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On the composition of Frostman Blaschke products

by

John R. Akeroyd (Fayetteville, AR) and
Pamela Gorkin (Lewisburg, PA)

Abstract. We construct an infinite uniform Frostman Blaschke product B such that
B ◦B is also a uniform Frostman Blaschke product. We also show that the set of uniform
Frostman Blaschke products is open in the set of inner functions with the uniform norm.

1. Introduction. In 1922, Ritt [19] studied prime or indecomposable
finite Blaschke products, that is, Blaschke products that cannot be written
as a composition of two nontrivial Blaschke products. Extending this idea
to infinite Blaschke products, or functions of the form

B(z) = λ
∞∏
n=1

|zn|
zn

zn − z
1− znz

,

where 0/0 is taken to be 1 and |λ| = 1, has proved much more difficult. For
example, writing ϕa(z) = a−z

1−az and denoting the Blaschke product by B,
the composition ϕa ◦B may be a singular inner function, while Frostman’s
theorem [5] shows that the composition ϕa◦B is, with the possible exception
of a, |a| < 1, in a set of logarithmic capacity zero, a Blaschke product. Thus,
certain natural questions arose: For example, when is a Blaschke product B
indestructible in the sense that ϕa◦B is a Blaschke product for all values of a
in the open unit disk D? Work in this direction can be found in McLaughlin
[15] and Morse [16].

We are concerned with the following: Which inner functions, outside the
class of finite Blaschke products, are prime? As an example of how sensitive
this question is we mention that Stephenson, in extending work of Ball on
composition (see [1] and [21]), noted that the atomic singular inner function
S(z) = exp

(
z+1
z−1
)

is not prime (just consider zn ◦ S1/n), but the function
zS(z) is prime! This led the second author, Laroco, Mortini, and Rupp to
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study prime inner functions and pose several questions, [8]. We answer one
of them here. Before proceeding, we note that the constant λ appearing in
the definition of Blaschke product will usually not affect computations or
theorems and, in these cases, we will choose λ = 1.

To state the problem, we introduce the notion of Frostman and uniform
Frostman Blaschke products and give a more precise definition of prime. Let
T denote the unit circle. Recall that a Blaschke product with zero sequence
{zn} (listed according to multiplicity) is a Frostman Blaschke product if

∞∑
n=1

1− |zn|
|zn − z|

<∞

for every z ∈ T, and a uniform Frostman Blaschke product if

sup
z∈T

∞∑
n=1

1− |zn|
|zn − z|

<∞.

These are named after Frostman, because he showed [5] that a Blaschke
product with zeros {zn} has the property that it and all of its subproducts

have radial limits of modulus 1 at z if and only if
∑∞

n=1
1−|zn|
|zn−z| <∞.

An inner function I is said to be prime if whenever I = U ◦V then either
U or V is a Möbius transformation.

In [8], the authors studied a small but important class of Blaschke prod-
ucts, the so-called thin Blaschke products or the Blaschke products for which
the zero sequence {zn} satisfies

lim
n→∞

(1− |zn|2)|B′(zn)| = 1.

When the zeros are distinct, the zero sequences of thin Blaschke products
are interpolating sequences for the space of bounded analytic functions in
VMO and, consequently, it is a well-studied class. One of the results in [8]
shows that no function in the class of thin Blaschke products can be written
as the composition of two infinite Blaschke products, though some can be
written as compositions of infinite Blaschke products and finite Blaschke
products with degree greater than 1. Thus not all are prime but all are
semiprime, that is, whenever a thin Blaschke product is a composition U ◦
V with U and V inner, then either U or V is a finite Blaschke product.
In [3], the authors showed that finite products of thin Blaschke products,
which are also semiprime, can be approximated uniformly by prime Blaschke
products. We denote the class of finite products of thin Blaschke products
by FPT B.

The class of uniform Frostman Blaschke products (written UFB) is an-
other small but important class of Blaschke products: Hruščev and Vino-
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gradov [10] showed that these are the inner functions that are multipliers
of the space of Cauchy transforms (or Cauchy type integrals). In 1994 the
authors of [8] posed a natural question: In many ways, functions in FPT B
and UFB seem to act similarly; is their behavior under composition simi-
lar too? More precisely, can a uniform Frostman Blaschke product be the
composition of two infinite Blaschke products?

In [17], Nicolau and Mortini studied yet another class,M, of inner func-
tions satisfying: If I ∈ M, then ϕa ◦ I is a finite product of interpolating
Blaschke products for all a ∈ D \ {0}. Thin Blaschke products are in this
class, but not every function in M is a Blaschke product. Mortini asked
whether UFB ⊂ M. Later, Matheson and Ross [14] used the multiplier
characterization in [10] to show that the composition ϕa ◦ B of a Möbius
transformation ϕa with a uniform Frostman Blaschke product B is again a
uniform Frostman Blaschke product. Thus, we know that

FPT B ⊂M and UFB ⊂M,

and we know thatM is not closed under composition, so different techniques
are needed to answer the question of whether a Blaschke product in UFB
can be a composition of two infinite Blaschke products, [8].

In [3], the authors showed (among other things) that a Frostman Blasch-
ke product can be the composition of two infinite Blaschke products and
that, given a uniform Frostman Blaschke product, B, there is a conformal
automorphism ϕa such that ϕ2

aB cannot be written as the composition of
two infinite Blaschke products. In this paper, we answer the original question
that was posed in [8] by giving an example of a uniform Frostman Blaschke
product that can be written as a composition of two infinite Blaschke prod-
ucts. Another way of thinking about this is the following: A finite product
of multipliers of the space of Cauchy transforms is obviously a multiplier.
When can an infinite product also be a multiplier? What is nice about this
particular example is that the uniform Frostman Blaschke product we con-
struct is a composition of a Blaschke product with itself. It is also connected
with a question about the range of composition operators: Can a uniform
Frostman Blaschke product be in the range of a composition operator? If
the symbol is an automorphism, the answer is obviously yes. But what if
the symbol is not a finite Blaschke product?

Our proof requires computations that allow us to present another inter-
esting fact: UFB is open in the set of inner functions in H∞, the space of
bounded analytic functions with the uniform norm.

2. Preliminaries and notation. As above, we say that a Blaschke
product B with zeros {zn} (listed according to multiplicity) is a uniform
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Frostman Blaschke product if

sup
z∈T

∞∑
n=1

1− |zn|
|zn − z|

<∞.

We denote the class of uniform Frostman Blaschke products by UFB. Recall
that a Blaschke product B is interpolating if its zero sequence {zn} is an in-
terpolating sequence for H∞; that is, whenever {wn} is a bounded sequence
of complex numbers, there exists a function f ∈ H∞ such that f(zn) = wn
for all n. Every function in UFB is a finite product of interpolating Blaschke
products [4, p. 140]. Matheson studied the spectrum of such Blaschke prod-
ucts in [13], and Matheson and Ross [14] showed that UFB is a subset of
the class of indestructible Blaschke products and that, in fact, more is true:

Lemma 2.1 (Matheson and Ross, [14]). If B ∈ UFB and ϕa(z) := a−z
1−az

is a disk automorphism with a ∈ D, then ϕa ◦B ∈ UFB.

In [11], Kraus and Roth showed that indestructible Blaschke products
form a semigroup. The lemma below provides a different proof of their result.

Lemma 2.2. If B is a Blaschke product and C is an indestructible
Blaschke product, then B ◦ C is a Blaschke product.

Proof. Note that if we consider C1 = ϕC(0) ◦ C, then C1 is a Blaschke

product because C is indestructible and, moreover, C1(0) = 0. Now, B◦ϕ−1C(0)

is also a Blaschke product and

B ◦ C = (B ◦ ϕ−1C(0)) ◦ (ϕC(0) ◦ C),

so we may assume that C(0) = 0. Having done so, note that if B(0) = 0 we
may write B(z) = znB1(z) with B1(0) 6= 0 and B(C(z)) = Cn(z)(B1◦C)(z).
Since Cn is a Blaschke product, B ◦ C is a Blaschke product if and only if
B1 ◦ C is too, so we may assume that (B ◦ C)(0) 6= 0.

Write

B(z) =

∞∏
n=1

|wn|
wn

wn − z
1− wnz

so that (B ◦ C)(z) =

∞∏
n=1

|wn|
wn

wn − C(z)

1− wnC(z)
.

Now each factor in the product above is a Blaschke product, because we
assume C is indestructible. Let {zn,j}n denote the zeros of the jth factor, for
j = 1, 2, . . . . Since B ◦ C 6≡ 0, the sequence {zn,j}n,j is a Blaschke sequence
and we may form the corresponding Blaschke product D. We claim that
B ◦ C = D.

First, it is clear that the zeros of D are zeros of B ◦C, so D is a subfactor
of B ◦ C. Now, |(B ◦ C)(0)| =

∏∞
n=1 |wn|. But∣∣∣∣ wj − C(z)

1− wjC(z)

∣∣∣∣ =
∞∏
k=1

∣∣∣∣ zk,j − z1− zk,jz

∣∣∣∣.
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Therefore |wj | =
∏∞
k=1 |zk,j |. Consequently,

|(B ◦ C)(0)| =
∞∏
j=1

|wj | =
∞∏
j=1

∞∏
k=1

|zk,j | = |D(0)|,

since the product converges absolutely. Since D is a subfactor of B ◦C and
|D(0)| = |(B ◦ C)(0)| 6= 0, we see that B ◦ C = λD for some λ ∈ T.

Since Matheson and Ross showed that every Blaschke product in UFB
is indestructible, we have the following corollary.

Corollary 2.3. If C ∈ UFB and B is a Blaschke product, then B ◦C
is a Blaschke product.

3. An example. We now construct an infinite, uniform Frostman
Blaschke product B such that B ◦ B is also a uniform Frostman Blaschke
product, answering in the affirmative a question posed in [8]. The zeros
{an}∞n=1 of B are chosen such that an := rne

iθn , where 1 − 8−(n+1) ≤ rn <
rn+1 < 1 and θn = π(1 − 2−(n+1)). Therefore, {an}∞n=1 converges to −1
tangentially through the upper half-disk D+ := {z ∈ D : Im(z) > 0}. For
any positive integer n, let Jn be the arc of T given by Jn = {eiθ : |θ− θn| ≤
π2−(n+3)}. Notice that Jn is centered at eiθn and that Jn∩Jm = ∅ if m 6= n.
By our choice of an (in particular, rn) there is a positive constant c such
that

1− |an|
|an − z|

≤ c8−(n+1)

2−(n+3)
= c4−n whenever z ∈ T \ Jn.

From this it follows that
∞∑
n=1

1− |an|
|an − z|

≤ 1 + c/3

for all z in T, and hence B is a uniform Frostman Blaschke product. So, by
Corollary 2.3, B ◦B is a Blaschke product.

Remark 3.1. Furthermore, if 0 < ε < 1/8 and {zn}∞n=1 is a sequence in
D such that, for all n,

|an| ≤ |zn| and |zn − an| < ε|1 + an|,

then zn lies over the arc Jn and, for z in T \ Jn,

|z − zn| ≥ |z − an| − |an − zn| > |z − an| − ε|1 + an| ≥ |z − an|/2.

From this it follows that
∞∑
n=1

1− |zn|
|zn − z|

≤ 2 + 2c/3
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for all z in T, and hence the Blaschke product with distinct zeros {zn}∞n=1

is itself uniform Frostman, with a bound on its Frostman sum independent
of the particular choice of {zn}∞n=1.

Notation 3.2. Let bn(z) = |an|
an

an−z
1−anz , the Blaschke factor of B that is

built around the zero an – and let Bn = B/bn. For positive integers n, let Tn
be the tent region whose base is Jn and has vertex angle of π/2; see the figure
below. The vertex of Tn is expressible as sne

iθn , where sn ≈ π(1− 2−(n+3)).
Therefore, an ∈ Tn and an is much closer to eiθn (in Jn) than it is to any
point in D ∩ ∂Tn.

uu

u

u

1−1

i

−i

a1q
↙
a2qBB

��qq

Fig. 1

The next lemma is an immediate consequence of results on pages 38,
145 and 149 of [4], namely, inequality (1.11.6) of Theorem 1.11.5, part (2) of
Lemma 6.6.30 and inequality (6.6.42) of Lemma 6.6.41 in this reference. For
points z and w in D we let ρ(z, w) :=

∣∣ z−w
1−zw

∣∣, the pseudohyperbolic distance
between z and w.

Lemma 3.3. Let Λ be a Blaschke sequence such that

δ(Λ) := inf
a∈Λ

∏
b∈Λ\{a}

ρ(a, b) > 0

and

ΣΛ := sup
ζ∈T

∑
a∈Λ

1− |a|
|ζ − a|

<∞.
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Then there is a constant C, depending only on δ(Λ) and ΣΛ, such that∑
a∈ψ(Λ)

1− |a|
|ζ − a|

≤ C

whenever ζ ∈ T and ψ is a disk automorphism (i.e., a Möbius transformation
from the disk onto itself ).

We now resume the construction of B. Let {εn}∞n=1 be any sequence in
the interval (0, 1) such that limn→∞ εn = 0. By the definitions of Tn and of
the nth Blaschke factor bn, if rn is sufficiently near 1, then |1− bn(z)| < εn
and |b′n(z)| < εn, for all z in D \ Tn. Therefore, we have established:

Claim I. For any ε (0 < ε < 1/8), we can choose {rn}∞n=1 converging

sufficiently quickly to T so that B (whose nth zero is an := rne
iθn, as defined

above), satisfies:

(1) |1−B(z)| < ε whenever z ∈ D \
⋃∞
n=1 Tn,

(2) |1−Bn(z)| < ε whenever z ∈ Tn, and
(3) |B′n(z)| < ε whenever z ∈ Tn.

Choosing {rn}∞n=1 so that (1) holds, we find that the zeros of B ◦B lie in⋃∞
n=1 Tn. For any positive integer n, let cn be the unimodular constant given

by cn := Bn(eiθn). Notice that z 7→ cnbn(z) is a disk automorphism. More-
over, by (2) and our choice of cn, Bn ≈ cn on Tn, and |cn−Bn(z)|→0 as z in
Tn tends to eiθn . So, for z in Tn, B(cnbn(z)) is a very good approximation
of B(B(z)).

For positive integers n, let Sn = {z ∈ D : Re(bn(z)) < 0}. The closure
of D ∩ ∂Sn is an arc of a circle that contains an and intersects T in two
points, with contact angle π/2 at each. From this we find that Sn ⊆ Tn for
all positive integers n. Since Bn ≈ 1 on Tn, it follows that any zero of B ◦B
in Tn is in fact in Sn. And, since symmetry of points with respect to a circle
or line is preserved under mapping by a Möbius transformation, we find that
the aforementioned arc is part of the circle of radius 1

2(1/|an| − |an|) that

is centered at 1
2(1/an + an). This circle contains the point an, as does the

circle with center 1/an and radius 1/|an| − |an|. From this we find that the
region Sn is contained within this second circle and hence

(4) |1− anz| < 1− |an|2,
whenever z ∈ Sn.

Claim II. For any positive integer n, the function B (which equals
Bnbn) is univalent and continuous on Sn.

Proof. That B is continuous on Sn is easily observed, and no issue at
all. For the univalence assertion, we digress momentarily and observe that,
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by (4), if z ∈ Sn, then

|b′n(z)| = 1− |an|2

|1− anz|2
≥ 1

1− |an|2
.

So, by (2) and (3), if z ∈ Sn, then

(5) |B′(z)| ≥ |b′n(z)| |Bn(z)| − |bn(z)| |B′n(z)| ≥ 1

2(1− |an|2)
.

And, again by (4), if z and w are distinct points in Sn, then

|bn(z)− bn(w)| = (1− |an|2)|z − w|
|1− anz| |1− anw|

≥ |z − w|
1− |an|2

.

Therefore, by (2) and (3), for distinct points z and w in Sn,

(6) |B(z)−B(w)|
= |Bn(z)bn(z)−Bn(w)bn(z) +Bn(w)bn(z)−Bn(w)bn(w)|
≥ |Bn(w)| |bn(z)− bn(w)| − |Bn(z)−Bn(w)| |bn(z)|
≥ |Bn(w)| |z − w|/(1− |an|2)− ε|z − w| |bn(z)|
> |z − w| 6= 0.

So, we find that B is also univalent on Sn, which completes the proof of
Claim II.

By our work above, B is a homeomorphism on Sn and consequently
Γn := B(∂Sn) is a Jordan curve. Now bn(T ∩ ∂Sn) = {ζ ∈ T : Re(ζ) ≤ 0},
bn(D ∩ ∂Sn) = {iy : −1 < y < 1}, Bn is unimodular on T ∩ ∂Sn and
|1 − Bn(z)| ≤ ε for all z in Sn. From this it follows that if ε < 1/8 (which
we henceforth assume), then all of the zeros of B, namely {ak}∞k=1, are on
the inside of the Jordan curve Γn; and thus, {ak}∞k=1 ⊆ B(Sn). Therefore,
there is a sequence of points {αn,k}∞k=1 in Sn such that B(αn,k) = ak for all
positive integers k. Now {αn,k}∞k=1 are the zeros of B◦B in Sn (and Tn). Since
limk→∞ ak = −1 and B is a homeomorphism on Sn, we find that {αn,k}∞k=1
converges to some value αn in T ∩ Sn as k →∞, where B(αn) = −1.

Let σn = Bn(αn), let βn be the (functional) inverse of bn and define
ωn,k = bn(αn,k). Then, among other things, βn(0) = an, αn,k = βn(ωn,k)
and

ak = Bn(αn,k)bn(αn,k) = Bn(βn(ωn,k)) · ωn,k.
Moreover, by (3) and (6),

|σnak − ωn,k| = |ak − σn · ωn,k| = |Bn(βn(ωn,k)) · ωn,k − σn · ωn,k|(7)

= |ωn,k| |σn −Bn(αn,k)| = |ωn,k| |Bn(αn)−Bn(αn,k)|
< |Bn(αn)−Bn(αn,k)| < ε|αn − αn,k|
< ε|B(αn)−B(αn,k)| = ε|1 + ak|.
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Since ak → −1 as k →∞, we have ωn,k → −σn as k →∞. Furthermore, as
ak = Bn(βn(ωn,k)) · ωn,k and |Bn(βn(ωn,k))| < 1, we find that |ωn,k| > |ak|
for all k. Now, define ϕn on T by

ϕn(z) :=

∞∑
k=1

1− |αn,k|
|z − αn,k|

,

the Frostman sum over the sequence {αn,k}∞k=1. Part of our string of in-
equalities in (7) shows that, for all positive integers k,

|ak − σn · ωn,k| < ε|1 + ak|.

And, as already observed, |σn · ωn,k| = |ωn,k| > |ak| for all k. So, by Re-
mark 3.1, the Blaschke product having distinct zeros {σn·ωn,k}∞k=1 is uniform
Frostman, with Frostman sum bounded on T, independently of n. Moreover,
we have:

Lemma 3.4. Let Λn denote the Blaschke sequence {σn · ωn,k}∞k=1. If
{ak}∞k=1 converges to T sufficiently fast, then infn δ(Λn) > 0.

Proof. We already know that |σn · ωn,k| = |ωn,k| > |ak| and also that
|ak − σn · ωn,k| < ε|1 + ak| for all k, independently of n. So, by Remark 3.1,
we additionally see that σn · ωn,k lies over the arc Jk, independent of n.
Our analysis here is based on these things and the following well-known
fact. Let E be a nonempty subset of T and for η > 0, let Eη = {z ∈ D :
|z − ζ| ≥ η for all ζ in E}. Then infz∈Eη ρ(w, z) can be made arbitrarily
near 1 by choosing w in D sufficiently near E. Now, recall that there is
a positive gap between any pair of consecutive arcs Jk and Jk+1, and the
sequence of arcs {Jk}∞k=1 tends to −1 through {ζ ∈ T : Im(ζ) > 0} as
k → ∞. So, for any nondecreasing sequence {ρk}∞k=1 in the interval [0, 1),
we can work inductively with respect to k and radially move ak (k = 1, 2, . . .)
sufficiently near T to obtain

ρ(σn · ωn,K , σn · ωn,k) ≥ ρK
whenever K ≥ 2 and 1 ≤ k ≤ K − 1, independently of n. If {ρk}∞k=1

converges to 1 sufficiently fast, then infK ρ
K−1
K ·

∏∞
k=K+1 ρk > 0 and hence

infn δ(Λn) > 0.

We have now established that, provided {ak}∞k=1 converges to T suffi-
ciently fast, Λn := {σn · ωn,k}∞k=1 is a uniform Frostman Blaschke sequence
with a bound on its Frostman sum independent of n and that infn δ(Λn) > 0.
Since σn ·ωn,k = σnbn(αn,k), where σnbn is a disk automorphism, we can ap-
ply Lemma 3.3 and find there is a positive constant M (independent of n)
that bounds ϕn on T. There is one last ingredient that makes things fit
together here.
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Claim III. If {an}∞n=1 converges to T sufficiently fast, then the Frost-
man sum ϕn is bounded by 1/2n on T \ Jn.

Proof. Since B maps D into itself, the Schwarz–Pick Lemma (cf. [7, p. 2])
tells us that

|B′(z)|(1− |z|2) ≤ 1− |B(z)|2

for all z in D. By (5), |B′(z)| ≥ 1
2(1−|an|2) for all z in Sn. Since {αn,k}∞k=1 ⊆ Sn

and B(αn,k) = ak, we thus have

1− |αn,k|2 ≤ 2(1− |an|2)(1− |ak|2)

for all positive integers k and n. So, we can make
∑∞

k=1(1 − |αn,k|2) as
small as we like by choosing an sufficiently near T. Moreover, if an is moved
radially to T, then Sn shrinks uniformly to eiθn , which is a positive distance
from T \ Jn. Therefore, if an is chosen sufficiently near T, then

ϕn(z) =

∞∑
k=1

1− |αn,k|
|z − αn,k|

≤ 1/2n

for all z in T \ Jn.

Coupling Claim III with our earlier work, we find that if {an}∞n=1 con-
verges to T sufficiently fast, then

ϕ(z) :=
∞∑
n=1

ϕn(z) ≤M + 1,

for all z in T. That is, the Frostman sum for B ◦B is bounded on T; hence,
B ◦B is a uniform Frostman Blaschke product.

4. Approximation. In this section we show that the class UFB is open
in the set of inner functions in the space of bounded analytic functions, H∞,
on the open unit disk D. We begin by mentioning some related results on
approximation and Blaschke products, starting with a lemma that is of
interest in its own right and that holds for Frostman Blaschke products,
too. For points z, w ∈ D let ρ(z, w) :=

∣∣ z−w
1−zw

∣∣ denote the pseudohyperbolic
distance between z and w.

Lemma 4.1. Let B and B∗ be two Blaschke products with zero sequences
{zn}n and {z∗n}n, respectively, satisfying (for some appropriate ordering of
the zeros): there exists s with 0 < s < 1 such that supn ρ(zn, z

∗
n) ≤ s. Then,

for z in T,

1− s√
2 (1 + s)

∑
n

1− |zn|
|z − zn|

≤
∑
n

1− |z∗n|
|z − z∗n|

≤
√

2 (1 + s)

1− s
∑
n

1− |zn|
|z − zn|

.
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Proof. If 0 < a < 1 and ϕa(x) = s, then x = ϕa(s) and 1 − a−s
1−as =

(1−a)(1+s)
1−as ≤ (1 − a)1+s1−s . If ϕa(x) = −s, then x = s+a

1+as and 1 − s+a
1+as =

(1−s)(1−a)
1+as ≥ (1− a)1−s1+s . Therefore, if a ∈ D and ρ(a, b) ≤ s, then

(8) (1− |a|)1− s
1 + s

≤ 1− |b| ≤ (1− |a|)1 + s

1− s
.

For α in D, let Pα(z) := 1−|α|2
|z−α|2 denote the Poisson kernel on T for evaluation

at α. For any point z in T,

α 7→ Pα(z)

is positive and harmonic in D. Therefore, by Harnack’s inequality and the
conformal invariance of the pseudohyperbolic metric,

1− |b|2

|z − b|2
≤ 1 + s

1− s
1− |a|2

|z − a|2

whenever ρ(a, b) ≤ s and z ∈ T. And so, by the second inequality in (8),

(1 + |b|)
(

1− |b|
|z − b|

)2

≤
(

1 + s

1− s

)2

(1 + |a|)
(

1− |a|
|z − a|

)2

.

Consequently,

1− |b|
|z − b|

≤
√

2 (1 + s)

1− s
1− |a|
|z − a|

whenever z ∈ T and ρ(a, b) ≤ s.
Every uniform Frostman Blaschke product is a finite product of interpo-

lating Blaschke products [4, p. 140]. It is also known [12] that every Blaschke
product that is a finite product of interpolating Blaschke products can be
approximated by an interpolating Blaschke product. Therefore, every uni-
form Frostman Blaschke product can be approximated by an interpolating
Blaschke product. If C ∈ UFB and B is an interpolating Blaschke product
that approximates C, is B in UFB? The answer is affirmative if the approx-
imation is sufficiently close to C, which is the content of Theorem 4.4 below.

Our original proof of this theorem used maximal ideal space techniques.
The referee provided us with a more elementary proof; one that depends only
on elementary techniques and knowledge of the behavior of finite products of
interpolating Blaschke products, which have been well studied (see [18], [22]
or [9]). Such products have been characterized by, for example, Vasyunin
[18, p. 217] who showed that a Blaschke product B is a finite product of
interpolating Blaschke products if and only if there is a constant c > 0 such
that for all z ∈ D,

|B(z)| ≥ c inf{ρ(z, w) : B(w) = 0}.
We also have the following well known lemma due to K. Hoffman.



188 J. R. Akeroyd and P. Gorkin

Lemma 4.2 ([7, Hoffman’s Lemma 1.4, p. 395]). Let B be an interpolat-
ing Blaschke product with zeros {zn} satisfying

(1− |zn|2)|B′(zn)| ≥ δ > 0.

Then there exist λ := λ(δ) and r := r(δ) both between 0 and 1 such that

lim
δ→1

λ(δ) = 1 and lim
δ→1

r(δ) = 1

and the set {z : |B(z)| < r} is contained in disjoint domains Vn with zn ∈
Vn ⊂ {z : ρ(z, zn) < λ}. Further, B maps each Vn univalently onto {w :
|w| < r}. If |w| < r, then ϕw ◦B is an interpolating Blaschke product with
one zero in each Vn.

Our next theorem relies on a similar property of such products, one with
an elementary proof that we provide for completeness.

Lemma 4.3. For 1 ≤ k ≤ n, let Λk be an interpolating sequence in D,
let Λ =

⋃n
k=1 Λk and let B be the Blaschke product whose (simple) zeros are

the points in Λ. Then, for any ε > 0, there is an interpolating subsequence
Ω of Λ and a positive function δ defined on Ω that is bounded above by ε
and has at most 2n − 1 values on Ω, such that:

(i) there is a constant σ, 0 < σ < 1, such that ρ(z, w) > σ whenever z
and w are in distinct pseudohyperbolic disks of the form Dδ(a)(a) :=
{z ∈ D : ρ(z, a) < δ(a)}, where a ∈ Ω,

(ii) Dδ(a)(a) contains at most n points of Λ for any a in Ω, and
(iii) there is a positive lower bound for{

ρ(a, z) : z ∈ D \
⋃
a∈Ω

Dδ(a)(a) and a ∈ Λ
}
.

Hence, there is a positive constant η such that |B(z)| > η whenever z ∈
D \

⋃
a∈Ω Dδ(a)(a).

Proof. If n = 1 there is (essentially) nothing to show. We proceed via in-
duction on n, assuming that the conclusion holds for some positive integer n.
Let Λk be an interpolating sequence in D for 1 ≤ k ≤ n+1. Then there exists
a constant r, 0 < r < 1, such that Dr(a)∩Dr(a

′) = ∅, whenever a and a′ are
distinct points in Λk for any k in the range 1 ≤ k ≤ n+ 1. By our induction
hypothesis, for any ε, 0 < ε < r/8, there is an interpolating subsequence Ω of
Λ :=

⋃n
k=1 Λk and a positive function δ defined on Ω that is bounded above

by ε/3 and has at most 2n − 1 values on Ω, such that (i)–(iii) above hold.
Let t = min{δ(a) : a ∈ Ω} and let s = min{t, σ/8}. We partition Λn+1 into
Vn+1 = {a ∈ Λn+1 : there exists a′ in Ω such that Ds(a) ∩Dδ(a′)(a

′) 6= ∅}
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and Wn+1 = Λn+1 \ Vn+1. Let Ω∗ = Ω ∪Wn+1 and define δ∗ on Ω∗ by

δ∗(a) =


s/2 if a ∈Wn+1,

δ(a) if a ∈ Ω and Dδ(a)(a) ∩Ds(a
′) = ∅ for all a′ ∈ Vn+1,

δ(a) + 2s if a ∈ Ω and ∃a′ ∈ Vn+1 with Dδ(a)(a) ∩Ds(a
′) 6= ∅.

Notice that Ω∗ is an interpolating subequence of Λ∗ := Λ ∪ Λn+1, and, by
our choice of s, δ∗ is bounded above by ε on Ω∗ and satisfies conditions
(i)–(iii) with Λ∗ in place of Λ, n + 1 in place of n and smaller specified
positive constants.

We thank the referee for suggesting the previous lemma to us as well as
the following simplification of our original proof of Theorem 4.4 below.

Theorem 4.4. The set of uniform Frostman Blaschke products is open
in the set of inner functions in H∞ with the uniform norm.

Proof. Let B ∈ UFB. Since B is a finite product of interpolating Blasch-
ke products we apply Lemma 4.3 to conclude that there is a subsequence
{zn} of the zeros of B that is interpolating and constants δ > 0 and η > 0
such that |B(z)| > η if infn ρ(z, zn) > δ. Moreover, we may assume that
the pseudohyperbolic disks Dn := Dδ(zn) centered at zn and of radius δ are
pairwise disjoint.

Assume that B? is an inner function with ‖B − B?‖∞ < η. We claim
that B? ∈ UFB.

Since B ∈ UFB, we know that B has radial limits of modulus one at
each point of the unit circle. Therefore B? cannot have radial limit zero at
any point and we conclude that B? is a Blaschke product.

Further, B? can only have zeros in
⋃
nDn. By Rouché’s theorem, the

number of zeros of B? in each Dn is equal to the number of zeros of B in Dn

and is therefore uniformly bounded.
Now, the result follows from Lemma 4.1, or one may note that if w,w?

are in Dη, then 1−|w| and 1−|w?| are comparable. Also, for any λ ∈ T, we
know that |λ−w| and |λ−w?| are comparable. Since B is uniform Frostman,
so is B?.

5. Open questions. We end this paper with two questions. The first
one is about certain closed subalgebras of the algebra L∞ of essentially
bounded measurable functions on T. We begin with some simple remarks:
Write A = H∞[B] for the closed subalgebra of L∞ generated by B, the
complex conjugate of the Blaschke product B, and H∞. Note that saying
that a Blaschke product C is invertible in A is equivalent to saying that
the conjugate, C, is in A. Hence, since B ∈ A, if we write B = B1B2 then
B1 = B2B ∈ A. So all subproducts of B are invertible in the algebra A. With
these preliminaries behind us, we turn to the question we wish to pose.
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Consider A0 = H∞[B], where B is a thin Blaschke product. It follows
from Hedenmalm’s work that every Blaschke product that is invertible in A0

is a finite product of thin products. Now consider the algebra A1 = H∞[B]
whereB is a Blaschke product that has finite angular derivative at each point
of T. The same is true here [6]: Every Blaschke product that is invertible
in A1 has finite angular derivative at every point of T, a fact that is even
true locally. Now, since a Blaschke product with zeros {zn} has finite angular

derivative at λ ∈ T if and only if
∑

n
1−|zn|
|λ−zn|2 <∞ [5], it is natural to pose the

following question: Letting A2 = H∞[B] where B ∈ UFB, is every Blaschke
product invertible in A2 in the class UFB? An example due to W. Rudin
[20] plus a theorem of Cargo [2] show that there is a Blaschke product such

that
∑

n
1−|zn|
|z−zn| = ∞ at almost every point z ∈ T. Since Blaschke products

have radial limits of modulus one at almost every point of T, this example
plus Frostman’s theorem [5, Theorem 1] imply that a Blaschke product can
have radial limit of modulus one at a point, while some subproduct does
not. Therefore, letting B0 denote this Blaschke product, we see that there
is a Blaschke product invertible in H∞[B0] that does not have a radial limit
at some point where B0 does have a radial limit.

The second question we pose is the following: Prime finite Blaschke prod-
ucts are uniformly dense in the set of finite Blaschke products (see also
[9] and [3]). All examples so far suggest that the same is true for infinite
Blaschke products. Thus, we conjecture that the class of prime Blaschke
products is uniformly dense in the set of all Blaschke products.
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