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The evolution and Poisson kernels on nilpotent
meta-abelian groups

by

RICHARD PENNEY (West Lafayette, IN) and ROMAN URBAN (Wroctaw)

Abstract. Let S be a semidirect product S = N x A where N is a connected and
simply connected, non-abelian, nilpotent meta-abelian Lie group and A is isomorphic
to R*, k > 1. We consider a class of second order left-invariant differential operators on S
of the form L = L%+ Aq, where o € R¥, and for each a € R*, L® is left-invariant second
order differential operator on N and A, = A — («, V), where A is the usual Laplacian
on R*. Using some probabilistic techniques (e.g., skew-product formulas for diffusions on
S and N respectively) we obtain an upper estimate for the transition probabilities of the
evolution on N generated by L°®  where ¢ is a continuous function from [0,00) to R*.
We also give an upper bound for the Poisson kernel for L.

1. Introduction

1.1. The evolution kernel on N A groups. We say that a solvable Lie
group S is an N A group if it is a semidirect product S = N x A where N is
a connected and simply connected nilpotent Lie group and A is isomorohic
to R¥. There is a remarkable probabilistic formula (formula below) for
the heat semigroup defined by a fairly general second order elliptic, or even
degenerate elliptic, left-invariant, differential operator on an N A group that
has long played a central role in their analysis. (See [4} [6, @, 8, 17, 18, 19]
for example.) The idea behind formula goes back to |14, [15] 22].

To describe this formula in our context, let a and n be the Lie algebras of
A and N respectively. In general, we identify connected, simply connected
nilpotent Lie groups with their Lie algebras using the exponential map so
that in particular, A and N are identified with a and n. We assume that
there is a basis B = {X,..., X4} of n that diagonalizes the A-action. We
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typically think of the X; as left-invariant differential operators on N. When
thought of as left-invariant operators on S, they are denoted X;. Thus, for
fe =),

(1.1) Xif(n,a) = DX, f(n,a)

where \; € a* is the root functional corresponding to Xj, ie., [H, X;] =
Ni(H)X; for all H € a. We also choose a basis {41, ..., Ay} for a, which we
use to identify a with R¥.

The Euclidean space R* is endowed with the usual scalar product (-, -)
and the corresponding 2 norm || - ||. For the vector 2 € R* we write 22 =
r-x = (z,x) = Zle 22, By || - |loo, We denote the £ norm ||z]e =
maxj<i<k |37z|

For a = (al,...,a )ER’“ let

d
(1.2) a__E:x?-kE: —20;4;) = WX+ A,
j=1
where
k
(1.3) = (02, — 20,04

Jj=1

For a € R* we let
d
5 =3 N2,
j=1

For 0 € C*°([0,00), R¥) and s < t < o0, let P (z), # € N, be the funda-
mental solution for the operator

(1.4) L=0,+ L.
Thus P/ is a non-negative function on N such that
(1.5) | Pry(z)do =1

N
and, for s < wu <'t,

(1.6) P, * Py = P/
Moreover, if ¢ € C°(N) then
(1.7) ¢ Py = U4(0)

is the solution to the Dirichlet problem on N X (s,00) with boundary data
¢, i.e.,
(L)  LUZ($)=0 onNx(0,8), lim U,(6)(x) = ¢(a).

t—st
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(For the existence of PY; see [0, 21].) In probabilistic terms, P7 is the kernel
for the evolution defined by the time dependent family of operators £%;.
Of course, U7, can also be thought of as an integral operator. With

obvious abuse of notation, we denote the corresponding kernel by P/ (x;y).
Thus

Pt?s(x; y) - Pt(?s(y_l )
For f € C.(N x RF) and ¢t > 0, we put
(1.9) Tif(x,a) = BoUg f(2,00) = Ea(f 55 Po) (2, 0(1)),

where the expectation is taken with respect to the distribution of the process
o(t) (Brownian motion with drift) in R* with generator A,. The operator
U?(0,t) acts on the first variable of the function f (as a convolution opera-
tor).

We have the following

THEOREM 1.1. The family T} defined in (1.9) is the semigroup of oper-
ators generated by L. That s,

oTif =LTif and limTif = f.
t—0

Of course, the Brownian motion with a drift is an extremely well under-
stood object. Clearly, then, a good understanding of P/, is key to under-
standing the heat semigroup as well as objects derived from it, such as the
Poisson kernel.

It is not difficult to give an explicit formula for P7; when N is abelian.
(See Proposition below.) Our first main result is a skew-product formula
for P, (Theorem |1.2) similar to formula (1.9)) that describes P on a meta-
abelian group. Specifically, we assume that

N=MxV,

where M and V are abelian Lie groups with the corresponding Lie algebras
m and v. Let By = {Y1,...,Y,,} and B2 = {X1,..., X,,} be ordered bases of
m and b respectively such that B’ = By UBs forms an ordered Jordan—Holder
basis for the Lie algebra n of N, ordered so that the matrix of adx in this
basis is strictly lower triangular for all X € n. We use B’ in place of the basis
B mentioned above . Hence, in this case,

m n
(1.10) Lo=A0+ Y Y243 2 0X2 = A, + LY,
j=1 Jj=1
where &1, ...,&, and ¥4, ...,9, are the root functionals in a* corresponding

to the bases B; and By respectively.
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The time dependent family of operators

n
(1.11) Lyt => e x?
j=1

gives rise to an evolution on V' = R" that is described by a kernel Pt‘if which
may be explicitly computed, since V' is abelian. In fact, it turns out that the
process 7(t) generated by L’f{/’t has coordinates 7;(t) which are independent
Brownian motions with time scaled by

¢
(1.12) %’/ﬂ.(s’ t) = Se2q9j(0(u)) du.

S

For n € C*°([0,00),V) let
701 = 3 SO0 (Ad(n()Y;)°.
J=1

This family of operators gives rise to an evolution on M = R™ that is
described by a kernel Pt]’\;[’a’” which may also be explicitly computed. Specif-
ically, for a € A, let S(a) be the m x m matrix

S(a) = diag[ef!@), ... etm (@],

For v € V, we identify Ad(v)|y with the m x m matrix of this linear
transformation with respect to the basis B;. Let

[a27' ()] = 2[Ad(n(t)) [mS ()] [Ad(n(t))[mS7 ()],

where

and

AT/ (s, t) = Sa(j{f(u) du.

Finally, for a d x d invertible matrix A we set
(1.13) B(A)(z) =1A7 2.2 and D(A) = (2m)"¥*(det A)~V/2.
We prove in that for m',m?> € M =R™,
(1.14)  PMo(ml,m?) = D(AT)(t, s))e BAT G m=m?)
Our main tool is the following theorem. To the best of our knowledge,
this result represents the first known formula for the evolution defined by

Py, for a non-abelian N other than the similar result for the Heisenberg
group from our work [19].

THEOREM 1.2. Let N = M x V. For every m € M and v € V and
a.e. (with respect to the corresponding Wiener measure) trajectory o of the
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process generated by Ag,

S Pt‘fo(m, v;m/, U')f(m', U') dm’ dv'

| P57 (m,m) f(m, (1)) dm/ AW (1)
M

= | D(AT(0,1))eBA" OONm=m) £ (1" y(t)) dim AW ) (),
M

Vo . . . .
where W™ is the product of n one-dimensional Wiener measures trans-

formed according to (1.12)), i.e., for the trajectory n(t) = (m(t),...,nn(t))
its coordinates n;(t) are the one-dimensional Brownian motions b;(t) starting

from v; with their time changed to A“’/’i(O,t), ie
ni(t) = bi(AY,;(0,¢)).

Theorem|[I.2)yields a new estimate on P, which is our second main result.
To state this result let, for a continuous function o : [0,00) — A = R¥,

t
Cilst) = (@ ay  i=1,.m,
S
(1.15) ;
‘{/7].(3,;5) = Sew](a(u)) du, j=1,....n
and
AMESt ZAMJSt szst ZAV]St7
AMHSt HAM_]St AVHSt HAV]St
We also set

n(0,8) = A%y 1 (0,8) Ay (0, 2),

N xn(0,t) = M,E(Ovt) + A\/,E(Ovt)'
We also let k, be the smallest non-negative integer such that
(1.16) (adx)**, =0, VX eo.

Note that if k, = 0, then v centralizes m; hence N is abelian. Thus our
hypotheses imply that &k, > 0.

The following theorem is a simplified version of Theorem which is one
of our main results.

For, a,b € R we write a A b = min{a, b}.
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THEOREM 1.3. There are positive constants C, D such that for all (m,v)
EN=MxYV,

Pgy(m,v) < C(An(0,0)) "2 (lm [/ %) + 1+ Ay (0,6)'/?)
[ ) HmHQ)
A7 (0,1) A%, 5(0,1)

X exp<—D

It is interesting to compare this result with what is known in the general
case. The best general result that we are aware of in the literature is, when
specialized to our current context, Theorem [1.4] below. (See [6l 8] and [17].)
Theorem is an improvement in two respects. First, it applies to all (m, v),
not just points in a compact set not containing e. Secondly, it does not
contain a term such as 7(x)/4 in the exponent which is large when 7(z) is
large. Of course, this term will be eventually dominated by the 7(z)2, but
the point at which this domination takes place depends on the sizes of both
7(z) and Af ;(0,7) which are very hard to control. We conjecture that a
result such as Theorem holds in general.

THEOREM 1.4. Let K C N be closed and e & K. Then there exist positive
constants C1, Cy, and ¢ such that for every x € K and every t,

t —cC T T\ 2
Poy(x) < C) ((g) (A%,1(0,6)%/° du) 2 exp( (4) _ Cﬂ%; o t)>,

where T is a subadditive norm which is smooth on N \ {e}.

1.2. Poisson kernel for £,. As mentioned above, we expect improved
estimates for Py, to yield better estimates for objects derived from the heat
semigroup such as the Poisson kernel. As an illustration of this we use The-
orem to prove Theorem below that, in the current context, improves
the estimates from [I7] and [I8]. (See §6}) This result is our final “main
result.” To state it we again require some notation.

Define
d
(1.17) =31
j=1
and set
(1.18) X(g) = det(Ad(g)) = e™®),
where

Ad(g)s =gsg™!, s€S8.
Let ds be left-invariant Haar measure on S. We have

§ £(s9)ds = x(9) 7§ £(s) ds.

S S
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Let
AT =Int{a € RF: \j(a) > 0 for 1 < j <r}.

If « € AT then there exists a Poisson kernel v for L,, [4]. That is, there
is a C*° function v on N such that every bounded L,-harmonic function F

on S may be written as a Poisson integral against a bounded function f on
S/A =N,

Flg)= | floyw(y)dy =\ f()"*(y 'x)dy, where g=(z,a),
S/A N
and

7(2) = v(a tza)x(a)™!, where »(z)=wv(z71).

Conversely, the Poisson integral of any f € L% () is a bounded L,-har-
monic function.
Fort € R* and p € AT, let

5f = Ad((logt)p)|n-

Then ¢ — 4} is a one-parameter group of automorphisms of N for which the
corresponding eigenvalues on n are all positive. It is known [12] that then
N has a §f-homogeneous norm, a non-negative and subadditive continuous
function | - |, on N such that |n|, = 0 if and only if n = e and

0Fzlp = tlz]p.

For many years the best pointwise estimate in higher rank available in

the literature was

v(z) < Co(l+ |zlp)™*
for some € > 0, where p € AT |4, [5]. These results, however, provide no way
of determining e. (For estimates for the Poisson kernel and its derivatives on
rank-one N A groups, i.e., with dim A = 1, see [9, 8, 23] [3, [7].)

A formula for determining an appropriate value of € was provided by the
authors in [I7, 18|, although it is clear that the value of & produced is far
from best possible. Assume that the rank (dimension of A) is k > 1. Let v
be the Poisson kernel for the operator £, with o € A™.

To simplify our notation we write A to denote the set of roots

A=ZU06,
where
E={&4,.. .6}, O6={01,...,9.}
For A, C A and a € AT we set

(1.19) 4,(a) = min Ma), 74, (a) = min ==
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In this setting our final main result is the following.

THEOREM 1.5. Let v be the Poisson kernel for the operator L, defined in
(1.10)), with o € A™. Under the above assumptions on N, for every p € AT
and € > 0 there exists a constant C' = Cy, . > 0 such that

v(m,v) < C(1+[(m,v)|p)"7,
where
Yo(p)Vo(a) =1 for ||m|l <e, |lv]| > ¢,
v =S valp)Tale) =2 for [|m]| > ¢, |v] <e,
max{y1, 72} for Im| =&, |lv|| > e.

We provide an example in §6| demonstrating that this result does in fact
provide a sharper estimate that the estimates found in [I7] and [I8].

1.3. Structure of the paper. The outline of the rest of the paper is
as follows:

In and §2.2) we recall some basic facts about exponential functionals
of Brownian motion and some estimates for the joint distribution of the
maximum of the absolute value of the Brownain motion on the time interval

[0,¢] and its position at time t. In §2.3| we give a formula for the evolution

kernels in the special case that the nilpotent group is R™. In §5.1| we recall
the construction of the Poisson kernel v on N and its extension v?(x) to
N x RF. In and we consider diffusions on M and V respectively.
Theoremis proved in . Our main results are proved in (Theorem
and §5| (T heorem. In We compare the estimate from T heoremwith

our previous results from [17, [18].

2. Preliminaries

2.1. Exponential functionals of Brownian motion. Let b(s), s > 0,
be the Brownian motion on R starting from a € R and normalized so that

1 2
(2.1) Eof(b(s)) = \ f(x + a)—e"%/4% duz.
]1§< Vars

Hence Eb(s) = a and Varb(s) = 2s.

REMARK. Our normalization of the Brownian motion b(s) is different
than that typically used by probabilists who tend to assume that Var b(s)=s.

For d > 0 and p > 0 we define the following exponential functional

(o]
(2.2) Iy, = S ed0(s)=ns) g,

0
Such functionals are called perpetual functionals in financial mathematics
and they play an important role there (see e.g. [11], 25]).
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THEOREM 2.1 (Dufresne, [11]). Let b(0) = 0. Then the functional Iy, is
distributed as (4fyu/2)_1, where 7, /5 denotes a gamma random variable with

parameter ji/2, i.e., v,/2 has a density (1/F(u/2))x“/2_16_11[0700) (z).

The proof of Dufresne’s theorem can be found in many places. See for
example [10, O 24] or the survey paper [16] and the references therein.
The inverse gamma density on (0, 00), with respect to dx, is defined by
by (x) = CM,WCU_#_IQ_W/%(O,OO) (z),

where C,  is the normalizing constant such that {7 by (z) dz = 1.
As a corollary of Theorem 2.1} by scaling the Browman motion and chang-
ing the variable, we get the following theorem.

THEOREM 2.2. Let b(0) = a. Then
o0 da
—u/d (& dx
Baf (i) = cane® ) J)™ () 5
In particular, I, has the inverse gamma density hy, /s 1/4-
We will also need the following lemma.

LEMMA 2.3. Let o(u) = b(u) — 2cu be the k-dimensional Brownian mo-
tion with a drift, d > 0, and let £ € (R*)* be such that £(a) > 0. Then

) f( S ") du) = a0 OSO Flu)u—/ eXp<_€d£(a)) du

2d202u ) u
0

where v = 25(&)/52. In particular, the functional §3° e@b(w)=20u) gy has the
inverse gamma density hoga)/(de2),1/(d2e2)-

Proof. This follows from Theorem See [17, Lemma 5.4| for details. m

2.2. Some probabilistic lemmas. If b(¢) is the Brownian motion
starting from x € R then the corresponding Wiener measure on the space
C(]0,0),R) is denoted by W. The following lemma follows from [I], formula
1.1.4, p. 125].

LEMMA 2.4. There exists a constant ¢ > 0 such that for all x <y,
W (sup [b(s)| > y) < ce” 0D/,
O<s<t

The following two equalities follow easily from the reflection principle for
the Brownian motion [13].

LEMMA 2.5. Ifx > a > 0, then

WO( sup b(w) > a and b(t) < x) = 9Wo(b(t) > a) — Wo(b(t) > ),
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whereas if x < a with a > 0, then

W0< sup b(u) > a and b(t) < :U) =Wy (b(t) > 2a —x).
u€(0,t]
Let

JSC e/ du.,

—00

1
VAar

LEMMA 2.6. Lett > 0. Fora >0, x,y € R with x <y, let

&(x) =

Ri={-a<z<y<a}, Ry={r<y<-—a},
R3 ={a <z <y}, Ry={0<z<a<y}.
Then

2@(2at )—2q5 2“? +20 (%) — 20 (k) on B,
20(2078) — 20(*72) + &( %) — &(H) on Iy,
2(5) ~ #(5) +20(5) 29 (57) on By
21— 8(35)) - 8(2%) - (257) +(25) - () on R

Proof. We use
Wo( sup |b(u)| > a and b(t) € [x,y])
u€[0,t]

< W()( sup b(u) > a and b(t) € [x,y])
u€(0,t]

+ Wo< sup —b(u) > a and —b(t) € [—vy, —x])
u€[0,t]
Then the bound ({2.3) on each set R; follows from Lemma by an easy
calculation. m

COROLLARY 2.7. Assume thata > |n|+0,0 >0,e <1, and0 < /2 < 4.
Then

e—lwo( sup [b(u)| > a and b(t) € [n — /2,1 + 5/2])
u€|0,t]

IN

(6—(2a—n)2/(4t) + 6—(2a+n—s/2)2/(4t))

(ef(2afn)2/(4t) + 67(2a+n71/2)2/(4t))'

IN

3-3l-
~ ~
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Proof. Let x = n —¢/2 and y = n + €/2. Our hypotheses imply that
—a < x <y < a. In particular

0<(2a—1y)/Vt<(2a—x)/vVt and 0< (2a+z)/Vt < (2a+y)/ V1.
Hence, from Lemma [2.6]
€_1W0( sup |b(u)| > a and b(t) € [n —e/2,n + 5/2])
u€[0,t]

(e~ (2a—)2/(41) o~ (2a2)/(4))

9

IN
3l-
~

proving the corollary. =

COROLLARY 2.8. Assume that a > 0. Then

1
lim sup 7W0< sup |b(u)| > a and b(t) € [n — 5/2,n+5/2]>

e—~0 ¢ u€0,t]

2 ~a-ln)?/() |y) < g,
< Tt
< T
n*/(4t) 0<a<|n|
Art

Proof. The first statement is immediate from Corollary 2.7 For the sec-
ond statement note that

wo( sup b(t) > a and b(t) € [n — £/2,n + 5/2])

u€(0,t]
1 n+e/2
< Wy (b(t) € [n—¢/2,n+¢/2]) = S e~ /1) gy,
4t
n—e/2
from which the lemma follows. =
2.3. Evolution equations in R™. Let
1 n n
(2.4) Lt = 3 D a(t)0i0; + > bi(1)0

ij=1 j=1
be a differential operator on C*°(R™), where 9; = 0., and a(t) = [a;;(t)] is a
symmetric, positive definite matrix and the a;; and b; belong to C([0, c0), R).
For s < t, let Pt s be the fundamental solution for L = 0,+L?® which is defined
by formulas ([1.4] and . where £7(%) is replaced by L®. Let

t t
Aij(s,t) = Saij(u) du = Ai,j7 Bj(s,t) = Sb](u) du = Bj.

PROPOSITION 2.9. Let A = [4;;] and B = (By,...,By)". Then
(2.5) Pt,s<$) _ (27r)_"/2(det A) 1/2 —7( (x—B)).(:c—B).
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Proof. For f, € C*(R") N L*(R"), we write
f(x,t) =U(s,t) folx) = fox Prs(z).
We note that
Osf(x,t) = L' f(x,t), t>s,
f(z,s) = folx).

We solve the above equation using the Fourier transform. See [19, Proposi-
tion 2.10] for details. =

3. Meta-abelian groups. Let the notation be as in We consider
a family {®(a)},crr of automorphisms of n that leave m and v invariant.
We identify linear transformations on n with (m + n) x (m + n) matrices,
allowing us to write

where
S(a) = diag[e®@ ... (D] T(a) = diag[e”(@, ..., ()],
We denote the diagonal entries of S(a) and T'(a) by
sila) =e5 W i=1... m, ti(a) = Vil =1 n
Let o be a continuous function from [0,00) to A = R*, and denote
3.1 7)) =2(a(t), S7(t)=S(a(t), T7(t)=T(a(t)).

For Z € n let
Z(t)=27(t)Z.

For v € V let
o,v, a“ 2
(3.2) L3P =Y (Ad(w)Y;(t)”.
j=1
Then

£V f(m,w) = L Fm o + L3 F (o 0)lm, tERT,

is a family of left-invariant operators on N depending on t € R™. Our aim is

o(t)
N -

to estimate the evolution kernel P/ for the time dependent operator £
3.1. Evolution on M. We choose coordinates y; for M for which Y;
corresponds to 0; = 0y;, 1 < i < m. Let n € C([0,00),V) and consider the
evolution on M generated by the time dependent operator
m

L5 =3 (Ad(()Y; (),

j=1
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where
Yj(t) = &7 (1)Yj.
Then
Ad(n(1))Y;(t) = Ad(n( Zd}gk )Y,
and consequently,
Z(Ad( Z Z¢k73 ¢l,] Yk)/l Z (W( )Lp(t)*)lekY},
j=1 k=1 j=1 k=1

where ¥(t) = [1;;(t)] is the matrix of the operator Ad(n(t))®’(t)|as. Thus
the matrix [a;;(¢)] from (2.4)) for the operator L3} is

[ai(1)] = 20 ()W (1)* = 2 Ad(n(t)) 7 (t)|ar (Ad(n ()7 ()| s M)
It follows from Proposition that the evolution kernel Pt{\;[’a’n for the op-

7777

erator £}, is Gaussian, and in our notation, it is given by

(3.3) P (m,m!) = D(AT)(t, 5))e” BAN () m=m’)
where m,m’ € M = R¥™M and D, B are defined in - We will need
the following two lemmas:

LEMMA 3.1. Let A be a positive semidefinite symmetric matriz. Then

[EllS

D@ = o

where ||Al| is the £2 — €% operator norm.

Proof. See e.g. [19, Lemma 4.1]. m

LEMMA 3.2. Let M and D be square matrices and let
M B
C D
If det M # 0 then det A = det M det(D — CM~'B).

Proof. See e.g. [26]. =

Now we prove an upper bound on D(AT;(s,t)) that is independent of 7.
For simplicity of notation we identify M, V', and N with m, v, and n using
the exponential map.

LEMMA 3.3. There is a constant C > 0 such that

D(AT](s,1)) < C(Hxsg(u)Q du)*l/Q

i=1s

= CA (s, )™,

where s7(t) are the entries of the diagonal matriz S°(t) defined in (3.1)).
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Proof. We omit the ¢ and o dependence for the sake of simplicity. From
the lower triangularity of the adjoint action of n, for X e n= N,

X, 0 eXo 0
ady = |7 |, Ady=e"x = :
* [vt 0 * L(X)t 1]
where X, is an (m — 1) x (m — 1)-matrix and v is an (m — 1) x 1-column
vector.
Then
So 0 XeS, 0
(3.4) Ady § =e2dx |20 - .
0 sm v(X)S, sm
Let
F' =v(X)!S,
Thus
X0 S, SkeXo G
Adx S(Adx S)! = oro ,
x 5(Adx 5) G s2, +|F?
where
G =eX°S,F =X 5,S8tu(X).
Hence,
A B
AT (s, t) =217 ,
D=2 p e
where
t t
A, :SeXD(“)S (u)S,(u)teXe™ qu, B = S G(u) du,
S S
t t
Azxs?n(u) du, E:S]F(u)\Q du.

From Lemma [3.2]
27" det A}/ (s,t) = (det A,)(A+ E — B'A,'B)
= (det A,)A + (det A,)(E — B'A,'B)

A, B

= (det Ay)A + det Bt

The determinant on the right is non-negative since it is the s, = 0 case of

formula (3.4]). Hence,
27" det AT/ (s, t) > Adet A,.

Our result follows by induction. =
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Now we estimate the operator norm of the matrix
t
(35)  ATP0,6) = 2| [Ad(n(u)S” (@)][Ad(())S7 (w)]* du.
0
LEMMA 3.4. Letn =n(u) = (n1(u),...,nu(uw)) be a continuous function.
Then there exists a constant C > 0 such that

=9

m t
147701 < C(L+ A70,0)%) 3 57 (u
7j=10
where
Al(s,t) = sup |In(u)|oo-
s<u<t

Proof. (We recall that || - || denotes the £2-norm.) We note first that for

X En,
ko

ad J
(3.6) =0 J:
[Adx|wll < C(1+ [ladx|)* < C'(1+ | X[ < C"(1 + [[X]|o0)*
Our result follows by bringing the norm inside the integral in (3.5)). =

3.2. Evolution on V. Recall that we identified V' with R". The matrix
T°(t) = ®7(t)|y is of the form

T°(t) = diag[e? @) ... ePn(@®)],

where ¥1,...,9, € (R")*. Now we consider the evolution process n(t) on V

generated by . n
=D X;(1)? =) (T7()X;)
j=1 J=1

(see the notation introduced in (|1.11]) on p. . Thus, since X; = 0y,

ﬁa,t _ Z e219j(0'(t))a12]j_
j=1

The matrix a(t) = [ai;(t)], defined in (2.4)), for E“T/’t is equal to
af(t) = 207 (£)T7 (t)* = 2diag[e??1(c®)  20n(e(®)],

Let b(t) be the 1-dimensional Brownian motion normalized so that

1
W (b(t) € dy) = pi(x,dy) = e~ (@=u)*/ () g

(47t)1/2
Then, by ,
(3.7) Pl (x,dz) = ] pag, (), dz;).

1<j<n
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Thus the process 7(t) generated by E“’,’t has coordinates 7;(t) which are
independent Brownian motions with time changed according to the clock
governed by o. Let

(3.8) 7(0,1) = | af, (u) du.
0

Since A7,(0,t) is diagonal we see

n t 1/2
(det A (0,8)) /2 = (HSew] ) ,
(3.9) =
| AS(0,1)|| < de% D du = Af (0, t).
0

3.3. Proof of Theorem (1 Theorem 1.2 - 2| follows from formula
together with [19, Corollary 3. 5] and formula [19] (3.1)] with n = 1.

4. Estimate for the evolution on N. In this section we estimate the
evolution kernel on N = M x V. Denote
Pt,s(m U) Pts(o 0 m U)

The main result of this section is the following estimate where k, is as
in (L.16).

THEOREM 4.1. There are positive constants C, D such that
A8 (0, )2 AT (0,8) /2 Py (m, v)

Dol Dl
1/(2ko) — —
C([mll +1)exp< AZ 2 (0,8)  ([[m|V/ ko) + [[v]|+2)2k0 AF, (0, 1)

1/ko 2
+CA(‘T/7E(O,t>1/2eXp<—DHmH +H'U” >

A75(0,1)

REMARK. One can also consider P/ in Theorem 4.1. Then in the esti-
mate all exponential functionals A7 (0,t) must be replaced by A? (s,t). The
proof remains essentially the same.

Proof of Theorem[f.1. We allow the constants C and D to change from
line to line. By Lemmas [3.1] and [3.3]

(41) Pt{\f’o—’n (77’17 m ) = (A?-\f(s’ t))eflg(A?v\/yln (s,t))(m—m/)

< CAG, (s, t)~Y2e 2Tl
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From Theorem for m,m' € M and v, € V,

| Pro(m, vi ', oy(e') dof = | PG (m, m ) (1(1)) AW ()

A%
[m—m/|2

< CAS (0,072 Y b(n(t))e 243" OO W ().
Then, by Lemma [3.4]

(4.2)  AFn(0.6)'/2 | Po(m, v)y(v) dv
\%4

< C’Sexp — Dm|”
: (1 + A7(0, 1)) A%, (0, )
For v € R" given and € > 0, let

Ye(-) = "1p.()(*),

)wm@»ﬂvﬁwm.

where

v) = ﬁBg(vj) and  B;(v;) = [vj — /2,05 +¢/2].

We will estimate (4.2)) with 1. in place of ¥ as e tends to zero.

Let E! denote expectation with respect to dWl‘,/’a(n). For k =1,2,...,
define the sets of paths in V,

Ax(t) = {n: k=1 < 470,8) = sup [In(w)]oc <k},
0<u<t

where by || - ||c We denote the maximum norm ||z||s = maxj<;<p |2;|. The
integral on the right in (4.2)) can be written as an infinite sum and estimated
as follows:

Dl|m)|?
(4.3) Z EO exp< (1 + An(0, f;’“"H)A%m(O, t)>¢a(77(t))1/lk(t) ()

D|jm|f? > "
= —Tmm e o ) Bove(n(t))l _
= ;eXp< k2o A9, 1(0,8) 0V (1(t)) L, 1) (1)

To simplify notation we introduce

oo 2 )
k= €xD )

k2o AF; (0,1)

Ex(e) = Ege(n(t) La,y(n) = e "W (n € Ap(t) and n(t) € Be(v)).
Let v # 0 and choose €/2 < [|v|l0o. If n € Ak(t) and n(t) € B.(v) then
[m@)llee = [|v]loo — /2. Hence,

(4.4) E=0 fork < ||v]|e —e/2.
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Let, for k =1,2,...,
AT (0,8) = sup |n;j(u)| and AL(t)={n:k—1<A"(0,t) < k}.

0<u<t

Since the coordinates 7;(t) of 7)(t) are independent, we can estimate

(4.5)  Eile) =& "Wy (n € A1) An(t) € Be(v))

ey Wy (n € AL (1) An(t) € B:(v))
j=1
=YW (€ AL An(1) € BHog)) Wy (Vi # i) € BL(w)
j=1

= Zg—lwo 0 € AJ(A7;(0,0)) A (AT 5(0,1)) € Bl (v)))

x H I Wo(m(A7,(0,1)) € BL(v)))-
i#]j

LEMMA 4.2. Assume that a > ||v||cc + 6, 0 >0, and 0 < e/2 < 0. Then

=Wy (sup () = @ and n(t) € Bo(v))
u€l0,t]

1(0,4) 1/22 —(2a—v;)? 4AVJ(Ot))+e—(2a+vj—5/2)2/(4A‘\’,J(07t)))

< A“?H(O,t)_l/Q Z(e_(Qa_vj)Z/(4A(\7/,j(Ovt)) + e_(2a+vj_1/2)2/(4‘4\0/,j(Ovt)))'
j=1
Proof. Reasoning as in (4.5)) we see that the left side of the above in-
equality is bounded by

czn:(H A;i(o,t))fl/2

=1 i#j

=Wo supny(u)] > @ and ny (A75(0,0)) € BL ().
u€l0,A7, (0,t)]

By our assumption it follows that for every j, a > |v;| + 0. Hence, the result
follows by Corollary 2.7 =

LEMMA 4.3. We have
%’H(O,t)l/QPt‘fo(m,v)SCI, where I = limsup Z ck€r(e).

20T k> olleo

Furthermore, the sum converges uniformly in €.
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Proof. The inequality follows by letting £ tend to 0 in (4.3]). The uniform
convergence follows from Lemma [£.2] =
Let n, be the smallest natural number such that n, > [|v]|co.
LEMMA 4.4. We have the following estimates:

limsup &y, (¢) < C A7 (0, t)fl/Ze—Hngo/(4A672(0,t))’

e—0t

while for k > n, + 1,

: - (2(k — 1) — [|v]loc)®
lim sup Ex () < CAF1(0,8) "2 exp < .
e—0Tt ’ 4A(\7/,2 (07 t)

Proof. Consider &,,. Let j € {1,...,n} be fixed. Suppose first that |v;| <
ne — 1. Then, using Corollary the jth term in (4.5) (with k& = n,) is
dominated by a multiple of

_ (2(no—1)—|v;? w2
(‘7/71_[(07 t)_1/2€ TAg_(0.0) H o 700
i#]
Notice that |v;| cannot be equal to ||v]|«. Thus we are done in this case. Now
suppose that |v;| > n, — 1. Then, using Corollary again, we dominate
the jth term in (4.5) by a multiple of

2
v Jvi |2

%’H (0, t)_1/2674A<{/7j (0,1) H 67 4A“7/,i(0,t) .
i)

The result for &, follows.
Now we consider &. Since k > n, + 1 it follows that £ — 1 > |v;| for
every j. Therefore, by Corollary the jth term in (4.5) is estimated by

_ @(k=1)—|v;)? 2
CA‘{,ﬂ(oyt)fl/ze 147, ;0.5) He Ay,00
i
Next we estimate I = limsup,_,y+ Zk‘ZIIvlloo ck€k(e). From Lemma

(46)  ATn(0,)Y21 = 47,10, limsup (en,Ea () + . exfi(e))

e—0t ano—i-l

<Cexp<_ I3, Dlm| )
- 247,5(0,t)  nZko A%, (0,¢)

> D|jm]f? (2(k = 1) — [[v]00)?
p> eXp( k2o A%, (0,1) 247,,(0,t) )
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For a,b non-negative, a + b > va? + b2. Also, for k > n, + 1,

(k=1)+ (k= 1) = [[vfloc = 10 + (k=1 = [[v]l0),
k=1—=vllec =10 = [[vflc 2 0.

Hence the summation in the last line of (4.6]) is bounded by

> DlmlP (no-+ (k= 1) = o]}
(4.7) exp(— - _ N
k:nZoH k2o A7, (0, 1) 447,40, 7)
Wm%%()t) = D||m|? (k—1— [v]|oo)?
<e v exp(— = - - 00 >
Z kaOAM,E (07 t) 4AV,E (0, t)

k=no,+1

We split the sum in (&.7) into two parts: n, + 1 < k < n, + ||m]|*/(?%) and
k > ng + ||m|'/(?%e) | and estimate the corresponding parts by the following

two terms:
2

o Dljm?
/24
(I 7T+ o]l oo + 2% 45, (0,)

and
2

n2 2
¢ TTn0D 3 exp< D|jm||? _(k‘—l—no))

T 12 A0 >
k>no+|m||1/ (2ko) 41 kA3 5(0,1) 4A7,+(0,1)

The above expression is bounded by

__n3 oo . i, gmyt/ke
[} [} AU AC" B
e VxO9 S e =Yg < 2A{'/7E(O,t)1/2e AT 5 (0.1) 447 2 (0.1)
([m]|1/ (2ko)

Hence, by Lemmas and , Theorem follows. m

4.1. Proof of Theorem To simplify our notation we set
Ao = AL (0, 1)l = Afrn(0, t)l/zA?/,H((), )12,
A1 = A7(0,1),

(4.8) v
A2 - AM,E(()?t)?
For k € N and the ¢?>-norm || - ||, we let
% \*
= (1 M.

It follows from Theorem that there are positive constants C' and D
such that in the region |[v|| < |||}/ (2ke)]
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2
(49 AoPfy(mo) < C(UmlV )+ yexp(-DlE - 1oy )
1 2

1/ko 2
e LR )
1

In fact, if |[v]| < ||m]||*/(*) then
Jm]? Jm]? C L ol
(70 & ol + 27 = 22 ([ 1R 4 T2k, — 2k 2% ()l
and we get (4.9).

Now we consider ||v > ||m/||'/ (). Again, it follows from Theorem |4.1
that there are positive constants C, D such that

2k,

1/ko 2
(4.10)  AgPfy(m,v) < C(||m|yl/<2’fo>+1+A}/2)exp<_p||m” + ||| >

Ay

2%ko)

In fact, it is easy to see that if ||| > ||m|'/(*#¢) then there is a constant

D > 0 such that
o]]? [m]? [lm||*/*o + HUIIQ_

+
Ar (Y CR) + o]l +2)%0 Ay Ay

Hence, (4.10) follows from Theorem

Since 0 < ¢, (m) < 1 for all m, we note that there exists ¢ > 0 such
that

lm | gar, (m) = c|m|/*e for [Im] > 1

and
[m)|*ke > |lm]|gar,(m) > Clml|*>  for [|m] < 1.

Since A7 < Az and Ay < Ag, Theorem follows from (4.9) and (4.10)).

5. Upper estimate for the Poisson kernel

5.1. Poisson kernel. Let u; be the semigroup of probability measures
on S = N x R generated by L,. It is known [5, 9] that

tILI&(W(ﬂt)a f) = (V7 f)?

where 7 denotes the projection from S onto N and (i1, f) = (i, f), f(z) =
f(z71). Let a € R¥ and let u be a measure on N. We define

(1, f) = (p, f o Ad(a)).
For a € R* we have
(5.1) v (z) =v(a'za)x(a)™!, =z €N,

where x is as in (|1.18)).
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It is an easy calculation to check that
(52) o (x(p)° ) = (. ).
We need the following
LEMMA 5.1. We have
(m(ii)", f) = (BaPl, f).

Proof. This equality follows from formula (1.9)). See [I7, Lemma 4.1] for
the details.

By (5.2) and Lemma it follows that
a 7 -~ \a I T Ho
53) (v, ) = Jim (x(ie)", 1) = lim (B, By, )
Let v(x) = v(m,v), m € R™ v € R™, be the Poisson kernel on N for the
operator L, in (1.10). Recall that we assume that
AMa) >0 forall A e A

Hence « belongs to the positive Weyl chamber A*. The operator A, gener-
ates the Brownian motion with drift —2a,

o(u) = b(u) — 2au,

where b(u) is the k-dimensional standard Brownian motion normalized so
that Varb, = 2u.

Let v* be as in (5.1). We also use the notation introduced in (1.19)).

THEOREM 5.2. For all compact subsets K % e of N = MxV, allp € AT,
and all € > 0 there exists a constant C = C(K,p,e) > 0 such that for all
5 <0,

(5.4)  v°9(z) < Ce Pol90)e(3/270 (9)Te (@) ¢(5/2)74(9)7a(2)
if x = (m,v) € K1 = Kn{[m|>e¢, |v] >},

(5.5)  v°P(x) < Ce Poi0) 510 (9)70(a)

Ja=(mv) € Ko =Kn{|m| <e, o] = e},
and
(5.6) vP(x) < Ce Poi0) 574 (R)Ta(e)

Jx=(mv) € Ky = K0 {|ml > e, o <.

Proof. First we consider elements = (m, v) from the set K. Let A; be
defined as in (4.8)) but with ¢ = co. By Theorem |1.3| we have
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D D
S < -
(5.7) v CE, A, exp< e A3>
~1 41/2 D _D
+CEg Ay Ay exp< i A3>

—1 = =
(5.8)  EguA, exp( 1 A3>

- 9D 2D\ /2
< (Esp(Ag 1)2)1/2 (ESK) eXp<_Al - Aa))

_ AD\ \ 174 ADN \ /4
< 451 (Bpen(—20)) (Bowen(-22))

By the Cauchy—Schwarz inequality we get
(5:9)  BEsp(Ag)? = Bap(Afrm) (A7) ™

= e 2P ( (17\4,11)_1( ?/,H)_l

< e 0 (B (AFy ) 7)) P (Bo(AT ) )2,

Since, by Lemma the expected values EO(A‘M]-)*d, j=1,...,m, and
EO(Ag/,i)_d, i =1,...,n, are finite for all d > 0, we can apply the Cauchy—
Schwarz inequality successively to each of the remaining expectations in
and conclude their finiteness.

Now we consider E, exp(—4D1/A1) and Eg, exp(—4D2/A3) from (j5.8)).
Clearly,

(5.10) E,pexp(—4D1 /A1) < Egexp(—4D1/(M(sp)A1)),

where
M(sp) = max e20(sp) — p2smingeco I(p) — 2570 (p)
€

Proceeding exactly in the same way as in the proof of [I7, Lemma 6.2] we
show that ([5.10) is bounded by

(511) CM(S@)WQ(O!) — 06257@(@)7@(0‘)'

The expectation Eg, exp(—4D2/A3) is similar. Again, in the same way as
in the proof of [I7, Lemma 6.2| we show that E,, exp(—4D2/A3) is bounded
by

CM(sp)72® where M (sp) = max 2 (390) — ¢2574(9)
€

Hence,
E,, exp(—4Dy/A3) < Ce2sva(@Nale)
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Now we estimate the second expectation on the right in ([5.7)):

1 Az
- RERY D D
< j:ZIESWAO AV,j eXp<—Al — 14-3>
—1/2 —1/2 D D
k#j
=3 e Beesflon) Do, Yoo g g U2 TT 4012 b D
_Ze se=tvle 2omn T Bo i [ A ep( A A)
k#j
Since s < 0,

e~ 2eez€(s9) ™ 2oz9;0(s50) < e P0(s9).

To estimate

EoA,, 1/2 HA yzexp(—D — D)
k#j

we proceed as in (5.8) and (5.9) and get the same estimate. Hence, the
estimate (5.4) holds on Kj.

Now we have to consider the set
Ky = KN {(m,v):|m| <e, ||v|] > e}

On this set the estimate from Theorem [I.3] simplifies and we get

D1 D
(5.12) v (x) < C’ESpAO exp <_Al> + CESWA71A1/2 exp (_Al)

Using Lemma (5.9, (5.10) and (5.11) as above, we get the estimate

B D B 2D\ \ /2
EspAo ! €xp <_Ai> < (Esp(AO 1)2)1/2 (Esp €xp <_All>>

< 6_90(59)6576(@)7@(04)‘

As in the previous case the second expectation in (5.12) has the same es-
timate as the first one. Hence, the estimate (5.5)) holds on K. Finally, we
consider the set

Kz = K n{(m,v):[lml] > ¢, vl <e}.
On Kg,

D
(5.13)  1*°(2) < CEupdy exp( — 22 ) + CBypdy AV 2exp( - 22 ).
AS A3
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We have

B D - 2D, \\ /2

< e~ Po(s9) g57a(P)7a(Q)

Again, the second expectation in (5.13) has the same estimate as the first
one. Thus (j5.6)) is proved. m

5.2. Proof of Theorem Having Theorem [5.2] we use the standard

homogeneity argument as follows.

Proof of Theorem[1.5 It is clear that for z € N with the norm ||, <1
we have v(z) < Cl,.

Let 6 = Ad((logt)p). Then |6 z|, = t|z|,. Let z = 5§Xp(_5)aso with
|zolp, = 1 and s < 0. Then |z|, = e™® > 1. Let K = {x, : |z,|, = 1}. By
definition (5.1]) of v, we get

V() = V(00 o) = v((s9) ' wo(sp)) = e (xy),

where pg = 3,9 + >, &, and the result follows from Theorem .

6. Example. Consider N = H,, the 2n 4+ 1-dimensional Heisenberg
group, which we realize as R® x R"™ x R with the Lie group multiplication
given by

(z1,y1,21) (22, Y2, 22) = (1 + T2, Y1 + Y2, 21 + 22 + 71 - Y2).

The corresponding Lie algebra b, is then spanned by the left-invariant
vector fields
X; :&Bj, Y; :By].+a:j8z, Z =0,
where 1 < j < n. Let A = R* and let §1,,62,5,83 € (RF)*, 1 < j < mn, be
such that
15 T8, =25&
independently of j. For z € R?, a € RF, and i = 1,2, we set

5@y = (efinl@yy . efin(@g ),
We then define an A action on H,, by automorphisms of H,, by
a(z,y, z)a"t = (81 W g, e2(0)y (3@,

We then let S = H,, x A.
Let Yj, ?j, and Z be, respectively, X, Yj, and Z considered as left-
invariant vector fields on S. Then

X, = eEl,j(a)Xj’ Y, = ef2i (a)yj’ 7 =83y
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We set

n
(6.1) Lo= X, +Y)+Z"+ Aq
j=1
n
— 2(6251,j(a)XJ2 + 6252,j(a)yj2) + X372 L AL
j=1
where A, is defined in ((1.3)).
EXAMPLE 6.1. Consider the operator £, defined in (6.1]) on H,, x A with
A=R%and & ; = (1,0), &, = (0,1). Theorem 1.2 of [I7] gives

v(z,y,2) < C(1+ |(x,y, 2)],) Crro@(@/4,
where
~v(a) = 2min(ay, az)

for some constant C7 which depends on g and can be computed. Take
p = (1,2). We have po = >, &1 + 32, 2,5 + &3, where §; j(a) = a;, 1 = 1,2,
j=1,...,n. To compute C; we proceed similarly as in [I7, Example 1] and
get .

V(@ 4,2) < C(1+ (@9, 2)]1.2) @102/,

whereas Theorem [1.5 gives, for ||(z,2)| > 1 and ||ly|| > 1,
v(w,y,2) < C(1+ |(z,y,2)|,z) */2minlene)/2
Similarly, Theorem 1.1 of [18] gives, for every ¢ > 1,

—2(min(a1,a2))2

V(fL',y,Z) ch(1+|(x7yvz)|a) q 9
whereas Theorem [1.5 gives, for ||(z,2)| > 1 and [|ly|| > 1,
v(2,y,2) < C(1+|(,y, 2)]a) 12703/
which is again a better estimate if we take for example an operator with

a1\/4/q—1 < 9.
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References

[1] A. N. Borodin and P. Salminen, Handbook of Brownian Motion—Facts and Formu-
lae, 2nd ed., Birkh&user, Basel, 2002.

[2] L. Breiman, Probability, corrected reprint of the 1968 original, Classics Appl.
Math. 7, SIAM, Philadelphia, PA, 1992.

[3]] D. Buraczewski, E. Damek and A. Hulanicki, Asymptotic behavior of Poisson kernels
on NA groups, Comm. Partial Differential Equations 31 (2006), 1547-1589.


http://dx.doi.org/10.1080/03605300500532921

4]
[5]

[6]
7]
(8]

9]

[10]

[11]
[12]
[13]
[14]

[15]

[16]
[17]
18]
[19]
[20]
[21]
[22]
23]
[24]
[25]

[26]

FEvolution and Poisson kernels 95

E. Damek, Left-invariant degenerate elliptic operators on semidirect extensions of
homogeneous groups, Studia Math. 89 (1988), 169-196.

E. Damek and A. Hulanicki, Boundaries for left-invariant subelliptic operators on
semidirect products of nilpotent and abelian groups, J. Reine Angew. Math. 411
(1990), 1-38.

E. Damek and A. Hulanicki, Mazimal functions related to subelliptic operators in-
variant under an action of a nilpotent group, Studia Math. 101 (1992), 33-68.

E. Damek and A. Hulanicki, Asymptotic behavior of the invariant measure for a
diffusion related to an NA group, Colloq. Math. 104 (2006), 285-309.

E. Damek, A. Hulanicki and R. Urban, Martin boundary for homogeneous rie-
mannian manifolds of negative curature at the bottom of the spectrum, Rev. Mat.
Iberoamer. 17 (2001), 257-293.

E. Damek, A. Hulanicki and J. Zienkiewicz, Estimates for the Poisson kernels and
their derivatives on rank one N A groups, Studia Math. 126 (1997), 115-148.

A. De Schepper, M. Goovaerts and F. Delbaen, The Laplace transform of annuities
certain with exponential time distribution, Insurance Math. Econom. 11 (1992), 291—
294.

D. Dufresne, The distribution of a perpetuity, with application to risk theory and
pension funding, Scand. Actuarial J. 9 (1990), 39-79.

G. B. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ.
Press, 1982.

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed.,
Grad. Texts in Math. 113, Springer, New York, 1991.

P. Malliavin, Géométrie Différentielle Stochastique, Sém. Math. Sup. 64, Presses
Univ. de Montréal, 1978.

M. P. Malliavin et P. Malliavin, Factorisation et lois limites de la diffusion horizon-
tale au-dessus d’un espace riemannien symétrique, in: Lecture Notes in Math. 404,
Springer, 1974, 164-217.

H. Matsumoto and M. Yor, Exponential functionals of Brownian motion, I: Proba-
bility laws at fized time, Probab. Surv. 2 (2005), 312-347.

R. Penney and R. Urban, Estimates for the Poisson kernel on higher rank N A
groups, Colloq. Math. 118 (2010), 259-281.

R. Penney and R. Urban, An upper bound for the Poisson kernel on higher rank
NA groups, Potential Anal. 35 (2011), 373-386.

R. Penney and R. Urban, Estimates for the Poisson kernel and the evolution kernel
on the Heisenberg group, J. Evol. Equations 12 (2012), 327-351.

D. W. Stroock, Probability Theory, an Analytic View, Cambridge Univ. Press, Cam-
bridge, 1993.

H. Tanabe, Fquations of Evolution, Monogr. Stud. Math. 6, Pitman, London, 1979.
J. C. Taylor, Skew products, reqular conditional probabilities and stochastic differ-
ential equations: a technical remark, in: Séminaire de Probabilité XXVI, Lecture
Notes in Math. 1526, Springer, 1992, 299-314.

R. Urban, FEstimates for the derivatives of the Poisson kernels on homogeneous
manifolds of negative curvature, Math. Z. 240 (2002), 745-766.

K. Urbanik, Functionals on transient stochastic processes with independent incre-
ments, Studia Math. 103 (1992), 299-315.

M. Yor, Ezponential Functionals of Brownian Motion and Related Processes, Sprin-
ger, Berlin, 2001.

F. Zhang, Matrix Theory. Basic Results and Techniques, Springer, New York, 1999.


http://dx.doi.org/10.4064/cm104-2-6
http://dx.doi.org/10.1016/0167-6687(92)90017-6
http://dx.doi.org/10.1214/154957805100000159
http://dx.doi.org/10.4064/cm118-1-14
http://dx.doi.org/10.1007/s11118-010-9217-6
http://dx.doi.org/10.1007/s00028-011-0134-y
http://dx.doi.org/10.1007/s002090100397

96 R. Penney and R. Urban

Richard Penney Roman Urban
Department of Mathematics Institute of Mathematics
Purdue University Wroclaw University
150 N. University St. Pl. Grunwaldzki 2/4
West Lafayette, IN 47907, U.S.A. 50-384 Wroctaw, Poland
E-mail: rcp@math.purdue.edu E-mail: urban@math.uni.wroc.pl

Received September 23, 2012
Revised version August 8, 2018 (7626)



	1 Introduction
	1.1 The evolution kernel on NA groups
	1.2 Poisson kernel for L
	1.3 Structure of the paper

	2 Preliminaries
	2.1 Exponential functionals of Brownian motion
	2.2 Some probabilistic lemmas
	2.3 Evolution equations in Rn

	3 Meta-abelian groups
	3.1 Evolution on M
	3.2 Evolution on V
	3.3 Proof of Theorem 1.2

	4 Estimate for the evolution on N
	4.1 Proof of Theorem 1.3

	5 Upper estimate for the Poisson kernel
	5.1 Poisson kernel
	5.2 Proof of Theorem 1.5

	6 Example
	References

