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Abstract. We introduce a new class of Banach spaces, called generalized-lush spaces
(GL-spaces for short), which contains almost-CL-spaces, separable lush spaces (in par-
ticular, separable C-rich subspaces of C(K)), and even the two-dimensional space with
hexagonal norm. We find that the space C(K,E) of vector-valued continuous functions is
a GL-space whenever E is, and show that the set of GL-spaces is stable under c0-, l1- and
l∞-sums. As an application, we prove that the Mazur–Ulam property holds for a larger
class of Banach spaces, called local-GL-spaces, including all lush spaces and GL-spaces.
Furthermore, we generalize the stability properties of GL-spaces to local-GL-spaces. From
this, we can obtain many examples of Banach spaces having the Mazur–Ulam property.

1. Introduction. The classical Mazur–Ulam theorem states that ev-
ery surjective isometry between normed spaces is a linear mapping up to
translation. In 1972, Mankiewicz [M] extended this by showing that every
surjective isometry between open connected subsets of normed spaces can
be extended to a surjective affine isometry on the whole space. This result
implies that the metric structure on the unit ball of a real normed space con-
strains the linear structure of the whole space. It is of interest to us whether
this result can be extended to unit spheres. In 1987, Tingley [T] first studied
isometries on the unit sphere and raised the isometric extension problem:

Problem 1.1. Let E and F be normed spaces with unit spheres SE
and SF , respectively. If T : SE → SF is a surjective isometry, does there
exist a linear isometry T̃ : E → F such that T̃ |SE = T?

There are a number of publications on this topic and many positive
answers on special spaces, for example, lp(Γ ), Lp(µ) (0 < p ≤ ∞), C(K),
even the James spaces and the (modified) Tsirelson spaces (see [D1, D2, L,
LZ, T1, T2, T3, T4] and the references therein).
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Recently in [CD], Cheng and Dong considered the extension question of
isometries between unit spheres of Banach space and introduced the Mazur–
Ulam property:

Definition 1.2. A Banach space E is said to have the Mazur–Ulam
property (briefly MUP) provided that for every Banach space F , every sur-
jective isometry T between the unit spheres of E and F is the restriction of
a linear isometry between the two spaces.

Cheng and Dong attacked the problem for the class of CL-spaces ad-
mitting a smooth point and polyhedral spaces. Unfortunately their inter-
esting attempt failed by a mistake at the very end of the proof (see also
the introduction in [KMMP, TL]). In [KM], Kadets and Mart́ın proved that
finite-dimensional polyhedral Banach spaces have the MUP. Notice that the
problem is still open even in two dimensions. In [TL], Tan and Liu proved
that every almost-CL-space admitting a smooth point (in particular, every
separable almost-CL-space) has the MUP.

Recall that R. Fullerton [F] first introduced the notion of CL-space. It
was extended by Lima [L1, L2] who introduced almost-CL-space and gave
examples of real CL-spaces which are L1(µ) and their isometric preduals,
in particular C(K), where K is a compact Hausdorff space. The infinite-
dimensional complex L1(µ) spaces were proved by Mart́ın and Payá [MP1] to
be only almost-CL-spaces. Lush spaces were recently introduced in [BKMW]
and have been extensively studied in [BKMM, KMMP, KMMS]. Such spaces
are of importance to supply an example of a Banach space E with numerical
index n(E) < n(E∗). It thus gives a negative answer to a question which
has been latent since the beginning of the theory of numerical indices in the
seventies. Now, a natural and interesting question is: “Does every almost-
CL-space, even every lush space, has the MUP?”

In this paper, we introduce a natural concept of generalized-lush spaces
(GL-spaces for short), which contains almost-CL-spaces, separable lush
spaces (in particular, separable C-rich subspaces of C(K)), and even the two-
dimensional space with hexagonal norm. We show that the space C(K,E)
of vector-valued continuous functions is a generalized-lush space whenever
E is, and show the stability of generalized-lush spaces under c0-, l1- and
l∞-sums. Then we prove that the Mazur–Ulam property holds for a larger
class of Banach spaces than GL-spaces, called local-GL-spaces, including
all lush spaces and GL-spaces. Furthermore, we show that C(K,E) is a
local-GL-space whenever E is, and stability under c0-, l1- and l∞-sums also
holds for local-GL-spaces.

Throughout this paper, all spaces considered are over the real field. For
a Banach space E, BE , SE , E∗ and L(E) will stand for the unit ball of E,
the unit sphere of E, the dual space and the Banach algebra of all bounded
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linear operators on E. A slice is a subset of BE of the form

S(x∗, α) = {x ∈ BE : x∗(x) > 1− α},

where x∗ ∈ SE∗ and 0 < α < 1.

We recall here some basic concepts.

Definition 1.3. Let E be a Banach space.

(i) E is said to be a CL-space if for every maximal convex set C of SE ,
we have BE = co(C ∪ −C).

(ii) E is said to be an almost-CL-space if for every maximal convex set
C of SE , we have BE = co(C ∪ −C).

(iii) E is said to be lush if for every x, y ∈ SE and every ε > 0, there
exists a slice S = S(x∗, ε) such that x ∈ S and dist(y, aco(S)) < ε.

It is evident that (1)⇒(2)⇒(3), and none of the one-way implications
can be reversed (see [MP1, Proposition 1] and [BKMW, Example 3.4]).

The numerical index of a Banach spaceE was first suggested by G. Lumer
in 1968 (see [DMPW]); it is defined by

n(E) = inf{v(T ) : T ∈ L(E), ‖T‖ = 1}
= max{k ≥ 0 : k‖T‖ ≤ v(T ) for all T ∈ L(E)},

where v(T ) is the numerical radius of T given by

v(T ) = sup{|x∗(T (x))| : x ∈ SE , x∗ ∈ SE∗ , x∗(x) = 1}.

More information and background on numerical indices can be found in the
recent survey [KMP] and references therein.

2. Generalized-lush spaces. The aim of this section is to study gen-
eralized-lush spaces (GL-spaces for short). We present many examples and
prove a stronger property for separable GL-spaces; we also show that GL-
spaces have some stability properties.

Definition 2.1. A Banach space E is said to be a generalized-lush space
(GL-space) if for every x ∈ SE and every ε > 0 there exists a slice S =
S(x∗, ε) with x∗ ∈ SE∗ such that

x ∈ S and dist(y, S) + dist(y,−S) < 2 + ε

for all y ∈ SE .

The following proposition for separable GL-spaces is based on an idea
from [KMMP, Lemma 4.2], and it is of independent interest. Given a Banach
space E, a subset G ⊂ E∗ is called norming if ‖x‖ = sup{|x∗(x)| : x∗ ∈ G}
for every x ∈ E.
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Proposition 2.2. Let E be a separable GL-space, and let G ⊂ SE∗ be
norming and symmetric. Then for every ε > 0 the set

{x∗ ∈G : dist(y, S) + dist(y,−S) < 2+ε for all y ∈ SE ,where S = S(x∗, ε)}
is a weak∗ Gδ-dense subset of the weak∗ closure of G.

Proof. Let (yn) ⊂ SE be a sequence dense in SE . Fix 0 < ε < 1. Given
n ≥ 1, set

Kn = {x∗ ∈ G : dist(yn, S) + dist(yn,−S) < 2 + ε, where S = S(x∗, ε)}.

Then Kn is weak∗-open and Kn
ω∗

= G
ω∗

. Indeed, if x∗ ∈ Kn, then there
exist xn ∈ S(x∗, ε) and zn ∈ −S(x∗, ε) such that

‖xn − yn‖+ ‖yn − zn‖ < 2 + ε.

Let
U = {y∗ ∈ G : y∗(xn) > 1− ε and y∗(−zn) > 1− ε}.

Then it is easily checked that U is a weak∗ neighborhood of x∗ in G satisfying
U ⊂ Kn. Thus Kn is weak∗-open.

To prove Kn
ω∗

= G
ω∗

, it is enough to show that G ⊂ Kn
ω∗

. Since
[FHHMPZ, Lemma 3.40] states that for every x∗ ∈ G, the weak∗-slices
containing x∗ form a neighborhood base of x∗, it suffices to prove that
S(x, ε1) ∩ Kn 6= ∅ for all ε1 ∈ (0, ε). Since E is a GL-space, there is a
slice S = S(y∗, ε1/3) such that

x ∈ S and dist(yn, S) + dist(yn,−S) < 2 + ε1.

Thus we may find x′n ∈ S and z′n ∈ −S such that

‖x′n − yn‖+ ‖yn − z′n‖ < 2 + ε1 and ‖x+ x′n − z′n‖ > 3− ε1.
Note that G is norming and symmetric. Thus there is a z∗ ∈ G such that

z∗(x+ x′n − z′n) > 3− ε1.
This implies that z∗ ∈ S(x, ε1) ∩Kn.

Now set K =
⋂
n∈NKn. Then by the Baire theorem, K is a weak∗ Gδ-

dense subset of G
ω∗

. This together with density of (yn) in SE gives the
desired conclusion.

As a consequence, we have a stronger characterization for separable GL-
spaces which indicates that the x∗ in the definition of GL-spaces can be
chosen from ext(BE∗).

Corollary 2.3. Let E be a separable Banach space. Then E is a GL-
space if and only if for every x ∈ SE and every ε > 0 there exists a slice
S = S(x∗, ε) with x∗ ∈ ext(BE∗) such that

x ∈ S and dist(y, S) + dist(y,−S) < 2 + ε

for all y ∈ SE.
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Now we have the following important examples.

Example 2.4. Every almost-CL-space is a GL-space.

Proof. Let E be an almost-CL-space. For every x ∈ SE and ε > 0, there
exists a maximal convex set C of SE such that x ∈ C. Choose f ∈ SE∗ such
that f(z) = 1 for every z ∈ C, and set S = S(f, ε). Then C ⊂ S. Since E is
an almost-CL-space, it follows that BE = co(S ∪ −S). So for every y ∈ SE ,
there are λ ∈ [0, 1], y1 ∈ S and y2 ∈ −S such that

‖λy1 + (1− λ)y2 − y‖ < ε/2.

This leads to

‖y1 − y‖+ ‖y2 − y‖ < 2 + ε,

which completes the proof.

Since all C(K) and all real L1(µ) are CL-spaces (in particular, almost-
CL-spaces), they are GL-spaces. Below, we exhibit a larger class of spaces
which are GL-spaces, and they are not almost-CL-spaces in general (see
[BKMW, Example 3.4]).

Example 2.5. Every separable lush space is a GL-space.

Proof. Note that [KMMP, Theorem 4.3] implies that if E is a separable
lush space, then there is a norming subset K of SE∗ such that

BE = co(S(x∗, ε) ∪ −S(x∗, ε))

for every x∗ ∈ K and every ε > 0. A similar analysis to the one in Exam-
ple 2.4 yields the desired conclusion.

Let K be a compact Hausdorff space. A closed subspace X of C(K)
is said to be C-rich if for every nonempty open subset U of K and every
ε > 0, there is a positive function h with ‖h‖ = 1 and supp(h) ⊂ U such
that dist(h,X) < ε. This definition covers all finite-codimensional subspaces
of C[0, 1] (see [BKMW, Proposition 2.5]) and all subspaces X of C[0, 1] such
that C[0, 1]/X does not contain a copy of C[0, 1] (see [KP, Proposition 1.2
and Definition 2.1]). For more examples and results about C-rich subspaces
we refer to [BKMM, KMMS, KMMP] and references therein. Notice that
all C-rich subspaces of C(K) have been proved in [BKMW, Theorem 2.4] to
be lush. Therefore we get the following example.

Example 2.6. Every C-rich separable subspace of C(K) is a GL-space.

Observe that all the above examples of GL-spaces are Banach spaces with
numerical index 1. We remark from the following examples that there may
exist many GL-spaces whose numerical index is not 1. The two-dimensional
space with hexagonal norm is an example.
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Example 2.7. The space E = (R2, ‖ · ‖) whose norm is given by

‖(ξ, η)‖ = max
{
|η|, |ξ|+ 1

2 |η|
}
∀(ξ, η) ∈ E

has numerical index 1/2 and it is a GL-space.

Proof. It is shown by [MM, Theorem 1] that E has numerical index 1/2.
To prove that E is a GL-space, given x = (a, b) ∈ SE and ε > 0, we divide the
proof into two cases. By symmetry considerations, we assume that a, b ≥ 0.

Case 1: b = 1. Define a functional f ∈ SE∗ by f(z) = η for all z =
(ξ, η) ∈ E. Set S = S(f, ε). Then x ∈ S, and for every y = (c, d) ∈ SE ,
consider the two vectors

y1 = (c, 1) and y2 = (c,−1).

We clearly have y1 ∈ S and y2 ∈ −S, and moreover

‖y − y1‖+ ‖y − y2‖ = 2 < 2 + ε.

Case 2: b < 1. We make the convention that sign(0) = 1. Let f ∈ SE∗
be defined by f(z) = ξ + η/2 for every z = (ξ, η) ∈ E. This guarantees that
x ∈ S = S(f, ε). For every y = (c, d) ∈ SE , we set

y1 = (sign(c), 0), y2 = sign(d)(1/2, 1) if cd ≤ 0;

y1 = −(sign(c), 0), y2 = sign(d)(1/2, 1) if cd > 0 and |d| = 1;

y1 = y, y2 = −y if cd > 0 and |d| < 1.

Then y1, y2 ∈ S ∪ −S satisfy

‖y − y1‖+ ‖y − y2‖ = 2 < 2 + ε.

We thus complete the proof.

By Example 2.7, Theorems 2.10, 2.11 below and [MP2, Proposition 1]
which shows that the numerical index of the c0-, l1-, or l∞-sum of Banach
spaces is the infimum of the numerical indices of the summands, we may
construct more examples of specific GL-spaces with numerical index 1/2.

Example 2.8. The space E = (c0, ‖ · ‖) equipped with the norm

‖x‖ = max
{

sup
k∈N
|ξk|, |ξ1|+ 1

2 |ξ2|
}
∀x = (ξk) ∈ E

is a GL-space with numerical index 1/2.

Proof. It is actually the space c0 ⊕∞X where X is the hexagonal space
as in Example 2.7.

Observe that in the definition of GL-spaces we can take y to be in the unit
ball instead of being in the unit sphere. With the help of this observation,
one can check whether the space being considered is a GL-space in an easier
way. We will use this later to get some stability properties of GL-spaces.
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Lemma 2.9. If E is a GL-space, then for every x ∈ SE and every ε > 0
there exists a slice S = S(x∗, ε) with x∗ ∈ SE∗ such that

x ∈ S and dist(y, S) + dist(y,−S) < 2 + ε

for all y ∈ BE.

Proof. For every x ∈ SE and every ε > 0, let S = S(x∗, ε) be such that

x ∈ S and dist(z, S) + dist(z,−S) < 2 + ε

for all z ∈ SE . Given y ∈ BE , since the case y = 0 is trivial, we may assume
that y 6= 0. Then there exist u,−v ∈ S such that∥∥∥∥u− y

‖y‖

∥∥∥∥+

∥∥∥∥v − y

‖y‖

∥∥∥∥ < 2 + ε.

The triangle inequality hence yields

‖u− y‖+ ‖v − y‖ < 2 + ε‖y‖ ≤ 2 + ε,

completing the proof.

Given a compact Hausdorff space K and a Banach space E, we denote
by C(K,E) the Banach space of all continuous functions from K into E,
endowed with its natural supremum norm.

Theorem 2.10. Let K be a compact Hausdorff space and E a GL-space.
Then C(K,E) is a GL-space.

Proof. Given f ∈ SC(K,E) and ε > 0, there exists a t0 ∈ K such that
‖f(t0)‖ = 1. Since E is a GL-space, it follows from Lemma 2.9 that there is
an x∗ ∈ S∗E with Sx∗ = S(x∗, ε/2) such that

f(t0) ∈ Sx∗ and dist(y, Sx∗) + dist(y,−Sx∗) < 2 + ε/2

for all y ∈ BE . Define a functional f∗ ∈ SC(K,E)∗ by f∗(g) = x∗(g(t0)) for
every g ∈ C(K,E), and put S = S(f∗, ε). For every g ∈ SC(K,E), we have
g(t0) ∈ BE . Thus there are y1 ∈ Sx∗ and y2 ∈ −Sx∗ such that

‖g(t0)− y1‖+ ‖g(t0)− y2‖ < 2 + ε/2.

Then we can define a continuous map φ : K → [0, 1] by

φ(t0) = 1 and φ(t) = 0 if ‖g(t)− g(t0)‖ ≥ ε/4.
Consider h1 ∈ S and h2 ∈ −S given by

hi(t) = φ(t)yi +
(
1− φ(t)

)
g(t) (i = 1, 2) for every t ∈ K.

Then it is trivial to see that

‖g − h1‖+ ‖g − h2‖ < 2 + ε.

Hence C(K,E) is a GL-space.

For more examples of GL-spaces, we need to discuss the stability of
GL-spaces under c0-, l1- and l∞-sums. Recall that the c0-sum (resp. l1-sum
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and l∞-sum) of a family {Eλ : λ ∈ Λ} of Banach spaces is denoted by
[
⊕

λ∈ΛEλ]c0 (resp. [
⊕

λ∈ΛEλ]l1 and [
⊕

λ∈ΛEλ]l∞).

Theorem 2.11. Let {Eλ : λ ∈ Λ} be a family of Banach spaces, and let
E = [

⊕
λ∈ΛEλ]F where F = c0, l∞ or l1. Then E is a GL-space if and only

if each Eλ is a GL-space.

Proof. Note that E∗ = [
⊕

λ∈ΛE
∗
λ]l1 if F = c0 and E∗ = [

⊕
λ∈ΛE

∗
λ]l∞ if

F = l1. This fact will be used without comment in the following proof.
In the c0-sum case, we first show the “if ” part. Fix x = (xλ) ∈ SE and

ε > 0. We may find a λ0 such that ‖xλ0‖ = 1. Since Eλ0 is a GL-space, by
Lemma 2.9 there is a slice Sλ0 = S(x∗λ0 , ε) ⊂ BEλ0 with x∗λ0 ∈ SE∗λ0 such

that
xλ0 ∈ Sλ0 and dist(z, Sλ0) + dist(z,−Sλ0) < 2 + ε

for all z ∈ BEλ0 . Choose x∗ = (x∗λ) ∈ SE∗ with x∗λ = 0 for all λ 6= λ0, and
let S = S(x∗, ε). Then x ∈ S, and it is easy to see from the definition of E
that

dist(y, S) + dist(y,−S) < 2 + ε(2.1)

for all y ∈ SE . Thus E is a GL-space.
Now we deal with the “only if ” part. For every λ ∈ Λ, fix xλ ∈ SEλ and

ε > 0. Take x = (xδ) ∈ SE with xδ = 0 for all δ 6= λ. Then x ∈ SE , and
thus there exists an x∗ = (x∗δ) ∈ SE∗ with S = S(x∗, ε/2) such that

x ∈ S and dist(y, S) + dist(y,−S) < 2 + ε/2(2.2)

for all y ∈ SE . Note that xλ ∈ Sλ = S(x∗λ/‖x∗λ‖, ε). To show that Eλ is a
GL-space, it remains to check that for all yλ ∈ SEλ ,

dist(yλ, Sλ) + dist(yλ,−Sλ) < 2 + ε.

Now given yλ ∈ SEλ , consider y = (yδ) ∈ SE with yδ = 0 for all δ 6= λ.
By (2.2), there are u = (uδ) ∈ S and v = (vδ) ∈ −S such that

‖y − u‖+ ‖y − v‖ < 2 + ε/2.

The definition of E thus gives

‖yλ − uλ‖+ ‖yλ − vλ‖ < 2 + ε/2.

Observe that ‖x∗λ‖ ≥ x∗λ(xλ) > 1− ε/2, and therefore
∑

δ 6=λ ‖x∗δ‖ < ε/2. So

x∗λ(uλ) > 1− ε/2−
∑
δ 6=λ
‖x∗δ‖ > 1− ε.

Similarly, x∗λ(−vλ) > 1− ε. Hence Eλ is a GL-space.
In the l∞-sum case, the “if ” part follows from a slight modification of

the c0-case. For the “only if” part, the proof of the c0-sum also works since
if E = [

⊕
λ∈ΛEλ]∞, then for every λ0, we may write E = Eλ0 ⊕∞ Z for a

suitable Z.
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In the l1-sum case, let us prove the “if ” part. Given x = (xλ) ∈ SE and
ε > 0, for each λ with xλ 6= 0, there is a corresponding slice Sλ = S(x∗λ, ε)
with x∗λ ∈ SE∗λ such that

x∗λ(xλ) > (1− ε)‖xλ‖ and dist(zλ, Sλ) + dist(zλ,−Sλ) < 2 + ε

for all zλ ∈ SEλ . Then x∗ = (x∗λ) ∈ SE∗ with x∗λ = 0 whenever xλ = 0, and
the required slice satisfying (2.1) is S(x∗, ε). Therefore E is a GL-space.

For the “only if ” part, fix xλ ∈ SEλ and 0 < ε < 1/2. Then x = (xδ) ∈ SE
where xδ = 0 for all δ 6= λ. Since E is a GL-space, there is an x∗ = (x∗δ) ∈ SE∗
with S = S(x∗, ε/4) such that

x ∈ S and dist(y, S) + dist(y,−S) < 2 + ε/4

for all y ∈ SE . We shall prove that the slice Sλ = S(x∗λ/‖x∗λ‖, ε) is as desired,
namely xλ ∈ Sλ and dist(yλ, Sλ) + dist(yλ,−Sλ) < 2 + ε for all yλ ∈ SEλ .

It is easily checked that xλ ∈ Sλ. For every yλ ∈ SEλ , since y = (yδ) is
in SE where yδ = 0 for all δ 6= λ, there are u = (uδ) ∈ S and v = (vδ) ∈ −S
such that

‖y − u‖+ ‖y − v‖ < 2 + ε/4.(2.3)

It follows from the definition of E that

(2.4) ‖y − u‖+ ‖y − v‖ = ‖yλ − uλ‖+
∑
δ 6=λ
‖uδ‖+ ‖yλ − vλ‖+

∑
δ 6=λ
‖vδ‖

> ‖yλ − uλ‖+ 1− ε/4− ‖uλ‖+ ‖yλ − vλ‖+ 1− ε/4− ‖vλ‖
= ‖yλ − uλ‖ − ‖uλ‖+ ‖yλ − vλ‖ − ‖vλ‖+ 2− ε/2.

We deduce from (2.3) and (2.4) that

‖uλ‖ > 1/2− ε/2 and ‖vλ‖ > 1/2− ε/2.
Hence

x∗λ(uλ) > 1− ε/4−
∑
δ 6=λ
‖uδ‖ ≥ 1− ε/4− 1 + ‖uλ‖ ≥ (1− ε)‖uλ‖,

and similarly

x∗λ(−vλ) > (1− ε)‖vλ‖.
So wλ = uλ/‖uλ‖ and tλ = −vλ/‖vλ‖ are in Sλ. The desired estimate

‖yλ − wλ‖+ ‖yλ + tλ‖ < 2 + ε

which follows from (2.4) completes the proof.

3. The Mazur–Ulam property for local-GL-spaces. The main aim
of this section is to prove that a larger class of Banach spaces have the
Mazur–Ulam property. We begin with a basic lemma.
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Lemma 3.1. Let E be a GL-space. Then for every x ∈ SE and ε > 0
there exists a functional f ∈ SE∗ with x ∈ S(f, ε) such that for all y ∈ SE
there are y1, y2 ∈ SE ∩ S(f, ε) satisfying

‖y − y1‖+ ‖y + y2‖ < 2 + ε.

Proof. Since E is a GL-space, there exists a functional f ∈ SE∗ with
S = S(f, ε/3) such that

x ∈ S and dist(y, S) + dist(y,−S) < 2 + ε/3

for all y ∈ SE . Therefore, there exist y1, y2 ∈ S such that

‖y − y1‖+ ‖y + y2‖ < 2 + ε/3.

It is clear that x ∈ S ⊂ S(f, ε). Let ỹi = yi/‖yi‖ for i = 1, 2. Then

f(ỹi) = f(yi)/‖yi‖ > 1− ε
and ỹi ∈ SE ∩ S(f, ε). Since ‖yi − ỹi‖ =

∣∣‖yi‖ − 1
∣∣ < ε/3, we have

‖y − ỹ1‖+ ‖y + ỹ2‖ < 2 + ε.

Now we give a proposition which is the key step to proving Theorem 3.8.

Proposition 3.2. Let E,F be Banach spaces, and let T : SE → SF be
an isometry (not necessarily surjective). If E is a GL-space, then

‖T (x)− λT (y)‖ ≥ ‖x− λy‖ for all x, y ∈ SE and λ ≥ 0.

Proof. Given x, y ∈ SE with x 6= y and λ > 0, set

z =
x− λy
‖x− λy‖

.

By Lemma 3.1, given ε > 0, there exists f ∈ SE∗ with S = S(f, ε) such that
z ∈ S and there exist x1, y1 ∈ SE ∩ S and x2, y2 ∈ SE ∩ −S such that

‖x− x1‖+ ‖x− x2‖ < 2 + ε and ‖y − y1‖+ ‖y − y2‖ < 2 + ε.

Then

2− 2ε < f(x1)− f(x) + f(x)− f(x2) ≤ ‖x− x1‖+ ‖x− x2‖ < 2 + ε.

This implies that

f(x1)− f(x) ≥ ‖x− x1‖ − 3ε.(3.1)

A similar analysis gives

f(y)− f(y2) ≥ ‖y − y2‖ − 3ε.(3.2)

Then there exists a functional g ∈ SF ∗ such that

g(T (x1))− g(T (y2)) = ‖T (x1)− T (y2)‖ = ‖x1 − y2‖ > 2− 2ε.

It follows that

g(T (x1)) > 1− 2ε and g(T (y2)) < −1 + 2ε.
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Thus by (3.1) and (3.2), we have

f(x) ≤ f(x1)− ‖x− x1‖+ 3ε ≤ 1− ‖T (x)− T (x1)‖+ 3ε

≤ 1−
(
g(T (x1))− g(T (x))

)
+ 3ε ≤ g(T (x)) + 5ε

and

f(y) ≥ f(y2) + ‖y − y2‖ − 3ε ≥ −1 + ‖T (y)− T (y2)‖ − 3ε

≥ −1 +
(
g(T (y))− g(T (y2))

)
− 3ε ≥ g(T (y))− 5ε.

As a consequence,

‖x− λy‖(1− ε) < f(x− λy) ≤ g(T (x)) + 5ε− λg(T (y)) + 5λε

≤ ‖T (x)− λT (y)‖+ (5 + 5λ)ε.

Since ε can be arbitrarily small, the proof is complete.

Theorem 3.3. Every GL-space E has the MUP.

Proof. Let F be a Banach space, and let T : SE → SF be a surjective
isometry. We need to show that T can be extended to a linear surjective
isometry from E onto F . We first claim that for all x, y ∈ SE and λ ≥ 0.

‖T (x)− λT (y)‖ = ‖x− λy‖.(3.3)

Otherwise by Proposition 3.2, there exist λ0 > 0 and x0, y0 ∈ SE such that

‖T (x0)− λ0T (y0)‖ > ‖x0 − λ0y0‖.(3.4)

Multiplying by 1/λ0 if necessary, we may assume that λ0<1. Since ‖λ0T (y0)‖
= λ0 < 1, there exists T (v) ∈ SF with v ∈ SE such that λ0T (y0) belongs to
the segment (T (x0), T (v)) of BF . By (3.4) and Proposition 3.2 we have

‖v − x0‖ = ‖T (v)− T (x0)‖ = ‖T (v)− λ0T (y0)‖+ ‖λ0T (y0)− T (x0)‖
> ‖v − λ0y0‖+ ‖λ0y0 − x0‖ ≥ ‖v − x0‖,

a contradiction.
Now we may define the required extension T̃ of T by

T̃ (x) =

{
‖x‖T (x/‖x‖) if x 6= 0,

0 if x = 0.

It is easily seen from (3.3) that T̃ : E → F is a surjective isometry whose
restriction to the unit sphere SE is just T . The Mazur–Ulam theorem hence
shows that T̃ is linear as desired. The proof is complete.

Note that the technique in the proof of Theorem 3.3 is still valid in a
more general case. We now state a result that will be of use later.

Proposition 3.4. Let E,F be Banach spaces, and let T : SE → SF be
a surjective isometry such that

‖T (x)− λT (y)‖ ≥ ‖x− λy‖ for all x, y ∈ SE and λ ≥ 0.

Then there exists a linear isometry T̃ : E → F such that T = T̃ |SE .
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Now we introduce a class of spaces called local-GL-spaces (including GL-
spaces and lush spaces) which have the MUP. This definition is a weakening
of the definition of GL-space.

Definition 3.5. A Banach space E is said to be a local-GL-space if for
every separable subspace X ⊂ E, there is a GL-subspace Y ⊂ E such that
X ⊂ Y ⊂ E.

Example 3.6. GL-spaces are local-GL-spaces.

The equivalent definition of lush space [BKMM, Theorem 4.2] proves the
following.

Example 3.7. Lush spaces are local-GL-spaces.

We now present the main result of this section.

Theorem 3.8. Every local-GL-space has the MUP.

Proof. Let E be a local-GL-space, F a Banach space and T : SE → SF
a surjective isometry. We next show that T can be extended to a linear
surjective isometry from E onto F . By Proposition 3.4, it is enough to show
that

(3.5) ‖T (x)− λT (y)‖ ≥ ‖x− λy‖

for every x, y ∈ SE and λ > 0. Now, fix x, y ∈ SE and λ > 0. Let X =
span(x, y) and consider a GL-space Y ⊂ E such that X ⊂ Y . We consider
T as an isometry from SY into SF . As Y is a GL-space, Proposition 3.2
gives (3.5), as desired.

We emphasize two evident consequences of the above theorem.

Corollary 3.9. Every lush space has the MUP.

Corollary 3.10. Every C-rich subspace of C(K) has the MUP.

By the following properties, we can get more examples of spaces having
the MUP.

Proposition 3.11. If E is a local-GL-space, then C(K,E) is a local-
GL-space.

Proof. Let X be a separable subspace of C(K,E). We shall prove that
the set

EX =
⋃
t∈K
{f(t) : f ∈ X}

is a separable subset of E. Indeed, let {fn} be a dense sequence of X. Given
n,m ≥ 1 and s ∈ K, set Vs,m,n = {t ∈ K : ‖fn(t) − fn(s)‖ < 1/m}. The
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compactness of K implies that there is a finite subset {sm,ni : i = 1, . . . , km,n}
of K such that K =

⋃km,n
i=1 Vsm,ni ,m,n. Then it is an elementary check that

the set

M =
∞⋃
n=1

∞⋃
m=1

{fn(sm,ni ) : i = 1, . . . , km,n}

is a dense subset of EX . It follows that NX = span{EX} is a separable
subspace of E. Note that E is a local-GL-space. So we may find a GL-space
MX such that NX ⊂MX ⊂ E.

Let Y = C(K,MX). Then X ⊂ Y , and Theorem 2.10 shows that Y is a
GL-space. This completes the proof.

Corollary 3.12. Let E be a local-GL-space and K be a compact Haus-
dorff space. Then C(K,E) has the MUP.

The proof of Theorem 2.11 can be adapted to yield a characterization
of the c0-, l1-sums of lush spaces in both real and complex cases, which is
a special case of the results in [P]. We next give an analogue for local-GL-
spaces. The proof of this result is routine based on Theorem 2.11.

Proposition 3.13. Let {Eλ : λ ∈ Λ} be a family of Banach spaces, and
let E = [

⊕
λ∈ΛEλ]F where F = c0, l∞ or l1. Then E is a local-GL-space if

and only if Eλ is a local-GL-space for every λ ∈ Λ.

Proof. Let Pλ be the projection of E onto Eλ, and let Iλ be the injection
of Eλ into E.

We first show the “if ” part. Fix a separable subspace X of E. Then
Pλ(X) ⊂ Eλ is separable. Since Eλ is a local-GL-space, there is a GL-space
Yλ ⊂ Eλ such that Pλ(X) ⊂ Yλ. Then Y = [

⊕
λ∈Λ Yλ]F containing X is a

subspace of E. Moreover it follows from Theorem 2.11 that Y is a GL-space,
and hence E is a local-GL-space.

Now let us deal with the “only if ” part. Given λ ∈ Λ, let Xλ be a
separable subspace of Eλ. Since E is a local-GL-space, there is a GL-space
Y such that Iλ(Xλ) ⊂ Y ⊂ E. Note from Theorem 2.11 that Yλ = Pλ(Y ) is
a GL-space such that Xλ ⊂ Yλ ⊂ Eλ. Thus Eλ is a local-GL-space.

As an immediate consequence of the proposition above, we obtain:

Corollary 3.14. Let {Eλ : λ ∈ Λ} be a family of local-GL-spaces. Then
the space E = [

⊕
λEλ]F , where F = c0, l1 or l∞, has the MUP.

Throughout this paper, we can see that the geometric properties, iso-
metric extension, and even the numerical index on unit spheres have har-
monious inner relationship and may provide a possible way to solve the
isometric extension problem in more general cases. Note that there exist ex-



152 D. N. Tan et al.

amples of Banach spaces with numerical index 1 which are not lush spaces
(see [KMMS, Remark 4.2]). Then the first natural question to ask is the
following:

Problem 3.15. Does every Banach space with numerical index 1 have
the MUP?
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