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Abstract. We address the following two questions regarding the maximal left ide-
als of the Banach algebra B(E) of bounded operators acting on an infinite-dimensional
Banach space E :

(I) Does B(E) always contain a maximal left ideal which is not finitely generated?
(II) Is every finitely-generated, maximal left ideal of B(E) necessarily of the form

(∗) {T ∈ B(E) : Tx = 0}

for some non-zero x ∈ E?

Since the two-sided ideal F (E) of finite-rank operators is not contained in any of the
maximal left ideals given by (∗), a positive answer to the second question would imply
a positive answer to the first.

Our main results are: (i) question (I) has a positive answer for most (possibly all)
infinite-dimensional Banach spaces; (ii) question (II) has a positive answer if and only
if no finitely-generated, maximal left ideal of B(E) contains F (E); (iii) the answer to
question (II) is positive for many, but not all, Banach spaces.

1. Introduction and statement of main results. The purpose of
this paper is to study the maximal left ideals of the Banach algebra B(E)
of (bounded, linear) operators acting on a Banach space E, particularly the
maximal left ideals that are finitely generated. A general introduction to
the Banach algebra B(E) can be found in [12, §2.5]. Our starting point
is the elementary observation that B(E) always contains a large supply of
singly-generated, maximal left ideals, namely
(1.1) MLx = {T ∈ B(E) : Tx = 0} (x ∈ E \ {0})
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(see Proposition 2.4 for details). We call the maximal left ideals of this form
fixed, inspired by the analogous terminology for ultrafilters.

The Banach algebra B(E) is semisimple, as is well known (e.g., see [12,
Theorem 2.5.8]); that is, the intersection of its maximal left ideals is {0}.
We observe that this is already true for the intersection of the fixed maximal
left ideals.

In the case where the Banach space E is finite-dimensional, an elementary
result in linear algebra states that the mapping

F 7→ {T ∈ B(E) : F ⊆ kerT}
is an anti-isomorphism of the lattice of linear subspaces of E onto the lat-
tice of left ideals of B(E) (e.g., see [24, p. 173, Exercise 3]). Hence each
maximal left ideal L of B(E) corresponds to a unique minimal, non-zero
linear subspace of E, that is, a one-dimensional subspace, and therefore L
is fixed. This conclusion is also an easy consequence of our work, as outlined
in Remark 1.2(i) below. In contrast, this statement is false whenever E is
infinite-dimensional because the two-sided ideal F (E) of finite-rank opera-
tors is proper, so that, by Krull’s theorem, it is contained in a maximal left
ideal, which cannot be fixed since, for each x ∈ E \{0}, there is a finite-rank
operator T on E such that Tx 6= 0.

Inspired by these observations and his collaboration [13] with Żelazko,
the first-named author raised the following two questions for an infinite-
dimensional Banach space E:

(I) Does B(E) always contain a maximal left ideal which is not finitely
generated?

(II) Is every finitely-generated, maximal left ideal of B(E) necessarily
fixed?

In the light of the previous paragraph, we note that a positive answer to (II)
would imply a positive answer to (I).

The answers to the above questions depend only on the isomorphism
class of the Banach space E. This follows from the theorem of Eidelheit,
which states that two Banach spaces E and F are isomorphic if and only
if the corresponding Banach algebras B(E) and B(F ) are isomorphic (e.g.,
see [12, Theorem 2.5.7]).

After presenting some preliminary material in Section 2, we shall use
a counting argument in Section 3 to answer question (I) positively for a
large class of Banach spaces, including all separable Banach spaces which
contain an infinite-dimensional, closed, complemented subspace with an un-
conditional basis, and more generally, all separable Banach spaces with an
unconditional Schauder decomposition (see Corollary 3.3 for details).

We then turn our attention to question (II). Section 4 begins with the
following dichotomy, which can be viewed as the analogue of the fact that an
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ultrafilter on a set M is either fixed (in the sense that it consists of precisely
those subsets of M which contain a fixed element x ∈ M), or contains the
Fréchet filter of all cofinite subsets of M .

Theorem 1.1 (Dichotomy for maximal left ideals). Let E be a non-zero
Banach space. Then, for each maximal left ideal L of B(E), exactly one of
the following two alternatives holds:

(i) L is fixed; or
(ii) L contains F (E).

Remark 1.2. (i) Since F (E) = B(E) for each finite-dimensional Ba-
nach space E, no proper left ideal of B(E) satisfies condition (ii) of Theo-
rem 1.1. Hence, by this theorem, each maximal left ideal of B(E) is fixed
whenever E is finite-dimensional.

(ii) Another immediate consequence of Theorem 1.1 is that question (II)
has a positive answer for a Banach space E if and only if F (E) is not
contained in any finitely-generated, maximal left ideal of B(E).

(iii) In Corollary 4.1 below, we shall deduce from Theorem 1.1 a slightly
stronger, but also more technical, conclusion that involves the larger ideal of
inessential operators instead of F (E).

The other main result to be proved in Section 4 is the following dichotomy
for closed left ideals of B(E) that are not necessarily maximal.

Theorem 1.3 (Dichotomy for closed left ideals). Let E be a non-zero
Banach space, let L be a closed left ideal of B(E), and suppose that E is
reflexive or that L is finitely generated. Then exactly one of the following
two alternatives holds:

(i) L is contained in a fixed maximal left ideal; or
(ii) L contains F (E).

We note that Theorems 1.1 and 1.3 are genuine dichotomies, in the sense
that in both theorems the two alternatives (i) and (ii) are mutually ex-
clusive because, as observed above, no fixed maximal left ideal of B(E)
contains F (E).

The purpose of Sections 5 and 6 is to show that question (II) has a
positive answer for many Banach spaces, both ‘classical’ and more ‘exotic’
ones. We can summarize our results as follows, and refer to Sections 5 and 6
for full details, including precise definitions of any unexplained terminology.

Theorem 1.4. Let E be a Banach space which satisfies one of the fol-
lowing six conditions:

(i) E has a Schauder basis and is complemented in its bidual;
(ii) E is isomorphic to the dual space of a Banach space with a Schauder

basis;
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(iii) E is an injective Banach space;
(iv) E = c0(I), E = H, or E = c0(I)⊕H, where I is a non-empty index

set and H is a Hilbert space;
(v) E is a Banach space which has few operators;
(vi) E = C(K), where K is a compact Hausdorff space without isolated

points, and each operator on C(K) is a weak multiplication.

Then each finitely-generated, maximal left ideal of B(E) is fixed.

On the other hand, there is a Banach space for which the answer to
question (II) is negative; this is the main result of Section 7. Its statement
involves Argyros–Haydon’s Banach space having very few operators. We de-
note this space by XAH, and refer to Theorem 7.5 for a summary of its main
properties.

Theorem 1.5. Let E = XAH ⊕ `∞. Then the set

(1.2) K1 =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : T1,1 is compact

}
is a maximal two-sided ideal of codimension one in B(E), and hence also a
maximal left ideal. Moreover, K1 is singly generated as a left ideal, and it is
not fixed.

This theorem suggests that the Banach space E = XAH⊕`∞ is a natural
candidate for providing a negative answer to question (I). However, as we
shall also show in Section 7, it does not.

Theorem 1.6. Let E = XAH ⊕ `∞. Then the ideal K1 given by (1.2) is
the unique non-fixed, finitely-generated, maximal left ideal of B(E). Hence

(1.3) W2 =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : T2,2 is weakly compact

}
,

which is a maximal two-sided ideal of B(E), is not contained in any finitely-
generated, maximal left ideal of B(E).

To conclude this summary of our results, let us point out that ques-
tion (II) remains open in some important cases, notably for E = C(K),
where K is any infinite, compact metric space such that C(K) is not iso-
morphic to c0.

As a final point, we shall explain how our work fits into a more general
context. The main motivation behind question (I) comes from the fact that
it is the special case where A = B(E) for a Banach space E of the following
conjecture, raised and discussed in [13]:
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Let A be a unital Banach algebra such that every maximal left ideal
of A is finitely generated. Then A is finite-dimensional.

A stronger form of this conjecture in the case where A is commutative was
proved by Ferreira and Tomassini [15]; extensions of this result are given
in [13]. The conjecture is also known to be true for C∗-algebras; for a proof
and a generalization of this result to the class of Hilbert C∗-modules, see [7].

The above conjecture was suggested by Sinclair and Tullo’s theorem [49],
which states that a Banach algebra A is finite-dimensional if each closed
left ideal of A (not just each maximal one) is finitely generated. This re-
sult has been generalized by Boudi [8], who showed that the conclusion
that A is finite-dimensional remains true under the formally weaker hypo-
thesis that each closed left ideal of A is countably generated. (Boudi’s the-
orem can in fact be deduced from Sinclair and Tullo’s theorem because a
closed, countably-generated left ideal is necessarily finitely generated, by [13,
Proposition 1.5].)

Another result that is related to our general theme, but of a different
flavour from those just mentioned, is due to Grønbæk [22, Proposition 7.3],
who has shown that, for a Banach space E with the approximation property,
the mapping

F 7→ span{x⊗ λ : x ∈ E, λ ∈ F}
is an isomorphism of the lattice of closed linear subspaces F of the dual space
of E onto the lattice of closed left ideals of the Banach algebra of compact
operators on E.

2. Preliminaries. Our notation is mostly standard. We write |M | for
the cardinality of a set M . As usual, ℵ0 and ℵ1 denote the first and sec-
ond infinite cardinals, respectively, while c = 2ℵ0 is the cardinality of the
continuum.

Let E be a Banach space, always supposed to be over the complex field C.
We denote by IE the identity operator on E. For a non-empty set I, we define

`∞(I, E) = {f : I→ E : ‖f‖∞ <∞}, where ‖f‖∞ = sup
i∈I
‖f(i)‖,

so that `∞(I, E) is a Banach space with respect to the norm ‖ · ‖∞. The
following special conventions apply:

• `∞(I) = `∞(I,C);
• `∞ = `∞(N);
• En = `∞

(
{1, . . . , n}, E

)
for each n ∈ N.

We write E∗ for the (continuous) dual space of the Banach space E. The
duality bracket between E and E∗ is 〈 · , · 〉, while κE : E → E∗∗ denotes
the canonical embedding of E into its bidual. By an operator we understand
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a bounded, linear operator between Banach spaces; we write B(E,F ) for
the Banach space of all operators from E to another Banach space F , and
denote by T ∗ ∈ B(F ∗, E∗) the adjoint of an operator T ∈ B(E,F ).

We shall require the following standard notions for T ∈ B(E,F ) :

(i) T is a finite-rank operator if it has finite-dimensional range. We
write F (E,F ) for the set of finite-rank operators from E to F . It
is well known that

F (E,F ) = span{y ⊗ λ : y ∈ F, λ ∈ E∗},
where y ⊗ λ denotes the rank-one operator given by

y ⊗ λ : x 7→ 〈x, λ〉y, E → F (y ∈ F, λ ∈ E∗).
The following elementary observation will be used several times:

(2.1) R(y ⊗ λ)S = (Ry)⊗ (S∗λ) (y ∈ F, λ ∈ E∗),
valid for any Banach spaces D, E, F , and G and any S ∈ B(D,E)
and R ∈ B(F,G).

(ii) T is compact if the image under T of the unit ball of E is a rela-
tively norm-compact subset of F . We write K (E,F ) for the set of
compact operators from E to F .

(iii) T is weakly compact if the image under T of the unit ball of E is a
relatively weakly compact subset of F . We write W (E,F ) for the
set of weakly compact operators from E to F .

(iv) T is bounded below if, for some ε > 0, we have ‖Tx‖ ≥ ε‖x‖ for
each x ∈ E, or equivalently, T is injective and has closed range.
This notion is dual to surjectivity in the following precise sense
(e.g., see [38, Theorem 3.1.22]):

(2.2)
T is surjective ⇔ T ∗ is bounded below,

T is bounded below ⇔ T ∗ is surjective.

(v) T is strictly singular if no restriction of T to an infinite-dimensional
subspace of E is bounded below, that is, for each ε > 0, each
infinite-dimensional subspace of E contains a unit vector x with
‖Tx‖ ≤ ε. We write S (E,F ) for the set of strictly singular oper-
ators from E to F .

(vi) T is a Fredholm operator if its kernel is finite-dimensional and its
range is finite-codimensional, in which case T has closed range.

(vii) T is an upper semi-Fredholm operator if it has finite-dimensional
kernel and closed range.

(viii) T is inessential if IE − ST is a Fredholm operator for each S
∈ B(F,E). We write E (E,F ) for the set of inessential operators
from E to F .
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The six classes B, F , K , W , S , and E introduced above define operator
ideals in the sense of Pietsch [43], all of which except F are closed. The
following inclusions always hold:

F (E,F ) ⊆ K (E,F ) ⊆ W (E,F ) ∩S (E,F )

⊆ S (E,F ) ⊆ E (E,F ) ⊆ B(E,F );

no others are true in general (even in the case where E = F ). In line with
common practice, we set I (E) = I (E,E) for each of the above operator
ideals I .

We remark that a left, right, or two-sided ideal of B(E) is proper if and
only if it does not contain the identity operator IE . This shows in particular
that the two-sided ideal E (E) (and hence also F (E), K (E), and S (E)) is
proper whenever E is infinite-dimensional.

Remark 2.1. The ideal of inessential operators on a single Banach space
E was originally introduced by Kleinecke [30] as the preimage of the Jacob-
son radical of the Calkin algebra B(E)

/
F (E), following Yood’s observa-

tion [53, p. 615] that this radical may be non-zero. The early theory of
inessential operators is expounded in the monograph [9] of Caradus, Pfaffen-
berger, and Yood. Pietsch [43] subsequently gave the ‘operator ideal’ defi-
nition of E (E,F ) stated in (viii) above, and showed that it coincides with
Kleinecke’s original definition in the case where E = F .

The following notion is central to this paper. Let Γ be a non-empty
subset of B(E) for some Banach space E. The left ideal generated by Γ
is the smallest left ideal LΓ of B(E) that contains Γ . It can be described
explicitly as

(2.3) LΓ =
{ n∑
j=1

SjTj : S1, . . . , Sn ∈ B(E), T1, . . . , Tn ∈ Γ, n ∈ N
}
.

A left ideal L of B(E) is singly (respectively, finitely, countably) generated if
L = LΓ for some singleton (respectively, non-empty and finite, countable)
subset Γ of B(E).

In the case where Γ is a non-empty, norm-bounded subset of B(E), we
can define an operator ΨΓ : E → `∞(Γ,E) by

(2.4) (ΨΓx)(T ) = Tx (x ∈ E, T ∈ Γ ).
In particular, when Γ is finite, say Γ = {T1, . . . , Tn}, where n ∈ N and
T1, . . . , Tn are distinct, we shall identify `∞(Γ,E) with En in the natural
way. Then

(2.5) ΨΓ =
n∑
j=1

ιjTj ∈ B(E,En),
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where ιj : E → En denotes the canonical jth coordinate embedding, and
(2.3) simplifies to

(2.6) LΓ =
{ n∑
j=1

SjTj : S1, . . . , Sn ∈ B(E)
}
= {SΨΓ : S ∈ B(En, E)}.

The operator ΨΓ will play a key role in our work. At the moment we only
give one, very simple, application of ΨΓ , showing that each finitely-generated
left ideal of operators is already singly generated for most ‘classical’ Banach
spaces.

Proposition 2.2. Let E be a Banach space which contains a comple-
mented subspace that is isomorphic to E ⊕ E. Then each finitely-generated
left ideal of B(E) is singly generated.

Proof. Let Γ be a non-empty, finite subset of B(E) with n = |Γ | ∈ N. By
the assumption, E contains a complemented subspace which is isomorphic
to En, and hence there are operators U ∈ B(En, E) and V ∈ B(E,En)
such that IEn = V U . We shall now complete the proof by showing that the
left ideal LΓ is generated by the single operator T = UΨΓ ∈ B(E).

By (2.6), we have T ∈ LΓ , so that L{T} ⊆ LΓ .
Conversely, each R ∈ LΓ has the form R = SΨΓ for some S ∈ B(En, E)

by (2.6), and therefore R = S(V U)ΨΓ = (SV )T ∈ L{T}.

Remark 2.3. Not all finitely-generated, maximal left ideals in a Banach
algebra are singly generated. For instance, let

B = {(z, w) ∈ C2 : |z|2 + |w|2 ≤ 1}
be the closed unit ball in C2, and consider the ‘polyball algebra’ A on B, so
that by definition A is the closure with respect to the uniform norm of the
polynomials in two variables restricted to B. It is shown in [51, Example 15.8]
that the maximal ideal M = {f ∈ A : f(0, 0) = 0} of A is generated by
the two coordinate functionals, but on the other hand, it is clear that M is
not singly generated.

It is significantly harder to find a Banach space E such that B(E) con-
tains a maximal left ideal which is finitely, but not singly, generated. Such
an example has, however, recently been obtained [29].

Our next result collects some basic facts about the fixed maximal left
ideals of B(E); most of these were already stated in the Introduction.

Proposition 2.4. Let x and y be non-zero elements of a Banach space E.
Then:

(i) the set MLx given by (1.1) is the left ideal of B(E) generated by
the projection IE − x⊗ λ, where λ ∈ E∗ is any functional such that
〈x, λ〉 = 1;
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(ii) the left ideal MLx is maximal;
(iii) MLx = MLy if and only if x and y are proportional.

In particular, B(E) contains |E| distinct, fixed maximal left ideals whenever
E is infinite-dimensional.

Proof. (i) Let P = IE − x⊗ λ. The set MLx is clearly a left ideal which
contains P , and hence L{P} ⊆ MLx. The reverse inclusion holds because
T (x⊗ λ) = 0 for each T ∈MLx, so that T = TP ∈ L{P}.

(ii) The left ideal MLx is evidently proper. To verify that it is maximal,
suppose that T ∈ B(E) \MLx. Then Tx 6= 0, so that 〈Tx, µ〉 = 1 for
some µ ∈ E∗. The operator S = IE − (x ⊗ µ)T belongs to MLx because
(x⊗ µ)Tx = 〈Tx, µ〉x = x, and consequently

IE = S + (x⊗ µ)T ∈MLx + L{T}.

(iii) It is clear that MLx = MLy if x and y are proportional. We prove
the converse by contraposition. Suppose that x and y are linearly indepen-
dent. Then we can take λ ∈ E∗ such that 〈x, λ〉 = 1 and 〈y, λ〉 = 0, and
hence x⊗ λ ∈MLy \MLx.

We conclude this preliminary section with the observation that the an-
swer to the analogue of question (I) for two-sided ideals is negative, as the
following example shows.

Example 2.5. Consider the Hilbert space H = `2(ℵ1), and take a pro-
jection P ∈ B(H) with separable, infinite-dimensional range. The ideal clas-
sification of Gramsch [20] and Luft [37] implies that the ideal X (H) of op-
erators with separable range is the unique maximal two-sided ideal of B(H).
Given T ∈ X (H), let Q ∈ B(H) be the orthogonal projection onto T (H).
Then T = QT , and also Q = VPU for some operators U, V ∈ B(H), so
that T = VPUT . Hence X (H) is the two-sided ideal of B(H) generated
by the single operator P . Since X (H) is the only maximal two-sided ideal
of B(H), we conclude that each maximal two-sided ideal of B(H) is singly
generated, and therefore the analogue of question (I) for two-sided ideals has
a negative answer.

With slightly more work, we can give a similar example based on a sep-
arable Banach space. To this end, consider the pth quasi-reflexive James
space Jp for some p ∈ (1,∞). Edelstein and Mityagin [39] observed that
the two-sided ideal W (Jp) of weakly compact operators is maximal because
it has codimension one in B(Jp), and B(Jp) contains no other maximal
two-sided ideals by [32, Theorem 4.16]. We shall now show that W (Jp) is
singly generated as a two-sided ideal. Let

J (n)
p = {(αj)j∈N ∈ Jp : αj = 0 (j > n)} (n ∈ N).
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Then the Banach space

J (∞)
p =

(⊕
n∈N

J (n)
p

)
`p

is reflexive and isomorphic to a complemented subspace of Jp. (The latter
observation is due to Edelstein and Mityagin [39, Lemma 6(d)]; an alterna-
tive approach can be found in [32, Proposition 4.4(iv)].) Take a projection
P ∈ B(Jp) whose range is isomorphic to J

(∞)
p . By [33, Theorem 4.3], we

have

W (Jp) = {TS : S ∈ B(Jp, J
(∞)
p ), T ∈ B(J (∞)

p , Jp)}
= {VPU : U, V ∈ B(Jp)},

so that W (Jp) is the two-sided ideal of B(Jp) generated by the single oper-
ator P . On the other hand, Corollary 4.8 below will show that W (Jp) is not
finitely generated as a left ideal because Jp is non-reflexive.

3. Counting maximal left ideals. Let E be an infinite-dimensional
Banach space. An infinite family (Eγ)γ∈Γ of non-zero, closed subspaces of E
is an unconditional Schauder decomposition of E if, for each x ∈ E, there
is a unique family (xγ)γ∈Γ with xγ ∈ Eγ for each γ ∈ Γ such that the
series

∑
γ∈Γ xγ converges unconditionally to x. In this case we can associate

a projection PΥ ∈ B(E) with each subset Υ of Γ by the definitions

(3.1) P∅ = 0 and PΥx =
∑
γ∈Υ

xγ (x ∈ E) for Υ 6= ∅,

where (xγ)γ∈Γ is related to x as above.
Using this notion, we can transfer a classical algebraic result of Rosen-

berg [47] to B(E).

Theorem 3.1. Let E be a non-zero Banach space with an unconditional
Schauder decomposition (Eγ)γ∈Γ . Then the Banach algebra B(E) contains
at least 22|Γ | maximal left ideals which are not fixed.

Proof. The power set P(Γ ) of Γ is a Boolean algebra, and

I = {Υ ∈ P(Γ ) : |Υ | < |Γ |}
is a proper Boolean ideal of P(Γ ). Since Γ is infinite, a classical result of
Pospíšil (see [45], or [11, Corollary 7.4] for an exposition) states that the
collection MI of maximal Boolean ideals of P(Γ ) containing I has cardinal-
ity 22

|Γ | .
For each M ∈ MI, let P(M) = {PΥ : Υ ∈ M} ⊆ B(E), where PΥ

is the projection given by (3.1). Assume towards a contradiction that the
left ideal LP(M) is not proper. Then, for some n ∈ N, there are operators
T1, . . . , Tn ∈ B(E) and sets Υ1, . . . , Υn ∈ M such that IE =

∑n
j=1 TjPΥj .
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Right-composing both sides of this identity with the projection PΓ\Υ , where
Υ =

⋃n
j=1 Υj ∈ M, we obtain PΓ\Υ = 0, so that Γ = Υ ∈ M, which

contradicts the fact that M is a proper Boolean ideal.
We can therefore choose a maximal left ideal MM of B(E) such that

LP(M) ⊆ MM. This maximal left ideal MM cannot be fixed because, for
each x ∈ E \ {0}, we have x =

∑
γ∈Γ P{γ}x, so that P{γ}x 6= 0 for some

γ ∈ Γ . Hence P{γ} /∈ MLx, but on the other hand P{γ} ∈ LP(M) ⊆ MM

since {γ} ∈ I ⊆M.
Consequently, we have a mapping M 7→ MM from MI into the set of

non-fixed, maximal left ideals of B(E). We complete the proof by showing
that this mapping is injective. Suppose that M,N ∈ MI are distinct, and
take a set Υ ∈ M \ N. The maximality of N implies that Γ \ Υ ∈ N, and
therefore

IE = PΥ + PΓ\Υ ∈ LP(M) + LP(N) ⊆MM + MN.

Thus, since the left ideals MM and MN are proper, they are distinct.

Corollary 3.2. Let E be a non-zero Banach space with an uncondi-
tional Schauder decomposition (Eγ)γ∈Γ , and suppose that E contains a dense
subset D such that 2|D| < 22

|Γ | . Then B(E) contains at least 22|Γ | maximal
left ideals which are not finitely generated.

Proof. Since each element of E is the limit point of a sequence in D, we
have |E| ≤ |D|ℵ0 . Further, each operator on E is uniquely determined by its
action on D, and consequently

(3.2) |B(E)| ≤ |ED| = |E||D| ≤ (|D|ℵ0)|D| = |D||D| = 2|D|,

where the final equality follows from [25, Lemma 5.6], for example. Hence
B(E) contains at most (2|D|)ℵ0 = 2|D| countable subsets, so that B(E)
contains at most 2|D| countably-generated left ideals. On the other hand,
Theorem 3.1 implies that there are at least 22|Γ | distinct maximal left ideals
of B(E). We have 2|D| < 22

|Γ | by the assumption, and hence B(E) contains
at least 22

|Γ | maximal left ideals which are not countably generated, and
thus not finitely generated.

The most important case of this corollary is as follows.

Corollary 3.3. Let E be a non-zero, separable Banach space with an
unconditional Schauder decomposition (Eγ)γ∈Γ . Then B(E) contains pre-
cisely 2 c maximal left ideals which are not finitely generated.

Proof. The index set Γ is necessarily countable because E is separable.
Hence, by Corollary 3.2, B(E) contains at least 2 c maximal left ideals which
are not finitely generated. On the other hand, (3.2) implies that B(E) has
cardinality c, so that B(E) contains no more than 2 c distinct subsets.
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Example 3.4. (i) Let E be a Banach space with an unconditional Schau-
der basis (en)n∈N. Then E satisfies the conditions of Corollary 3.3, and hence
B(E) contains 2 c maximal left ideals which are not finitely generated.

The class of Banach spaces which have an unconditional Schauder basis
is large and includes for instance the classical sequence spaces c0 and `p for
p ∈ [1,∞), the Lebesgue spaces Lp[0, 1] for p ∈ (1,∞), the Lorentz and
Orlicz sequence spaces dw,p and hM (e.g., see [35, Chapter 4]), the Tsirelson
space T (e.g., see [35, Example 2.e.1]), and the Schlumprecht space S (see
[48, Proposition 2]).

(ii) Suppose that E is a Banach space containing an infinite-dimensional,
closed, complemented subspace F with an unconditional Schauder decompo-
sition (Fγ)γ∈Γ . Then E also has an unconditional Schauder decomposition,
obtained by adding any closed, complementary subspace of F to the collec-
tion (Fγ)γ∈Γ .

In particular, generalizing (ii), we see that each separable Banach space E
which contains an infinite-dimensional, closed, complemented subspace with
an unconditional Schauder basis satisfies the conditions of Corollary 3.3, and
hence B(E) contains 2 c maximal left ideals that are not finitely generated.
This applies for instance to E = L1[0, 1] because it contains a complemented
copy of `1 (e.g., see [1, Lemma 5.1.1]); to E = C(K) for any infinite, compact
metric space K because E contains a complemented copy of c0 (e.g., see [1,
Proposition 4.3.11]); to E = Jp for p ∈ (1,∞), the pth quasi-reflexive James
space, because Jp contains a complemented copy of `p (see [39, Lemma 6(d)]
or [32, Proposition 4.4(iii)]); and to E = K (X), where X is any Banach
space with an unconditional Schauder basis, because E contains a comple-
mented copy of c0 consisting of the compact operators whose matrix repre-
sentation with respect to the unconditional Schauder basis is diagonal.

(iii) There are separable Banach spaces E such that E has an uncon-
ditional Schauder decomposition (En)n∈N with each En finite-dimensional,
but E does not have an unconditional Schauder basis, notably Kalton and
Peck’s twisted `p-spaces Zp for p ∈ (1,∞) (see [28, Corollary 9] and the
remark following it). Each such Banach space E satisfies the conditions of
Corollary 3.3, and hence B(E) contains 2 c maximal left ideals which are not
finitely generated.

Remark 3.5. Corollary 3.3 is not true for all separable, infinite-dimen-
sional Banach spaces. Indeed, we shall show in Theorem 6.2 below that there
are separable, infinite-dimensional Banach spaces E such that B(E) contains
just one maximal left ideal which is not fixed, and this ideal is not finitely
generated.
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4. Proofs of the dichotomy Theorems 1.1 and 1.3. The main pur-
pose of this section is to prove Theorems 1.1 and 1.3. We begin with the
former, whose proof is elementary.

Proof of Theorem 1.1. Let L be a maximal left ideal of B(E) such
that F (E) 6⊆ L . Then there exist elements x ∈ E and λ ∈ E∗ such that
x ⊗ λ /∈ L . The maximality of L implies that IE − T (x ⊗ λ) ∈ L for
some operator T ∈ B(E), and Tx 6= 0 because L is proper. Choose µ ∈ E∗
such that 〈Tx, µ〉 = 1, and define P = IE − Tx⊗ µ ∈ B(E). We then have
PTx = 0, so that P = P (IE − T (x ⊗ λ)) ∈ L , and hence MLTx ⊆ L
by Proposition 2.4(i). Consequently, these two maximal left ideals are equal,
which shows that L is fixed.

Theorem 1.1 easily leads to the following stronger conclusion.

Corollary 4.1 (Strong dichotomy for maximal left ideals). Let E be
a non-zero Banach space. Then, for each maximal left ideal L of B(E),
exactly one of the following two alternatives holds:

(i) L is fixed; or
(ii) L contains E (E).

Proof. Let L be a non-fixed, maximal left ideal of B(E). Then L is
closed and contains F (E) by Theorem 1.1, so that F (E) ⊆ L , and thus
π(L ) is a maximal left ideal of the Calkin algebra B(E)

/
F (E), where

π : B(E)→ B(E)
/

F (E)

denotes the quotient homomorphism. In particular π(L ) contains the Jacob-
son radical of B(E)

/
F (E), which implies that L contains E (E) by Re-

mark 2.1, and therefore (ii) holds.

Remark 4.2. Corollary 4.1 can be seen as a counterpart for maximal
left ideals of [32, Proposition 6.6], which states that each maximal two-sided
ideal of B(E) contains E (E) for each infinite-dimensional Banach space E.

Remark 4.3. Let A be a unital C∗-algebra. We write a 7→ a? for the
involution on A . (This should not be confused with the notation T ∗ for
the adjoint of an operator T between Banach spaces used elsewhere in this
paper.) A state on A is a norm-one functional λ on A which is positive, in
the sense that 〈a?a, λ〉 ≥ 0 for each a ∈ A . Given a state λ on A , the set

Nλ = {a ∈ A : 〈a?a, λ〉 = 0}
is a closed left ideal of A by the Cauchy–Schwarz inequality (e.g., see [26,
Proposition 4.5.1] or [40, p. 93]). The collection of all states on A forms
a weak∗-compact, convex subset of the dual space of A , called the state
space of A . Its extreme points are the pure states on A . Prosser [46, The-
orem 6.2] has shown that the map λ 7→ Nλ gives a bijective correspondence
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between the pure states on A and the maximal left ideals of A ; exposi-
tions of this result can be found in [27, Theorem 10.2.10] and [40, Theo-
rem 5.3.5].

In the case where A = B(H) for some Hilbert space H, the fixed maxi-
mal left ideals correspond to the vector states, which are defined as follows.
Let x ∈ H be a unit vector. Then the functional ωx given by

〈T, ωx〉 = (Tx | x) (T ∈ B(H)),

where ( · | · ) denotes the inner product on H, is a pure state on B(H), called
the vector state induced by x; and we have MLx = Nωx , as is easy to check.
The conclusion of Corollary 4.1 is known in this case because K (H) = E (H),
and, by [27, Corollary 10.4.4], either each pure state λ on B(H) is a vector
state, or K (H) ⊆ kerλ, in which case K (H) ⊆ Nλ.

Finally, suppose that the Hilbert space H is separable and infinite-dim-
ensional. Then clearly B(H) has c vector states, whereas it has 2 c pure
states by [27, Proposition 10.4.15]. These conclusions also follow from Propo-
sition 2.4 and Example 3.4(i), respectively.

We shall now turn our attention to the proof of Theorem 1.3. This re-
quires some preparation. Let E be a Banach space. For each non-empty,
bounded subset Γ of B(E), we can define an operator ΩΓ from the Banach
space

`1(Γ,E
∗) =

{
g : Γ → E∗ :

∑
T∈Γ
‖g(T )‖ <∞

}
into E∗ by ΩΓ g =

∑
T∈Γ T

∗g(T ) for each g ∈ `1(Γ,E∗); that is,

(4.1) 〈x,ΩΓ g〉 =
∑
T∈Γ

〈
Tx, g(T )

〉
(x ∈ E, g ∈ `1(Γ,E∗)).

The following lemma lists some basic properties of this operator, as well as
of the operator ΨΓ given by (2.4), and explains their relevance to our present
purpose. To state it, we require the notion of the pre-annihilator ⊥M of a
subset M of a dual Banach space E∗:

⊥M =
{
x ∈ E : 〈x, λ〉 = 0 (λ ∈M)

}
.

Lemma 4.4. Let E be a non-zero Banach space, and let Γ be a non-
empty, bounded subset of B(E). Then:

(i) kerΨΓ = ⊥ΩΓ (`1(Γ,E
∗)), and a non-zero element x of E belongs to

this set if and only if LΓ ⊆MLx;
(ii) the following three conditions are equivalent:

(a) no fixed maximal left ideal of B(E) contains LΓ ;
(b) the operator ΨΓ is injective;
(c) the range of the operator ΩΓ is weak∗-dense in E∗.
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Now suppose either that the set Γ is finite or that the left ideal LΓ is closed.
Then:

(iii) for each λ ∈ E∗, the set Jλ = {y ⊗ λ : y ∈ E} is a left ideal
of B(E), and the following three conditions are equivalent:

(a) Jλ ⊆ LΓ ;
(b) y ⊗ λ ∈ LΓ for some y ∈ E \ {0};
(c) λ ∈ ΩΓ (`1(Γ,E∗));

(iv) the operator ΩΓ is surjective if and only if LΓ contains F (E).

Proof. (i) Suppose that x ∈ kerΨΓ . Then Tx = 0 for each T ∈ Γ , so
that (4.1) implies that x ∈ ⊥ΩΓ (`1(Γ,E∗)).

Conversely, suppose that x ∈ ⊥ΩΓ (`1(Γ,E∗)), and let T ∈ Γ and λ ∈ E∗
be given. Defining g ∈ `1(Γ,E∗) by g(T ) = λ and g(S) = 0 for S ∈ Γ \ {T},
we have 0 = 〈x,ΩΓ g〉 = 〈Tx, λ〉 by (4.1). Since λ ∈ E∗ was arbitrary, this
shows that Tx = 0, and hence x ∈ kerΨΓ .

To prove the second clause, we observe that for each x ∈ E \{0}, we have
x ∈ kerΨΓ if and only if Γ ⊆MLx, and hence if and only if LΓ ⊆MLx.

(ii) The equivalence of (a) and (b) is immediate from (i).
To see that (b) and (c) are equivalent, we observe that, by (i) and [38,

Proposition 2.6.6(c)], the weak∗ closure of the range of ΩΓ is equal to the
annihilator

(kerΨΓ )
⊥ = {λ ∈ E∗ : 〈x, λ〉 = 0 (x ∈ kerΨΓ )}

of kerΨΓ . Hence (b) implies (c). Conversely, suppose that (kerΨΓ )
⊥ = E∗.

Then [38, Proposition 1.10.15(c)] implies that kerΨΓ = ⊥(E∗) = {0}.
(iii) Equation (2.1) shows that Jλ is a left ideal.
The implication (a)⇒(b) is evident.
(b)⇒(c). Suppose that y⊗λ ∈ LΓ for some y ∈ E \ {0}. Then there are

n ∈ N, S1, . . . , Sn ∈ B(E), and T1, . . . , Tn ∈ Γ such that y⊗λ =
∑n

j=1 SjTj ,
where we may suppose that T1, . . . , Tn are distinct. Choose µ ∈ E∗ such that
〈y, µ〉 = 1, and define g : Γ → E∗ by

g(T ) =

{
S∗jµ if T = Tj for some j ∈ {1, . . . , n},
0 otherwise.

Then g has finite support, so trivially it belongs to `1(Γ,E∗), and ΩΓ g = λ
because (4.1) implies that

〈x,ΩΓ g〉 =
n∑
j=1

〈Tjx, S∗jµ〉 =
〈 n∑
j=1

SjTjx, µ
〉
= 〈(y ⊗ λ)x, µ〉 = 〈x, λ〉

for each x ∈ E. Hence λ ∈ ΩΓ (`1(Γ,E∗)).
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(c)⇒(a). Suppose that λ = ΩΓ g for some g ∈ `1(Γ,E∗). Then, for each
y ∈ E, we have

y ⊗ λ =
∑
T∈Γ

y ⊗ T ∗g(T ) =
∑
T∈Γ

(y ⊗ g(T ))T,

which belongs to LΓ because each term of the sum on the right-hand side
does, and either this sum is finite or LΓ is closed by the assumption.

(iv) Suppose that ΩΓ is surjective. Then (iii) implies that Jλ ⊆ LΓ for
each λ ∈ E∗, and consequently F (E) = span

⋃
λ∈E∗ Jλ ⊆ LΓ .

Conversely, suppose that F (E) ⊆ LΓ , and let λ ∈ E∗ be given. Since
Jλ ⊆ F (E), (iii) implies that λ ∈ ΩΓ (`1(Γ,E

∗)), so that the map ΩΓ is
surjective.

Corollary 4.5. Let E be a Banach space, and let Γ be a non-empty,
bounded subset of B(E) such that the left ideal LΓ is closed. Then the op-
erator ΩΓ has closed range.

Proof. We may suppose that E is non-zero. Consider a sequence (λj)j∈N
in ΩΓ (`1(Γ,E

∗)) that converges to some element λ ∈ E∗. Lemma 4.4(iii)
shows that Jλj ⊆ LΓ for each j ∈ N, and hence

y ⊗ λ = lim
j→∞

y ⊗ λj ∈ LΓ (y ∈ E)

because LΓ is closed, so that λ ∈ ΩΓ (`1(Γ,E∗)) by another application of
Lemma 4.4(iii). Thus ΩΓ has closed range.

We can now characterize the closed left ideals of B(E) that contain F (E)
as follows, provided either that E is reflexive or that we restrict our attention
to the closed left ideals that are finitely generated. Note that Theorem 1.3
is simply a restatement of the equivalence of conditions (a) and (f).

Theorem 4.6. Let E be a non-zero Banach space, let L be a closed left
ideal of B(E), and take a non-empty, bounded subset Γ of B(E) such that
L = LΓ . Suppose either that E is reflexive or that Γ is finite. Then the
following six conditions are equivalent:

(a) no fixed maximal left ideal of B(E) contains L ;
(b) the operator ΨΓ is injective;
(c) the operator ΨΓ is bounded below;
(d) the range of the operator ΩΓ is weak∗-dense in E∗;
(e) the operator ΩΓ is surjective;
(f) L contains F (E).

Proof. The following implications hold without supposing that E is re-
flexive or Γ is finite: Conditions (a), (b), and (d) are mutually equivalent by
Lemma 4.4(ii), while conditions (e) and (f) are equivalent by Lemma 4.4(iv).
Evidently (c) implies (b), and (e) implies (d). In fact, (e) implies (c), as



Maximal left ideals 261

we shall now show. Suppose that ΩΓ is surjective. We can define a linear
isometry ΞΓ : `1(Γ,E∗)→ `∞(Γ,E)∗ by

(4.2) 〈f,ΞΓ g〉 =
∑
T∈Γ
〈f(T ), g(T )〉 (f ∈ `∞(Γ,E), g ∈ `1(Γ,E∗)),

and ΩΓ = Ψ∗ΓΞΓ . Hence the surjectivity of ΩΓ implies that Ψ∗Γ is surjective,
and therefore ΨΓ is bounded below by (2.2).

The remaining implications do require further assumptions. We consider
first the case where E is reflexive. Then the weak and weak∗ topologies
on E∗ coincide, so that the range of ΩΓ is weak∗-dense if and only if it is
weakly dense, if and only if it is norm-dense by Mazur’s theorem (e.g., see
[38, Theorem 2.5.16]). However, ΩΓ has closed range by Corollary 4.5, and
consequently (d) implies (e), which completes the proof in this case.

Secondly, suppose that the set Γ is finite. Then the isometry ΞΓ defined
by (4.2) above is an isomorphism, so that ΩΓ and Ψ∗Γ are equal up to an
isometric identification. Hence (c) and (e) are equivalent by (2.2). Moreover,
Corollary 4.5 shows that Ψ∗Γ has closed range, and therefore ΨΓ has closed
range by the closed range theorem (e.g., see [38, Theorem 3.1.21]). Thus (b)
implies (c), and the proof is complete.

For later reference, we note that the arguments which establish the equiv-
alence of conditions (c), (e), and (f) for finite Γ given in the first and last
paragraph of the proof of Theorem 4.6 above remain true in the case where
the left ideal L = LΓ is not necessarily closed. Hence we have the following
conclusion.

Corollary 4.7. Let E be a Banach space, and let Γ be a non-empty,
finite subset of B(E). Then the following three conditions are equivalent:

(a) the operator ΨΓ is bounded below;
(b) the operator ΩΓ is surjective;
(c) LΓ contains F (E).

An easy consequence of these results is that the ideal of weakly compact
operators is finitely generated as a left ideal only in the trivial case where it
is not proper.

Corollary 4.8. The following three conditions are equivalent for a Ba-
nach space E :

(a) W (E) is finitely generated as a left ideal;
(b) W (E) = B(E);
(c) the Banach space E is reflexive.

Proof. The equivalence of (b) and (c) is standard, and (b) obviously
implies (a).
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To see that (a) implies (c), suppose that W (E) = LΓ for some non-
empty, finite subset Γ = {T1, . . . , Tn} of B(E). It clearly suffices to consider
the case where E is non-zero. Theorem 4.6 (or Corollary 4.7) implies that
the operator ΨΓ is bounded below because W (E) contains F (E). Since the
operators T1, . . . , Tn are weakly compact, the same is true for ΨΓ by the
definition (2.5). Hence the Davis–Figiel–Johnson–Pełczyński factorization
theorem (see [14], or [36, Theorem 2.g.11] for an exposition) implies that,
for some reflexive Banach space F , there are operators R ∈ B(E,F ) and
S ∈ B(F,En) such that ΨΓ = SR. Now R is bounded below because ΨΓ is,
and therefore E is isomorphic to the subspace R(E) of the reflexive space F ,
so that E is reflexive.

We conclude this section with an example that shows that Theorem 4.6
may not be true if we drop the assumption that either the Banach space E
is reflexive or the set Γ is finite. This requires the following easy variant of
Lemma 4.4(iii).

Lemma 4.9. Let T be an operator on a Banach space E, and suppose
that y ⊗ λ ∈ L{T} for some y ∈ E \ {0} and λ ∈ E∗. Then λ ∈ T ∗(E∗).

Proof. Let (Sj)j∈N be a sequence in B(E) such that SjT → y ⊗ λ as
j →∞, and choose µ ∈ E∗ such that 〈y, µ〉 = 1. Then

T ∗(S∗jµ) = (SjT )
∗µ→ (y ⊗ λ)∗µ = 〈y, µ〉λ = λ as j →∞,

from which the conclusion follows.
Example 4.10. Let T be the operator on `∞ given by

(4.3) T (αj)j∈N =

(
−αn
2n

+
∞∑

j=n+1

αj
2j

)
n∈N

((αj)j∈N ∈ `∞).

Then T is compact and leaves the subspace c0 invariant. Define
T0 : x 7→ Tx, c0 → c0,

and consider the closed left ideal L = L{T0} of B(c0). We have L ⊆ K (c0)
because T0 is compact. Our aim is to show that L satisfies condition (a),
but not condition (f), of Theorem 4.6.

We begin by verifying that kerT = C(1, 1, . . .). First, it is clear that
T (1, 1, . . .) = (0, 0, . . .). Conversely, suppose that (αj)j∈N ∈ kerT . Then

αn
2n

=
∞∑

j=n+1

αj
2j

(n ∈ N),

so that
αn
2n

=
αn+1

2n+1
+

∞∑
j=n+2

αj
2j

=
αn+1

2n+1
+
αn+1

2n+1
=
αn+1

2n
(n ∈ N).

Hence αn = αn+1 for each n ∈ N, and the conclusion follows.
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This shows in particular that T0 is injective because c0 ∩ kerT = {0}.
Consequently, T0 /∈ MLx for each x ∈ c0 \ {0}, and so L satisfies condi-
tion (a) of Theorem 4.6.

On the other hand, identifying c∗∗0 with `∞ in the usual way, we find
that T ∗∗0 = T , which is not injective, so that T ∗0 does not have norm-dense
range by [38, Theorem 3.1.17(b)]. Take λ ∈ c∗0 \ T ∗0 (c∗0) and y ∈ E \ {0}.
Then, by Lemma 4.9, y ⊗ λ /∈ L , so that L does not satisfy condition (f)
of Theorem 4.6.

5. ‘Classical’ Banach spaces for which each finitely-generated,
maximal left ideal is fixed. The purpose of this section is to show that
question (II) has a positive answer for many standard Banach spaces E.

We begin by showing that a much stronger conclusion is true in cer-
tain cases, namely that no finitely-generated, proper left ideal of B(E) con-
tains F (E). This result relies on the following characterization of the finite
subsets Γ of B(E) that do not generate a proper left ideal in terms of stan-
dard operator-theoretic properties of ΨΓ .

Lemma 5.1. Let E be a non-zero Banach space. Then the following three
conditions are equivalent for each non-empty, finite subset Γ of B(E) :

(a) the operator ΨΓ is bounded below and its range is complemented
in E|Γ |;

(b) the operator ΨΓ is left invertible;
(c) LΓ = B(E).

Proof. The equivalence of (a) and (b) is an easy standard result, true for
any operator between Banach spaces, while the equivalence of (b) and (c)
follows immediately from (2.6).

Proposition 5.2. Let E be a Banach space, and let n ∈ N. Then F (E)
is contained in a proper left ideal of B(E) generated by n operators if and
only if En contains a closed subspace which is isomorphic to E and which is
not complemented in En.

Proof. We may suppose that E is non-zero, and prove both implications
by contraposition.

‘⇒’ Suppose that every closed subspace of En that is isomorphic to E
is complemented in En, and let Γ be a subset of B(E) of cardinality n such
that F (E) ⊆ LΓ . We must prove that LΓ = B(E); that is, by Lemma 5.1,
we must show that the operator ΨΓ is bounded below and has complemented
range. Corollary 4.7 implies that ΨΓ is indeed bounded below, and its range is
therefore a closed subspace of En isomorphic to E, so that it is complemented
by the assumption.
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‘⇐’ Suppose that B(E) is the only left ideal with (at most) n generators
that contains F (E), and let F be a closed subspace of En such that F is
isomorphic to E. We must prove that F is complemented in En. Take an
operator T ∈ B(E,En) which is bounded below and has range F , and let
Tj = ρjT ∈ B(E), where

ρj : (xk)
n
k=1 7→ xj , En → E (j ∈ {1, . . . , n}).

Re-ordering the coordinates of En, we may suppose that there exists a num-
ber m ≤ n such that T1, . . . , Tm are distinct and the set Γ = {T1, . . . , Tm}
contains Tj for each j ∈ {1, . . . , n}. Then ‖ΨΓx‖ = max1≤j≤m ‖Tjx‖ = ‖Tx‖
for each x ∈ E, so that ΨΓ is bounded below, and therefore LΓ con-
tains F (E) by Corollary 4.7. Now the assumption implies that LΓ = B(E);
that is, we can find an operator S ∈ B(Em, E) such that

IE = SΨΓ = S
( m∑
j=1

ιjρj

)
T.

Hence T has a left inverse, and consequently its range, which is equal to F ,
is complemented in En.

Combining this result with Theorem 1.1, we reach the following conclu-
sion.

Corollary 5.3. Let E be a non-zero Banach space such that, for each
n ∈ N, every closed subspace of En that is isomorphic to E is complemented
in En. Then B(E) is the only finitely-generated left ideal of B(E) which
contains F (E), and hence each finitely-generated, maximal left ideal of B(E)
is fixed.

Example 5.4. The condition of Corollary 5.3 on the Banach space E is
satisfied in each of the following three cases:

(i) E is a Hilbert space.
(ii) E is an injective Banach space, that is, whenever a Banach space F

contains a closed subspace G which is isomorphic to E, then G is comple-
mented in F . For instance, the Banach space E = `∞(I) is injective for
each non-empty set I. More generally, C(K) is injective whenever the Haus-
dorff space K is Stonean (that is, compact and extremely disconnected), as
shown by Goodner [18] and Nachbin [41] for real scalars and generalized to
the complex case by Cohen [10].

(iii) E = c0(I) for a non-empty set I (this follows from Sobczyk’s theo-
rem [50] for countable I and from [21] (or [3, Proposition 2.8]) in the general
case); here c0(I) denotes the closed subspace of `∞(I) consisting of those
functions f : I → C for which the set

{
i ∈ I : |f(i)| ≥ ε

}
is finite for each

ε > 0.
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Thus, in each of these three cases, B(E) is the only finitely-generated left
ideal of B(E) which contains F (E), and each finitely-generated, maximal
left ideal of B(E) is fixed.

Our next goal is to prove a result (Theorem 5.8) which, under much
less restrictive conditions on the Banach space E than Corollary 5.3, gives
the slightly weaker conclusion that B(E) is the only finitely-generated left
ideal of B(E) which contains K (E). We note in particular that Corollary 4.1
ensures that this conclusion is still strong enough to ensure that each finitely-
generated, maximal left ideal of B(E) is fixed, thus answering question (II)
positively for a large number of Banach spaces.

Let E be a Banach space with a Schauder basis e = (ej)j∈N. For each
k ∈ N, we denote by Pk the kth basis projection associated with e. The basis
constant of e is

Ke = sup{‖Pk‖ : k ∈ N} ∈ [1,∞).

The basis e is monotone if Ke = 1.
Lemma 5.5. Let E be a Banach space with a Schauder basis e = (ej)j∈N,

and let γ = (γj)j∈N be a decreasing sequence of non-negative real numbers.
Then

(5.1) ∆γ :
∞∑
j=1

αjej 7→
∞∑
j=1

γjαjej

defines an operator ∆γ on E of norm at most Keγ1. This operator is compact
if and only if γj → 0 as j →∞.

Proof. Equation (5.1) clearly defines a linear mapping ∆γ from the dense
subspace span{ej : j ∈ N} of E into E, and so it suffices to show that
this mapping is bounded with norm at most Keγ1. Now, for each element
x =

∑k
j=1 αjej of span{ej : j ∈ N}, where k ∈ N and α1, . . . , αk ∈ C, we

have

∆γx = γ1P1x+

k∑
j=2

γj(Pjx− Pj−1x) =
k−1∑
j=1

(γj − γj+1)Pjx+ γkx,

and thus

‖∆γx‖ ≤
k−1∑
j=1

(γj − γj+1)Ke‖x‖+ γk‖x‖ ≤ Keγ1‖x‖,

as required.
To prove the final clause, we note that, by a standard result, (Pj)j∈N

is a bounded left approximate identity for K (E) (e.g., see [12, p. 318]), so
that ∆γ is compact if and only if Pj∆γ → ∆γ as j →∞. Hence the estimates

γj+1 ≤ ‖(IE − Pj)∆γ‖ ≤ Ke(Ke + 1)γj+1 (j ∈ N),
which are easy to verify, give the result.
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Corollary 5.6. Let E be a Banach space which has a Schauder basis
e = (ej)j∈N, let k ∈ N, and let η = (ηj)

k
j=1 be an increasing k-tuple of

non-negative real numbers. Then

(5.2) Θη :
∞∑
j=1

αjej 7→
k∑
j=1

ηjαjej

defines an operator on E of norm at most 2Keηk.

Proof. Define

fj =

{
ek−j+1 for j ≤ k,
ej for j > k.

Then f = (fj)j∈N is a Schauder basis for E (because we have re-ordered only
finitely many vectors of the original basis e), and the mth basis projection
associated with f is given by Pk − Pk−m for m < k and Pm for m ≥ k, so
that Kf ≤ 2Ke. Now Lemma 5.5 gives the desired conclusion because

Θη = ∆γ :

∞∑
j=1

αjfj 7→
∞∑
j=1

γjαjfj , E → E,

where γ = (γj)j∈N is the decreasing sequence (ηk, ηk−1, . . . , η1, 0, 0, . . .).

We now come to our key lemma.

Lemma 5.7. Let E be a Banach space with a monotone Schauder basis,
and let Γ be a non-empty, finite subset of B(E) for which F (E) ⊆ LΓ .
Then the sequence (tj)j∈N given by

(5.3) tj = inf{‖T‖ : T ∈ B(E|Γ |, E), Pj = TΨΓ } ∈ (0,∞) (j ∈ N)

is increasing.
Suppose that (tj)j∈N is unbounded, and let γ = (t

−1/2
j )j∈N. Then the

operator ∆γ given by (5.1) is compact and does not belong to LΓ .

Proof. Set n = |Γ | ∈ N. For each j ∈ N, we have Pj ∈ F (E) ⊆ LΓ ,
so that (2.6) ensures that the set appearing in the definition (5.3) of tj
is non-empty, and further that tj ≥ ‖ΨΓ ‖−1 > 0. To see that tj+1 ≥ tj ,
suppose that Pj+1 = TΨΓ for some T ∈ B(En, E). Then Pj = (PjT )ΨΓ ,
so that tj ≤ ‖PjT‖ ≤ ‖T‖ by the monotonicity of the Schauder basis
for E.

The first part of the final clause (that ∆γ is compact if (tj)j∈N is un-
bounded) is immediate from Lemma 5.5. We prove the second part by contra-
position. Suppose that ∆γ ∈ LΓ , so that ∆γ = SΨΓ for some S ∈ B(En, E).
Then, for each k ∈ N, we have a commutative diagram



Maximal left ideals 267

E
Pk //

∆γ

##

ΨΓ

��

E

En
S // E

Θη(k)

OO

where η(k) = (t
1/2
j )kj=1 and the operator Θη(k) is given by (5.2). Hence, by

the definition (5.3) of tk and Corollary 5.6, we obtain

tk ≤ ‖Θη(k)S‖ ≤ 2t
1/2
k ‖S‖,

which implies that the sequence (tj)j∈N is bounded by 4‖S‖2.
Theorem 5.8. Let E be a Banach space which is complemented in its

bidual and has a Schauder basis. Then B(E) is the only finitely-generated
left ideal of B(E) which contains K (E), and hence each finitely-generated,
maximal left ideal of B(E) is fixed.

Proof. Let e = (ej)j∈N be a Schauder basis for E. By passing to an
equivalent norm on E, we may suppose that e is monotone. Suppose that
Γ is a non-empty, finite subset of B(E) such that K (E) ⊆ LΓ , and set
n = |Γ | ∈ N. Lemma 5.7 implies that the sequence (tj)j∈N given by (5.3) is
bounded, so that we can find a bounded sequence (Tj)j∈N in B(En, E) such
that Pj = TjΨΓ for each j ∈ N.

We may identify B(En, E∗∗) with the dual space of the projective tensor
product En ⊗̂ E∗; the duality bracket is given by

〈x⊗ λ, S〉 = 〈λ, Sx〉 (x ∈ En, λ ∈ E∗, S ∈ B(En, E∗∗))

(e.g., see [12, Proposition A.3.70]). Hence B(En, E∗∗) carries a weak∗ topo-
logy, with respect to which its unit ball is compact, and so the sequence
(κETj)j∈N has a weak∗-accumulation point, say T ∈ B(En, E∗∗). Then, for
each j ∈ N, λ ∈ E∗, and ε > 0, we can find an integer k ≥ j such that

ε ≥ |〈ΨΓ ej ⊗ λ, T − κETk〉| = |〈λ, (T − κETk)ΨΓ ej〉| = |〈λ, TΨΓ ej − κEej〉|.
Since ε > 0 and λ ∈ E∗ were arbitrary, we conclude that TΨΓ ej = κEej ,
and therefore TΨΓ = κE . By the assumption, κE has a left inverse, say
Λ ∈ B(E∗∗, E). Consequently, IE = (ΛT )ΨΓ ∈ LΓ , and so LΓ = B(E).

Example 5.9. Theorem 5.8 implies that, for each of the spaces E = `p
or E = Lp[0, 1], where p ∈ (1,∞), B(E) is the only finitely-generated left
ideal of B(E) which contains K (E), and each finitely-generated, maximal
left ideal of B(E) is fixed. This conclusion is also true for p = 1; indeed, `1
is a dual space, and therefore complemented in its bidual, while L1[0, 1] is
complemented in its bidual by [1, Theorem 6.3.10].

Many other Banach spaces are known to be complemented in their bi-
duals. The following list gives some examples.
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(i) Let E be a Banach space which is isomorphic to a complemented
subspace of a dual Banach space, that is, for some Banach space F , there
are operators U ∈ B(E,F ∗) and V ∈ B(F ∗, E) with IE = V U . Then the
diagram

E
IE //

κE

((

U

��

E

E∗∗

U∗∗

��
F ∗∗∗

κ∗F

((
F ∗

κF∗
66

IF∗ // F ∗

V

OO

is commutative, which implies that the operator κEV κ∗FU
∗∗ is a projection

of E∗∗ onto κE(E), so that E is complemented in its bidual.
(ii) As a special case of (i), suppose that E is a non-zero Banach space

for which B(E) is isomorphic to a complemented subspace of a dual Banach
space. Then, as B(E) contains a complemented subspace isomorphic to E,
(i) implies that E is complemented in its bidual.

(It is easy to see that B(E) contains a complemented subspace isomor-
phic to E. Indeed, choose λ ∈ E∗ and y ∈ E with 〈y, λ〉 = 1, and consider
the operators Uλ : E → B(E) and Vy : B(E)→ E given by Uλx = x⊗ λ for
x ∈ E and Vy(T ) = Ty for T ∈ B(E). They satisfy VyUλ = IE , so that Uλ
is an isomorphism onto its range, and UλVy is a projection of B(E) onto the
range of Uλ.)

(iii) Let E be a Banach lattice which does not contain a subspace iso-
morphic to c0. Then E is complemented in its bidual by [36, Theorem 1.c.4].

Remark 5.10. Theorem 5.8 does not provide any new information for
Banach spaces of the form E = C(K), where K is a compact Hausdorff
space, because the assumption that C(K) is complemented in its bidual
implies that C(K) is injective, so that Example 5.4(ii) already applies.

A slight variation of the proof of Theorem 5.8 gives the following conclu-
sion.

Theorem 5.11. Let E be a non-zero Banach space with a Schauder ba-
sis. Then B(E∗) is the only finitely-generated left ideal of B(E∗) which con-
tains F (E∗), and hence each finitely-generated, maximal left ideal of B(E∗)
is fixed.

Proof. Suppose that F (E∗) ⊆ LΓ , where Γ is a non-empty, finite subset
of B(E∗), and set n = |Γ | ∈ N. As in the proof of Theorem 5.8, we may
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suppose that E has a monotone Schauder basis e. Then, arguing as in the
proof of Lemma 5.7, we see that the sequence

t′j = inf{‖T‖ : T ∈ B((E∗)n, E∗), P ∗j = TΨΓ } ∈ (0,∞) (j ∈ N)
is increasing and bounded. (Indeed, if the sequence (t′j)j∈N were unbounded,
then for γ = ((t′j)

−1/2)j∈N, we would have ∆∗γ ∈ F (E∗) \ LΓ , contrary
to our assumption.) Consequently, there exists a bounded sequence (Tj)j∈N
in B((E∗)n, E∗) such that P ∗j = TjΨΓ for each j ∈ N. Let T be a weak∗-
accumulation point of (Tj)j∈N, where we have identified B((E∗)n, E∗) with
the dual space of the projective tensor product E ⊗̂ (E∗)n via the duality
bracket given by

(5.4) 〈x⊗ µ, S〉 = 〈x, Sµ〉 (x ∈ E, µ ∈ (E∗)n, S ∈ B((E∗)n, E∗)).

For each x ∈ E, λ ∈ E∗, and ε > 0, we can find j0 ∈ N such that

‖x− Pjx‖ ≤ ε(2‖λ‖+ 1)−1

whenever j ≥ j0. Choosing j ≥ j0 such that |〈x ⊗ ΨΓλ, T − Tj〉| ≤ ε/2 and
applying (5.4), we then obtain

|〈x, (TΨΓ − IE∗)λ〉| ≤ |〈x, (TΨΓ − P ∗j )λ〉|+ |〈x, (IE − Pj)∗λ〉|
≤ |〈x, (T − Tj)ΨΓλ〉|+ |〈x− Pjx, λ〉| ≤ ε.

This implies that TΨΓ = IE∗ , and therefore LΓ = B(E∗).

Example 5.12. Theorem 5.11 applies in the following two cases which
have not been resolved yet:

(i) E = X ⊗̂X∗, where X is a Banach space with a shrinking Schauder
basis (this ensures that E has a Schauder basis). Then E∗ is isomorphic
to B(X∗), so that the conclusion is that each finitely-generated, maximal
left ideal of B(B(X∗)) is fixed. The most important case is where X,
and hence X∗, is a separable, infinite-dimensional Hilbert space; in this
case B(X∗) does not have the approximation property [52], which gives
this example a very different flavour from Examples 5.4 and 5.9 above.

(ii) E = (
⊕

n∈NEn)`1 , where (En)n∈N is a sequence of Banach spaces
with Schauder bases whose basis constants are uniformly bounded. Then E∗
is isomorphic to (

⊕
n∈NE

∗
n)`∞ , and so the conclusion is that each finitely-

generated, maximal left ideal of B((
⊕
E∗n)`∞) is fixed.

The conditions imposed on the Banach space E in Theorems 5.8 and 5.11
are clearly preserved under the formation of finite direct sums. In contrast,
this need not be the case for the condition of Corollary 5.3. For instance,
c0 and `∞ both satisfy this condition by Example 5.4(ii)–(iii), whereas their
direct sum c0⊕`∞ does not. We shall explore this situation in greater depth in
Section 7. Notably, as a particular instance of Theorem 7.3, we shall see that
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the main conclusion of Corollary 5.3 fails for E = c0⊕`∞ because F (c0⊕`∞)
is contained in a proper, closed, singly-generated left ideal of B(c0 ⊕ `∞).

We do not know the answer to question (II) for E = c0⊕ `∞, but the fol-
lowing result answers this question positively for another direct sum arising
naturally from Example 5.4, with the ideal S (E) of strictly singular oper-
ators taking the role that was played by F (E) in Corollary 5.3 and K (E)
in Theorem 5.8.

Proposition 5.13. Let E = c0(I)⊕H, where I is a non-empty set and
H is a Hilbert space. Then B(E) is the only finitely-generated left ideal of
B(E) which contains S (E), and hence each finitely-generated, maximal left
ideal of B(E) is fixed.

Proof. Let L be a finitely-generated left ideal of B(E) such that S (E)
is contained in L . We may suppose that I is infinite and H is infinite-
dimensional. Proposition 2.2 implies that L is generated by a single operator
T ∈ B(E), say, while Corollary 4.7 shows that T is bounded below and thus
is an upper semi-Fredholm operator.

We can represent T as a matrix of operators:

T =

(
T1,1 : c0(I)→ c0(I) T1,2 : H → c0(I)
T2,1 : c0(I)→ H T2,2 : H → H

)
.

Each operator from H to c0(I) is strictly singular because no infinite-dimen-
sional subspace of c0(I) is isomorphic to a Hilbert space. Similarly, each op-
erator from c0(I) to H is strictly singular. Hence, by [35, Proposition 2.c.10],

T −
(

0 T1,2

T2,1 0

)
=

(
T1,1 0

0 T2,2

)
is an upper semi-Fredholm operator, which clearly implies that T1,1 and T2,2
are upper semi-Fredholm operators. Let P1 ∈ F (c0(I)) and P2 ∈ F (H) be
projections onto the kernels of T1,1 and T2,2, respectively. Then

T̃1,1 : x 7→ T1,1x, kerP1 → T1,1(c0(I)),
is an isomorphism, so that T1,1(c0(I)) is isomorphic to kerP1, which in turn
is isomorphic to c0(I) (because kerP1 has finite codimension in c0(I)). Conse-
quently, as in Example 5.4(iii), T1,1(c0(I)) is complemented in c0(I), so that
we can extend the inverse of T̃1,1 to obtain an operator S1 ∈ B(c0(I)) which
satisfies S1T1,1 = Ic0(I) − P1. Similarly, we can find an operator S2 ∈ B(H)
such that S2T2,2 = IH − P2. In conclusion, we have

IE =

(
S1 0

0 S2

)
T +

(
P1 −S1T1,2

−S2T2,1 P2

)
∈ L + S (E) = L ,

and thus L = B(E).
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Since S (E) ⊆ E (E), the final clause follows immediately from Corol-
lary 4.1.

6. ‘Exotic’ Banach spaces for which each finitely-generated,
maximal left ideal is fixed. In this section, we shall answer question (II)
positively for two classes of custom-made Banach spaces of a distinctly non-
classical nature, using an approach which is completely different from the
one taken in Section 5. More precisely, for each Banach space E in either of
these two classes, we are able to describe all the maximal left ideals of B(E)
explicitly, and it will then follow easily that only the fixed maximal left ideals
are finitely generated. The reason that we can describe all the maximal left
ideals of B(E) is, roughly speaking, that B(E) is ‘small’. As we shall see,
in both cases each non-fixed, maximal left ideal of B(E) is a two-sided ideal
of codimension one.

We begin with a lemma which can be viewed as a counterpart of Corol-
lary 4.8 for left ideals of strictly singular operators.

Lemma 6.1. Let E be a Banach space, and let L be a left ideal of B(E)
such that F (E) ⊆ L ⊆ S (E). Then the following three conditions are
equivalent:

(a) L is finitely generated;
(b) L = B(E);
(c) E is finite-dimensional.

Proof. The implications (c)⇒(b)⇒(a) are clear.
To see that (a) implies (c), suppose that L = LΓ for some non-empty, fi-

nite subset Γ of B(E). Corollary 4.7 implies that the operator ΨΓ is bounded
below, while (2.5) and the fact that Γ ⊆ S (E) show that ΨΓ is strictly sin-
gular. Hence the domain E of ΨΓ is finite-dimensional.

A Banach space E has few operators if E is infinite-dimensional and
each operator on E is the sum of a scalar multiple of the identity operator
and a strictly singular operator; that is, B(E) = CIE + S (E). Gowers and
Maurey [19] showed that each hereditarily indecomposable Banach space has
few operators, and constructed the first example of such a space.

Theorem 6.2. Let E be a Banach space which has few operators. Then
S (E) is the unique non-fixed, maximal left ideal of B(E), and S (E) is not
finitely generated as a left ideal.

Proof. Let L be a maximal left ideal of B(E), and suppose that L is
not fixed. Then, by Corollary 4.1, L contains E (E) and hence S (E), which
has codimension one in B(E), so that L = E (E) = S (E). This proves the
first clause. The second clause follows from Lemma 6.1.
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To set the scene for our second result, we begin with a short excursion into
the theory of semidirect products of Banach algebras. Let B be a Banach
algebra, and let C and I be a closed subalgebra and a closed, two-sided
ideal of B, respectively. Then B is the semidirect product of C and I if
C and I are complementary subspaces of B, that is, C + I = B and
C ∩ I = {0}. In this case, we denote by ρ : B → C the projection of B
onto C along I . This is an algebra homomorphism, as is easy to check. It
is relevant for our purposes because it induces an isomorphism between the
following two lattices of closed left ideals:

LatI (B) = {L : L is a closed left ideal of B such that I ⊆ L },(6.1)
Lat(C ) = {N : N is a closed left ideal of C }.(6.2)

More precisely, for each L ∈ LatI (B), we have ρ(L ) = L ∩ C ∈ Lat(C ),
and the mapping L 7→ ρ(L ) is a lattice isomorphism between LatI (B)
and Lat(C ); its inverse is given by N 7→ N + I . Suppose that the left
ideal L ∈ LatI (B) is generated by a subset Γ of B. Then evidently ρ(L )
is generated by the subset ρ(Γ ) of C , so that ρ maps each closed, finitely-
generated left ideal of B containing I to a closed, finitely-generated left
ideal of C .

We shall next state two classical results about C(K)-spaces. The first is
due to Pełczyński [42, Theorem 1], and characterizes the weakly compact
operators from a C(K)-space into an arbitrary Banach space.

Theorem 6.3. Let K be a non-empty, compact Hausdorff space, and let
E be a Banach space. Then the following three conditions are equivalent for
each operator T ∈ B(C(K), E) :

(a) T is weakly compact;
(b) T is strictly singular;
(c) T does not fix a copy of c0.

The second result describes the maximal ideals of the Banach al-
gebra C(K), as well as the finitely-generated ones. (Note that the notions
of a left, right, and two-sided ideal coincide in C(K) because C(K) is com-
mutative.) Given a point k ∈ K, we write εk : C(K)→ C for the evaluation
map at k, that is, εk(f) = f(k) for each f ∈ C(K). This is a surjective
algebra homomorphism of norm one.

Theorem 6.4. Let K be a compact Hausdorff space. Then:

(i) each maximal ideal of C(K) has the form ker εk for a unique point
k ∈ K;

(ii) the maximal ideal ker εk is finitely generated if and only if the point k
is isolated in K.
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Proof. The first clause is folklore (e.g., see [12, Theorem 4.2.1(i)]), while
the second is the complex-valued counterpart of a classical theorem of Gill-
man [16, Corollary 5.4]. Both clauses are also easy to verify directly.

We require one further notion before we can present our result. For a non-
empty, compact Hausdorff space K and a function g ∈ C(K), we denote by
Mg ∈ B(C(K)) the multiplication operator given by g; that is, Mgf = gf
for each f ∈ C(K). The mapping

(6.3) µ : g 7→Mg, C(K)→ B(C(K)),

is an isometric, unital algebra homomorphism. An operator T ∈ B(C(K))
is a weak multiplication if it has the form T =Mg + S for some g ∈ C(K)
and S ∈ W (C(K)). The fourth-named author [31, Theorem 6.1] (assum-
ing the continuum hypothesis) and Plebanek [44, Theorem 1.3] (without
any assumptions beyond ZFC) have constructed an example of a connected,
compact Hausdorff space K for which each operator on C(K) is a weak
multiplication. This ensures that the following theorem is not vacuous.

Theorem 6.5. Let K be a compact Hausdorff space without isolated
points and such that each operator on C(K) is a weak multiplication.

(i) The Banach algebra B(C(K)) is the semidirect product of the sub-
algebra µ(C(K)) and the ideal W (C(K)), where µ is the homomor-
phism given by (6.3).

(ii) Let L be a subset of B(C(K)). Then the following four conditions
are equivalent:

(a) L is a non-fixed, maximal left ideal of B(C(K));
(b) L is a maximal left ideal of B(C(K)), and L is not finitely

generated;
(c) L is a maximal two-sided ideal of B(C(K));
(d) L = {Mg + S : S ∈ W (C(K)) and g ∈ C(K) with g(k) = 0}

for some k ∈ K.

In the positive case, the point k ∈ K such that (d) holds is uniquely
determined by L .

Proof. (i) We have B(C(K)) = µ(C(K)) + W (C(K)) because each
operator on C(K) is a weak multiplication. Theorem 6.3 allows us to re-
place W (C(K)) with S (C(K)), which we shall do in the remainder of this
proof because the latter ideal suits our approach better.

To see that µ(C(K)) ∩S (C(K)) = {0}, suppose that g ∈ C(K) \ {0}.
Take k0 ∈ K such that g(k0) 6= 0, set ε = |g(k0)|/2 > 0, and choose an
open neighbourhood N of k0 such that |g(k)| ≥ ε for each k ∈ N . Using
Urysohn’s lemma and the fact that k0 is not isolated in K, we deduce that
the subspace
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F = {f ∈ C(K) : f(k) = 0 (k ∈ K \N)}
of C(K) is infinite-dimensional. Since

‖Mgf‖ = sup{|g(k)f(k)| : k ∈ N} ≥ ε‖f‖ (f ∈ F ),
we conclude that Mg is not strictly singular, as required.

(ii) For each k ∈ K, let

Zk = µ(ker εk) + S (C(K)),

so that

Zk =
{
Mg + S : S ∈ S (C(K)) and g ∈ C(K) with g(k) = 0

}
.

By (i), Zk is a two-sided ideal of codimension one in B(C(K)), and thus
is maximal both as a left and a two-sided ideal. The implication (d)⇒(c)
is now immediate, while (d)⇒(b) follows because ρ(Zk) = µ(ker εk) is not
finitely generated by Theorem 6.4(ii), so that Zk is not finitely generated as
a left ideal, as explained in the paragraph following (6.2).

The implication (b)⇒(a) is clear because each fixed, maximal left ideal
is finitely generated by Proposition 2.4(i).

(a)⇒(d). Suppose that L is a non-fixed, maximal left ideal of B(C(K)).
Then, by Corollary 4.1, L contains E (C(K)) and thus S (C(K)), so that
L is a maximal element of the lattice LatS (C(K))(B(C(K))) given by (6.1).
Hence, in the notation of (6.2), there is a maximal element N of the lat-
tice Lat(µ(C(K))) such that L = N + S (C(K)). Theorem 6.4(i) implies
that N = µ(ker εk) for some k ∈ K, and consequently L = Zk.

(c)⇒(d). Suppose that L is a maximal two-sided ideal of B(C(K)).
Then, as mentioned in Remark 4.2, L contains E (C(K)) and therefore L
contains S (C(K)), so that L = Zk for some k ∈ K by (i) and Theo-
rem 6.4(i).

The final clause follows because ker εk1 6= ker εk2 whenever k1, k2 ∈ K
are distinct, and hence also Zk1 6= Zk2 .

Remark 6.6. Example 5.4(ii)–(iii) and Theorem 6.5 show that there are
compact Hausdorff spacesK such that question (II) has a positive answer for
E = C(K). However, this question remains open for some very important
C(K)-spaces. Indeed, it is known that C(K) contains a closed subspace
which is isomorphic to C(K) and which is not complemented in C(K) for
each of the following compact Hausdorff spaces K :

(i) K is a compact, uncountable metric space; see [2] and, for a more
general result, [6].

(ii) K = [0, α] for any ordinal α ≥ ωω, where [0, α] denotes the set of
ordinals less than or equal to α, equipped with the order topology.
(Baker [5] showed this in the case where α = ωω; the conclusion
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for general α ≥ ωω follows immediately from Baker’s result because
C[0, α] is isomorphic to C[0, α]⊕ C[0, ωω].)

Hence, by Corollary 4.7, F (C(K)) is contained in a singly-generated, proper
left ideal of B(C(K)) for each of these K, but we do not know whether such
a left ideal can be chosen also to be maximal (or even closed).

This question cannot be answered by a variant of Theorem 5.8 because
we can strengthen the above conclusion to state that K (C(K)) is contained
in a singly-generated, proper left ideal of B(C(K)) for each of the above K.
To see this, take an operator U ∈ B(C(K)) which is bounded below and
whose range F = U(C(K)) is not complemented in C(K), and consider the
isomorphism Ũ : x 7→ Ux, C(K) → F . Then, for each S ∈ K (C(K)), the
operator SŨ−1 : F → C(K) has an extension T ∈ K (C(K)) by a theorem
of Grothendieck (see [23, pp. 559–560], or [34, Theorem 1]). Hence we have
S = TU , and consequently K (C(K)) ⊆ L{U}.

7. A non-fixed and singly-generated, maximal left ideal of op-
erators. The main aim of this section is to prove Theorems 1.5 and 1.6.
Several parts of those theorems are special cases of more general results,
which may be of independent interest, and so we shall take a more general
approach, specializing only when we need to.

Recall that, for a non-empty set I, we denote by `∞(I) the Banach space
of bounded, complex-valued functions defined on I, and `∞ = `∞(N). Our
first result collects some known facts about operators from `∞(I) that we
shall use several times.

Lemma 7.1. Let I be a non-empty set, and let X be a Banach space.

(i) An operator from `∞(I) to X is weakly compact if and only if it is
strictly singular.

(ii) Suppose that the set I is infinite. Then each operator from `∞(I)
to X is weakly compact if and only if X does not contain a subspace
isomorphic to `∞.

Proof. (i) This is a special case of Theorem 6.3.
(ii) The hard part is the implication ⇐, which however follows immedi-

ately from [35, Proposition 2.f.4].
The forward implication is straightforward. Indeed, suppose contra-

positively that X contains a subspace which is isomorphic to `∞, and take an
operator U ∈ B(`∞, X) which is bounded below. Choose an injective map-
ping θ : N → I, and define an operator Cθ ∈ B(`∞(I), `∞) by Cθf = f ◦ θ
for each f ∈ `∞(I). Then UCθ is not weakly compact, for instance because
it fixes a copy of `∞.
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In the remainder of this section we consider a Banach space X such that

(I) the bidual of X is isomorphic to `∞(I1) for some infinite set I1 via
a fixed isomorphism V : X∗∗ → `∞(I1), and

(II) no subspace of X is isomorphic to `∞.

For example, X = c0 satisfies both of these conditions with I1 = N.
Let I2 be a disjoint copy of I1 (that is, I2 is a set of the same cardinality

as I1 and satisfies I1 ∩ I2 = ∅), and set I = I1 ∪ I2. We consider `∞(I1)
and `∞(I2) as complementary subspaces of `∞(I) in the natural way, and
denote by P1 and P2 the corresponding projections of `∞(I) onto `∞(I1) and
`∞(I2), respectively. Moreover, we choose a bijection ϕ : I2 → I; we then
obtain an isometric isomorphism Cϕ of `∞(I) onto the subspace `∞(I2) by
the definition Cϕf = f ◦ ϕ for each f ∈ `∞(I).

Let E = X ⊕ `∞(I) with norm ‖(x, f)‖E = max{‖x‖X , ‖f‖∞}. We iden-
tify operators T on E with 2× 2-matrices(

T1,1 : X → X T1,2 : `∞(I)→ X

T2,1 : X → `∞(I) T2,2 : `∞(I)→ `∞(I)

)
.

Note that assumption (II) and Lemma 7.1(ii) imply that the operator T1,2
is always weakly compact. This fact will play a key role for us.

Despite our focus on left ideals, our first result about the Banach space E
is concerned with two-sided ideals.

Proposition 7.2.

(i) The set

W1 =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : T1,1 ∈ W (X)

}
is a proper, closed two-sided ideal of B(E), and W1 is a maximal
two-sided ideal of B(E) if and only if W (X) is a maximal two-sided
ideal of B(X).

(ii) The set

W2 =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : T2,2 ∈ W (`∞(I))

}
is a proper, closed two-sided ideal of B(E), and the following three
conditions are equivalent:

(a) W2 is a maximal two-sided ideal of B(E);
(b) W (`∞(I)) is a maximal two-sided ideal of B(`∞(I));
(c) I is countable.
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Proof. (i) The mapping

T 7→ T1,1 + W (X), B(E)→ B(X)
/
W (X),

is a surjective algebra homomorphism of norm one. Hence its kernel, which
is equal to W1, is a closed two-sided ideal of B(E). This ideal is proper
because X is non-reflexive by assumption (I). The fundamental isomorphism
theorem implies that the Banach algebras B(E)

/
W1 and B(X)

/
W (X) are

isomorphic, and so B(E)
/
W1 is simple if and only if B(X)

/
W (X) is simple.

Consequently, W1 is a maximal two-sided ideal of B(E) if and only if W (X)
is a maximal two-sided ideal of B(X).

(ii) An obvious modification of the argument given above shows that
W2 is a proper, closed two-sided ideal of B(E), and that conditions (a)
and (b) are equivalent. The implication (c)⇒(b) follows from [35, Proposi-
tion 2.f.4].

Conversely, to prove that (b)⇒(c), suppose that W (`∞(I)) is a maximal
two-sided ideal of B(`∞(I)), and denote by G`∞(`∞(I)) the set of operators
on `∞(I) that factor through `∞. This is a two-sided ideal of B(`∞(I)) be-
cause `∞ is isomorphic to `∞ ⊕ `∞. Hence G`∞(`∞(I)) + W (`∞(I)) is also a
two-sided ideal, which is strictly greater than W (`∞(I)) because `∞(I) con-
tains a complemented copy of `∞, and any projection with range isomorphic
to `∞ belongs to G`∞(`∞(I)) \W (`∞(I)). Consequently, by the maximality
of W (`∞(I)), there are operators R ∈ G`∞(`∞(I)) and S ∈ W (`∞(I)) such
that I`∞(I) = R + S. Then R = I`∞(I) − S is a Fredholm operator by [35,
Proposition 2.c.10] and Lemma 7.1(i), and this implies that I`∞(I) = URT for
some operators T,U ∈ B(`∞(I)) because `∞(I) is isomorphic to its hyper-
planes. Thus the identity operator on `∞(I) factors through `∞, which is
possible only if I is countable.

Set

(7.1) L =

(
0 0

V κX Cϕ

)
∈ B(E),

where the operators V and Cϕ were introduced on p. 276. Since the ranges of
V and Cϕ are contained in the complementary subspaces `∞(I1) and `∞(I2)
of `∞(I), respectively, we have

‖L(x, f)‖E = ‖V κXx+ Cϕf‖∞ = max{‖V κXx‖∞, ‖Cϕf‖∞}
= max{‖V κXx‖∞, ‖f‖∞} (x ∈ X, f ∈ `∞(I)),

which shows that the operator L is bounded below because V κX is bounded
below. This conclusion is also immediate from our next result and Corol-
lary 4.7.
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Theorem 7.3. The ideal W1 defined in Proposition 7.2(i) is the left ideal
generated by the operator L given by (7.1), that is,

W1 = L{L}.

Proof. We have L ∈ W1 because L1,1 = 0, and hence the inclusion ⊇
follows.

We shall prove the reverse inclusion in three steps. First, we see that(
0 0

0 I`∞(I)

)
=

(
0 0

0 C−1ϕ P2

)(
0 0

V κX Cϕ

)
∈ L{L},

and consequently we have

(7.2)
(
0 T1,2

0 T2,2

)
=

(
0 T1,2

0 T2,2

)(
0 0

0 I`∞(I)

)
∈ L{L}

for each T1,2 ∈ B(`∞(I), X) and T2,2 ∈ B(`∞(I)).
Second, let T2,1 ∈ B(X, `∞(I)). Being bounded below, the operator V κX

is an isomorphism onto its range Y := V κX(X) ⊆ `∞(I), so that it has an
inverse R ∈ B(Y,X). By the injectivity of `∞(I1), the composite operator
T2,1R ∈ B(Y, `∞(I)) extends to an operator S ∈ B(`∞(I1), `∞(I)), which
then satisfies SV κX = T2,1. Hence we have

(7.3)
(

0 0

T2,1 0

)
=

(
0 0

0 SP1

)(
0 0

V κX Cϕ

)
∈ L{L}.

Third, each operator T1,1 ∈ W (X) satisfies T ∗∗1,1(X∗∗) ⊆ κX(X) (e.g., see
[38, Theorem 3.5.8]). We can therefore define an operator U ∈ B(`∞(I1), X)
by

Uf = κ−1X T ∗∗1,1V
−1f (f ∈ `∞(I1)).

Since κXUV κX = T ∗∗1,1κX = κXT1,1, we have UV κX = T1,1, and so

(7.4)
(
T1,1 0

0 0

)
=

(
0 UP1

0 0

)(
0 0

V κX Cϕ

)
∈ L{L}.

Combining (7.2)–(7.4), we conclude that each operator T ∈ W1 belongs
to L{L}.

Remark 7.4. Since the operator L given by (7.1) is bounded below and
generates a proper left ideal of B(E), its range is not complemented in E
by Lemma 5.1. This is also easy to verify directly.

A Banach space F has very few operators if F is infinite-dimensional and
each operator on F is the sum of a scalar multiple of the identity operator and
a compact operator; that is, B(F ) = CIF +K (F ). Argyros and Haydon [4]
constructed the first example of a Banach space XAH which has very few
operators. We shall now specialize to the case whereX = XAH. The following
result collects the properties of XAH that we shall require.
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Theorem 7.5 (Argyros and Haydon). There is a Banach space XAH
with the following three properties:

(i) XAH has very few operators;
(ii) XAH has a Schauder basis;
(iii) the dual space of XAH is isomorphic to `1.

Using this, we can easily prove Theorem 1.5.

Proof of Theorem 1.5. We begin by checking that XAH satisfies the two
assumptions made on p. 276: indeed, Theorem 7.5(iii) ensures that X∗∗AH is
isomorphic to `∞, while Theorem 7.5(ii) (or (iii)) implies that XAH does
not contain `∞. Moreover, we see that W (XAH) = K (XAH) because Theo-
rem 7.5(iii) implies that XAH is non-reflexive, so that W (XAH) is a closed,
non-zero, proper two-sided ideal of B(XAH), and K (XAH) is the only such
ideal by Theorem 7.5(i)–(ii). Hence the set K1 given by (1.2) is equal to the
ideal W1 defined in Proposition 7.2(i), and W1 is singly generated as a left
ideal by Theorem 7.3. Theorem 7.5(i) implies that K1 has codimension one
in B(E), so that it is trivially maximal as a left, right, and two-sided ideal.
(The latter also follows from Proposition 7.2(i).) Being a non-zero, two-sided
ideal, K1 contains F (E), and therefore K1 is not fixed.

Remark 7.6. (i) The Banach space E = XAH ⊕ `∞ is clearly non-sepa-
rable, so the question naturally arises whether a separable Banach space E
exists such that B(E) contains a non-fixed, finitely-generated maximal left
ideal. This has recently been answered affirmatively [29].

(ii) Proposition 5.13 and the discussion preceding it raise the question
whether the class of Banach spaces for which question (II) has a positive
answer is closed under finite direct sums. Theorem 1.5 implies that this is
not the case because XAH and `∞ both belong to this class by Theorem 6.2
and Example 5.4(ii), respectively, whereas their direct sum does not.

We shall next give a characterization of the ideal K1 defined by (1.2).
Theorem 1.6 will be an easy consequence of this result.

Theorem 7.7. Let E = XAH ⊕ `∞. Then the following three conditions
are equivalent for each subset L of B(E) :

(a) L = K1;
(b) L is a non-fixed, finitely-generated, maximal left ideal of B(E);
(c) L is a maximal left ideal of B(E) and contains an operator which

is bounded below.

Proof. (a)⇒(b). This is immediate from Theorem 1.5.
(b)⇒(c). Suppose that L is a non-fixed, finitely-generated, maximal left

ideal of B(E), so that L = LΓ for some non-empty, finite subset Γ of B(E).
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Set n = |Γ | ∈ N. By Corollary 4.7, the operator ΨΓ is bounded below. More-
over, there is an operator T ∈ B(En, E) which is bounded below because
XAH embeds in `∞, and `∞ is isomorphic to the direct sum of 2n− 1 copies
of itself. Hence the composite operator TΨΓ is bounded below, and it belongs
to L by (2.6).

(c)⇒(a). Suppose that L is a maximal left ideal of B(E) and that
L contains an operator R = (Rj,k)

2
j,k=1 which is bounded below. Then R

does not belong to any fixed maximal left ideal, so that E (E) ⊆ L by
Corollary 4.1. Lemma 7.1 shows that each operator from `∞ to XAH is
strictly singular, and thus inessential. Hence, by [17, Proposition 1], each
operator from XAH to `∞ is also inessential, and so we conclude that

(7.5)
{(

T1,1 T1,2

T2,1 T2,2

)
: T1,1 ∈ K (XAH), T1,2 ∈ B(`∞, XAH),

T2,1 ∈ B(XAH, `∞), T2,2 ∈ W (`∞)

}
= E (E) ⊆ L .

Since R is bounded below, its restriction R|`∞ =
(R1,2

R2,2

)
is also bounded

below, and is thus an upper semi-Fredholm operator. Consequently,
(

0
R2,2

)
is an upper semi-Fredholm operator by [35, Proposition 2.c.10] because R1,2

is strictly singular, and therefore R2,2 is an upper semi-Fredholm operator.
Let Q ∈ F (`∞) be a projection onto kerR2,2. Then the restriction of R2,2

to kerQ is an isomorphism onto its range, which is a closed subspace of `∞.
Since `∞ is injective, the inverse of this isomorphism extends to an operator
S : `∞ → `∞, which then satisfies SR2,2 = I`∞ −Q. Hence(

0 0

SR2,1 I`∞ −Q

)
=

(
0 0

0 S

)(
R1,1 R1,2

R2,1 R2,2

)
∈ L ,

which by (7.5) implies that (
0 0

0 I`∞

)
∈ L .

Applying (7.5) once more, we see that K1 ⊆ L , and so K1 = L by the
maximality of K1.

Proof of Theorem 1.6. The equivalence of conditions (a) and (b) in The-
orem 7.7 shows that K1 is the unique non-fixed, finitely-generated, maximal
left ideal of B(E). Proposition 7.2(ii) implies that W2 is a maximal two-sided
ideal. Since F (E) ⊆ W2 * K1, W2 is not contained in any finitely-generated,
maximal left ideal of B(E).

One may wonder whether the conclusion of Theorem 1.5 that the ideal W1

introduced in Proposition 7.2(i) is maximal as a left ideal might be true more
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generally, that is, not only in the case where X is Argyros–Haydon’s Banach
space. Our next result implies that this is false for X = c0. Note that all
weakly compact operators on c0 are compact, so that, in this case, W1 is
equal to

(7.6) K1 =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(c0 ⊕ `∞) : T1,1 ∈ K (c0)

}
.

Proposition 7.8. The ideal K1 given by (7.6) is not contained in any
finitely-generated, maximal left ideal of B(c0 ⊕ `∞).

For clarity, we present the main technical step in the proof of Proposi-
tion 7.8 as a separate lemma.

Lemma 7.9. Suppose that T ∈ B(c0) is not an upper semi-Fredholm
operator. Then there exist a projection Q0 ∈ B(c0) and a normalized basic
sequence (xn)n∈N in c0 such that (xn)n∈N is equivalent to the standard unit
vector basis for c0 and

(7.7) Q0x2n−1 = x2n−1, Q0x2n = 0, and ‖Txn‖ ≤ 1/n (n ∈ N).

Proof. Let (en)n∈N denote the standard unit vector basis for c0. Since T
is not an upper semi-Fredholm operator, there are two cases to consider.

Case 1: dimkerT =∞. Then kerT contains a closed subspace Y which
is isomorphic to c0 and complemented in c0 (e.g., see [35, Proposition 2.a.2]).
Let (xn)n∈N be a normalized Schauder basis for Y such that (xn)n∈N is
equivalent to (en)n∈N. Since Y is complemented in c0 and the basis (xn)n∈N
is unconditional, there is a projection Q0 ∈ B(c0) which satisfies the first
two identities in (7.7), while the third one is trivial because xn ∈ Y ⊆ kerT
for each n ∈ N.

Case 2: dimkerT <∞ and T (c0) is not closed. For each n ∈ N, choose
εn ∈ (0, 1) such that (1 + ‖T‖)εn(1 − εn)−1 ≤ n−1. By induction, we shall
construct a normalized block basic sequence (xn)n∈N of (en)n∈N such that
‖Txn‖ ≤ n−1 for each n ∈ N.

To start the induction, we observe that T cannot be bounded below
because its range is not closed, so that we can find a unit vector y1 ∈ c0 such
that ‖Ty1‖ ≤ ε1. Approximating y1 within ε1 by a finitely-supported vector
and normalizing it, we obtain a finitely-supported unit vector x1 ∈ c0 such
that ‖Tx1‖ ≤ (1 + ‖T‖)ε1(1− ε1)−1 ≤ 1 by the choice of ε1.

Now assume inductively that unit vectors x1, . . . , xn ∈ c0 with consecu-
tive supports have been chosen for some n ∈ N such that ‖Txj‖ ≤ 1/j for
each j ∈ {1, . . . , n}. Let m ∈ N be the maximum of the support of xn, so
that x1, . . . , xn ∈ span{e1, . . . , em}, and let Pm be the mth basis projection
associated with (ej)j∈N. If T |kerPm were bounded below, then it would have
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closed range, so that

T (c0) = T (kerPm) + span{Te1, . . . , T em}
would also be closed, being the sum of a closed subspace and a finite-
dimensional one. This is false, and hence T |kerPm is not bounded below. We
can therefore choose a unit vector yn+1 ∈ kerPm such that ‖Tyn+1‖ ≤ εn+1.
Now, as in the first step of the induction, we approximate yn+1 within εn+1

by a finitely-supported vector in kerPm and normalize it to obtain a finitely-
supported unit vector xn+1 ∈ kerPm such that

‖Txn+1‖ ≤
(1 + ‖T‖)εn+1

1− εn+1
≤ 1

n+ 1

by the choice of εn+1. Therefore the induction continues.
By [35, Proposition 2.a.1], the sequence (xn)n∈N is equivalent to (en)n∈N,

and its closed linear span is complemented in c0. Hence, as in Case 1, we
obtain a projection Q0 ∈ B(c0) such that the first two identities in (7.7) are
satisfied, while the third one holds by the construction of (xn)n∈N.

Proof of Proposition 7.8. Assume towards a contradiction that L is a
finitely-generated, maximal left ideal of B(c0 ⊕ `∞) such that K1 ⊆ L .
Proposition 2.2 implies that L is generated by a single operator, say

T =

(
T1,1 T1,2

T2,1 T2,2

)
∈ B(c0 ⊕ `∞).

Claim. T1,1 is not an upper semi-Fredholm operator.

Assume the contrary, that is, kerT1,1 is finite-dimensional, so that we can
take a projection P ∈ F (c0) onto kerT1,1, and T1,1(c0) is closed. Then the
restriction T̃1,1 : x 7→ T1,1x, kerP → T1,1(c0), is an isomorphism. Its range
is complemented in c0 by Sobczyk’s theorem [50] because it is isomorphic
to kerP , which is a closed subspace of finite codimension in c0, and hence
isomorphic to c0. We can therefore extend the inverse of T̃1,1 to an operator
S ∈ B(c0), which then satisfies ST1,1 = Ic0 − P . Since P has finite rank, we
have (

P 0

0 I`∞

)
∈ K1 ⊆ L

and (
T1,1 0

0 0

)
= T −

(
0 T1,2

T2,1 T2,2

)
∈ L −K1 ⊆ L ,

which implies that(
Ic0 0

0 I`∞

)
=

(
P 0

0 I`∞

)
+

(
S 0

0 0

)(
T1,1 0

0 0

)
∈ L .
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This, however, contradicts the assumption that the left ideal L is proper,
and thus completes the proof of our Claim.

Hence, by Lemma 7.9, we obtain a projection Q0 ∈ B(c0) and a nor-
malized basic sequence (xn)n∈N in c0 such that (xn)n∈N is equivalent to the
standard unit vector basis (en)n∈N for c0 and
(7.8) Q0x2n−1 = x2n−1, Q0x2n = 0, and ‖T1,1xn‖ ≤ 1/n (n ∈ N).

The sequence (xn)n∈N is weakly null because it is equivalent to the weakly
null sequence (en)n∈N, and so the sequence (Rxn)n∈N is norm-null for each
R ∈ K (c0). Now let

Q =

(
Q0 0

0 0

)
∈ B(c0 ⊕ `∞).

The maximality of the left ideal L implies that either

(i) Q ∈ L or (ii) L + L{Q} = B(c0 ⊕ `∞).

We shall complete the proof by showing that both of these alternatives are
impossible.

In case (i), there is S = (Sj,k)
2
j,k=1 ∈ B(c0⊕ `∞) with Q = ST . Defining

P0 ∈ B(c0 ⊕ `∞, c0) by P0(x, f) = x for each x ∈ c0 and f ∈ `∞, we have

x2n−1 = P0Q(x2n−1, 0) = P0ST (x2n−1, 0) = S1,1T1,1x2n−1 + S1,2T2,1x2n−1

for each n ∈ N. This, however, is absurd since the left-hand side is a unit
vector, whereas the right-hand side norm-converges to 0 as n → ∞: this
holds because ‖T1,1x2n−1‖ → 0 by (7.8) and S1,2T2,1 ∈ W (c0) = K (c0).

In case (ii), there are operators U, V ∈ B(c0 ⊕ `∞) such that

Ic0⊕`∞ = UT + V Q.

Define P0 as above, and write U = (Uj,k)
2
j,k=1. Then, since Q0x2n = 0, we

have
x2n = P0(UT + V Q)(x2n, 0) = U1,1T1,1x2n + U1,2T2,1x2n (n ∈ N),

which leads to a contradiction as in case (i) because the left-hand side is a
unit vector, whereas the right-hand side norm-converges to 0 as n→∞.

8. Open questions. We collect here some open questions that are men-
tioned in the text and that we find particularly interesting.

1) Let E be an infinite-dimensional Banach space. Does B(E) always con-
tain a maximal left ideal that is not finitely generated? Is this true whenever
E is separable? Is this true whenever E = C(K) for an arbitrary compact
space K? Any counter-example to the latter question requires a ‘large and
exotic’ space K.
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2) Is every finitely-generated maximal left ideal of B(E) fixed in the
following specific cases: (i) E = C(K) for a compact, uncountable metric
space K; (ii) E = C[0, α] for an ordinal α ≥ ωω; (iii) E = c0 ⊕ `∞?

3) Is it true that every unital Banach algebra for which every maximal
left ideal is finitely generated is necessarily finite-dimensional?
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