
STUDIA MATHEMATICA 219 (3) (2013)

Weak-star point of continuity property and Schauder bases

by

Ginés López-Pérez and José A. Soler-Arias (Granada)

Abstract. We characterize the weak-star point of continuity property for subspaces
of dual spaces with separable predual and we deduce that the weak-star point of continuity
property is determined by subspaces with a Schauder basis in the natural setting of dual
spaces of separable Banach spaces. As a consequence of the above characterization we show
that a dual space has the Radon–Nikodym property if, and only if, every seminormalized
topologically weak-star null tree has a boundedly complete branch, which improves some
results of Dutta and Fonf (2008) obtained for the separable case. Also, as a consequence
of the above characterization, the following result of Rosenthal (2007) is deduced: every
seminormalized basic sequence in a Banach space with the point of continuity property
has a boundedly complete subsequence.

1. Introduction. We recall (see [2] for background) that a bounded
subset C of a Banach space has the Radon–Nikodym property (RNP) if
every subset of C is dentable, that is, every subset of C has slices of arbi-
trarily small diameter. A Banach space is said to have RNP whenever its
closed unit ball has RNP. It is well known that separable dual spaces have
RNP, and spaces with RNP contain many subspaces which are themselves
separable dual spaces. (Note that containing many separable dual subspaces
is equivalent to containing many boundedly complete basic sequences.)

As RNP is separably determined, that is, a Banach space X has RNP
whenever every separable subspace of X does, it seems natural to look for
a sequential characterization of RNP in terms of boundedly complete basic
sequences. In [3] it is proved that the space B∞ (which fails to have RNP)
still has the property that any w-null normalized sequence has a boundedly
complete basic subsequence. However, it has been proved in [3] that the
dual space of a separable Banach space X has RNP if, and only if, every
w∗-null tree in the unit sphere of X∗ has some boundedly complete basic
branch. It then seems natural to look for a characterization of RNP for
general dual Banach spaces in terms of boundedly complete basic sequences,
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extending the result in [3] proved for duals of separable Banach spaces. For
this, we introduce the concept of topologically w∗-null tree, which is a weaker
condition than being a w∗-null tree, and we characterize in terms of trees
the RNP for w∗-compact subsets of general dual Banach spaces (Proposition
2.1). As a consequence, we prove (Theorem 2.6) that a dual Banach space
X has RNP if, and only if, every seminormalized and topologically w∗-null
tree in the unit sphere of X has some boundedly complete branch, which
immediately implies the aforementioned result of [3].

We recall that a closed and bounded subset of a Banach space X has the
point of continuity property (PCP) if every closed subset of C has some point
of weak continuity, that is, the weak and the norm topologies agree at this
point. Also, when X is a dual space, C is said to have the weak-star point
of continuity property (w∗-PCP) if every closed subset of C has some point
of w∗-continuity, equivalently every nonempty subset of C has relatively
w∗-open subsets of arbitrarily small diameter. The space X has PCP (resp.
w∗-PCP when X is a dual space) if BX , the closed unit ball of X, has
PCP (resp. w∗-PCP). Also, a subspace X of a dual space Y ∗ is said to have
w∗-PCP if BX , as a subset of Y ∗, has w∗-PCP. It is well known that RNP
implies PCP, the converse being false, and it is clear that w∗-PCP implies
PCP. Moreover, RNP and w∗-PCP are equivalent for convex w∗-compact
sets in a dual space (see [2, Theorem 4.2.13]. We will use this last fact freely
in the future. We refer to [9] for background about PCP and w∗-PCP.

It is a well known open problem [1] whether PCP (resp. RNP) is deter-
mined by subspaces with a Schauder basis. Our goal is characterize w∗-PCP
for closed and bounded subsets of dual spaces of separable Banach spaces
and conclude (Theorem 2.10) that, in fact, w∗-PCP is determined by sub-
spaces with a Schauder basis in the natural setting of subspaces of dual
spaces with a separable predual. As an easy consequence we also deduce
from the above characterization of w∗-PCP that every seminormalized ba-
sic sequence in a Banach space with PCP has a boundedly complete basic
subsequence. This last result was obtained in [8].

We begin with some notation and preliminaries. Let X be a Banach space
and let BX , respectively SX , be the closed unit ball, respectively sphere,
of X. The weak-star topology in X, when it is a dual space, will be denoted

by w∗. If A is a subset in X, A
w∗

stands for the w∗-closure of A in X. Given
a basic sequence {en} in X, the closed linear span of {en} is denoted by [en].
Moreover, {en} is said to be: seminormalized if 0 < infn ‖en‖ ≤ supn ‖en‖
<∞; boundedly complete if whenever scalars {λi} satisfy supn ‖

∑n
i=1 λiei‖

< ∞, then
∑

n λnen converges; and shrinking if [en]∗ = [e∗n], where {e∗n}
denotes the sequence of biorthogonal functionals associated to {en}.

A boundedly complete basic sequence {en} in a Banach space X spans
a dual space. In fact, [en] = [e∗n]∗ [7]. Following [11], a sequence {en} in a
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Banach space is said to be type P if the set {
∑n

k=1 ek : n ∈ N} is bounded.
Observe, from the definitions, that type P seminormalized basic sequences
fail to be always boundedly complete basic sequences.

A sequence {xn} in a Banach space X is said to be strongly summing
if whenever {λn} is a sequence of scalars with supn ‖

∑n
k=1 λkxk‖ < ∞,

then the series of scalars
∑

n λn converges. The remarkable c0-theorem [10]
ensures that in a Banach space not containing subspaces isomorphic to c0,
every weak-Cauchy sequence that is not weakly convergent has a strongly
summing basic subsequence.

N<ω stands for the set of all ordered finite sequences of natural numbers,
including the empty sequence denoted by ∅. We consider the natural order
in N<ω, that is, given α = (α1, . . . , αp), β = (β1, . . . , βq) ∈ N<ω, one has
α ≤ β if p ≤ q and αi = βi for all 1 ≤ i ≤ p. If α = (α1, . . . , αp) ∈ N<ω
we set α− = (α1, . . . , αp−1). Also |α| denotes the length of α, and ∅ is the
minimum of N<ω with the above partial order.

A tree in a Banach space X is a family {xA}A∈N<ω of vectors in X
indexed by N<ω. The tree will be called seminormalized if 0 < infA ‖xA‖
≤ supA ‖xA‖ < ∞. When X is a dual space, we will say that the tree
{xA}A∈N<ω is w∗-null if the sequence {x(A,n)}n is w∗-null for every A ∈ N<ω.

The tree {xA}A∈N<ω is topologically w∗-null if 0 ∈ {x(A,n) : n ∈ N}w
∗

for
every A ∈ N<ω.

A sequence {xAn}n≥0 is called a branch if {An} is a maximal totally
ordered subset of N<ω, that is, there exists a sequence {αn} of natural num-
bers such that An = (α1, . . . , αn) for every n ∈ N and A0 = ∅. Given a tree
{xA}A∈N<ω in a Banach space, a full subtree is a new tree {yA}A∈N<ω defined
by y∅ = x∅ and y(A,n) = x(A,σA(n)) for allA ∈ N<ω and n ∈ N, where for every
A ∈ N<ω, σA is a strictly increasing map, equivalently when every branch of
{yA} is also a branch of {xA}. The tree {xA}A∈N<ω is said to be uniformly
type P if every branch of the tree is type P and the partial sums of every
branch are uniformly bounded. The tree {xA}A∈N<ω is said to be basic if the
countable set {xA : A ∈ Nω} is a basic sequence for some rearrangement.

Whenever {xn} is a sequence in a Banach space X, we will view it also
as a tree setting xA = xmax(A) for every A ∈ N<ω. Furthermore the branches
of this tree are the subsequences of {xn}.

Finally, we recall that a boundedly complete skipped blocking finite-dimen-
sional decomposition (BCSBFDD) in a separable Banach space X is a se-
quence {Fj} of finite-dimensional subspaces in X such that:

(1) X = [Fj : j ∈ N].
(2) Fk ∩ [Fj : j 6= k] = {0} for every k ∈ N.
(3) For every sequence {nj} of nonnegative integers with nj + 1 < nj+1

for all j ∈ N and for every f ∈ [F(nj ,nj+1) : j ∈ N] there exists a
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unique sequence {fj} with fj ∈ F(nj ,nj+1) for all j ∈ N such that
f =

∑∞
j=1 fj .

(4) Whenever fj ∈ F(nj ,nj+1) for all j ∈ N and supn ‖
∑n

j=1 fj‖ < ∞
then

∑∞
j=1 fj converges.

If X is a subspace of Y ∗ for some Y , a BCSBFDD {Fj} in X will be called

w∗-continuous if Fi ∩ [Fj : j 6= i]
w∗

= {0} for every i. Here, [A] denotes
the closed linear span of A in X and, for every nonempty interval I of
nonnegative integers, we denote by FI the linear span of the Fj ’s for j ∈ I.

If {Fj} is a BCSBFDD in a separable Banach space X and {xj} is a se-
quence in X such that xj ∈ F(nj ,nj+1) for some sequence {nj} of nonnegative
integers with nj + 1 < nj+1 for all j ∈ N, we say that {xj} is a skipped block
sequence of {Fn}. It is standard to prove that there is a positive constant K
such that every skipped block sequence {xj} of {Fn} with xj 6= 0 for every
j is a boundedly complete basic sequence with constant at most K.

From [4], we know that the family of separable Banach spaces with PCP
is exactly the family of separable Banach spaces with a BCSBFDD.

2. Main results. We begin with a characterization of RNP for
w∗-compact subsets of general dual spaces. This result can be seen as a
w∗-version of results in [6].

Proposition 2.1. Let X be a Banach space and let K be a w∗-compact
and convex subset of X∗. Then the following assertions are equivalent:

(i) K fails RNP.
(ii) There is a seminormalized topologically w∗-null tree {xA}A∈N<ω in

X∗ such that {
∑

C≤A xC : A ∈ N<ω} ⊂ K.

Proof. (i)⇒(ii). Assume that K fails RNP. Then, from [2, Theorem
2.3.6] there is a nondentable and countable subset D of K. Now cow

∗
(D) is a

w∗-compact and w∗-separable subset of K failing w∗-PCP. So there is a rela-
tively w∗-separable subset B of cow

∗
(D) and δ > 0 such that every relatively

w∗-open subset of B has diameter greater than 2δ. Hence b ∈ B \B(b, δ)
w∗

for every b ∈ B, where B(b, δ) stands for the open ball with center b and
radius δ. Note then that since B is relatively w∗-separable, for every b ∈ B
there is a countable subset Cb ∈ B \B(b, δ) such that b ∈ Cb

w∗
.

First, we construct a tree {yA}A∈N<ω in B satisfying:

(a) yA ∈ B \B(yA, δ)
w∗

for every A ∈ N<ω.
(b) ‖yA − y(A,i)‖ > δ for every A ∈ N<ω.

(c) yA ∈ {y(A,i) : i ∈ N}w
∗

for every A ∈ N<ω.

Pick y∅ ∈ B. As y∅ ∈ B \B(y∅, δ)
w∗

there is a countable set Cy∅ = {y(i) :
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i ∈ N} ⊂ B \ B(y∅, δ) such that y∅ ∈ Cy∅
w∗

. Then (a)–(c) are satisfied. By
iterating this process we construct a tree {yA}A∈N<ω satisfying (a)–(c).

Now we define a new tree {xA}A∈N<ω by x∅ = y∅ and x(A,i) = y(A,i)− yA
for every i ∈ N and A ∈ N<ω. From (b) we see that {xA}A∈N<ω is a semi-
normalized tree, since B is bounded. From (c), {xA}A∈N<ω is topologically
w∗-null. Furthermore, if A ∈ N<ω then

∑
C≤A xC = yA, by the definition of

the tree {xA}A∈N<ω . So {xA}A∈N<ω is a uniformly type P tree, since B is
bounded and yA ∈ B for every A ∈ N<ω. This finishes the proof of (i)⇒(ii).

(ii)⇒(i). Let {xA} be a seminormalized topologically w∗-null tree such
that B = {

∑
C≤A xC : A ∈ N<ω} ⊂ K and let δ > 0 be such that ‖xA‖ > δ

for every A ∈ N<ω. For every A ∈ N<ω and for every n ∈ N we have∑
C≤(A,n) xC =

∑
C≤A xC + x(A,n), but 0 ∈ {x(A,n) : n ∈ N}w

∗
, since the

tree {xA} is topologically w∗-null. So
∑

C≤A xC ∈ {
∑

C≤(A,n) xC : n ∈ N}w
∗

and ‖
∑

C≤(A,n) xC −
∑

C≤A xC‖ > δ. This proves that B has no points
where the identity map is continuous from the w∗-topology to the norm
topology. In fact, we have proved that every relatively w∗-open subset of B

has diameter greater than δ. Now, B
‖·‖

is a closed and bounded subset of

K such that every relatively w∗-open subset of B
‖·‖

has diameter greater
than δ, and so K fails w∗-PCP. As K is w∗-compact, it fails RNP.

Essentially, the fact that RNP is separably determined has allowed us to
get the above result in the setting of general dual spaces. The next theorem
characterizes w∗-PCP for subsets of dual spaces with a separable predual
in terms of w∗-null trees, since in this case the w∗-topology is metrizable
on bounded sets. It seems natural, then, to think that a characterization
of w∗-PCP for subsets in general dual spaces in terms of topologically w∗-
null trees has to be true; however, we do not know if w∗-PCP is separably
determined in general. This is the difference between the above proposition
and the next one, which is now obtained easily.

Proposition 2.2. Let X be a separable Banach space and let K be a
closed and bounded subset of X∗. Then the following assertions are equiva-
lent:

(i) K fails w∗-PCP.
(ii) There is a seminormalized w∗-null tree {xA}A∈N<ω in X∗ such that
{
∑

C≤A xC : A ∈ N<ω} ⊂ K.

Proof. (i)⇒(ii). If K fails w∗-PCP there is a subset B of K and δ > 0
such that every relatively w∗-open subset of B has diameter greater than 2δ.

So b ∈ B \B(b, δ)
w∗

for every b ∈ B. Note then that since X is separable
the w∗-topology in X∗ is metrizable on bounded sets, and so for every b ∈ B
there is a countable subset Cb ∈ B \ B(b, δ) such that b ∈ Cb

w∗
. Hence we
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can assume that Cb is a sequence w∗-converging to b. Now we can construct,
exactly as in the proof of (i)⇒(ii) of the above proposition, the desired
w∗-null tree satisfying (ii).

(ii)⇒(i). If we assume (ii) we can repeat the proof of (ii)⇒(i) in the
above proposition to deduce that K fails w∗-PCP.

Remark 2.3. If X is a separable subspace of a dual space Y ∗ with X
satisfying w∗-PCP, it is shown in [9] (see (1) implies (8) of Theorem 2.4
together with the comments on p. 276) that there is a separable subspace
Z of Y such that X is isometric to a subspace of Z∗ and X has w∗-PCP as
a subspace of Z∗. Thus, in order to study the w∗-PCP of a subspace of Y ∗,
it is more natural to assume that Y is separable.

We now prove our characterization of w∗-PCP in terms of boundedly
complete basic sequences in a general setting. A similar characterization
for PCP can be found in [6], but the proof of the following result strongly
uses the concept of w∗-continuous boundedly complete skipped blocking
finite-dimensional decomposition and assumes separability in the predual
space.

Theorem 2.4. Let X, Y be Banach spaces with Y separable and X a
subspace of Y ∗. Then the following assertions are equivalent:

(i) X has w∗-PCP.
(ii) No w∗-null tree in SX is uniformly type P.

(iii) No w∗-null tree in SX has a type P branch.
(iv) Every w∗-null tree in SX has a boundedly complete branch.

We need the following easy

Lemma 2.5. Let X, Y be Banach spaces with X a subspace of Y ∗, and
let M be a finite-codimensional subspace of X. Assume that ε > 0 and {x∗n}
is a sequence in X such that 0 ∈ {xn : n ∈ N}w

∗
. If P : X → N is a linear

and relatively w∗-continuous projection onto some finite-dimensional sub-
space N of X with kernel M then there is n0 ∈ N such that dist(x∗n0

,M) < ε.

Proof. From 0 ∈ {x∗n : n ∈ N}w
∗

we deduce that 0 ∈ {P (x∗n) : n ∈ N}‖·‖,
since N is a finite-dimensional subspace of X. Now, pick n0 ∈ N with
‖P (x∗n0

)‖ < ε. Then

dist(x∗n0
,M) = ‖x∗n0

+M‖ = ‖P (x∗n0
) +M‖ ≤ ‖P (x∗n0

)‖ < ε.

Proof of Theorem 2.4. (iv)⇒(iii) is a consequence of the fact that no
boundedly complete basic sequence is type P, discussed in the introduction,
and (iii)⇒(ii) is trivial.

For (ii)⇒(i) it is enough to apply Theorem 2.2 for K = BX by assuming
that X fails w∗-PCP and normalizing.
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(i)⇒(iv). Assume that X has w∗-PCP and pick a w∗-null tree {xA}
in SX .

From [9] (see (b) of Theorem 3.10 together with the equivalence between
(1) and (3) of Corollary 2.6) we know that every separable subspace of
Y ∗ with w∗-PCP has a w∗-continuous boundedly complete skipped block-
ing finite-dimensional decomposition. As the subspace generated by the
tree {xA} is separable we can assume that X has such a decomposition,
that is, there is a sequence {Fj} of finite-dimensional subspaces in X such
that:

(1) X = [Fj : j ∈ N].
(2) Fk ∩ [Fj : j 6= k] = {0} for every k ∈ N.
(3) For every sequence {nj} of nonnegative integers with nj + 1 < nj+1

for all j ∈ N and for every f ∈ [F(nj ,nj+1) : j ∈ N] there exists a
unique sequence {fj} with fj ∈ F(nj ,nj+1) for all j ∈ N such that
f =

∑∞
j=1 fj .

(4) Whenever fj ∈ F(nj ,nj+1) for all j ∈ N and supn ‖
∑n

j=1 fj‖ < ∞
then

∑∞
j=1 fj converges.

(5) Fi ∩ [Fj : j 6= i]
w∗

= {0} for every i.

Let K be a positive constant such that every skipped block sequence {xj}
of {Fn} with xj 6= 0 for every j is a boundedly complete basic sequence with
constant at most K.

Observe that for every n ∈ N there is a linear surjective projection

P̃n : [Fi : i ≥ n]
w∗ ⊕ [Fi : i < n] → [Fi : i < n] with kernel [Fi : i ≥ n]

w∗

and so P̃n is w∗-continuous, since [Fi : i ≥ n]
w∗ ⊕ [Fi : i < n] is a w∗-

closed subspace of Y ∗ and hence a dual Banach space, and the closed graph
theorem applies to Pn because its kernel is w∗-closed and its range is finite-
dimensional. Then the restriction of P̃n toX, say Pn, is a linear and relatively
w∗-continuous projection from X onto [Fi : i < n] with kernel [Fi : i ≥ n].

We have to construct a boundedly complete branch of the tree {xA}. For
this, fix a sequence {εj} of positive real numbers with

∑∞
j=0 εj < 1/(2K),

where K is the constant of the decomposition {Fj}. Now we construct a
sequence {fj} in X with fj ∈ F(nj ,nj+1) for all j, for some increasing sequence
{nj} of integers, and a branch {xAj} of the tree such that ‖xAj − fj‖ < εj
for all j. Put n0 = 0. Then there exist n1 > 2 and f0 ∈ F(n0,n1) such that
‖xA0 − f0‖ < ε0, where A0 = ∅.

Now, assume that n1, . . . , nj+1, f1, . . . , fj and A1, . . . , Aj have been con-
structed. Put Ak = (p1, . . . , pk) for all 1 ≤ k ≤ j. As the tree is w∗-null

we have 0 ∈ {x(Aj ,p) : p ∈ N}w
∗
. Then, by Lemma 2.5, we deduce that

there is some pj+1 ∈ N such that dist(x(Aj ,pj+1), [F[nj+1+1,∞)]) < εj+1 since
[F[nj+1+1,∞)] is a finite-codimensional subspace inX and Pnj+1+1 is relatively
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w∗-continuous. Then there exist nj+2 > nj+1+1 and fj+1 ∈ F(nj+1,nj+2) such
that ‖xAj+1 − fj+1‖ < εj+1, where Aj+1 = (Aj , pj+1).

This finishes the inductive construction of the branch {xAj} satisfying
‖xAj − fj‖ < εj for all j. Finally we get

∑∞
j=1 ‖xAj − fj‖ < 1/(2K). Thus

{xAj} is a branch of the tree {xA}A∈N<ω which is a basic sequence equivalent
to {fj}, since {fj} is a skipped block sequence of {Fn}; hence {xAj} is a
boundedly complete sequence and the proof of Theorem 2.4 is finished.

Now we can get a characterization of RNP for dual spaces, following the
above proof.

Theorem 2.6. Let X be a Banach space. Then the following assertions
are equivalent:

(i) X∗ has RNP.
(ii) No topologically w∗-null tree in SX is uniformly type P.

(iii) No topologically w∗-null tree in SX has a type P branch.
(iv) Every topologically w∗-null tree in SX has a boundedly complete

branch.

Proof. (iv)⇒(iii) is a consequence of the fact that no boundedly complete
basic sequence is type P, as discussed in the introduction; and (iii)⇒(ii) is
trivial.

For (ii)⇒(i) it is enough applying Theorem 2.1 for K = BX∗ by assuming
that X∗ fails RNP and normalizing.

(i)⇒(iv). Assume that X∗ has RNP and pick a topologically w∗-null
tree {xA} in SX∗ . Denote by Y the closed linear span of the tree {xA}. Now
Y is a separable subspace of X∗ and so there is a separable subspace Z of X
norming Y so that Y is isometric to a subspace of Z∗. As X∗ has RNP, so
does Z∗. Hence Y is a separable subspace of Z∗, since Z is a separable space,
and Z∗ has w∗-PCP since Z∗ has RNP. Observe that the tree {xA} is now
a topologically w∗-null tree in S∗Z , so we can select a full w∗-null subtree
of {yA}, since Z is separable and so the w∗-topology in Z∗ is metrizable
for bounded sets. We apply the proof of (i)⇒(iv) in the above result with
X = Y = Z∗ to get a boundedly complete branch of {yA}. As {yA} is a full
subtree of {xA}, the branches of {yA} are branches of {xA}, and so {xA}
has a boundedly complete branch.

In case X is a separable Banach space, the above result can be written
in terms of w∗-null trees. Then we immediately get the following corollary,
obtained in [3] in a different way.

Corollary 2.7. Let X be a separable Banach space. Then X∗ is sepa-
rable (equivalently, X∗ has RNP) if, and only if, every w∗-null tree in SX∗

has a boundedly complete branch.
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Proof. When X is separable, the w∗-topology in X∗ is metrizable on
bounded sets and so every topologically w∗-null tree in SX∗ has a full subtree
which is w∗-null. With this in mind, it is enough to apply the above theorem
to conclude, since X∗ is separable if and only if X∗ has RNP, whenever X
is separable.

The following consequence, obtained in a different way in [8], shows how
many separable and dual subspaces contains every Banach space with PCP.

Corollary 2.8. Let X be a Banach space with PCP. Then every semi-
normalized basic sequence in X has a boundedly complete subsequence.

Proof. Pick a seminormalized basic sequence {xn} in X. Then either
{xn} has a subsequence equivalent to the unit vector basis of `1, and hence
boundedly complete, or it has a weakly Cauchy subsequence, which we de-
note again {xn}.

If {xn} is weakly convergent it is weakly null, being a basic sequence.
Now, {xn} is a seminormalized weakly null tree in X and hence {xn} is a
seminormalized w∗-null tree in X∗∗. As [xn] is a separable subspace of X∗∗

with w∗-PCP, from Remark 2.3 there is a separable subspace Z ⊂ X∗ such
that [xn] is isometric to a subspace of Z∗ with w∗-PCP. Therefore {xn} is a
seminormalized w∗-null tree in [xn], which is a subspace of Z∗ with w∗-PCP,
since Z is separable. From Theorem 2.4, we get a boundedly complete branch
and so a boundedly complete subsequence.

If {xn} is not weakly convergent we can apply the c0-theorem [10] to get
a strongly summing subsequence, denoted again by {xn}, since X has PCP
and so does not contain c0. Let x∗∗ = w∗- limn xn ∈ X∗∗. Now {xn − x∗∗}
is a w∗-null sequence in X ⊕ [x∗∗] ⊂ X∗∗. As X has PCP, it has w∗-PCP
as a subspace of X∗∗, and then it is easy to see that X ⊕ [x∗∗] ⊂ X∗∗

has w∗-PCP. Now [xn − x∗∗] is a separable subspace of X∗∗ with w∗-PCP
and so, from Remark 2.3, there is a separable subspace Z of X∗ such that
[xn − x∗∗] is isometric to a subspace of Z∗ with w∗-PCP, as Z is separable.
From Theorem 2.4, we get a boundedly complete branch and so a bound-
edly complete subsequence, denoted again by {xn − x∗∗}. So {xn − x∗∗} is
boundedly complete and {xn} is strongly summing.

Let us see that {xn} is boundedly complete. Indeed, if for some se-
quence of scalars {λn} we have supn ‖

∑n
k=1 λnxn‖ < ∞, then the series∑

n λn is convergent, since {xn} is strongly summing. Now it is clear that
supn ‖

∑n
k=1 λn(xn−x∗∗)‖ <∞ and hence

∑
n λn(xn−x∗∗) converges, since

{xn − x∗∗} is boundedly complete. So
∑

n λnxn converges, since
∑

n λn is
convergent, and {xn} is boundedly complete.

The converse of the above result is false, even for Banach spaces not
containing `1 (see [5]).
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Now we turn to some consequences relating to the problem of the deter-
mination of w∗-PCP by subspaces with a basis. We begin by proving that
every seminormalized w∗-null tree has a basic full w∗-null subtree. The same
is then true for the weak topology, by considering X as a subspace of X∗∗.
We do not know an exact reference for this result, so we give a proof based
on Mazur’s proof of the known result that every seminormalized sequence
in a dual Banach space such that 0 belongs to its w∗-closure has a basic
subsequence.

Lemma 2.9. Let X be a Banach space and {xA}A∈N<ω a seminormalized
w∗-null tree in SX∗. Then for every ε > 0 there is a full basic subtree still
w∗-null with basic constant less than 1 + ε.

Proof. Let φ : N<ω → N∪{0} be a fixed bijective map such that φ(∅) = 0,
φ(A) ≤ φ(B) whenever A ≤ B ∈ N<ω, and φ(A, i) ≤ φ(A, j) whenever
A ∈ N<ω and i ≤ j. Fix also ε > 0 and a sequence {εn}n≥0 ⊂ (0, 1) such
that

1 +
∑∞

n=0 εn∏∞
n=0(1− εn)

< 1 + ε.

Now we construct the desired subtree {yA}A∈N<ω by induction, following
the order given by φ to define yA for every A ∈ N<ω and thus get the “full”
condition. That is, we have to prove that for every n ∈ N ∪ {0} we can
construct yφ−1(n) such that {yA}A∈N<ω is a w∗-null full subtree with the
property that for every n ∈ N ∪ {0} there is a finite set {fn1 , . . . , fnkn} ⊂ SX
such that:

(i) {fn1 , . . . , fnkn} is a (1−εn)-norming set for Yn = [yφ−1(0), . . . , yφ−1(n)].
(ii) |fni (yφ−1(n+1))| < εn for every i.

(iii) For every A ∈ N<ω there is an increasing map σA : N → N such
that y(A,i) = x(A,σA(i)) for every i.

For n = 0, we have φ−1(0) = ∅ and we define y∅ = x∅. Now take f01 ∈ SX
(1 − ε0)-norming the subspace Y0 = [y∅]. As the tree {xA}A∈N<ω is w∗-null
there is p0 ∈ N such that |f01 (x(p))| < ε0 for every p ≥ p0. Then we set
yφ−1(1) = x(p0). As φ(A, i) ≤ φ(A, j) whenever A ∈ N<ω and i ≤ j, we

deduce that φ−1(1) = (1) and define σ∅(1) = p0 so that y(∅,1) = x(∅,σ∅(1)).
Assume n ∈ N and that we have already defined yφ−1(0), . . . , yφ−1(n−1).

Now φ−1(n)− < φ−1(n), hence φ(φ−1(n)−) < n and so yφ−1(n)− has al-

ready been constructed, by induction hypothesis. Put φ−1(n) = (A, h)
for some h ∈ N, where A = φ−1(n)−. As φ(A, k) ≤ φ(A, h) for k ≤ h,
we see that y(A,k) has been constructed with y(A,k) = x(A,σA(k)) whenever
k < h, and σA(k) has been constructed strictly increasing for k < h.
Put Yn−1 = [yφ−1(0), . . . , yφ−1(n−1)] and pick elements fn−11 , . . . , fn−1kn−1

in

SYn−1 (1 − εn−1)-norming Yn−1. As the tree {xA}A∈N<ω is w∗-null there
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is pn−1 > maxk<h σA(k) such that |fn−1i (x(A,p))| < εn−1 for all 1 ≤ i ≤ kn−1
and p ≥ pn−1. Then we set yφ−1(n) = x(A,pn−1) and σA(h) = pn−1. Thus
σA(k) is strictly increasing for k ≤ h and yφ−1(n) = y(A,h) = x(A,σA(h)). Now
the construction of the subtree {yA} is complete and satisfies (i)–(iii). From
the construction we see that {yA} is a full and w∗-null subtree.

Let us see that {yφ−1(n)} is a basic sequence in X. Put zn = yφ−1(n),
fix p < q ∈ N and compute ‖

∑q
i=1 λizi‖, where {λi} is a scalar sequence.

Assume that ‖
∑q

i=1 λizi‖ ≤ 1. From (i) pick j such that |f q−1j (
∑q−1

i=1 λizi)| >
(1− εq−1)‖

∑q−1
i=1 λizi‖. Then from (ii) we have |f q−1j (zq)| < εq−1 and so∥∥∥ q∑

i=1

λizi

∥∥∥ ≥ ∣∣∣f q−1j

( q∑
i=1

λizi

)∣∣∣ > (1− εq−1)
∥∥∥ q−1∑
i=1

λizi

∥∥∥− εq−1.
By repeating this computation we get∥∥∥ q∑

i=1

λizi

∥∥∥ ≥ ( q∏
i=p+1

(1− εi−1)
)∥∥∥ p∑

i=1

λizi

∥∥∥− q∑
i=p+1

εi−1,

and so ∥∥∥ p∑
i=1

λizi

∥∥∥ ≤ 1 +
∑q

i=p+1 εi−1∏q
i=p+1(1− εi−1)

< 1 + ε.

The last inequality proves that {zn} is a basic sequence in X with basic
constant less than 1 + ε, and the proof is complete.

We do not know if the above result is still true with “w∗-null” replaced
by “topologically w∗-null”.

The following result shows that w∗-PCP is determined by subspaces with
a Schauder basis in the natural setting of dual spaces of separable Banach
spaces.

Corollary 2.10. Let X, Y be Banach spaces such that Y is separable
and X is a subspace of Y ∗. Then X has w∗-PCP if, and only if, every
subspace of X with a Schauder basis has w∗-PCP.

Proof. Assume that X fails w∗-PCP. Then, from Theorem 2.4, there is a
w∗-null tree in the unit sphere of X without boundedly complete branches.
Now, by Lemma 2.9, we can extract a w∗-null full basic subtree. The sub-
space Z generated by this subtree is a subspace of X with a Schauder basis
containing a w∗-null tree in SX without boundedly complete branches, from
the “full” condition, so Z fails w∗-PCP, by Theorem 2.4.

As a consequence we deduce, for example, that a subspace of `∞, the
space of bounded scalar sequences with the sup norm, failing w∗-PCP (or
failing PCP) contains a further subspace with a Schauder basis failing
w∗-PCP.
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If we take X = Y ∗ in the above corollary we can deduce the following

Corollary 2.11. Let X be a separable Banach space. Then X∗ has
RNP if, and only if, every subspace of X∗ with a Schauder basis has w∗-PCP.
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