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Error rates in the Darling–Kac law

by

Dalia Terhesiu (Roma)

Abstract. This work provides rates of convergence in the Darling–Kac law for infinite
measure preserving Pomeau–Manneville (unit interval) maps. Along the way we obtain
error rates for the stable law associated with the first return map and the first return time
to some suitable set inside the unit interval.

1. Introduction and main results

1.1. Darling–Kac limit laws for dynamical systems preserving
an infinite measure. To understand a chaotic dynamical system, methods
from probability theory are an important tool. This goes back to Birkhoff’s
ergodic theorem, which states that for a dynamical system f : X → X that
preserves a probability measure µ, the ergodic average

1

n
Sn(v) =

1

n

n−1∑
k=0

v ◦ fk

converges almost everywhere (a.e.) to the space average
	
v dµ, for all inte-

grable functions v (v ∈ L1). In contrast, if µ(X) = ∞, Birkhoff’s ergodic
theorem is not very informative, since in this case n−1Sn goes to 0 a.e., for
all v ∈ L1. Even stronger, as proved in [1], the ergodic theorem cannot be
recovered by rescaling. More precisely, for any positive sequence cn and for
any v ∈ L1, either c−1n Sn goes to 0 a.e. or it goes to ∞ along subsequences.
However, in certain cases there exists a positive sequence an such that for
all v ∈ L1, a−1n Sn converges in a weaker sense, namely in distribution, to
a non-trivial limit (see for instance [1, 19, 3] and the plethora of references
therein). Such a limit law is referred to as the Darling–Kac (DK) theorem,
and usually when this applies, one can prove the existence of other interest-
ing limit laws, such as arc-sine laws [17, 18, 19, 22].
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As shown in [1, Theorems 3.6.4, 3.7.2], pointwise dual ergodicity together
with regular variation of the return sequence guarantee the existence of the
DK law. We recall these notions below.

Pointwise dual ergodicity provides information about the asymptotic
behavior of the transfer operator L : L1(X) → L1(X) associated with
(X,A, f, µ), defined by

	
Y Lv w dµ =

	
Y v w ◦ f dµ, w ∈ L∞(Y ). More

precisely, f is pointwise dual ergodic if there exists a positive sequence
an such that a−1n

∑n−1
j=0 L

jv →
	
X v dµ a.e. for all v ∈ L1. The sequence

an is referred to as the return sequence for f (see [1] for a definition of
an in terms of the weaker property of rational ergodicity). A necessary
and sufficient condition for f to be pointwise dual ergodic is the exis-
tence of sets Y ∈ A with 0 < µ(Y ) < ∞ such that for v ∈ L1 and
an(Y ) := µ(Y )−2

∑n−1
j=0 µ(Y ∪f−jY ), one has an(Y )−1

∑n−1
j=0 L

jv →
	
X v dµ

uniformly on Y (see [1]). The return sequence an(f) of f is determined up
to a multiplicative constant (corresponding to an arbitrary scaling of the
measure µ) and asymptotic equivalence satisfies an(f) = an(Y )(1 + o(1)).
In the following, we will choose a suitable set Y (in accordance with the
inducing method below), scale µ so that µ(Y ) = 1, and fix an := an(Y ) for
this choice.

While the existence of a DK law for (X, f, µ) does not require the strong
property of pointwise dual ergodicity (see [3]), it does require that the re-
turn sequence an is regularly varying, i.e. that an = `(n)nβ for some slowly
varying function ` and some index β ∈ [0, 1]). Regular variation is an im-
portant assumption of the Darling–Kac theory for Markov chains (see, for
instance, [4]). For a pointwise dual ergodic (X, f, µ) with an = `(n)nβ the
Darling–Kac law says that for all v ∈ L1,

Ca−1n Sn(v)→d Yβ as n→∞.

where an is as defined above, C is a positive constant that depends only
on f , and Yβ is a positive random variable distributed according to the
normalized Mittag-Leffler distribution of order β, that is, E(ezYβ ) =∑∞

p=0 Γ (1 + β)pzp/Γ (1 + pβ) for all z ∈ C.

A standard way of verifying regular variation for an associated with
a dynamical system (X, f) is by inducing with respect to the first return
time to some ‘good’ set Y ⊂ X. To simplify notation, fix Y ⊂ X with
µ(Y ) = 1. Let ϕ : Y → Z+ be the first return time to Y defined by ϕ(y) =
inf{n ≥ 1 : fny ∈ Y }. If µ(ϕ > n) = `(n)n−β for some slowly varying
function ` and some index β ∈ [0, 1] then an(Y ) = `(n)nβ for β ∈ [0, 1),
an(Y ) = n

∑n
j=1 `(j)j

−1 for β = 1 (see [1, Section 3.8]).

1.2. A classical example. A standard example of a dynamical sys-
tem with infinite measure that has the desired properties (pointwise dual
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ergodicity along with regular variation) is given by the family of Pomeau–
Manneville intermittency maps [14]. These are interval maps with indiffer-
ent fixed points; that is, they are uniformly expanding except for an in-
different fixed point at 0. To fix notation, we recall the version considered
in [10]:

f(x) =

{
x(1 + 2αxα), 0 < x < 1/2,

2x− 1, 1/2 < x < 1.
(1.1)

For α ≥ 1, we are in the situation of infinite ergodic theory; there exist a
unique (up to scaling) σ-finite, absolutely continuous invariant measure µ.
In the setting of (1.1), we let x0 = 1/2 and xp+1 < xp = f(xp+1) for each
p ≥ 0, and then set Y = [xp, 1] for some arbitrary p ≥ 0. Note that one can
rescale µ such that µ(Y ) = 1 and recall that µ(ϕ = n) = O(n−(β+1)) with
β = 1/α.

The methods employed so far [1, 18, 19] to establish limit theorems
for dynamical systems with infinite measure do not allow one to determine
the error rate present in the convergence involved. Recent progress in this
sense has been made in [11, 16], which establish sharp error rates in arc-
sine laws associated with systems such as (1.1). The results in [11, 16] are
established by exploring a ‘good’ expansion of the tail distribution µ(ϕ > n).
For higher order expansion of µ(ϕ > n) in the special case of (1.1), we refer
to [11, 12, 16].

Our aim in this work is to establish error rates in the Darling–Kac
law associated with systems such as (1.1). In the rest of the paper we
say that (f, µ), Y and an := an(Y ) are defined by (1.1) in the following
sense:

(i) f is the map defined by (1.1);
(ii) Y = [xp, 1] ⊂ (0, 1], where xp, p ≥ 0, is as defined in the paragraph

following (1.1) (by taking p sufficiently large, we will be able to deal
with observables v that are supported on a compact subset of (0, 1]);

(iii) the f -invariant measure µ is rescaled such that µ(Y ) = 1;
(iv) set an(Y ) =

∑n−1
j=0 µ(Y ∩ f−nY ) (a representative of the return

sequence for f).

1.3. Main results. Our main result reads as follows

Theorem 1.1 (Error rates in the DK law associated with (1.1)). Let
(f, µ), Y and an := an(Y ) be as in Section 1.2. Suppose that the function
v : [0, 1]→ R can be written as v = 1Y − ṽ, a.e. on Y , where

	
ṽ dµ = 0 and

µY
(
|a−1n Sn(ṽ)| > g(n)

)
< g(n), where g is a positive decreasing function

such that g(n) = O(n−β). Then for any z > 0,

|µY (a−1n Sn(v) > z)− P(Yβ > z)| = E(n),
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where

E(n) =


O(nβ−1) if β ∈ (1/2, 1),

O((log n)2n−1/2) if β = 1/2,

O((log n)n−β) if β ∈ (0, 1/2).

We are not aware of any result on error rates in the DK theorem associ-
ated with null recurrent Markov chains characterized by regular variation.
We claim that the error rates in Theorem 1.1 are optimal. As we explain
in what follows, the proof of Theorem 1.1 for the function 1Y is obtained
via Lemma 1.2 below, which provides optimal error rates for the stable law
associated with the induced map fY and observable ϕ.

On the negative side, we acknowledge that the assumption on the zero
mean function ṽ (and thus, v) in the statement of Theorem 1.1 is very strong.
Recent work of Thomine [20] suggests that general zero mean functions ṽ

such that
∑ϕ−1

j=0 |ṽ| ◦ f j belongs to Lp(Y, µ) for some p > 2 are not in the
restrictive class of functions considered in the statement of Theorem 1.1
(see the explanatory Remark 3.1). Hence, finding a reasonably large class of
functions v that yields the conclusion of Theorem 1.1 is open.

Theorem 1.1 is proved in Section 2. For a version of Theorem 1.1 for more
general dynamical systems satisfying the abstract assumptions of Section 4
we refer to Lemma 5.2.

We recall that in the case of (1.1), regular variation of µ(ϕ > n) implies
a stable law for the induced map fY := fϕ (this follows from [2]). More pre-

cisely, let ϕn =
∑n−1

j=0 ϕ ◦ f
j
Y and assume that the sequence bn is an asymp-

totic inverse of the sequence an := an(Y ) =
∑n−1

j=0 µ(Y ∩ f−nY ) (that is, if
the corresponding functions t 7→ a[t], t 7→ b[t] satisfy a(b(n)) = n(1 + o(1))

and b(a(n)) = n(1 + o(1)). Then b−1n ϕn →d Zβ, where Zβ =d (Yβ)−1/β

and Yβ is a positive random variable distributed according to the normal-
ized Mittag-Leffler distribution of order β (see Section 1). Hence, the real

Laplace transform of Zβ is given by E(e−tZβ ) = e−t
β
. Alternatively, the

variable Zβ can be defined in terms of its known characteristic function. For
details we refer to [2]; see also Section 5 below.

Our next result provides error rates for the stable law associated with
the map fY and observable ϕ. The proof is deferred to Section 5. In the
present context it serves as the key result: Theorem 1.1 for the case v = 1Y
can be deduced from it by standard computations (used in Proposition 2.3
and its proof).

Lemma 1.2 (Error rates for the stable law associated with fY and ϕ).
Let (f, µ) and Y be as in Section 1.2. Assume β ∈ (0, 1). Let ϕ be the first
return time function to Y . Set bn = (n/C0)

1/β, where C0 is the constant
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defined in Lemma 2.1. Then for any a > 0,

|µY (b−1n ϕn < a)− P(Zβ < a)| = d(n),

where

d(n) =


O(n1−1/β) if β ∈ (1/2, 1),

O((log n)/n) if β = 1/2,

O(1/n) if β ∈ (0, 1/2).

Remark 1.3. Lemma 1.2 matches the optimal results on rates of con-
vergence to a stable law of index β ∈ (0, 1) for sequences of independent
random variables in [9]. More generally, we refer to [5, 9, 15, 21] for rates of
convergence to a stable law of index β ∈ (0, 2) for sequences of independent
random variables.

The paper is organized as follows. In Section 2, we prove Theorem 1.1
using Lemma 1.2 and some results in [11], which we recall below.

Section 5 is devoted to the proof of Lemma 1.2 in the more general
setting of Section 4.

Notation. We use “big O” and � notation interchangeably, writing
cn = O(dn) or cn � dn if there is a constant C > 0 such that cn ≤ Cdn for
all n ≥ 1. We also write µY ( · ) for µ(x ∈ Y : · ).

2. Results for the function 1Y . Given the existence of a stable law
for (fY , ϕ), it seems natural that Theorem 1.1 for the special case v = 1Y
will follow from Lemma 1.2 together with the duality rule µ(Sm(1Y ) > n) =
µ(ϕn < m) (see Proposition 2.3 below).

Precise information on an(Y ) =
∑n−1

j=0 µ(Y ∩ f−nY ) follows from the

asymptotic behavior of the transfer operator L : L1(µ)→ L1(µ) associated
with f . Higher order asymptotics of Ln and

∑n−1
j=0 L

j have been obtained
in [11, 12]. For the present purpose, we recall

Lemma 2.1 ([12, Theorem 1.5]). Let f be defined by (1.1) with β ∈ (0, 1).
Suppose that v : [0, 1] → R is Hölder or of bounded variation supported on
a compact subset of (0, 1]. Set k = max{j ≥ 0 : (j + 1)β − j > 0}. Let τ = 1
for β 6= 1/2 and τ = 2 for β = 1/2. Then

n−1∑
j=0

Ljv

= (C0n
β + C1n

2β−1 + C2n
3β−2 + · · ·+ Ckn

(k+1)β−k)

1�

0

v dµ+O(logτ n),

uniformly on compact subsets of (0, 1], where C0 = (cΓ (1 − β)Γ (1 + β))−1

with c a positive constant depending only on f , and C1, C2, . . . are real con-
stants (depending only on f).
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An immediate consequence of the above result is

Corollary 2.2. Suppose that (f, µ), Y and an := an(Y ) are as in
Section 1.2. Let C0, C1, . . . and C be the real constants defined in Lemma 2.1.
If β ∈ (0, 1), then

an = (C0n
β + C1n

2β−1 + C2n
3β−2 + · · ·+ Ckn

(k+1)β−k) +O(logτ n).

The following result will be instrumental in the proof of Theorem 1.1.

Proposition 2.3. Assume the setting of Lemma 1.2 with β ∈ (0, 1). Let
am := am(Y ) be as in Section 1.2. Then for any z > 0,

|µY (a−1m Sm(1Y ) > z)− P(Yβ > z)| = e(m),

where

e(m) =


O(mβ−1) if β ∈ (1/2, 1),

O((logm)2m−1/2) if β = 1/2,

O((logm)m−β) if β ∈ (0, 1/2).

Proof. By the triangle inequality,

(2.1) |µY (a−1m Sm(1Y ) > z)− P(Yβ > z)| ≤ I + II

for

I =

∣∣∣∣µY (Sm(1Y ) > zam)− P
(
Yβ >

[zam]

C0mβ

)∣∣∣∣,
II =

∣∣∣∣P(Yβ > z)− P
(
Yβ >

[zam]

C0mβ

)∣∣∣∣.
We start with I. Let bm = (m/C0)

1/β as in Lemma 1.2. Since

µY (Sm(1Y ) > zam) = µY (Sm(1Y ) > [zam]) = µY (ϕ[zam] < m)

and Zβ =d (Yβ)−1/β, we have

I = µY (Sm(1Y ) > zam)− P
(
Yβ >

[zam]

mβC0

)
= µY

(
ϕ[zam]

b[zam]
<

m

b[yam]

)
− P

(
Zβ <

mC
1/β
0

[zam]1/β

)
= µY

(
ϕ[yam]

b[zam]
<

mC
1/β
0

[zam]1/β

)
− P

(
Zβ <

mC
1/β
0

[zam]1/β

)
,

where for the last equality we used b[zam] = [zam]1/β/C
1/β
0 . Applying Lem-

ma 1.2 with n = [zam] and a = C
1/β
0 /[zc(m)]1/β, we obtain

I =

∣∣∣∣µ(ϕ[yam]

b[zam]
<

C
1/β
0

[zam]1/β

)
− P

(
Zβ <

C
1/β
0

[zam]1/β

)∣∣∣∣ =: eI(m),
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where

eI(m) = d([zam]) =


O(mβ−1) if β ∈ (1/2, 1),

O((logm)m−1/2) if β = 1/2,

O(m−β) if β ∈ (0, 1/2).

We continue with II from (2.1). Since Zβ =d (Yβ)−1/β, we have

II =

∣∣∣∣P(Yβ > z)− P
(
Yβ >

[zam]

C0mβ

)∣∣∣∣(2.2)

=

∣∣∣∣P(Zβ < 1

z1/β

)
− P

(
Zβ <

mC
1/β
0

[zam]1/β

)∣∣∣∣.
It is known (see for instance [13]) that for every ε > 0 there exists C > 0
such that for all a, b > 0 with |a− b| < ε, we have

|P(Zβ < a1/β)− P(Zβ < b1/β)| ≤ C|a−1 − b−1|.(2.3)

This fact together with (2.2) implies that∣∣∣∣P(Zβ < 1

z1/β

)
− P

(
Zβ <

mC
1/β
0

[zam]1/β

)∣∣∣∣ ≤ C∣∣∣∣z − [zam]

C0mβ

∣∣∣∣.
Corollary 2.2 gives am = C0m

β +O((logm)τ ) +O(m2β−1), so we get∣∣∣∣z − [zam]

C0mβ

∣∣∣∣ ≤ ∣∣∣∣z − zam
C0mβ

∣∣∣∣+
1

C0mβ

= O(mβ−1) +O

(
(logm)τ

mβ

)
+

1

C0mβ
=: eII(m),

satisfying

eII(m) =


O(mβ−1) if β ∈ (1/2, 1),

O((logm)2m−1/2) if β = 1/2,

O((logm)m−β) if β ∈ (0, 1/2).

Combining the estimates, we find e(m) = eI(m) + eII(m) of the required
form.

3. Proof of Theorem 1.1. Recall that v : [0, 1] → R on Y can be
written as v = 1Y − ṽ, where (i)

	
ṽ dµ = 0 and (ii) µY (|a−1m Smṽ| > g(m))

< g(m), where g is a positive decreasing function such that g(m) = O(m−β).
Note that Sm(v) = Sm(1Y ) + Sm(ṽ) a.e. on Y . Since Proposition 2.3

gives the desired estimate for 1Y , to conclude we need to estimate
|µY (a−1m Sm(v) > z)− µY (a−1m Sm(1Y ) > z)| for z > 0.

Remark 3.1. We note that the assumption (ii) on the function ṽ is
very strong. Suppose that ṽ : [0, 1] → R is a mean zero function such that
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j=0 |ṽ| ◦ f j belongs to Lp(Y, µ) for some p > 2. As shown in the proof of

[20, Theorem 4.7], the following holds a.e. on Y :∣∣∣m−1∑
j=0

ṽ ◦ f j(x)
∣∣∣ ≤ C(x)mβ/2+ε

for some C(x) > 0, for any ε > 0 and all m sufficiently large. Assuming that	
C(x) dµY <∞, the above inequality implies that

� ∣∣∣m−1∑
j=0

ṽ ◦ f j
∣∣∣ dµY � mβ/2+ε.

Together with Markov’s inequality, the above displayed estimate implies that
given some function h and some positive constant C such that h(m) > C
and h(m) = O(m−(β−ε)), for any ε > 0, we have

µY

(∣∣∣∣Smṽam

∣∣∣∣ > h(m)

)
≤ C−1a−1m

�
|Smṽ| dµ� a−1m mβ/2+ε � h(m)1/2.

The above inequality together with the argument used in the proof of
Theorem 1.1 below (with g = h) shows that∣∣∣∣µY(Sm(v)

am
> z

)
− µY

(
Sm(1Y )

am
> z

)∣∣∣∣� h(m)1/2.

This inequality together with Proposition 2.3 implies that

|µY (a−1m Sm(v) > z)− P(Yβ > z)| = E(m),

where E(m)� m−(β/2−ε), which is a much weaker form of Theorem 1.1.

Proof of Theorem 1.1. Let g be a function as defined above. We claim
that∣∣∣∣µY(Sm(v)

am
> z

)
− µY

(
Sm(1Y )

am
> z

)∣∣∣∣
≤
(
µY

(
Sm(1y)

am
> z − g(m)

)
− µY

(
Sm(1Y )

am
> z + g(m)

))
+ g(m)1/2.

By the triangle inequality,

(3.1)

∣∣∣∣µY(Sm(1Y )

am
> z − g(m)

)
− µY

(
Sm(1Y )

am
> z + g(m)

)∣∣∣∣
≤
∣∣∣∣µY(Sm(1Y )

am
> z − g(m)

)
− P(Yβ > z − g(m))

∣∣∣∣
+ |P(Yβ > z − g(m))| − P(Yβ > z + g(m))|

+

∣∣∣∣µY(Sm(1Y )

am
> z + g(m)

)
− P(Yβ > z + g(m))

∣∣∣∣.
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The first and third terms in (3.1) can be estimated using Proposition 2.3,
but we should be aware that the function e(m) from that proposition de-
pends on z. Indicating this dependence as a subscript, we can estimate the
two terms by ez−g(m)(m) + ez+g(m)(m). Following the estimates of Propo-
sition 2.3, we can see that ez(m) can be chosen to be decreasing in z, so
ez−g(m)(m)+ez+g(m)(m) ≤ ez/2(m), which satisfies the estimate in the state-
ment of Proposition 2.3 with z/2 instead of z.

Recall Zβ =d (Yβ)−1/β. Using (2.3), we can estimate the middle term
of (3.1) as

|P(Yβ > z − g(m))| − P(Yβ > z + g(m))| � g(m).

Combining these estimates gives∣∣∣∣µY(Sm(v)

am
> z

)
− µY

(
Sm(1Y )

am
> z

)∣∣∣∣� g(m),

and the conclusion follows since g(m) = O(m−β).
It remains to prove the claim. We have

µY

(
Sm(v)

am
> z

)
− µY

(
Sm(1Y )

am
> z

)
≤ µY

(
Sm(v)

am
> z ∧ Sm(ṽ)

am
≥ g(m)

)
− µY

(
Sm(1y)

am
> z

)
+ µY

(
Sm(ṽ)

am
> g(m)

)
≤ µY

(
Sm(1Y )

am
>z − g(m)

)
−µY

(
Sm(1Y )

am
>z

)
+µY

(
Sm(ṽ)

am
>g(m)

)
≤ µY

(
Sm(1Y )

am
> z − g(m)

)
− µY

(
Sm(1Y )

am
> z + g(m)

)
+ µY

(
Sm(ṽ)

am
> g(m)

)
and

µY

(
Sm(v)

am
> z

)
− µY

(
Sm(1y)

am
> z

)
≥ µY

(
Sm(v)

am
> z ∧ Sm(ṽ)

am
≥ −g(m)

)
− µY

(
Sm(1y)

am
> z

)
≥ µY

(
Sm(v)

am
> z + g(m) ∧ Sm(ṽ)

am
≥ −g(m)

)
− µY

(
Sm(1y)

am
> z

)
≥ −

(
µY

(
Sm(1y)

am
> z − g(m)

)
− µY

(
Sm(1y)

am
> z + g(m)

)
+ µY

(
Sm(ṽ)

am
< −g(m)

))
.
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Recall that µY (|(Smṽ)/am| > g(m)) < g(m). This fact together with the
previous two estimates implies that∣∣∣∣µY(Sm(v)

am
> z

)
− µY

(
Sm(1y)

am
> z

)∣∣∣∣
≤ µY

(
Sm(1y)

am
> z − g(m)

)
− µY

(
Sm(1y)

am
> z + g(m)

)
+ µY

(∣∣∣∣Sm(ṽ)

am

∣∣∣∣ > g(m)

)
≤
(
µY

(
Sm(1y)

am
> z − g(m)

)
− µY

(
Sm(1y)

am
> z + g(m)

))
+ g(m),

which ends the proof of the claim.

4. Abstract setting. Let (X,µ) be an infinite measure space, and f :
X → X a conservative measure preserving map. Fix Y ⊂ X with µ(Y ) = 1.
Let ϕ : Y → Z+ be the first return time ϕ(y) = inf{n ≥ 1 : fny ∈ Y } and
define the first return map F = fϕ : Y → Y .

The return time function ϕ : Y → Z+ satisfies
	
Y ϕdµ =∞. Throughout

we let β ∈ (0, 1) and assume

(H) µ(ϕ > n) = c(n−β + H(n)), where c > 0 and H(n) = O(n−q) for
some q > β. If q ≤ 1, we assume further that H(n) = m(n) + m̃(n),
where m is monotone with m(n) = O(n−q) and m̃(n) is summable.

Recall that the transfer operator R : L1(Y )→ L1(Y ) for the first return
map fY is defined via the formula

	
Y Rv w dµ =

	
Y v w ◦ F dµ, w ∈ L∞(Y ).

Let D = {z ∈ C : |z| < 1} and D̄ = {z ∈ C : |z| ≤ 1}. Given z ∈ D̄, define
the perturbed operator R(z) : L1(Y )→ L1(Y ) by R(z)v = R(zϕv).

Also, for each n ≥ 1, we define Rn : L1(Y )→ L1(Y ) by

Rnv = 1YR(1{ϕ=n}v) = R(1{ϕ=n}v).

It is easily verified that R(z) =
∑∞

n=1Rnz
n. We assume that there is a

function space B ⊂ L∞(Y ) containing the constant functions, with norm
‖ ‖ satisfying |v|∞ ≤ ‖v‖ for v ∈ B, such that

(H1) There is a constant C > 0 such that ‖Rn‖ ≤ Cµ(ϕ = n) for all
n ≥ 1.

It follows that z 7→ R(z) is an analytic family of bounded linear operators
on B for z ∈ D, and that this family extends continuously to D̄. Since
R(1) = R and B contains the constant functions, 1 is an eigenvalue of R(1).
Throughout, we assume:

(H2) The eigenvalue 1 is simple and isolated in the spectrum of R(1),
and the spectrum of R(z) does not contain 1 for all z ∈ D.
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By (H1) and (H2), there exists ε > 0 and a continuous family λ(z) of
simple eigenvalues of R(z) for z ∈ D̄∩Bε(1) with λ(1) = 1. In what follows,
we let λ(θ) := λ(z) for z = eiθ, θ ∈ [0, 2π).

As shown in [11, 12], the main assumptions above are enough for higher
order expansion of λ(z), z ∈ D̄ ∩Bε(1).

Lemma 4.1 ([12, Lemma A.4], [11, Lemma 3.2]). Assume (H), (H1)
and (H2).

If q > 1, set cH = −Γ (1 − β)−1
	∞
0 H1(x) dx where H1(x) = [x]−β −

x−β + H([x]). If q ≤ 1, set cH = 0. Define cβ = −i
	∞
0 eiσσ−β dσ. Then as

θ → 0,

λ(θ) = 1− ccβθβ + iccHθ +O(θ2β) +D(θ),

where D(θ) = O(θq) if q 6= 1, and D(θ) = O
(
θ log 1

θ

)
if q = 1.

Proof. The case q > 1 is contained in the proof of [11, Lemma 3.2]. For
q < 1, the argument for the exact term 1− ccβθβ in the expression of λ(θ)
is again contained in the proof of [11, Lemma 3.2]. The estimate for D(θ)
follows by the argument used in the proof of [12, Lemma A.4] (in estimating
D(z) there, with z = e−u+iθ in the case 0 < u < θ).

Lemma 4.2 ([12, Theorem 4.1]). Assume (H1) and (H2). Suppose that
(H) holds with q = 2β. Let k = max{j ≥ 0 : (j + 1)β − j > 0}. Let
L : L1(X)→ L1(X) be the transfer operator for f . Then for all v ∈ B, there
exist positive constants C0, . . . , Ck (depending only on f) such that

n−1∑
j=0

1Y L
jv = (C0n

β +C1n
2β−1 +C2n

3β−2 + · · ·+Ckn
(k+1)β−k)

�

Y

v dµ+Env,

where |Env|∞ ≤ C(logτn)|v|∞, C constant, and τ = 1 for β 6= 1/2, τ = 2
for β = 1/2.

The exact expression of the constants C0, . . . , Ck is provided in [12] and
for later use we recall that C0 = (cΓ (1− β)Γ (1 + β))−1.

5. Results for the abstract setting. In this section we provide a
more general version of Lemma 1.2 and formulate a version of Theorem 1.1
for systems that satisfy (H), (H1) and (H2).

Throughout this section we use the notation

an(Y ) :=

n∑
j=1

µ(Y ∪ f−jY ).

We assume that (H) holds. Lemma 4.2 gives

an(Y ) = C0n
β + C1n

2β−1 + C2n
3β−2 + · · ·+ Ckn

(k+1)β−k +O(logτn).
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Recall that C0 = (cΓ (1 − β)Γ (1 + β))−1 and set bn = (n/C0)
1/β. Define

cβ = −i
	∞
0 eiσσ−β dσ and Cβ = cβ(Γ (1− β)Γ (1 + β))−1.

In what follows, we let Zβ be a positive random variable with character-

istic function E(eiθZβ ) = e−Cβθ
β
. With these specified, we state

Lemma 5.1. For any a > 0,

|µY (b−1n ϕn < a)− P(Zβ < a)| = d(n),

where

d(n) =


O(n1−1/β) if β ∈ (1/2, 1), q > 1,

O(n1−1/β(log n) + n−1) if β ∈ (0, 1), q = 1,

O(n1−q/β) if β ∈ (0, 1), q < 1.

Proof of Lemma 1.2. As shown in [11, 12], the map f defined by (1.1)
satisfies (H1), (H2). Moreover, if β ∈ (0, 1), then (H) holds with q = 2β
and Y = [xp, 1], p ≥ 0, where xp is as specified in the paragraph follow-
ing (1.1) (see [12, Proposition B1]). The conclusion follows immediately
from Lemma 5.1.

Lemma 5.1 allows us to establish a version of Theorem 1.1 for more
general dynamical systems:

Lemma 5.2. Assume that (H) holds. Suppose that the function v :
X → R can be written as v = 1Y − ṽ, a.e. on Y , where

	
ṽ dµ = 0 and

µY (|a−1n Sn(ṽ)| > g(n)) < g(n), where g is a positive decreasing function
such that g(n) = O(n−β). Then there exists a positive constant C (depending
only on f) such that for any z > C,

|µY (an(Y )−1Spn(v) > z)− P(Yβ > z)| = E(n),

where E(n) = O(nβ−1) if β ∈ (1/2, 1), E(n) = O((log n)2n−1/2) if β = 1/2
and, E(n) = O((log n)n−β) if β ∈ (0, 1/2).

Proof. The result follows by the argument used in the proof of Theo-
rem 1.1 together with Lemma 5.1.

The remainder of this section is devoted to the proof of Lemma 5.1.
Below, we collect some instrumental results.

Recall bn = (cΓ (1−β)Γ (1+β))1/βn1/β, cβ = −i
	∞
0 eiσσ−β dσ and Cβ =

cβ(Γ (1− β)Γ (1 + β)−1.

Proposition 5.3. Let c and cH be the real constants defined in (H)
and Lemma 4.1, respectively. Assume β ∈ (0, 1). Set eβ = ccH(cΓ (1 − β)

· Γ (1 + β))−1/β. Choose ε > 0 such that λ(θ) is well defined for θ ∈ (0, ε).
In particular, this ensures that θ < εbn for all n large enough. Then

λ

(
θ

bn

)n
= e−Cβθ

β
(1− ieβn1−1/βθ + E(θ/bn)),
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where E(θ/bn) satisfies the following for all n sufficiently large and all
θ < εbn:

E(θ/bn)�
{
n−1θ2β + n1−q/βθq if q 6= 1,

n−1θ2β + n1−1/βθ log(n/θ) if q = 1.

Proof. The conclusion follows from Lemma 4.1 and standard computa-
tions. We provide the argument for completeness.

Note that for all n sufficiently large and all θ < εbn,

n log[λ(θ/bn)] = −n(1− λ(θ/bn)) +O(n|(1− λ(θ/bn))2|).
Lemma 4.1 and straightforward calculations imply that

1− λ(θ/bn) = Cβn
−1θβ − ieβn−1/βθ +D(θ/bn),

where

D(θ/bn)�
{
n−2θ2β + n−q/βθq if q 6= 1,

n−2θ2β + n−1/βθ log(n/θ) if q = 1.

Thus, we can write

(5.1) λ(θ/bn)n = e−Cβθ
β

exp
(
−ieβn1−1/βθ + nD(θ/bn) +D1(θ/bn)

)
,

where |D1(θ/bn)| � n|(1− λ(θ/bn))2|.
Using the expansion of 1 − λ(θ/bn), we find that for all n sufficiently

large and all θ < εbn,

D1(θ/bn)�
{
n−1θ2β + n−q/βθq+β if q 6= 1,

n−1θ2β + n−1/β log(n/θ)θβ+1 + n−1θ2β if q = 1.

Hence, |D1(θ/bn)| � n−1θ2β for all q > β.
Clearly, |D1(θ/bn)| � n|D(θ/bn)| as n→∞. Define

D2(θ/bn) = nD(θ/bn) +D1(θ/bn).

Note that

D2(θ/bn)�
{
n−1θ2β + n1−q/βθq if q 6= 1,

n−1θ2β + n1−1/βθ log(n/θ) if q = 1.

This together with (5.1) yields

λ(θ/bn)n = e−Cβθ
β(

1− ieβn1−1/βθ +D2(θ/bn) +D3(θ/bn)
)
,

where |D3(θ/bn)| � n2(1−1/β)θ2. To conclude, put E(θ/bn) = D2(θ/bn) +
D3(θ/bn).

A useful consequence of the above result is

Corollary 5.4. Choose ε > 0 such that λ(θ) is well defined for
θ ∈ (0, ε). Then

εbn�

0

θ−1|λ(θ/bn)− e−Cβθβ | dθ = d′(n),
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where

d′(n) =


O(n1−1/β) if β ∈ (1/2, 1), q > 1,

O(n1−1/β(log n) + n−1) if β ∈ (0, 1), q = 1,

O(n1−q/β) if β ∈ (0, 1), q < 1.

Proof. Define dβ = Re(Cβ). By Proposition 5.3 with β > 1/2 and q > 1,

εbn�

0

θ−1|λ(θ/bn)− e−Cβθβ | dθ � n1−1/β
εbn�

0

e−dβθ
β
dθ

+ n−1
εbn�

0

e−dβθ
β
(θ2β−1 + θq−1) dθ.

Clearly, for any p > β − 1 and all n ≥ 1,

εbn�

0

e−dβθ
β
θp dθ =

1�

0

e−dβθ
β
θp dθ +

1

β

(εbn)1/β�

1

e−dβσσ(p+1)/β−1 dσ

�
∞�

1

e−σσ(p+1)/β−1 dσ = constant.

Hence,
	εbn
0 θ−1|λ(θ/bn)− e−cβθβ | dθ � n1−1/β, as desired. The estimate for

the case q < 1, β ∈ (0, 1) follows by a similar argument.

It remains to consider the case q = 1, β ∈ (0, 1). By Proposition 5.3,

εbn�

0

θ−1|λ(θ/bn)− e−Cβθβ | dθ

� n−1
εbn�

0

e−dβθ
β
θ2β−1 dθ + n1−1/β

εbn�

0

e−dβθ
β

log(n/θ) dθ

� n−1 + n1−1/β
εbn�

0

e−dβθ
β

log(n/θ) dθ.

By Potter’s bounds (see [4]), for any δ > 0,

εbn�

0

e−dβθ
β

log(n/θ) dθ = log n

εbn�

0

e−dβθ
β

log(n/θ)(log n)−1 dθ

� log n

εbn�

0

e−dβθ
β
(θ−δ + θδ) dθ.

Hence, n1−1/β
	εbn
0 e−dβθ

β
log(n/θ) dθ � n1−1/β log n, providing the required

estimate.
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Proof of Lemma 5.1. By the smoothness inequality for characteristic
functions (see, for instance, [8]), for any ε > 0,

|µY (b−1n ϕn < a)−P(Zβ < a)| ≤
εbn�

0

θ−1|E(eiθb
−1
n ϕn)−E(eiθZβ )| dθ+O(b−1n ).

Let d(n) be defined as in the statement of Lemma 5.1. Clearly, for all β ∈
(0, 1), b−1n � n−1/β � d(n). Hence, the result will follow once we show that	εbn
0 θ−1|E(eiθb

−1
n ϕn)− E(eiθZβ )| dθ � d(n).

Choose ε > 0 such that λ(z) is well defined for z ∈ D̄ ∩ Bε(1). Let
P (z) : B → B denote the family of spectral projections associated with λ(z)
with P (1) = P . Hence, P (v)(y) ≡

	
Y v dµ.

By (H2), we can write R(z) = λ(z)P (z)+Q(z), where Q(z) is an operator
on B whose spectrum is contained in a disk of radius strictly less than 1.
Hence, for all n ≥ 1 and for all z ∈ D̄∩Bε(1), ‖Q(z)n‖ decays exponentially
fast in n. Thus, ‖R(z)n − λ(z)nP (z)‖ � τn for some τ ∈ (0, 1). Also, (H1)
together with µ(ϕ > n) � n−β implies that ‖P (θ) − P‖ � θβ (see, for
instance, [11, Proposition 2.7]). Therefore there exists τ ∈ (0, 1) such that
‖R(θ)n − λ(θ)nP‖ ≤ ‖λ(θ)nG(θ)‖+ τn, where ‖G(θ)‖ � θβ. This together
with bn � n−1/β implies that for all θ ∈ (0, εbn) and n sufficiently large,

E(eiθb
−1
n ϕn) =

�

Y

eiθϕn/bn dµ =
�

Y

Rn(eiθϕn/bn) dµ(5.2)

= λ(θ/bn)n + F (θ/bn),

where

|F (θ/bn)| �
∣∣∣λ(θ/bn)n

�

Y

G(θ/bn)
∣∣∣ dµ� n−1θβ|λ(θ/bn)n|.

By Proposition 5.3, λ(θ/bn)n = e−Cβθ
β
1+E(n), where E(n)→ 0 as n→∞.

Hence, |F (θ/bn)| � n−1θβe−dβθ
β

with dβ = Re(cβ).
Recall that for β ∈ (0, 1), Zβ is a random variable with characteristic

function E(eiθZβ ) = e−Cβθ
β
. Equation (5.2) together with the fact that

‖F (θ/bn)‖ � n−1θβe−dβθ
β

implies that

εbn�

0

θ−1|E(eiθb
−1
n ϕn)− E(eiθZβ )| dθ �

εbn�

0

θ−1|λ(θ)n − E(eiθZβ )| dθ

+ n−1
εbn�

0

e−dβθ
β
θβ−1 dθ.

By Corollary 5.4, we find
	εbn
0 θ−1|λ(θ)n − E(eiθZβ )| dθ � d′(n). Clearly,

n−1
	εbn
0 e−dβθ

β
θβ−1 dθ � n−1

	n
0 e
−σ dσ � n−1. To conclude, put d(n) =

d′(n) + 1/n.
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