . . , 0
)
, (1, 0, . . . , 0)

)
for x ∈ [−1, 1] and t > 0.

This expression for the ultraspherical heat kernel in terms of the spher-
ical one will allow us to transfer qualitatively sharp heat kernel bounds on
spheres to the ultraspherical setting with half-integer type index. On the
other hand, it is interesting to observe that the spherical heat kernel on SN
is completely determined by Gλt (x, 1) for λ = N/2−1. This is a consequence
of Corollary 3.4 and the fact that KN

t (ξ, η) depends on ξ and η only through
their spherical distance.

Comparison principle. Given ε, δ ≥ 0, define

Φε,δ(x) = (1− x)ε/2(1 + x)δ/2, x ∈ [−1, 1],
with the convention that (1 ± x)0 = 1 for x = ∓1. This is the square root
of the Radon–Nikodym derivative d%α+ε,β+δ/d%α,β . Using a parabolic PDE
technique, we shall prove the following result comparing Jacobi heat kernels
with different type parameters.

Theorem 3.5. Let α, β > −1. Given ε, δ ≥ 0 and α ≥ −ε/2, β ≥ −δ/2,
we have

(5) Φε,δ(x)Φε,δ(y)G
α+ε,β+δ
t (x, y)

≤ exp

(
ε+ δ

2

(
α+ β + 1 +

ε+ δ

2

)
t

)
Gα,βt (x, y)

for all x, y ∈ [−1, 1] and t > 0.

Translating this estimate to the other two Jacobi settings, we get

Corollary 3.6. Let α, β, ε, δ be as in Theorem 3.5. Then(
sin

θ

2
sin

ϕ

2

)ε(
cos

θ

2
cos

ϕ

2

)δ
Gα+ε,β+δt (θ, ϕ) ≤ Gα,βt (θ, ϕ)

and
Gα+ε,β+δ
t (θ, ϕ) ≤ Gα,β

t (θ, ϕ),

for all θ, ϕ ∈ [0, π] and t > 0, with the natural convention for boundary
values in the second inequality.

The relation in the Jacobi trigonometric ‘function’ setting is particularly
nice since it shows that the heat kernel is decreasing as a function of each
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of the type parameters α ≥ 0 and β ≥ 0. Note that, by subordination, the
estimates of Corollary 3.6 carry over to the corresponding Poisson kernels.

Proof of Theorem 3.5. Since the Jacobi heat kernel is a continuous func-
tion of its type parameters α, β > −1, we may assume that ε, δ > 0. We first
rewrite (5) in integrated form. By integrating against f(y)d%α,β(y), we see
that (5) implies

(6) Φε,δ(x)T
α+ε,β+δ
t (f/Φε,δ)(x) ≤ e

ε+δ
2

(α+β+1+ ε+δ
2

)t Tα,βt f(x)

for suitable functions f ≥ 0. Conversely, if (6) holds for all non-negative
f ∈ C∞c (−1, 1), then (5) will follow, since Gα,βt (x, y) is continuous in (x, y) ∈
[−1, 1]2. We shall thus prove the lemma by verifying (6) for x ∈ (−1, 1) and
t > 0 and any 0 ≤ f ∈ C∞c (−1, 1) not identically 0. Our reasoning will
rely on a generalization of the minimum principle method used to prove [20,
Lemma 3.4].

Denote by u = u(t, x) the left-hand side of (6) and let

v = v(t, x) = etηe
ε+δ
2

(α+β+1+ ε+δ
2

)t Tα,βt (f + η)(x)

for some fixed η > 0. Since f is smooth, the functions u and v have continuous
extensions to [0,∞)× (−1, 1). Our task will be done once we show that

u(t, x) ≤ v(t, x), x ∈ (−1, 1),
for all t ≥ 0 and any η > 0. Let

T = sup{t′ ≥ 0 : u(t, x) ≤ v(t, x) for (t, x) ∈ [0, t′)× (−1, 1)}.
Clearly, u(0, x) = f(x) < f(x) + η = v(0, x) for x ∈ (−1, 1). Moreover,
u(t, x) < v(t, x) for all t ≥ 0 provided that |x| is sufficiently close to 1; this
is because u(t, x) < CΦε,δ(x) and v(t, x) ≥ η for t ≥ 0, x ∈ (−1, 1). Hence
for t small enough u(t, x) < v(t, x), x ∈ (−1, 1), which means that T > 0.

Suppose that T is finite. We shall then derive a contradiction, which will
end the reasoning. Observe that u(T, x) ≤ v(T, x) for all x ∈ (−1, 1), and
u(T, x0) = v(T, x0) for some x0 ∈ (−1, 1). We claim that

(7) ∂t(v(t, x)− u(t, x))|(t,x)=(T,x0) > 0.

This would imply that v(t, x0) − u(t, x0) < 0 for t slightly less than T ,
a contradiction.

To prove the claim, we compute the derivative in (7). With the aid of the
heat equation we get

∂t(v(t, x)− u(t, x)) =
(
ε+ δ

2

(
α+ β + 1 +

ε+ δ

2

)
+ η

)
v(t, x)

− Jα,βv(t, x) + Φε,δ(x)J
α+ε,β+δ(u(t, x)/Φε,δ(x)).

Then using the definition of Jα,β and the fact that v − u = ∂x(v − u) = 0
at the point (T, x0), we find after somewhat lengthy computations that the



232 A. Nowak and P. Sjögren

left-hand side of (7) is equal to

(1− x20)∂2x(v − u)(T, x0) +
[
ε(α+ ε/2)

1− x0
+
δ(β + δ/2)

1 + x0

]
u(T, x0) + η u(T, x0).

The first term above is non-negative, since the function x 7→ v(T, x)−u(T, x)
has a local minimum at x = x0. The factor in the square brackets is obviously
non-negative by the assumptions on ε, δ, α, β. Finally, u(T, x0) is strictly
positive by the corresponding property of the kernel involved. The claim
follows.

We remark that when either α < −ε/2 and ε > 0 or β < −δ/2 and δ > 0,
the estimate of Theorem 3.5 (and thus also the estimates of Corollary 3.6)
does not hold. This can be shown by means of a counterexample very similar
to that of [20, Remark 3.6].

Rough estimate. We now employ absolute value estimates of Jacobi
polynomials to obtain a rough short time bound for the Jacobi heat kernel in
terms of t only. This method, of course, distinguishes no subtle effects coming
from oscillations. Therefore, the resulting estimate is far from sharp. More
accurate upper bounds for the Jacobi heat kernel, involving also dependence
on x and y, can be found by means of a more detailed analysis and the
estimates for Jacobi polynomials contained in [26, Theorem 7.32.2]; see also
[26, (7.32.6), (7.32.7)].

Theorem 3.7. Let α, β > −1 and T > 0 be fixed. Then

Gα,βt (x, y) . t−C0 , x, y ∈ [−1, 1], 0 < t ≤ T,
where the constant C0 depends only on α and β.

In the proof we will use the following bound for Jacobi polynomials (see
[26, (7.32.2)]):

(8) |Pα,βn (x)| . nγ , n ≥ 1, x ∈ [−1, 1],
where γ = max{α, β,−1/2}.

Proof of Theorem 3.7. Recall that 1/hα,βn ' n for n ≥ 1. Thus

Gα,βt (x, y) . 1 +
∞∑
n=2

e−tn(n+α+β+1)n|Pα,βn (x)| |Pα,βn (y)|

≤ 1 +

∞∑
n=2

e−tnn|Pα,βn (x)| |Pα,βn (y)|,

and (8) implies

Gα,βt (x, y) . 1 +
∞∑
n=2

e−tnn2γ+1 . 1 +
1

t2γ+1

∞∑
n=2

e−tn/2 . t−2γ−2.
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4. Proof of Theorem A. The long time behavior of Gα,βt (x, y) stated
in Theorem A is a consequence of the short time estimate, in the following
way. Given T > 0, the short time bound implies that

Gα,βT (z, y) ' 1, z, y ∈ [−1, 1].
By the semigroup property, for t ≥ T and x, y ∈ [−1, 1] one has

Gα,βt (x, y) =

1�

−1
Gα,βt−T (x, z)G

α,β
T (z, y) d%α,β(z).

Since
1�

−1
Gα,βt−T (x, z) d%α,β(z) = Tα,βt−T1(x) = 1, x ∈ [−1, 1], t ≥ T,

we get the estimates

Gα,βt (x, y) ' 1, x, y ∈ [−1, 1], t ≥ T.
The existence of the uniform limit as t → ∞ follows by combining the
oscillating series (1) with the estimate (8) for Jacobi polynomials.

Thus it remains to prove the short time estimates, and we first introduce
some further notation. A real number r will be called dyadic if r = n/2k

for some integers n, k. We will use the notation X '' Y exp(−cZ) to in-
dicate that Y exp(−c1Z) . X . Y exp(−c2Z) with positive constants c1
and c2 independent of significant quantities. Thus the short time estimates
of Theorem A can be written

Gα,βt (cos θ, cosϕ) ''
(
t+ sin

θ

2
sin

ϕ

2

)−α−1/2(
t+ cos

θ

2
cos

ϕ

2

)−β−1/2
(9)

× 1√
t
exp

(
−c(θ − ϕ)

2

t

)
.

The quantity T > 0 will be fixed for the rest of the proof of Theorem A. For
the sake of clarity, we divide the proof into several steps, as follows.

1. Estimate Gλt (x, 1) for half-integer λ ≥ −1/2 by transferring, via The-
orem 3.3, known bounds for the spherical heat kernel.

2. Starting from the bounds of Step 1, iterate the reduction formula
(Theorem 3.1) to estimate Gλt (x, 1) for all dyadic values of λ ≥ −1/2.

3. Apply the reduction formula to the estimate of Step 2 to prove (9)
when α, β ≥ −1/2 and the sum α+ β is a dyadic number.

4. Combine the estimate of Step 3 with the comparison principle (Theo-
rem 3.5) to obtain a weakened version of (9) in the ultraspherical case
for α = β = λ > 0.

5. Use the semigroup property and the rough estimate of Theorem 3.7
to eliminate the weakening in Step 4 and prove (9) for α = β = λ > 0.
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6. Use the estimate of Step 5 and iterate with the reduction formula to
estimate Gλt (x, 1) for −1/2 ≤ λ < 0. In the final stroke apply again
the reduction formula to prove (9) for all α, β ≥ −1/2.

Step 1. We first invoke the well-known Gaussian bounds for the spherical
heat kernel (see [7, Theorems 5.5.6 and 5.6.1]). Let d(ξ, η) = arccos〈ξ, η〉 be
the spherical distance between ξ and η ∈ SN . Given any δ > 0, we have

KN
t (ξ, η) .

1

tN/2
exp

(
− d(ξ, η)2

4(1 + δ)t

)
, ξ, η ∈ SN , 0 < t ≤ T,

and

KN
t (ξ, η) ≥ 1

(4πt)N/2
exp

(
−d(ξ, η)

2

4t

)
, ξ, η ∈ SN , t > 0.

These estimates, together with Corollary 3.4 and the fact that d(ξ, η) ' |ξ−η|
for ξ, η ∈ SN , lead to the following result.

Lemma 4.1. Assume that λ = N/2− 1 for some N ≥ 1. Then

Gλt (x, 1) ''
1

tλ+1
exp

(
−c1− x

t

)
, x ∈ [−1, 1], 0 < t ≤ T,

or equivalently,

(10) Gλt (cos θ, 1) ''
1

tλ+1
exp

(
−cθ

2

t

)
, θ ∈ [0, π], 0 < t ≤ T.

Notice that this estimate is a special case of (9).

Step 2. We claim that the bounds of Lemma 4.1 hold for all dyadic
values of λ ≥ −1/2. To verify this, it is enough to prove the following lemma,
since one can then iterate.

Lemma 4.2. Assume that the estimate (10) holds for some λ > −1/2.
Then it holds also with λ replaced by λ′ = λ/2− 1/4.

To prove this lemma, we need an auxiliary result.

Lemma 4.3. Let ν ≥ −1/2. Then
�
exp(zs) dΠν(s) ' (1 + z)−ν−1/2 ez, z ≥ 0.

Proof. One can assume that ν > −1/2 and z > 1, since otherwise the
lemma is trivial. We split the integral and observe that the part over (0, 1)
is larger than that over (−1, 0). Thus we need only consider

1�

0

ezs dΠν(s) '
1�

0

ezs(1− s)ν−1/2 ds.
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Here we make the two transformations t = 1− s and r = zt, and get

ezz−ν−1/2
z�

0

e−rrν−1/2 dr.

The conclusion follows.

Proof of Lemma 4.2. Suppose that (10) holds for some λ > −1/2. By
Theorem 3.1,

Gλ
′
t (cos θ, 1) = C Πλ′([−1, 1])

�
Gλt/4

(
v cos

θ

2
, 1

)
dΠλ′(v)(11)

'' 1

tλ+1

�
exp

(
−c

1− v cos θ2
t

)
dΠλ′(v).

Applying now Lemma 4.3 to the last integral in (11), or rather to the upper
and lower estimates that (11) stands for, we see that

Gλ
′
t (cos θ, 1) ''

(
1 +

cos θ2
t

)−λ′−1/2 1

tλ+1
exp

(
−c

1− cos θ2
t

)
''

(
t+ cos

θ

2

)−λ′−1/2 1

tλ′+1
exp

(
−cθ

2

t

)
.

The last expression is what we need except for the first factor. However,
since we consider λ′ > −1/2,(

t+ cos
θ

2

)−λ′−1/2
& 1, θ ∈ [0, π], 0 < t ≤ T,

and, on the other hand,(
t+ cos

θ

2

)−λ′−1/2
. exp

(
ε
θ2

t

)
, θ ∈ [0, π], t > 0,

for any ε > 0, as can easily be seen by examining separately the cases θ ≤ π/2
and θ > π/2. So this factor is insignificant, and Lemma 4.2 follows.

Step 3. Let α, β ≥ −1/2 be such that α+ β is a dyadic number. Then
λ = α+ β +1/2 ≥ −1/2 is also a dyadic number, so in view of Theorem 3.1
and Step 2 we may write

Gα,βt (cos θ, cosϕ)

= Cα,β
� �
Gλt/4

(
u sin

θ

2
sin

ϕ

2
+ v cos

θ

2
cos

ϕ

2
, 1

)
dΠα(u) dΠβ(v)

'' 1

tλ+1

�
dΠα(u)

�
exp

(
−c

1− u sin θ
2 sin

ϕ
2 − v cos

θ
2 cos

ϕ
2

t

)
dΠβ(v).
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Applying now Lemma 4.3 as in Step 2, first to the integral in v and then to
that in u, and observing that

1− sin
θ

2
sin

ϕ

2
− cos

θ

2
cos

ϕ

2
= 2 sin2

θ − ϕ
4
' (θ − ϕ)2, θ, ϕ ∈ [0, π],

we get

Gα,βt (cos θ, cosϕ) '' 1

tλ+1

(
1+

sin θ
2 sin

ϕ
2

t

)−α−1/2(
1+

cos θ2 cos
ϕ
2

t

)−β−1/2
× exp

(
−c(θ − ϕ)

2

t

)
.

From this, (9) follows. In the next steps, we will remove the restriction that
α+ β is dyadic.

Step 4. Suppose that λ > 0 is arbitrary. Then there exist ε, ε′ > 0
such that 2λ − ε and 2λ + ε′ are dyadic numbers and λ − ε > 0. Applying
Theorem 3.5 twice, with δ = 0, β = λ and either α = λ − ε or α = λ, we
obtain

Φε,0(x)Φε,0(y)G
λ
t (x, y) ≤ e(ε/2)(2λ+1−ε/2)tGλ−ε,λt (x, y),

Φε′,0(x)Φε′,0(y)G
λ+ε′,λ
t (x, y) ≤ e(ε′/2)(2λ+1+ε′/2)tGλt (x, y)

for all x, y ∈ [−1, 1] and t > 0. This implies(
sin

θ

2
sin

ϕ

2

)ε′
Gλ+ε

′,λ
t (cos θ, cosϕ)

. Gλt (cos θ, cosϕ) .

(
sin

θ

2
sin

ϕ

2

)−ε
Gλ−ε,λt (cos θ, cosϕ),

uniformly in θ, ϕ ∈ [0, π] and 0 < t ≤ T ; here and later on, endpoint values
are understood in a limiting sense, if necessary, and may be infinite. In an
analogous way, we may vary the second type parameter and use Theorem 3.5
to get(

cos
θ

2
cos

ϕ

2

)ε′
Gλ,λ+ε

′

t (cos θ, cosϕ)

. Gλt (cos θ, cosϕ) .

(
cos

θ

2
cos

ϕ

2

)−ε
Gλ,λ−εt (cos θ, cosϕ),

uniformly in θ, ϕ ∈ [0, π] and 0 < t ≤ T .
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Next we combine these estimates with those obtained in Step 3. For some
positive constants c1 and c2 and all θ, ϕ ∈ [0, π] and 0 < t ≤ T , this leads to

(12)
1

Ft(θ, ϕ)ε
′

(
t+ sin

θ

2
sin

ϕ

2

)−λ−1/2(
t+ cos

θ

2
cos

ϕ

2

)−λ−1/2
× 1√

t
exp

(
−c1

(θ − ϕ)2

t

)
. Gλt (cos θ, cosϕ)

. Ft(θ, ϕ)
ε

(
t+ sin

θ

2
sin

ϕ

2

)−λ−1/2(
t+ cos

θ

2
cos

ϕ

2

)−λ−1/2
× 1√

t
exp

(
−c2

(θ − ϕ)2

t

)
,

where the auxiliary function Ft is defined by

Ft(θ, ϕ) = min

(
1 +

t

sin θ
2 sin

ϕ
2

, 1 +
t

cos θ2 cos
ϕ
2

)
.

It is easy to verify that

Ft(θ, ϕ) ' 1 +
t

cos θ−ϕ2
.

Notice that the bounds in (12) coincide with those of (9), except for the
factors involving Ft. In the next step, we will show how to deal with these
factors.

Step 5. We shall see how (12) implies (9) with α = β = λ > 0. Clearly,
the factors F εt and 1/F ε

′
t in (12) are of importance only when θ and ϕ are

close to opposite endpoints of the interval [0, π]. Indeed, we have

Ft(θ, ϕ)
ε′ ' 1 ' Ft(θ, ϕ)ε if |θ − ϕ| ≤ 2π/3, 0 < t ≤ T.

Thus from now on we may assume that |θ − ϕ| > 2π/3. Moreover, for sym-
metry reasons it is enough to consider the case θ < π/3 and ϕ > 2π/3.

Observe that under these assumptions, on the right-hand side of (9) only
the exponential factor is significant, since it behaves like exp(−c/t) and the
other factors are essentially contained between 1 and some negative power
of t. So what we must prove is simply that

(13) Gλt (cos θ, cosϕ) '' exp(−c/t)
for 0 < t ≤ T . We first verify (13) under the additional assumption that θ ≥
e−c0/t or ϕ ≤ π−e−c0/t, where c0 > 0 is a sufficiently small constant. Clearly,
either of these conditions implies cos θ−ϕ2 & e−c0/t. Then for 0< t≤ T ,

Ft(θ, ϕ)
ε '

(
1 +

t

cos θ−ϕ2

)ε
. (1 + Tec0/t)ε . ec0ε/t,
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and analogous bounds hold for Ft(θ, ϕ)ε
′ . This implies that if c0 is taken

small enough, the factors F εt and 1/F ε
′
t will be insignificant in (12), and (13)

follows.
Thus we have proved the following.

Lemma 4.4. Let λ > 0. There exists a constant c0 > 0 such that (9) with
α = β = λ > 0 holds for all θ, ϕ ∈ [0, π] and 0 < t ≤ T , except possibly when
θ ≤ e−c0/t and ϕ ≥ π − e−c0/t or vice versa.

Finally, suppose that θ < e−c0/t and ϕ > π − e−c0/t. By the semigroup
property,

Gλ2t(cos θ, cosϕ) =

π�

0

Gλt (cos θ, cosψ)G
λ
t (cosψ, cosϕ)(sinψ)

2λ+1 dψ.

We split the interval of integration into D1 = (0, e−c0/t), D2 = (e−c0/t,
π − e−c0/t) and D3 = (π − e−c0/t, π), and observe that D2 ⊃ [π/3, 2π/3].
Denote the resulting integrals by I1, I2 and I3, respectively. To estimate I2,
we apply Lemma 4.4, getting

I2 ''
π−e−c0/t�

e−c0/t

[(
t+ sin

θ

2
sin

ψ

2

)(
t+ cos

θ

2
cos

ψ

2

)

×
(
t+ sin

ψ

2
sin

ϕ

2

)(
t+ cos

ψ

2
cos

ϕ

2

)]−λ−1/2
× 1

t
exp

(
−c(θ − ψ)

2 + (ψ − ϕ)2

t

)
(sinψ)2λ+1 dψ.

Here (θ − ψ)2 + (ψ − ϕ)2 ' 1, which means that the exponential in the
integrand makes all the other factors insignificant. Thus

I2 '' exp

(
−c
t

)
.

To bound I1, we apply the rough estimate of Theorem 3.7 to the two kernels
in the integrand. We have

I1 .
e−c0/t�

0

t−C(sinψ)2λ+1 dψ . exp

(
−c0
2t

)
.

Since the case of I3 is analogous, it follows that I1 + I2 + I3 and thus also
Gλt (cos θ, cosϕ) satisfy the estimate (13).

Altogether, we have proved the following.

Lemma 4.5. The estimates (9) hold for α = β = λ > 0 and all θ, ϕ ∈
[0, π] and 0 < t ≤ T .
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Step 6. From Lemma 4.5 with ϕ = 0, we deduce as in the last part of
Step 2 that

(14) Gλt (cos θ, 1) ''
1

tλ+1
exp

(
−cθ

2

t

)
, θ ∈ [0, π], 0 < t ≤ T,

provided that λ ≥ 0; the case λ = 0 is covered by Step 1. Applying repeatedly
Lemma 4.2 as in Step 2, we conclude that (14) holds for each λ ≥ −1/2,
since the case λ = −1/2 follows again from Step 1.

Finally, we combine (14) for arbitrary λ = α+ β + 1/2 ≥ −1/2 with the
reduction formula, as done in Step 3 for dyadic λ. This establishes the short
time bound of Theorem A for general α, β ≥ −1/2.

The proof of Theorem A is complete.

5. The heat maximal operators. We shall now consider d-dimen-
sional Jacobi settings. Each of the semigroups Tα,βt , T α,βt and Tα,βt has
a natural d-dimensional extension, see [20, Section 2]. In particular, their
kernels are simply tensor products of the corresponding one-dimensional
heat kernels. Letting now α, β ∈ (−1,∞)d denote type multi-parameters,
we can use the same notation as before for the semigroups, their kernels
and other related notions. The corresponding measure spaces will then be
([−1, 1]d, d%α,β), ([0, π]d, dµα,β) and ([0, π]d, dθ), respectively, where

d%α,β =
d⊗
i=1

d%αi,βi , dµα,β =
d⊗
i=1

dµαi,βi ,

and dθ is the d-dimensional Lebesgue measure in [0, π]d.
This allows us to introduce multi-dimensional maximal operators

Tα,β∗ f(x) = sup
t>0
|Tα,βt f(x)|

and T α,β∗ and Tα,β∗ with analogous definitions. Using Theorem A, we shall
show that these operators satisfy weak type (1, 1) estimates in the corre-
sponding measure spaces.

Theorem 5.1. Let d ≥ 1 and assume that α, β ∈ [−1/2,∞)d. Then

(i) Tα,β∗ is bounded from L1(d%α,β) to weak L1(d%α,β);
(ii) T α,β∗ is bounded from L1(dµα,β) to weak L1(dµα,β);
(iii) Tα,β∗ is bounded from L1(dθ) to weak L1(dθ).

An important consequence of Theorem 5.1 is the almost everywhere
boundary convergence for the Jacobi semigroups applied to L1 functions.
Note that by the subordination principle, Theorem 5.1 implies weak type
(1, 1) estimates, and thus also convergence results, for the multi-dimensional
Poisson–Jacobi semigroups.
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We briefly discuss Lp-bounds for these operators. For α, β ∈ (−1,∞)d,
the boundedness of Tα,β∗ in Lp(d%α,β), 1 < p ≤ ∞, follows by Stein’s general
maximal theorem [25, Chapter 3]; see [20, p. 346]. In the restricted range
α, β ∈ [−1/2,∞)d, it can also be obtained by interpolation between Theorem
5.1(i) and the trivial boundedness in L∞. The case of T α,β∗ is much the same.
In fact, T α,β∗ is controlled by Tα,β∗ , as can be seen from the proof given below,
and so it inherits the Lp mapping properties of Tα,β∗ . The Lp-boundedness of
Tα,β∗ is even simpler. Indeed, as pointed out in the proof below, Theorem A
implies that when α, β ∈ [−1/2,∞)d, the operator Tα,β∗ is controlled by
the standard maximal function in [0, π]d and hence Lp-bounded for p > 1.
When α or β are not both in [−1/2,∞)d, the estimates of Theorem A can be
expected to hold in the same form, and this suggests that the behavior of Tα,β∗
admits a similar anomaly to that occurring in certain Laguerre function
settings and called the pencil phenomenon [21].

Proof of Theorem 5.1. From Theorem A it follows that for large t the
three Jacobi heat kernels are bounded. Thus, from now on, we need to con-
sider only the maximal operators defined by taking suprema in the restricted
range 0 < t ≤ 1.

We first treat (iii). In view of Theorem A and (3),

Gα,β
t (θ, ϕ) .

1

td/2
exp

(
−c |θ − ϕ|

2

t

)
, θ, ϕ ∈ [0, π]d, 0 < t ≤ 1,

where c > 0 depends only on α and β. The right-hand side here is essentially
the standard Gaussian kernel, and so Tα,β∗ can be controlled by the Hardy–
Littlewood maximal operator restricted to [0, π]d. Therefore, Tα,β∗ is of weak
type (1, 1).

Next, we show that (ii) follows from (i). Observe that for f ∈ L1(dµα,β)
we have

T α,βt f(θ) = e−t
∑d
i=1(

αi+βi+1

2
)2Tα,βt (f ◦ arccos)(cos θ), θ ∈ [0, π]d,

where cos and arccos are applied in each coordinate. Ergo, |T α,βt f(θ)| ≤
|Tα,βt (f ◦ arccos)(cos θ)|. Thus (i) implies (ii).

We pass to proving (i). The Hopf–Dunford–Schwartz ergodic maximal
theorem (see [25, p. 48]) tells us that the operator

T̃α,β∗ f(x) = sup
t>0

∣∣∣∣1t
t�

0

Tα,βs f(x) ds

∣∣∣∣
is of weak type (1, 1) with respect to the measure d%α,β . This operator is the
pointwise supremum of the operators defined by the kernels

G̃α,βt (x, y) =
1

t

t�

0

Gα,βs (x, y) ds.
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So to obtain the weak type estimate for Tα,β∗ , it is enough to verify that

Gα,βt (x, y) . G̃α,βAt (x, y)

for some A > 0. Clearly, this follows if

Gα,βt (x, y) . Gα,βs (x, y), At/2 < s < At.

To verify the last bound, consider first the exponential factors in the
short time estimates of Theorem A, which can be written exp(−c1|θ−ϕ|2/t)
and exp(−c2|θ − ϕ|2/t) for some c1, c2 > 0. Choosing A > 2c1/c2, one has

exp

(
−c2
|θ − ϕ|2

t

)
. exp

(
−c1
|θ − ϕ|2

s

)
, At/2 < s < At.

The other factors have only a polynomial type dependence on t, and thus
satisfy a similar estimate since s ' t. The desired bound follows.

The proof of Theorem 5.1 is complete.

Appendix: Poisson kernel estimates. We complement the Jacobi
heat kernel estimates by showing the following sharp bounds for the Poisson–
Jacobi kernel in the Jacobi trigonometric polynomial setting. Clearly, this
result can easily be transferred to the Jacobi trigonometric ‘function’ set-
ting. In contrast to the preceding argument, the proof is based on an exact,
positive representation of the kernel.

Theorem A.1. Assume that α, β ≥ −1/2. Given any T > 0, we have

Hα,βt (θ, ϕ)

' (t2 + θ2 + ϕ2)−α−1/2(t2 + (π − θ)2 + (π − ϕ)2)−β−1/2 t

t2 + (θ − ϕ)2
,

uniformly in θ, ϕ ∈ [0, π] and 0 < t ≤ T , and

Hα,βt (θ, ϕ) ' exp

(
−tα+ β + 1

2

)
,

uniformly in θ, ϕ ∈ [0, π] and t ≥ T .
The representation formula we shall use is [23, Proposition 4.1], which

says that for α, β ≥ −1/2,

(15) Hα,βt (θ, ϕ) = cα,β sinh
t

2

� � dΠα(u) dΠβ(v)(
cosh t

2 − 1 + q(θ, ϕ, u, v)
)α+β+2

,

with cα,β = 2−α−β−1/µα,β(0, π) and

q(θ, ϕ, u, v) = 1− u sin θ
2
sin

ϕ

2
− v cos θ

2
cos

ϕ

2
,

where θ, ϕ ∈ [0, π] and u, v ∈ [−1, 1]. This is based on the same product
formula due to Dijksma and Koornwinder that we used in Section 3. The
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behavior of the double integral in (15) can be described by means of the
following technical result.

Lemma A.2. Let κ ≥ 0 and γ and ν be such that γ > ν+1/2 ≥ 0. Then
�

[−1,1]

dΠν(s)

(D −Bs)κ(A−Bs)γ
' 1

(D −B)κAν+1/2(A−B)γ−ν−1/2
,

uniformly in 0 ≤ B < A ≤ D.

Proof. We may assume that B = 1, since one can factor out a power
of B from both sides of the formula. The case ν = −1/2 is trivial, so it is
enough to consider ν + 1/2 > 0. Observe that

1�

−1

(1− s2)ν−1/2 ds
(D − s)κ(A− s)γ

'
1�

0

(1− s)ν−1/2 ds
(D − s)κ(A− s)γ

=

1�

0

uν−1/2 du

(D − 1 + u)κ(A− 1 + u)γ
.

Thus it suffices to analyze the last integral, which we denote by I. Now
A > 1, and we consider the following two cases.

Case 1: A ≥ 2. Since in this case D − 1 + u ' D − 1 and A− 1 + u '
A− 1 ' A for u ∈ (0, 1), the conclusion is immediate.

Case 2: 1 < A < 2. We split I as

I =

{A−1�

0

+

1�

A−1

}
uν−1/2 du

(D − 1 + u)κ(A− 1 + u)γ
≡ I1 + I2.

Then

I1 '
1

(D − 1)κ(A− 1)γ

A−1�

0

uν−1/2 du ' 1

(D − 1)κ(A− 1)γ−ν−1/2
,

I2 .
1

(D − 1)κ

1�

A−1
uν−1/2−γ du .

1

(D − 1)κ(A− 1)γ−ν−1/2
.

Since A ' 1, this implies the conclusion.

Proof of Theorem A.1. We use (15) and apply Lemma A.2 twice, first to
the integral against dΠβ(v), with the parameters ν = β, κ = 0, γ = α+β+2,
A = cosh t

2−u sin
θ
2 sin

ϕ
2 , B = cos θ2 cos

ϕ
2 , and then to the resulting integral

against dΠα(u), with the parameters ν = α, κ = β + 1/2, γ = α + 3/2,
D = cosh t

2 , A = cosh t
2 − cos θ2 cos

ϕ
2 and B = sin θ

2 sin
ϕ
2 . This leads to the
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estimates

Hα,βt (θ, ϕ) ' 1(
cosh t

2 − cos θ2 cos
ϕ
2

)α+1/2(
cosh t

2 − sin θ
2 sin

ϕ
2

)β+1/2

×
sinh t

2

cosh t
2 − sin θ

2 sin
ϕ
2 − cos θ2 cos

ϕ
2

=
1(

cosh t
2 − 1 + sin2 θ−ϕ4 + sin2 θ+ϕ4

)α+1/2

× 1(
cosh t

2 − 1 + sin2 (π−θ)−(π−ϕ)
4 + sin2 (π−θ)+(π−ϕ)

4

)β+1/2

×
sinh t

2

cosh t
2 − 1 + 2 sin2 θ−ϕ4

.

As easily verified, the conclusion now follows.
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