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Dimensions of components of tensor products
of representations of linear groups

with applications to Beurling–Fourier algebras

by

Benoît Collins (Ottawa, Sendai and Lyon), Hun Hee Lee (Seoul) and
Piotr Śniady (München, Warszawa and Wrocław)

Abstract. We give universal upper bounds on the relative dimensions of isotypic
components of a tensor product of representations of the linear group GL(n) and univer-
sal upper bounds on the relative dimensions of irreducible components of a tensor product
of representations of the special linear group SL(n). This problem is motivated by har-
monic analysis problems, and we give some applications to the theory of Beurling–Fourier
algebras.

1. Introduction

1.1. The main problem for linear groups GL(n). In this paper we
are interested in the following question: Let λ, µ be two irreducible represen-
tations of the linear group GL(n) and consider the decomposition of their
tensor product λ ⊗ µ into isotypic components. How big can the dimension
of such an isotypic component be?

For irreducible representations λ, µ, ν we denote by cνλ,µ the Littlewood–
Richardson coefficient, i.e. the multiplicity of the irreducible representation
ν in the Kronecker tensor product λ⊗µ. For an irreducible representation ρ
we denote by dρ its dimension. With these notations, the dimension of the
isotypic component [ν] of λ ⊗ µ is equal to cνλ,µdν . Our goal will be to give
an upper bound for the fraction

(1.1) Pλ,µ(ν) :=
cνλ,µdν

dλdµ
,

which can be interpreted as the relative dimension of the isotypic component
[ν] in λ⊗ µ.
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Equation (1.1) defines a probability distribution Pλ,µ (called the Little-
wood–Richardson measure) on irreducible representations. This probability
measure can be interpreted as the distribution of a random irreducible com-
ponent of the Kronecker tensor product λ⊗ν, where each irreducible compo-
nent is sampled with probability proportional to its dimension. Our problem
can therefore be equivalently formulated as finding an upper bound for the
atoms of the Littlewood–Richardson measure.

1.2. The main result for linear groups GL(n). The main result of
this paper is the following partial answer to the above problem.

Theorem 1.1. Let n ≥ 1 be a fixed integer. There exists a constant Cn
such that for any irreducible representations λ, µ, ν of GL(n) the atom of
the Littlewood–Richardson measure is bounded from above as follows:

(1.2) Pλ,µ(ν) :=
cνλ,µdν

dλdµ
≤ Cn

(
1

λ1 − λn
+

1

µ1 − µn

)
.

Here, λ1 ≥ · · · ≥ λn and µ1 ≥ · · · ≥ µn are the components of the highest
weight of λ and µ, respectively. The notations used in the above inequality
will be recalled in Section 2. We postpone its proof to Section 5. We will see
that this result is optimal in a sense which will be clarified at the end of the
paper.

1.3. The main result for special linear groups SL(n). In this paper
we are also interested in the analogue of the above problem in the case of the
special linear group SL(n) (the notions of Littlewood–Richardson coefficients
and the Littlewood–Richardson measure can be defined in an analogous way
to the case of GL(n)). A partial answer is given by the following result, which
is a corollary to our main theorem:

Corollary 1.2. Let n ≥ 1 be a fixed integer. There exists a constant
Cn such that for any irreducible representations λ, µ, ν of SL(n) the atom of
the Littlewood–Richardson measure is bounded from above as follows:

(1.3) Pλ,µ(ν) :=
cνλ,µdν

dλdµ
≤ Cn

(
1

λ1 − λn
+

1

µ1 − µn

)
.

The notations used in the above inequality will be recalled in Section 2.3,
where we will also present its proof.

1.4. The case of unitary groups and special unitary groups. The
representation theory of the unitary group U(n) is exactly the same as that
of GL(n), since the restriction map gives a one-to-one map; its inverse is
given by analytic continuation. In particular, the correspondence between
irreducible representations and highest weights holds also for U(n). For this
reason in the formulation of Theorem 1.1 one can replace representations of
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the linear groups GL(n) by representations of the unitary groups U(n) and
the result holds true without any modifications.

The analogous relationship holds between the representation theory of
the special unitary group SU(n) and the special linear group SL(n), so that
in the formulation of Corollary 1.2 one can replace representations of SL(n)
by representations of SU(n).

1.5. Applications to Beurling–Fourier algebras. Our paper is mo-
tivated by the work of Mahya Ghandehari, Hun Hee Lee, Ebrahim Samei and
Nico Spronk [GLSS12] and gives a proof of their conjecture (Condition 1,
p. 21). Our main theorem implies that the conjecture is true for any integer
n ≥ 2, whilst it was proved for n = 3 in an elementary way in [GLSS12].

In this subsection we briefly describe what Beurling–Fourier algebras are
and the implications of our main results for them. See [LS12, LST12] for the
details on Beurling–Fourier algebras.

Let G be a compact group and Ĝ be the set of equivalence classes of
unitary irreducible representations of G. The Fourier algebra A(G) of G is
defined as

A(G) :=
{
f ∈ C(G) : ‖f‖A(G) :=

∑
π∈Ĝ

dπ‖f̂(π)‖1 <∞
}
.

Here, f̂(π) denotes the Fourier coefficient given by

f̂(π) :=
�

G

f(x)π(x) dx ∈Mdπ(C)

where dx denotes the normalized Haar measure on G; π denotes the conju-
gate representation of π; and ‖·‖1 is the trace norm. It is well known that the
Fourier algebra is actually a Banach algebra under pointwise multiplication.

The Fourier algebra can be defined for any locally compact group (see
[Eym64]) and is regarded as one of the most fundamental examples of com-
mutative Banach algebras associated to groups. When the (compact) group
G is abelian, A(G) is nothing but the group algebra L1(Ĝ) of the Pontrya-
gin dual Ĝ, so that Fourier algebras are usually called the “dual” object of
group algebras. In general, Fourier algebras are quite far away from operator
algebras (i.e. norm-closed subalgebras of B(H) for some Hilbert space H)
including C∗-algebras. However, by putting some weights on A(G) for a
compact group G we can make weighted versions of A(G) much closer to
operator algebras.

We call a function ω : Ĝ→ [1,∞) a weight if

(1.4) ω(σ) ≤ ω(π)ω(π′)

for any π, π′ ∈ Ĝ and σ ∈ Ĝ appearing as a component of the irreducible
decomposition of π ⊗ π′.
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We define the Beurling–Fourier algebra A(G,ω) by

A(G,ω) :=
{
f ∈ C(G) : ‖f‖A(G,ω) =

∑
π∈Ĝ

dπω(π)‖f̂(π)‖1 <∞
}
.

There is a natural isometry between A(G) and A(G,ω) (see [LS12] for the
details), so that we can endow A(G,ω) with an operator space structure com-
ing from A(G) (as the predual of the group von Neumann algebra VN(G))
through this isometry. Then from the condition (1.4) one can show that
A(G,ω) is a completely contractive Banach algebra under pointwise multi-
plication ([LS12]).

Fundamental examples of weights on Ĝ are given by the following polyno-
mial dependence on dimensions of the representations. For α ≥ 0, we define
ωα : Ĝ→ [1,∞) by

ωα(π) = dαπ (π ∈ Ĝ).

Clearly ωα satisfies the condition (1.4), and so it defines a weight on Ĝ; it is
called the dimension weight of order α.

In [GLSS12, Theorem 4.11] it has been shown that A(SU(n), ωα) is com-
pletely isomorphic to an operator algebra under the assumption that the esti-
mate (1.3) for SU(n) holds true (this assumption was referred to as [GLSS12,
Condition 1]). Since our main result says that the conjecture is indeed true
for all n ≥ 2, this implies the following.

Theorem 1.3. Let ωα be the dimension weight of order α > d(SU(n))/2

= (n2 − 1)/2 on ŜU(n), n ≥ 2. Then A(SU(n), ωα) is completely isomorphic
to an operator algebra.

Note that the above result is not true for U(n), n ≥ 2 (in general, for
any compact connected non-simple Lie groups, see [GLSS12, Theorem 4.8])
even though the representations of U(n), n ≥ 2, satisfy the estimate (1.2).

1.6. Viewpoints of representation theory and random matrix
theory. The main result of this paper is also of intrinsic interest in rep-
resentation theory and also random matrix theory. According to it, the
‘widths’ of representations tell something about the relative dimensions of
the Littlewood–Richardson components, namely any irreducible representa-
tion appearing in the tensor product cannot have relative dimension too large
if the width of both tensored irreducible representations is large enough. This
result was known for ‘typical’ irreducible representations (see e.g. [CŚ09]) but
here we show that it holds true uniformly, at the expense of a worse, but
asymptotically optimal estimate. Thus the difficulty of our main result lies
in its uniformity.
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Our estimate relies on a combinatorial lemma proved in Section 4 and
it turns out that this lemma admits a direct counterpart in random matrix
theory of independent interest. We state it as Lemma 3.4.

1.7. Organization of the paper. In Section 2 we recall some notations
and facts from representation theory. In Section 3 we give an auxiliary result:
a convenient description of the probability distribution of the first coordinate
µ1 of a random representation µ = (µ1, µ2, . . . ) distributed according to the
Littlewood–Richardson measure Pλ,µ. Following this description, Section 4
gathers the properties of this probability distribution which are necessary in
order to prove our main theorem. Section 5 contains the proof of the main
theorem, and in Section 6 we explain the sense in which our result is optimal.

2. Representation theory of classical groups

2.1. Representations of GL(n) and weights. In this article n ≥ 1
is a fixed integer. We say that λ is a weight if λ = (λ1, . . . , λn) ∈ Zn is
such that λ1 ≥ · · · ≥ λn. We denote by ĜL(n) the collection of irreducible
representations of the linear group GL(n), up to equivalence. There is a
canonical bijective correspondence between ĜL(n) and the set of weights
which to a representation associates its highest weight. In order to simplify
the notation we will identify an irreducible representation of GL(n) with
the corresponding weight. We refer to [Ful97] for an extensive treatment of
the subject. Throughout the whole paper, we work with the field of complex
numbers C. In particular, GL(n) means the linear group GL(n,C), and SL(n)
means the special linear group SL(n,C).

2.2. Kronecker tensor product. If ρ1 : GL(n) → EndV1 and ρ2 :
GL(n) → EndV2 are representations of the same group GL(n), we denote
by ρ1⊗ ρ2 : GL(n)→ End(V1⊗V2) their Kronecker tensor product given by
the diagonal action on simple tensors:

((ρ1 ⊗ ρ2)(g))(v ⊗ w) := ρ1(g)(v)⊗ ρ2(g)(w)

for g ∈ GL(n), v ∈ V1, w ∈ V2.

2.3. Representations of SL(n). Here we describe briefly the irreducible
representations of the special linear group SL(n) of matrices of determinant
one and their relation to the irreducible representations of GL(n). It is known
(cf. [FH91, Section 15.5]) that any irreducible representation of GL(n), when
restricted to SL(n), yields again an irreducible representation. Moreover, this
map is surjective and its quotient can be precisely described as follows: two
representations λ, µ of GL(n) yield the same representation when restricted
to SL(n) if and only if there exists an integer k such that µ+ k1 = λ.
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Unsurprisingly, the one-dimensional representation given by the determi-
nant is trivial on SL(n) but non-trivial on GL(n). Its highest weight is equal
to 1 = (1, . . . , 1). The highest weight of the trivial representation is equal
to (0, . . . , 0). As we have seen, they restrict to the same representation of
SL(n).

Put differently, it is possible to parametrize the irreducible representa-
tions of SL(n) as those weights λ = (λ1, . . . , λn) for which the last component
is equal to zero: λn = 0.

We are now ready to show Corollary 1.2, assuming that Theorem 1.1
holds true.

Proof that Theorem 1.1 implies Corollary 1.2. Let λ, µ be (as in Corol-
lary 1.2) representations of SL(n). We view them as weights with the last
components zero: λn = 0, µn = 0. These weights give rise to representations
of GL(n) which will be denoted by λ̃, µ̃.

The tensor product λ⊗ µ of representations of SL(n) is nothing else but
the restriction of the tensor product λ̃⊗ µ̃ of representations of GL(n). Fur-
thermore, the decomposition of λ̃⊗ µ̃ into irreducible components gives rise
(by restriction) to a decomposition of λ⊗µ into irreducible components. Any
weight ν̃ which contributes (with positive multiplicity) to the decomposition
of λ̃⊗ µ̃ satisfies

ν̃1 + · · ·+ ν̃n = |ν̃| = |λ̃|+ |µ̃| = λ̃1 + · · ·+ λ̃n + µ̃1 + · · ·+ µ̃n,

which is a constant; thus any two non-equivalent irreducible components of
λ̃⊗ µ̃ remain non-equivalent when restricted to SL(n).

Thus if ν contributes to λ⊗µ then there exists a unique weight ν̃ = ν+k1
with the property that the isotypic component of λ⊗µ of type [ν] corresponds
(by restriction) to the isotypic component of type [ν̃] of λ̃⊗ µ̃.

We apply Theorem 1.1 for λ̃, µ̃, ν ′; equation (1.2) takes the form

cνλ,µdν

dλdµ
=
cν̃
λ̃,µ̃
dν̃

d
λ̃
dµ̃
≤ Cn

(
1

λ1 − λn
+

1

µ1 − µn

)
.

This finishes the proof of Corollary 1.2.

3. The Littlewood–Richardson measure and Gelfand–Tsetlin
patterns. In Section 3.1 we recall the definition of Gelfand–Tsetlin pat-
terns. As we shall see, patterns provide a concrete model for the Littlewood–
Richardson measure (Lemma 3.3(a)). For the purposes of the current paper
we do not need this kind of result in full generality; for this reason in Sec-
tion 3.2 we will state Proposition 3.1 which concerns a simplified setup: the
first coordinate of a random weight distributed according to the Littlewood–
Richardson measure. This lemma is the key element of the proof of Lemma
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4.1 in Section 4, which will be used in the proof of Theorem 1.1 (the main
theorem). The remaining part of this section is devoted to the proof of Propo-
sition 3.1.

3.1. Gelfand–Tsetlin patterns. Let λ be a weight. We say that

A = (al(i))l∈{i,...,n−1}, i∈{1,...,n−1} ∈ Zn(n−1)/2

is a Gelfand–Tsetlin pattern of shape λ (or, briefly, a pattern) if the following
system of inequalities is satisfied:

(3.1)

a1(1) ≤ a2(1) ≤ · · · ≤ an−2(1) ≤ an−1(1) ≤ λ1

≤ ≤ ≤ ≤

a2(2) ≤ a3(2) ≤ · · · ≤ an−1(2) ≤ λ2

≤ ≤

...
...

≤ ≤

an−1(n− 1) ≤ λn−1

≤

λn

This system can be represented by an oriented graph G from Figure 1.

A1(1) A2(1)

A2(2) A3(2)

An−2(1)

An−2(2)

An−1(1) Λ1

Λ2

An−1(n− 1)

Λn

Λn−1

Fig. 1. The oriented graph G corresponding to (3.1)
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The first row of (3.1) will deserve a special attention, and for this reason
we will use the simplified notation

al := al(1) for l ∈ {1, . . . , n− 1}.
It will also be convenient to define an := λ1. Analogously, if B = (bl(i)) is a
pattern of shape µ we denote

bl := bl(1) for l ∈ {1, . . . , n− 1}, bn := µ1.

3.2. Concrete realization of the Littlewood–Richardson mea-
sure. The following proposition is the key component in the proof of Propo-
sition 4.1. It gives a concrete realization of the first coordinate of a random
weight distributed according to the Littlewood–Richardson measure.

Proposition 3.1. Let λ, µ be weights. Let A = (al(i)) be a random
pattern of shape λ (sampled with the uniform distribution) and let B = (bl(i))
be a random pattern of shape µ (also sampled with the uniform distribution);
we assume that A and B are independent.

Let ν = (ν1, . . . , νn) be a random weight distributed according to the
Littlewood–Richardson measure Pλ,µ; then

(3.2) ν1
dist
= max

k,l≥1
k+l=n+1

(ak + bl),

where dist
= denotes the equality of distributions of random variables.

We postpone its proof until Section 3.6. The remaining part of the current
section is devoted to the preparation to this proof.

3.3. Polynomial representations. Polynomial irreducible representa-
tions of GL(n) play a special role. Such a polynomial representation corre-
sponds to a weight (λ1, . . . , λn) ∈ Zn such that λ1 ≥ · · · ≥ λn ≥ 0 are
non-negative integers. A weight with this property is called a Young dia-
gram and can be represented graphically as in Figure 2 (we use the English
notation for drawing Young diagrams). Polynomial representations are asso-

Fig. 2. Young diagram (9, 7, 3)

ciated to very rich combinatorial structures related to Young diagrams and
Young tableaux which we will explore in Section 3.4.

Many problems concerning irreducible representations can be reduced
to the special case of irreducible polynomial representations. This is also
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the case for Proposition 3.1; the following lemma gives the details of this
reduction.

Lemma 3.2. Assume that Proposition 3.1 is true under the additional
assumption that the weights λ, µ are Young diagrams. Then Proposition 3.1
is true in general, without that assumption.

Proof. For p ∈ Z we denote by Detp : GL(n) → End(C) the one-
dimensional representation given by an appropriate power of the determi-
nant:

Detp(g) := (det(g))p for g ∈ GL(n),

where the right-hand side should be interpreted as a 1 × 1 matrix, thus as
an endomorphism of the one-dimensional vector space C = C1. The repre-
sentation Detp is irreducible and corresponds to the highest weight

p1 := (p, . . . , p) ∈ Zn.

The Kronecker tensor product λ⊗Detp of an irreducible representation
λ = (λ1, . . . , λn) with Detp is again an irreducible representation which
corresponds to the shifted weight

λ+ p1 := (λ1 + p, . . . , λn + p).

The dimensions of irreducible representations, Littlewood–Richardson co-
efficients and the Littlewood–Richardson measure are invariant under such
shifts:

dλ+p1 = dλ,

c
ν+(p+q)1
λ+p1,µ+q1 = cνλ,µ,

Pλ+p1,µ+q1(ν + (p+ q)1) = Pλ,µ(ν),

for arbitrary p, q ∈ Z and irreducible representations λ, µ, ν of GL(n).
We use the notations of Proposition 3.1. We denote λ = (λ1, . . . , λn),

µ = (µ1, . . . , µn) and set p := −λn and q := −µn so that the weights
λ′ := λ + p1 and µ′ := µ + q1 are Young diagrams. We also set ν ′ =
(ν ′1, . . . , ν

′
n) := (p + q)1 + ν. Clearly, since ν is distributed according to

the Littlewood–Richardson measure Pλ,µ it follows that ν ′ is distributed
according to the Littlewood–Richardson measure Pλ′,µ′ .

We define shifted patterns A′ = (al(i) + p) and B′ = (bl(i) + q). Clearly
A′ and B′ are random patterns of shape λ′ and µ′ respectively.

We apply Proposition 3.1 to the Young diagrams λ′, µ′, random weight
ν ′ and random patterns A′, B′. It follows that

ν1 + (p+ q) = ν ′1
dist
= max

k,l≥1
k+l=n+1

(a′k + b′l) = max
k,l≥1

k+l=n+1

((ak + p) + (bl + q)),
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which shows that Proposition 3.1 holds true for the weights λ and µ as
desired.

3.4. Young tableaux, Robinson–Schensted–Knuth correspon-
dence and the plactic monoid. We recall some basic notations related to
Young tableaux, Robinson–Schensted–Knuth correspondence and the plac-
tic monoid. A good treatment of these topics is given in Part I of the book
[Ful97].

3.4.1. Tableaux. A semi-standard tableau (or, briefly, a tableau) T is a
filling of the boxes of a given Young diagram λ with letters from the alphabet
{1, . . . , n} so that the filling is weakly increasing along each row, and strictly
increasing down a column (see Figure 3). The value of n will be fixed so we

1 1 1 1 1 2 2 2 3

2 2 2 2 3 3 3

3 3 3

Fig. 3. Example of a tableau T in the alphabet {1, 2, 3} filling the Young diagram (9, 7, 3)
from Figure 2. The corresponding word is given by w(T ) = (3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 1, 1, 1,
1, 1, 2, 2, 2, 3).

do not have to specify it for each tableau separately. We also say that the
Young diagram λ is the shape of the tableau T .

For a given tableau T we let al(i) be the number of boxes in the ith
row of T filled with numbers ≤ l. It is easy to check that A = (al(i)) so
defined is a pattern; furthermore for any Young diagram λ this gives a bi-
jective correspondence between tableaux of shape λ and patterns of shape
λ. In the following we will identify a tableau with the corresponding pat-
tern.

3.4.2. Words. A word w = (w1, . . . , w`) is a sequence of elements of
the alphabet {1, . . . , n}. We recall that the insertion tableau P (w) of w is
defined as the semi-standard tableau obtained by the Schensted row insertion
algorithm applied iteratively to the letters w1, . . . , w`. For a given tableau T
we denote by w(T ) the word obtained by reading the entries of T along the
lines, from left to right and from bottom to top (see Figure 3). This word
has the property that T = P (w(T )).

For a word w = (w1, . . . , w`) we denote by LI(w) the length of the longest
(weakly) increasing subsequence of w, i.e. the length of the longest sequence
i1 < · · · < ik ∈ {1, . . . , `} such that

wi1 ≤ · · · ≤ wik .



Dimensions of components of tensor products 231

It is well-known that if λ = (λ1, . . . , λn) is the shape of the insertion tableau
P (w) then LI(w) = λ1 is equal to the length of the first row of λ.

3.4.3. Multiplication of tableaux, the plactic monoid and the plactic
Littlewood–Richardson rule. We consider the free monoid over the alpha-
bet {1, . . . , n}, which is just the set of words equipped with multiplica-
tion · given by concatenation of words. Let us identify two words w and
w′ (we write w ≡ w′) if and only if the corresponding insertion tableaux are
equal: P (w) = P (w′). One can show that w ≡ w′ and v ≡ v′ implies that
w · v ≡ w′ · v′, thus multiplication · is well defined on the equivalence classes
of ≡. The set of such equivalence classes of ≡ equipped with multiplication
· is called the plactic monoid.

The map P gives a bijection between the elements of the plactic monoid
and tableaux; thus multiplication in the plactic monoid can be used to de-
fine multiplication of tableaux which will be denoted by the same symbol ·.
Alternatively, the product S · T := P (w(S) · w(T )) of tableaux S and T is
defined as the insertion tableau corresponding to concatenation of the words
corresponding to the original tableaux.

Recall that the plactic Schur polynomial is defined as a formal sum

Sλ :=
∑
T

T

of all tableaux with shape λ. The plactic Littlewood–Richardson rule says
that

(3.3) Sλ · Sµ =
∑
ν

cνλ,µSν ,

where cνλ,µ are the usual Littlewood–Richardson coefficients.

3.4.4. Involution on tableaux. Let us consider the antiautomorphism α
of the free monoid defined on the generators by α(i) := n + 1 − i. Alterna-
tively, α is an involution on words defined by reading the word backwards
and by reversing the order in the alphabet. The plactic monoid can be equiv-
alently described as the free monoid divided by the plactic relations (Knuth
relations) satisfied by generators x, y, z ∈ {1, . . . , n}:

y · z · x = y · x · z if x < y ≤ z,
x · z · y = z · x · y if x ≤ y < z.

Since α preserves these plactic relations, it gives rise to an antiautomorphism
of the plactic monoid.

If we identify the elements of the plactic monoid with tableaux, the an-
tiautomorphism α becomes an involution on the set of tableaux. It can be
described explicitly as follows: for a given tableau T we replace each entry i
by α(i) = n+ 1− i and we rotate the tableau by angle π, thus obtaining a
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333332221

2222111

111

Fig. 4. Skew tableau obtained from the tableau from Figure 3 after rotating by angle π
and replacing each entry i by α(i) = n+ 1− i.

skew tableau (see Figure 4). After rectifying it (by an application of Schützer-
berger’s jeu de taquin), we obtain α(T ). Alternatively, α(T ) = P (α(w(T )).
Greene’s theorem shows that the involution α maps the set of tableaux of a
given shape into itself.

3.5. A concrete model for the Littlewood–Richardson measure.
The following lemma is a simple reformulation of well-known combinatorics
of representation theory in the language of probability theory. It is the key
ingredient for the proof of Proposition 3.1.

Lemma 3.3. Let λ, µ be Young diagrams. Let S be a random Young
tableau of shape λ and let T be a random Young tableau of shape µ. As-
sume that S and T are sampled according to the uniform distribution given
by their respective shape constraints, and that they are independent. Then

(a) the distribution of the shape of the product S · T coincides with the
Littlewood–Richardson measure Pλ,µ;

(b) let ν = (ν1, . . . , νn) be a random Young diagram distributed according
to the Littlewood–Richardson measure Pλ,µ; then

ν1
dist
= max

k,l≥1
k+l=n+1

(ak(S) + al(T )),

where dist
= denotes the equality of distributions of random variables.

Proof. We will identify a probability measure on the set of tableaux with
the appropriate formal linear combination of tableaux with coefficients given
by appropriate probabilities. The dimension dλ is equal to the number of
tableaux of the shape λ, therefore the normalized plactic Schur polynomial
1
dλ
Sλ can be identified with the uniform probability measure on the set of

tableaux of shape λ.
The plactic Littlewood–Richardson rule (3.3) can be equivalently written

in the form (
1

dλ
Sλ

)
·
(

1

dµ
Sµ

)
=
∑
ν

(
dνc

ν
λ,µ

dλdµ

)(
1

dν
Sν

)
.

The left-hand side corresponds to the distribution of the random tableau
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S · T . The right-hand side corresponds to the distribution of the random
tableau filling a random Young diagram with distribution Pλ,µ. By compar-
ing the distribution of the shape of the Young tableaux contributing to both
sides of the equality we deduce the first part of the lemma.

Let ν = (ν1, . . . , νn) be the shape of the tableau S ·T ; from the first part
of this lemma it follows that the distribution of ν is given by the Littlewood–
Richardson measure Pλ,µ. Clearly, the length of the first row of ν satisfies

ν1 = LI(w(S) · w(T ));

it follows that

(3.4) ν1 = max
k

[LI(w(S)|{1,...,k}) + LI(w(T )|{k,...,n})],

where w|A denotes the word w with all letters which do not belong to A
omitted. In the following we will analyze the two summands contributing to
the right-hand side of (3.4). We start with the first one.

We consider the tableau S|{1,...,k} obtained by removing from S all boxes
with entries greater than k. Clearly,

w(S)|{1,...,k} = w(S|{1,...,k}).

In particular,

(3.5) LI(w(S)|{1,...,k}) = ak(S)

is the length of the first row of the tableau S|{1,...,k}.
We turn now to the second summand on the right-hand side of (3.4).

Clearly, for any word w,

w|{k,...,n} = α(α(w)|{1,...,n+1−k}) and LIw = LIα(w),

thus
LI(w|{k,...,n}) = LI(α(w)|{1,...,n+1−k}).

We define T ′ = α(T ); thus the random tableaux T ′ and T have the same
distribution. We have

(3.6) LI(w(T )|{k,...,n}) = LI(w(T ′)|{1,...,n+1−k}) = an+1−k(T
′).

Equations (3.4)–(3.6) finish the proof.

3.6. Proof of Proposition 3.1

Proof of Proposition 3.1. In Lemma 3.2 we showed that it is enough to
prove the result under the additional assumption that λ and µ are Young
diagrams. We use Lemma 3.3(b) and the fact that there is a bijective corre-
spondence between tableaux and patterns.
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3.7. An application to random matrix theory. Below, we state an
interesting corollary of Proposition 3.1. This corollary is of purely random
matrix nature, but to the best of our knowledge it seems to be new.

Corollary 3.4. Let A,B be independent Hermitian random matrices
of the same size n × n. Assume that both the distribution of A and the
distribution of B are invariant under unitary conjugation. Then the largest
eigenvalue of A+B is a random variable which has the same distribution as

max
k,l≥1

k+l=n+1

(ak + bl),

where ak (resp. bk) is the random variable obtained by taking the largest
eigenvalue of the upper left k × k corner of A (resp. B).

We will just sketch the main ideas of the proof and leave the details to
the reader.

Sketch of the proof. Without loss of generality we can assume that the
eigenvalues of A,B are prescribed. Indeed, if they are random, the proof
can be completed by conditioning over the prescribed eigenvalues and a
decomposition of measure type argument.

And if the eigenvalues of A,B are prescribed, the result follows from
Proposition 3.1 and successive applications of [CŚ09]. Indeed, in [CŚ09,
Corollary 5.2] it is proved that if A is a unitarily invariant selfadjoint ran-
dom matrix and λN = (λN1 ≥ · · · ≥ λNn ) is a tuple of sequences of integers
such that λNi /N converges to the ith largest eigenvalue of A, then the law
of (a1, . . . , an) is the limit of the laws of (aN1 /N, . . . , a

N
n /N) as appearing in

Proposition 3.1 and corresponding to weight λN . A similar statement holds
for a random matrix B and µN = (µN1 ≥ · · · ≥ µNn ). It has also been shown in
[CŚ09] that the law of the largest eigenvalue of A+B is the limit of the laws
of νN1 /N , where νN is distributed according to the Littlewood–Richardson
measure PλN ,νN . We apply Proposition 3.1 to λN , µN and νN and pass to
the limit.

4. The first row of a random pattern. The main result of this sec-
tion is the following lemma giving an upper bound on the atoms of the
distribution of the first row of a random pattern with a given shape. This
proposition is the key to the proof of Theorem 1.1.

Proposition 4.1. There exists some constant Dn with the following
property. Let λ be a weight and let A = (al(i)) be a random pattern with
shape λ. Then for any x ∈ Z and 1 ≤ k ≤ n− 1,

P (ak = x) ≤ Dn
1

λ1 − λn+1−k
.
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We postpone the proof of Proposition 4.1 until Section 4.3; the remaining
part of the current section is a preparation for that proof.

4.1. Taking degeneracy into account. Let the weight λ be fixed.
The inequalities (3.1) define a convex polyhedron in the space Rn(n−1)/2.
For some choices of the weight λ it might happen that this polyhedron is
of dimension smaller than the maximal dimension n(n− 1)/2. This creates
some difficulties; in the following, we explain how to avoid them.

Restricting the system of inequalities (3.1) to one row and one column
implies that

al(i) ≤ · · · ≤ λi
≤

...

≤

λn+i−l

In other words, if λn+i−l = λi then automatically al(i) = λi. Such variables
are trivial from our viewpoint, thus it is enough to restrict our attention to
the index set

I = {(l, i) : l ∈ {i, . . . , n− 1}, i ∈ {1, . . . , n− 1}, λn+i−l < λi}
and to study only the variables (al(i) : (l, i) ∈ I). We define d = |I|. The
set of solutions to the above system (3.1) of inequalities in integer numbers
(respectively, real numbers) will be denoted by D ⊂ Zd (respectively, by
C ⊂ Rd). Thus there is a natural bijective correspondence between patterns
of shape λ and the elements of D.

We denote by Ĝ the oriented graph G in which:

• every vertex Al(i) with (l, i) /∈ I is glued to the vertex Λi,
• all pairs of vertices Λi and Λj are glued together if λi = λj .

The graph Ĝ encodes all inequalities satisfied by the variables (al(i) : (l, i)
∈ I). The following lemma is elementary.

Lemma 4.2. The graph Ĝ is acyclic.

4.2. Continuous versus discrete. Our goal is to understand the uni-
form measure on D. There is also a simpler object: the uniform measure
on C. In the following we investigate how these two measures are related to
each other. The following lemma addresses the question of how intersections
of b + I with D and C are related to each other, where the unit cube I is
defined as

I = {(al(i)) : |al(i)| < 1/2} ⊂ Rd.
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Lemma 4.3. There is some constant C > 0 (which depends only on n)
with the property that for any weight λ and any lattice point b ∈ Zd,

b ∈ D ⇔ (b+ I) ∩ D 6= ∅ ⇔ vol[(b+ I) ∩ C] ≥ C ⇔ (b+ I) ∩ C 6= ∅.

Proof. Since the lattice point b is the only element of (b + I) ∩ Zd, if
(b+ I) ∩D is non-empty then it is equal to {b}. This explains why the first
two conditions are equivalent.

Now we suppose that b ∈ D. For m ∈ Z we denote

Im = {(l, i) ∈ I : bl(i) = m}

and we denote by Cm ⊂ R|Im| the set of solutions of the system of inequalities
(3.1) over variables al(i) such that (l, i) ∈ Im, subject to the additional
requirement that

|al(i)−m| < 1/2.

Since (b + I) ∩ C =
∏
m Cm (where, on the right hand side of the equality,

with the obvious identification of the coordinates, multiplication denotes
Cartesian product), it is enough to show that if Im 6= ∅, then vol Cm is
greater than some universal positive constant.

We denote by Ĝm the graph Ĝ restricted to the following vertices:

• vertices Al(i) with (l, i) ∈ Im,
• vertices Λi with λi = m (in fact, all such vertices from G are glued

together so they correspond to a single vertex in Ĝ).

The graph Ĝm encodes all inequalities satisfied by the collection of variables
(al(i)) over (l, i) such that |al(i)−m| < 1/2.

Since Ĝm is acyclic, it is possible to extend it to a linearly ordered
set. Let us choose any such linear extension. There are the following two
cases:

• The graph Ĝm does not contain any vertex Λ`; then the set of solutions
which are compatible with the selected linear order is a simplex with
volume

1

|Im|!
.

• The graph Ĝm contains a vertex Λ`; let us say that there are p (respec-
tively, q) vertices Al(i) which are smaller (respectively, greater) than
Λ` with p + q = |Im|; then the set of solutions which are compati-
ble with the selected linear order is a product of two simplexes with
volume

1

2p+qp!q!
.
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Note that the simplex obtained by choosing a linear order has a smaller
volume than Cm, so that the above cases give us a lower bound. Now this
finishes the proof that the first condition implies the third one.

The third condition trivially implies the fourth condition.
Assume that (b+I)∩C 6= ∅. Let a be any element of this set. The system

of inequalities (3.1) has a particularly nice form: if a is a solution then also
round(a) is a solution, where ‘round’ denotes the (coordinatewise) rounding
of a real number to the closest integer. On the other hand round(a) = b,
therefore b ∈ D, which finishes the proof that the fourth condition implies
the first.

4.3. Proof of Proposition 4.1

Proof of Proposition 4.1. For x ∈ Z (resp. x ∈ R) we denote by Dx ⊂
Zd−1 (resp. Cx ⊂ Rd−1) the set of integer (resp. real) solutions of the system
of inequalities (3.1) over variables al(i), (l, i) ∈ I, (l, i) 6= (k, 1), subject to
the additional requirement that ak(1) = x.

For subsets of Rd−1 we denote by vold−1 the usual Lebesgue volume,
while for subsets of Zd−1 we denote by vol the counting measure.

Now we fix x ∈ Z. Lemma 4.3 implies that
�

|x−y|<1/2

vold−1 Cy dy =
∑
b∈Dx

vold[(b+ I) ∩ C] ≥ C volDx.

It follows that there exists some y such that

(4.1) vold−1 Cy ≥ C volDx.

It is a simple exercise to check that for x0 ∈ {λ1, λn+1−k} the set Cx0 is
non-empty. Let us select the value of x0 for which

|x0 − y| ≥
λ1 − λn+1−k

2

and let us fix some a ∈ Cx0 .
Under the obvious identifications a ∈ Cx0 ⊂ C ⊂ Rd and Cy ⊂ C ⊂ Rd

we can consider the convex cone having vertex a and base Cy. Clearly, C as
a convex set contains this cone. It follows that for t = (1 − α)x0 + αy with
0 < α < 1 we have

vold−1 Ct ≥ αd−1 vold−1 Cy,

hence

(4.2) vold C =
�

R

vold−1 Cz dz ≥
λ1 − λn+1−k

2d
vold−1 Cy.
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Lemma 4.3 shows that

(4.3) volD ≥ vold C.

Inequalities (4.1)–(4.3) imply that

P (ak(S) = x) =
volDx

volD
≤ const.
λ1 − λn+1−k

.

5. Proof of the main result

Proof of Theorem 1.1. For a weight λ = (λ1, . . . , λn) we denote by
λ̄ = (−λn, . . . ,−λ1) the weight corresponding to the contragredient rep-
resentation. Since dλ = dλ̄ and cνλ,µ = cν̄

λ̄,µ̄
, the inequality (1.2) holds for

λ, µ, ν if and only if it holds for λ̄, µ̄, ν̄.
Let λ, µ be fixed. By the pigeon-hole principle, there exist i, j ∈ {1, . . . ,

n− 1} such that

λi − λi+1 ≥
λ1 − λn
n− 1

, µj − µj+1 ≥
µ1 − µn
n− 1

.

For i′ = n− i and j′ = n− j we have analogous inequalities

λ̄i′ − λ̄i′+1 ≥
λ̄1 − λ̄n
n− 1

, µ̄j′ − µ̄j′+1 ≥
µ̄1 − µ̄n
n− 1

.

Since (i+j)+(i′+j′) = 2n, at least one of the following is true: i+j ≤ n
or i′ + j′ ≤ n. Without loss of generality we will assume that i + j ≤ n; if
this is not the case, simply replace λ, µ, ν by λ̄, µ̄, ν̄.

Let A and B be as in Proposition 3.1. Equation (3.2) implies that

P (ν1 = x) ≤
∑
k,l≥1

k+l=n+1

P (ak + bl = x),

thus it is enough to find appropriate bounds for the distribution of the sum
ak + bl for each choice of k and l separately. The latter distribution is a
convolution of two probability measures, thus

P (ak + bl = x) ≤ min
(

max
z
P (ak = z),max

z
P (bl = z)

)
and it is enough to show that there is such a bound for ak or for bl. Clearly,

n+ 1− k ≥ i+ 1 ∨ n+ 1− l ≥ j + 1

(otherwise n+ 1 = 2n+ 2− (k + l) ≤ i+ j would contradict i+ j ≤ n). We
will investigate these two cases separately.

In the first case,

λ1 − λn+1−k ≥ λi − λi+1 ≥
λ1 − λn
n− 1

.
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We apply Lemma 4.1 to obtain

P (ak = z) ≤ Dn
1

λ1 − λn+1−k
≤ Dn

n− 1

λ1 − λn
.

In the second case,

µ1 − µn+1−l ≥ µj − µj+1 ≥
µ1 − µn
n− 1

.

We apply Lemma 4.1 for the diagram λ′ := µ and k′ = l to get

P (bl = z) ≤ Dn
1

µ1 − µn+1−l
≤ Dn

n− 1

µ1 − µn
.

This completes the proof.

6. Saturation of the bound. Here we show that our bound is saturated
in some natural sense.

Proposition 6.1. For each n, there exist two sequences (λN ), (µN ) of
irreducible representations of GL(n) (resp. SL(n)) which tend to infinity with
the property that the inequality (1.2) of Theorem 1.1 (resp. inequality (1.3)
of Corollary 1.2) is saturated up to a multiplicative constant that depends
only on n and not on N .

Proof. Take λ = (N, 0, . . . , 0) and µ = (M, 0, . . . , 0). Then it is clear from
the Littlewood–Richardson rule that all the ν for which there is a non-zero
probability Pλ,µ are of the form

(A,B, 0, . . . , 0)

with the constraints that A ≥ B ≥ 0, A + B = N + M , A ≥ max(N,M).
There are min(N,M) choices. By the pigeon-hole principle, at least one of
these weights has probability at least

1

min(N,M)
,

which is comparable to the bound obtained in our Corollary 1.2, and there-
fore also saturates the bound for the main Theorem 1.1. Note that it follows
from the proof that the Littlewood–Richardson coefficients appearing in this
proof cannot be large. As a matter of fact, one can prove that they are
all equal to 1 in this case (but we do not need it in order to complete the
proof).

The above proposition shows that, for example, if we wanted, for a
given N , the inequality

Pλ,µ(ν) ≤ Cn
(

1

λ1 − λn
+

1

µ1 − µn

)α
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to be true for all µ, ν, then necessarily α ≤ 1, and actually α = 1 is the best
possible constant.

Note that if the quantifier of Theorem 1.1 is not over all choices of µ, ν
but just over some nice (possibly infinite) sets of pairs, then it is possible to
obtain much better estimates.

As a first example, if in GL(3), one takes the collection µN = νN =
(2N,N, 0), it is easy to see that the largest dimension of a Littlewood–
Richardson factor that can occur in µn ⊗ νn is at most of order N3, which
is less than N6. However if one in addition allows Littlewood–Richardson
coefficients, then one obtains N5. Here we still saturate Theorem 1.1 but
not Corollary 1.2 any more.

As a second example, if one takes in GL(4) the sequence µN = νN =
(3N, 2N,N, 0), one can see that the largest dimension of a Littlewood–
Richardson summand that can occur in µn ⊗ νn is at most of order N6,
which is less than N12. And if one in addition allows Littlewood–Richardson
coefficients, then one obtains N9. Here, we are away from saturation both
for Theorem 1.1 and for Corollary 1.2.
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