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Abstract. It is proved that if X is infinite-dimensional, then there exists an infinite-
dimensional space of X-valued measures which have infinite variation on sets of positive
Lebesgue measure. In term of spaceability, it is also shown that ca(B, λ,X) \ Mσ, the
measures with non-σ-finite variation, contains a closed subspace. Other considerations
concern the space of vector measures whose range is neither closed nor convex. All of
those results extend in some sense theorems of Muñoz Fernández et al. [Linear Algebra
Appl. 428 (2008)].

1. Brief introduction and results. We begin by recalling the fol-
lowing relatively new concepts related to the “algebraic size” of subsets of
Banach spaces.

Definition 1.1 (Gurariy, 1991). A subset M of a Banach space is said
to be

• n-lineable if M ∪ {0} contains an n-dimensional vector subspace;
• lineable if M ∪ {0} contains an infinite-dimensional vector subspace;
• dense-lineable if M ∪{0} contains an infinite-dimensional dense vector

subspace;
• spaceable if M ∪ {0} contains an infinite-dimensional closed vector

subspace.

Let I = [0, 1] be the unit interval and let B denote the σ-algebra of
all Borel subsets of I. Also, let λ be the Lebesgue measure on I. For a
Banach space X we let ca(B, λ,X) stand for the space of all vector measures
µ : B → X which are countably additive and absolutely continuous with
respect to λ. Then ca(B, λ,X) is a Banach space endowed with the norm

‖µ‖ca = sup
A∈B
‖µ(A)‖X .
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Let us also recall that the variation of a vector measure is defined by

|µ|(A) = sup
{ n∑
i=1

‖µ(Ai)‖ : Ai pairwise disjoint with

n⋃
i=1

Ai = A
}
.

We shall use the following notation:

cabv(B, λ,X) = {µ ∈ ca(B, λ,X) : |µ| is finite}.
The set cabv(B, λ,X) endowed with the variation norm | · | (i.e., the norm
is |µ|(I)) is a Banach space.

In [MPPS] the following is proved.

Theorem 1.2. Let (B, λ) be the Lebesgue measure space on the unit in-
terval, and let 1 ≤ p <∞. Then the set of `p-valued measures with relatively
compact range such that their variation measures take the value infinity on
every non-null set is lineable in ca(B, λ, `p).

We will prove that the above result holds for any infinite-dimensional
Banach space in place of `p.

Following [JK], let us denote by Mσ the subspace of ca(B, λ,X) of all
measures µ such that |µ| is σ-finite. Let ρ be the metrizable vector topology
on Mσ defined by the base {Vn : n ∈ N}, where

Vn =

{
µ ∈ ca(B, λ,X) :

‖µ‖ ≤ 2−n and there exists E ∈ B with

λ(E) ≤ 2−n and |µ|(I \ E) ≤ 2−n

}
.

It is easy to see that (Mσ, ρ) is complete.
At this stage, we are ready to show the following.

Theorem 1.3. Let X be any infinite-dimensional Banach space and let
(B, λ) be the Lebesgue measure space on the unit interval. Then the set
of X-valued measures with relatively compact range such that their varia-
tion measures take the value infinity on every non-null set is lineable in
ca(B, λ,X).

Proof. Let (An)n be a sequence of Borel sets in I such that

• I =
⋃
nAn;

• An ∩Am = ∅ for n 6= m;
• λ(An) > 0 for every n ∈ N.

For each n ∈ N, let Pn be the subspace of ca(B, λ,X) of all simple measures
µ of the kind

µ(A) =
∑
finite

λ(A ∩An)xk, A ∈ B.

By the Dvoretzky–Rogers trick, it is not hard to show that

Pn
ca(B,λ,X) *Mσ (see [JK]).
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Therefore, if we pick µn ∈ Pn
ca(B,λ,X) \Mσ, we find that

• all the µn’s have relatively compact range and their variation measures
take the value infinity on every non-null set (see [JK, Theorem 2]),
• all linear combinations of the µn’s have relatively compact range and

their variation measures take the value infinity on every non-null set,
and
• the µn’s are linearly independent (because they have disjoint sup-

ports).

Now, we would like to deal with the following question.

Question. Is ca(B, λ,X) \Mσ spaceable?

In [KT] (see also [D]) the following remarkable result is proved.

Theorem 1.4. Let Zn (n ∈ N) be Banach spaces and X a Fréchet space.
Let Tn : Zn → X be continuous linear operators and Y the linear span of⋃
n Tn(Zn). If Y is not closed in X, then the complement X \Y is spaceable.

Before going on, let us recall some standard concepts. For a sequence of
Banach spaces (Xn, ‖ · ‖n) such that all Xn’s are (isomorphic to) a closed
subspace of a bigger Banach space X , consider(⊕

n∈N
Xn

)
c

=
{
xn ∈ Xn : lim

n→∞
xn exists in X

}
,

endowed with the norm

‖(xn)n‖ = sup
n
‖xn‖n.

Then (
⊕

n∈NXn)c is a Banach space.
We are ready to state the main theorem of this note.

Theorem 1.5. If X is infinite-dimensional, then ca(B, λ,X) \ Mσ is
spaceable.

Proof. Let us fix a sequence (An)n ⊆ B such that

• An ⊆ An+1 for each n ∈ N,
• λ(An+1 \An) > 0 for each n ∈ N,
•
⋃
n∈NAn = I.

Let Σn = {E ∩ An : E ∈ B} be the σ-algebra generated by An. Since,
for each n ∈ N, we can see (cabv(Σn, λ,X), ‖ · ‖ca) as a closed subspace
of (cabv(B, λ,X), ‖ · ‖ca) (via the natural map that associates to each µ ∈
(cabv(Σn, λ,X), ‖ · ‖ca) the measure that is equal to µ on Σn and zero out-
side An), we can consider the Banach space(⊕

n∈N
(cabv(Σn, λ,X, ‖ · ‖ca)

)
c
.
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Let us define

M =
{

(µn)n ∈
(⊕
n∈N

(cabv(Σn, λ,X), ‖ · ‖ca)
)
c

: µn+1|Σn = µn

}
.

Let us show thatM is a closed subspace of (
⊕

n∈N(cabv(Σn, λ,X), ‖ ·‖ca))c.
Let (µp)p ⊆ M (where µp = (µpn)n for each p ∈ N) be a sequence such

that

lim
p→∞

= µ = (µn)n ∈
(⊕
n∈N

(cabv(Σn, λ,X), ‖ · ‖ca)
)
c
;

explicitly,

sup
n

sup
A
‖µpn(A)− µn(A)‖ p→∞−−−→ 0.

Let A ∈ Σn. Since µpn+1(A) = µpn(A) we have

‖µn+1(A)− µn(A)‖ ≤ ‖µpn+1(A)− µn+1(A)‖+ ‖µpn(A)− µn(A)‖ p→∞−−−→ 0.

Namely, µ ∈M. Therefore, M is a Banach space.

Let us define

T :M→ (ca(B, λ,X), ‖ · ‖ca)

by

T ((µn)n)(A) = lim
n→∞

µn(A ∩An) ∀A ∈ B.

Let us prove that T is a continuous linear operator such that T (M) = Mσ.

First, let us note that T is well defined. Indeed, let (Ek)k ⊆ B be a
disjoint sequence of sets. Then

T ((µn)n)
(⋃
k

Ek

)
= lim

n→∞
µn

((⋃
k

Ek

)
∩An

)
= lim

n→∞
µn

(⋃
k

(Ek ∩An)
)

= lim
n→∞

∑
k

µn(Ek ∩An) =
∑
k

lim
n→∞

µn(Ek ∩An)

=
∑
k

T ((µn)n)(Ek),

since we have convergence with respect to the semivariation norm ‖ · ‖ca.
Moreover, it is evident that T ((µn)n) is λ-continuous.

Linearity follows directly from the definition.

For continuity,

‖T ((µn)n)‖ca = sup
A∈B
‖T ((µn)n)(A)‖ = sup

A∈B
‖ lim
n→∞

µn(A ∩An)‖

≤ sup
A∈B

lim
n→∞

‖µn(A ∩An)‖ = sup
n∈N

sup
A∈B
‖µn(A ∩An)‖

= ‖(µn)n‖M.
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From the equality T (M) = Mσ, let us first note that T ((µn)n) is a measure
of σ-finite variation. Indeed, by construction, for each s ∈ N,

|T ((µn)n)|(As) ≤ lim
n→∞

|µn|(As)

(by the definition on M) = |µs|(As)
<∞.

Moreover, if µ ∈Mσ, since |µ| is σ-finite, consider an increasing sequence
(Cn)n such that⋃

n

Cn = I and |µ|(Cn) <∞ for all n ∈ N;

now, take µn ∈ cabv(Σn, λ, x) defined by µn(A ∩ An) = µ(A ∩ An ∩ Cn).
Then, by construction, (µn)n ∈M and we have

T ((µn)n) = µ.

It was already observed in [JK] that Mσ, with respect to the complete
metric ρ, is not closed in (ca(B, λ,X), ‖ · ‖ca). Since the topology generated
by ρ is stronger than the norm topology of ‖ ·‖ca, it follows that (Mσ, ‖ ·‖ca)
is not closed in (ca(B, λ,X), ‖ · ‖ca) either. The proof is concluded by simply
applying Theorem 1.4 above.

Let us recall the following definition (see [H]).

Definition 1.6. Let (Ω,Σ) be a measurable space, λ a positive measure
on Σ, and X an infinite-dimensional Banach space. A measure µ ∈ ca(λ,X)
is said to be injective when for each φ, ψ ∈ L∞(λ) the following condition
holds:

if
�
φdµ =

�
ψ dµ then φ = ψ λ-a.e.

In [MPPS], using an elegant construction, the authors were able to show
the following

Theorem 1.7. Let λ be the Lebesgue measure on the Borel sets in [0, 1]
and X an infinite-dimensional Banach space. Then the set of injective mea-
sures is lineable in ca(λ,X).

Here we are interested in the spaceability of the set of injective measures.
In [W], A. Wilansky proved the following general criterion for spaceability:

Theorem 1.8. Let E be a Banach space. If F is a closed infinite-
codimensional vector subspace of a Banach space E, then E \F is spaceable.

We will use this criterion to prove the following.

Theorem 1.9. Let λ be the Lebesgue measure on the Borel sets in [0, 1],
and X be an infinite-dimensional Banach space. Then the set of injective
measures is spaceable in ca(λ,X).
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Before providing the proof, we need the following lemma.

Lemma 1.10. The space

NI = {µ ∈ ca(λ,X) : µ is not injective}
is a closed subspace of ca(λ,X).

Proof. We will provide two different proofs:

First proof. To show the closedness it is enough to note the following:
a measure µ ∈ ca(λ,X) is injective if and only if the integral operator
associated to µ,

Tµ : L∞(λ)→ X, Tµ(f) =
�
f dµ,

is injective.
Suppose that (µn)n ⊆ NI converges to µ ∈ ca(λ,X), and µ is injective.

Then,

L∞(λ)∗ = T ∗µ(X∗)
weak∗

Since (µn)n converges to µ, we have

T ∗µ(X∗)
weak∗

⊆
⋃
n∈N

T ∗µn(X∗)
weak∗

.

Thus, there must exist n ∈ N such that

weak∗-int(T ∗µn(X∗)) 6= ∅.
Since T ∗µn(X∗) is a vector subspace, that would imply

T ∗µn(X∗)
weak∗

= L∗∞(λ),

contradicting the fact that µn ∈ NI.

Second proof. It is well known that µ ∈ NI if and only if for each
B ∈ B, {µ(A ∩ B) : A ∈ B} is convex and weakly compact (see [K]). How-
ever, the limit of a sequence of non-empty convex closed sets in the Hausdorff
metric is still a non-empty convex closed (see [KT, 4.3.11]). Moreover, since

µn
n→∞−−−→ µ implies {µn(A ∩ B) : A ∈ B} n→∞−−−→ {µ(A ∩ B) : A ∈ B} in the

Hausdorff metric, we deduce that if each {µn(A ∩ B) : A ∈ B} is convex,
weakly compact, and

µn
n→∞−−−→ µ,

then {µ(A ∩B) : A ∈ B} is convex and weakly compact too.
From the above, it follows that NI is a closed subspace of ca(λ,X).

Proof of Theorem 1.9. From Lemma 1.10, we know that NI is a closed
subspace of ca(λ,X) of infinite codimension. To show that the quotient
ca(λ,X)/NI is infinite-dimensional, it is sufficient to use a similar construc-
tion to the proof of [MPPS, Theorem 2.4]. Then Theorem 1.8 applies.
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Since it is well known that every injective measure has range neither
closed nor convex, we finally obtain the following corollary.

Corollary 1.11. Let λ be the Lebesgue measure on the Borel sets in
[0, 1], and X an infinite-dimensional Banach space. Then the set of measures
whose range is neither closed nor convex is spaceable in ca(λ,X).
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