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Large structures made of nowhere Lq functions
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Abstract. We say that a real-valued function f defined on a positive Borel measure
space (X,µ) is nowhere q-integrable if, for each nonvoid open subset U ofX, the restriction
f |U is not in Lq(U). When (X,µ) has some natural properties, we show that certain sets
of functions defined in X which are p-integrable for some p’s but nowhere q-integrable
for some other q’s (0 < p, q <∞) admit a variety of large linear and algebraic structures
within them. The presented results answer a question of Bernal-González, improve and
complement recent spaceability and algebrability results of several authors and motivate
new research directions in the field of spaceability.

1. Introduction. This work is a contribution to the study of large linear
and algebraic structures within essentially nonlinear sets of functions with
special properties; the presence of such structures is often described using
the terms lineable, algebrable and spaceable. This subject gained impulse
especially during the last decade, with important contributions from several
authors, see for example [1], [4], [6], [12] and [23]. For an up-to-date survey
on this topic, see [10].

Recall that a subset S of a topological vector space V is said to be lineable
(respectively, spaceable) if S ∪ {0} contains an infinite-dimensional vector
subspace (respectively, a closed infinite-dimensional vector subspace) of V .
Though results in this field date back to the sixties (1), this terminology was
introduced only recently: it first appeared in unpublished notes by Enflo and
Gurariy and was first published in [2]. We should mention that Enflo and
Gurariy’s notes have been completed in collaboration with Seoane-Sepúlveda
and will finally be published in [14]. It is also common to say that S is dense-
lineable if S∪{0} contains a dense infinite-dimensional vector subspace of V .
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(1) In [18], Gurariy showed that there exists in C([0, 1]) a closed infinite-dimensional
subspace consisting, except for the null function, only of nowhere differentiable functions;
see also [19] for a version in English.
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The qualifier maximal is often added to dense-lineable or spaceable when
the corresponding space contained in S ∪ {0} has the same dimension of V .
There are, though, natural and more restrictive concepts of spaceability than
maximal spaceability, as we shall discuss in Section 3.

The term algebrability was introduced later, in [3]; if V is a linear alge-
bra, S is said to be κ-algebrable if S ∪ {0} contains an infinitely generated
algebra, with a minimal set of generators of cardinality κ (see [3] for details).
We shall work with a strengthened notion of κ-algebrability, named strong
κ-algebrability :

Definition 1.1. We say that a subset S of an algebra A is strongly
κ-algebrable, where κ is a cardinal number, if there exists a κ-generated free
algebra B contained in S ∪ {0}.

We recall that, for a cardinal number κ, to say that an algebra A is a
κ-generated free algebra means that there exists a subset Z = {zα :α<κ}⊂A
such that every function f from Z into any algebra A′ can be uniquely
extended to a homomorphism from A into A′. The set Z is called a set
of free generators of A. If Z is a set of free generators of some subalgebra
B ⊂ A, we say that Z is a set of free generators in A. If A is commutative,
a subset Z = {zα : α < κ} ⊂ A is a set of free generators in A if for each
polynomial P and for any zα1 , . . . , zαn ∈ Z we have

P (zα1 , . . . , zαn) = 0 if and only if P = 0.

The definition of strong κ-algebrability was introduced in [5], though in
several papers, sets which are shown to be algebrable are in fact strongly
algebrable, as can be easily seen from the proofs. See e.g. [3], [7] and [15].
Strong algebrability is indeed a stronger condition than algebrability: for
example, c00 is ω-algebrable in c0 but it is not strongly 1-algebrable (see [5]).

1.1. Results on large structures of nonintegrable functions:
recent and new. Our object of study will be the quasi-Banach spaces
Lp(X,M, µ). For brevity, when there cannot be any confusion or ambiguity,
we shall write Lp, Lp(X,µ) or Lp(X) instead of Lp(X,M, µ). Our main fo-
cus will be on functions which are p-integrable but not q-integrable, for some
0 < p, q ≤ ∞, and specially on functions which are p-integrable but nowhere
q-integrable. The notion of nowhere-q-integrability we consider is connected
with open sets:

Definition 1.2. Let 0 < q ≤ ∞. A scalar-valued function f defined on
a Borel measure space X is said to be nowhere q-integrable (or nowhere Lq)
if, for each nonvoid open subset U of X, the restriction f |U is not in Lq(U).

In our context it would be pointless to substitute “for each nonvoid open
subset U of X” by “for each Borel subset U of positive measure of X” in the
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definition above; the reason is that, if 0 < p, q ≤ ∞ and f ∈ Lp(X), there is
always a Borel subset of X of positive measure on which f is q-integrable.
This follows from a simple argument (see e.g. the final remarks in [8]). Of
course, not all Borel measure spaces (X,µ) admit Lp-nowhere-Lq functions,
but there is a large class of such spaces which admit plenty of such functions,
as we will see.

Let us start by mentioning some recent results and open questions on
large structures within sets of functions which are p-integrable but not q-
integrable. For a survey on the results in this direction, we recommend [11].

Theorem 1.3 (Bernal-González and Ordóñez Cabrera [9]). Let (X,M, µ)
be a measure space, and consider the conditions

(α) inf{µ(A) : A ∈M, µ(A) > 0} = 0, and
(β) sup{µ(A) : A ∈M, µ(A) <∞} =∞.

Then the following assertions hold:

(1) if 1 ≤ p <∞, then Lp \
⋃
q>p L

q is spaceable if and only if (α) holds;
(2) if 1 < p ≤ ∞, then Lp \

⋃
q<p L

q is spaceable if and only if (β) holds;
(3) if 1 < p <∞, then Lp \

⋃
q 6=p L

q is spaceable if and only if both (α)
and (β) hold;

(4) if 1 < p < ∞ and Lp is separable, then Lp \
⋃
q<p L

q is maximal
dense-lineable if and only if (β) holds.

Note that there are measure spaces X that satisfy (α) and (β), but for
which there are no nowhere q-integrable functions in Lp(X): it suffices thatX
has an open singleton of positive measure, since in that case all functions will
be q-integrable on {x}. Bernal-González et al. use the convenient terminology
‘(left, right) strict order integrability’ when a function is p-integrable but not
q-integrable for q 6= p (resp. q < p, q > p). We refer to [11] for improvements
on Theorem 1.3(2) above. And in [13] there is a version of that same item
which includes quasi-Banach spaces:

Theorem 1.4 (Botelho, Fávaro, Pellegrino and Seoane-Sepúlveda [13]).
The set Lp[0, 1] \

⋃
q>p L

q[0, 1] is spaceable for every p > 0.

When it comes to nowhere integrable functions, Bernal-González gave
the first initial result:

Theorem 1.5 (Bernal-González [8]). Let (X,M, µ) be a measure space
such that X is a Hausdorff first-countable separable locally compact perfect
topological space and that µ is a positive Borel measure which is continuous,
regular and has full support. Let 1 ≤ p <∞. Then the set

{f ∈ Lp : f is nowhere q-integrable, for each q > p}(1.1)

is dense in Lp.
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It is clear that µ having full support (that is, µ(U) > 0 for every nonvoid
open subset U ⊂ X) is a necessary condition for the existence of nowhere
q-integrable functions. Based on the above result, Bernal-González rose the
following question:

Problem 1. Is the set (1.1) lineable/maximal lineable/dense-lineable?

It is quite natural to seek for other large structures within (1.1).
The authors of this work have also presented some results on large struc-

tures of nowhere integrable functions, including the following:

Theorem 1.6 (Głąb, Kaufmann and Pellegrini [17]). The set of nowhere
essentially bounded functions in L1[0, 1] is

(1) spaceable, and
(2) strongly c-algebrable.

In this landscape, we present a few new results which solve Problem 1 and,
under quite mild conditions on the measure space where our functions are
defined, complement/generalize the results mentioned above. We summarize
these results in Theorem 1.7 below.

Theorem 1.7. Suppose that X is a topological space admitting a count-
able π-base (that is, a family (Un)n of nonvoid open subsets of X such that,
for each nonvoid open subset A of X, Uj ⊂ A for some j) and that µ is
a positive Borel measure on X. Let 0 < p <∞ and set

Sp(X)
.
= Sp

.
= {f ∈ Lp : f is nowhere Lq, for each q ∈ (p,∞]},

S′p
.
= Sp \

⋃
0<q<p

Lq,

G .
=
{
f ∈

⋂
0<q<∞

Lq : f is nowhere L∞
}
.

Then we have the following:

(a) if µ is atomless, outer regular and has full support, then Sp ∪ {0}
contains an `p-isometric subspace of Lp, which is in addition com-
plemented if p ≥ 1;

(b) if µ is infinite and σ-finite, then Lp \
⋃

0<q<p L
q contains an `p-iso-

metric subspace of Lp, which is in addition complemented if p ≥ 1;
(c) if µ is atomless, infinite, outer regular and has full support, then

S′p∪{0} contains an `p-isometric subspace of Lp, which is in addition
complemented if p ≥ 1;

(d) if µ is atomless, outer regular and has full support, then Sp is maxi-
mal dense-lineable;

(e) if µ is atomless, outer regular and has full support, then G is strongly
c-algebrable.
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See Section 6 for comments on working with π-bases instead of the more
usual bases of open sets. In addition to Theorem 1.7 we also prove that, for
special classes of positive Borel measure spaces, Sp contains an isomorphic
copy of `2 (see Theorems 3.2 and 3.3, and Corollary 3.4). This motivates a
new investigation direction concerning spaceability (see Section 3).

Remark 1.8. Referring to items (a)–(c), it is worth recalling that for
p < 1, Lp contains no complemented copy of `p. This is easily seen if one
recalls that, for p < 1, `p admits nontrivial continuous linear forms (e.g. the
evaluation functionals), while every nontrivial linear form on Lp is discon-
tinuous.

Remark 1.9. In any measurable space which admits a set of strictly
positive finite measure (in particular for (X,µ) under the conditions in (e))
and 0 < p < q < ∞, the set of Lp functions which are not Lq is not
algebrable; to see this, just note that if f is p-integrable but not q-integrable
on some set of finite measure U , then fn is not p-integrable if we choose
a large enough power n. There is therefore no hope of finding algebraic
structures of strict-order integrable functions in many cases. One exception
is given by:

Theorem 1.10 (García-Pacheco, Pérez-Eslava, Seoane-Sepúlveda [16]).
If (X,M, µ) is a measure space in which there exists an infinite family of
pairwise disjoint measurable sets An satisfying µ(An) ≥ ε for some ε > 0,
then

L∞ \
∞⋂
p=1

Lp

is spaceable in L∞ and algebrable.

Note that Theorem 1.7(e) complements, in some sense, the algebrability
part of Theorem 1.10.

Remark 1.11. Theorem 1.7 relates to the previous results as follows:
• (a) generalizes Theorem 1.4, Theorem 1.6(1) and, under our assump-

tions, also Theorem 1.3(1).
• It is not hard to adapt Theorem 1.3(2) for p < 1 and to see that

the space guaranteeing the spaceability can be isometric to `p and
complemented in case p ≥ 1; since condition (β) from Theorem 1.3 is
milder that the conditions in (b), it follows that (b) does not really add
much. But the construction in the proof we present is used to prove
also (c), thus we include (b) for completeness and clarity.
• Under our assumptions, (c) improves Theorem 1.3(3).
• (d) improves Theorem 1.5 and gives a positive answer to Bernal-Gon-

zález’s Problem 1.
• (e) improves Theorem 1.6(2).
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The remaining sections are organized as follows. In Section 2 we will
prove Theorem 1.7(a)–(c), that is, its spaceability part. In Section 3 we
discuss some cases where we have a copy of `2 in Sp ∪ {0}, and motivate
a new research direction on spaceability, touching more qualitative aspects.
Section 4 contains the proof of the dense-lineability result (Theorem 1.7(d)),
and Section 5 concerns the algebrability result (Theorem 1.7(e)). In Section 6
we briefly discuss conditions on positive Borel measure spaces under which
there exist, or not, functions p-nowhere-q integrable in the corresponding Lp
spaces. We include related open problems throughout the text.

2. Spaceability: proof of Theorem 1.7(a)–(c). Recall the following
standard result from functional analysis on Banach spaces:

Theorem 2.1. Suppose that (X,µ) is a Borel measure space. Let 1 ≤
p <∞, and suppose that (fn) is a sequence of norm-one, disjointly supported
functions in Lp(µ). Then (fn) is a complemented basic sequence isometrically
equivalent to the canonical basis of `p.

It is not hard to see that the same holds for 0 < p < 1, though com-
plementability is lost, as we previously pointed out. Our strategy to prove
Theorem 1.7(a)–(c) will be to find sequences of norm-one, disjointly sup-
ported functions in Sp, Lp \

⋃
0<q<p L

q and S′p, under the corresponding
assumptions.

Lemma 2.2. Let X be a topological space with a countable π-base. Sup-
pose that µ is an atomless and outer-regular positive Borel measure on X
with full support. Let U be an open set such that µ(U) > 0 and let ε ∈ (0, 1).
Then there is a nowhere-dense Borel subset N of U such that µ(N) > µ(U)ε.

Proof. Let (Un) be a π-base of U . Since µ is atomless, there are Borel
sets Bn ⊂ Un such that µ(Bn) < εµ(U)/2n. Since µ is outer-regular, there
are open sets V ′n ⊃ Bn with µ(V ′n) < εµ(U)/2n. Let Vn = V ′n ∩ U and
put V =

⋃
n Vn. Then µ(V ) < εµ(U) and V is a dense open subset of U .

Therefore N = U \ V is a nowhere dense subset of U with measure greater
than µ(U)ε.

Lemma 2.3. Suppose that µ is an atomless positive Borel measure on X
with full support. Let A be a measurable set in X such that µ(A) > 0 and
let (an) be a sequence in (0,∞). Then there is a sequence (An) of pairwise
disjoint measurable subsets of A such that 0 < µ(An) < ∞ and µ(An+1) ≤
anµ(An).

Proof. We may assume that an ≤ 1/2 for all n. Since µ is atomless, there
is a Borel set A1 ⊂ A such that

0 < µ(A1) <
1
2µ(A).
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Likewise, there is a Borel set A2 ⊂ A \A1 such that

0 < µ(A2) < a1µ(A1) ≤ 1
2µ(A1).

Proceeding this way, we can find inductively An ⊂ A \
⋃
k<nAk such that

0 < µ(An) < an−1µ(An−1) ≤ 1
2µ(An−1);

this is possible since µ(A \
⋃
k<nAk) > 0.

Lemma 2.4. Suppose that µ is an atomless positive Borel measure on X
with full support. Then for any given Borel set A in X such that µ(A) > 0
there is a norm-one A-supported function hA in Lp \

⋃
q>p L

q.

Proof. Let A ⊂ X be measurable and µ(A) > 0; by Lemma 2.3 there
exists a family {An,m : n,m ∈ N} of pairwise disjoint subsets of A of positive
measure such that µ(An,m+1) ≤ 1

2µ(An,m). Let (rn) be a strictly decreasing
sequence of real numbers tending to p. Put

hn =
∞∑
m=1

an,mχAn,m ,

where arnn,mµ(An,m) = 1/m. Then ‖hn‖rn =∞ and
�

X

|hn|p dµ =

∞∑
m=1

apn,mµ(An,m) =

∞∑
m=1

1

arn−pn,m m
.

Since

lim sup
m→∞

1
arn−pn,m+1(m+1)

1
arn−pn,m m

= lim sup
m→∞

(
µ(An,m+1)

µ(An,m)

)(rn−p)/rn
≤
(
1

2

)(rn−p)/rn
< 1,

by the ratio test for series we find that hn ∈ Lp. Put

hA =

∞∑
n=1

hn
‖hn‖2n

.

Then hA ∈ Lp \
⋃
q>p L

q and ‖hA‖ = 1.

Proof of Theorem 1.7(a). Let (Un) be a π-base of X. Since µ is atomless
and outer-regular, we may assume that µ(Un) < ∞ for each n. (Indeed,
suppose that µ(Un) =∞. Hence Un 6= ∅; select x ∈ Un. Since µ is atomless,
µ({x}) = 0. By the outer-regularity of µ, there is an open neighborhood V
of x with arbitrarily small µ-measure. Since µ does not vanish on open sets,
we have 0 < µ(V ∩ Un) <∞, and we may replace Un ∩ V with Un.)

By Lemma 2.2, there is a nowhere dense Borel set N1 ⊂ U1 with 0 <
µ(N1) < 1/2. Since N1 is nowhere dense we can find a nonempty open set
U ⊂ U2 \ N1, and again by Lemma 2.2 there is a nowhere dense Borel set
N2 ⊂ U ⊂ U2 with 0 < µ(N2) < 1/22. We can then inductively define
a pairwise disjoint sequence of nowhere dense Borel sets (Nn) such that
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Nn ⊂ Un and 0 < µ(Nn) < 1/2n. Decompose each Nn into µ-positive and
pairwise disjoint Borel sets Nn,m. For each n,m there exists, by Lemma 2.4,
a norm-one Nn,m-supported function hNn,m in Lp \

⋃
q>p L

q. If we put

fm =

∞∑
n=1

hNn,m
2n

,

then (fm) will form a norm-one basic sequence of elements from Sp with
pairwise disjoint supports, and by Theorem 2.1 our proof is complete.

Lemma 2.5. Suppose that µ is an infinite and σ-finite positive Borel
measure on X. Then for any given Borel set B ⊂ X of infinite measure,
there exists a function gB ∈ Lp \

⋃
q<p L

q which is zero outside of B.

Proof. Let B ⊂ X be Borel of infinite measure, and let {Bn,m : n,m ∈ N}
be a family of pairwise disjoint subsets of B of positive finite measure such
that 2µ(Bn,m) ≤ µ(Bn,m+1). Let (rn) be a strictly increasing sequence of
(strictly positive) real numbers tending to p. Put

gn =
∞∑
m=1

bn,mχBn,m ,

where brnn,mµ(Bn,m) = 1/m. Then
�

X

|gn|p dµ =
∞∑
m=1

bpn,mµ(Bn,m) =
∞∑
m=1

bp−rnn,m

m
,

and since

lim sup
m→∞

bp−rnn,m+1

m+1

bp−rnn,m

m

= lim sup
m→∞

(
µ(Bn,m)

µ(Bn,m+1)

)(p−rn)/rn
≤
(
1

2

)(p−rn)/rn
< 1,

by the ratio test for series we find that gn ∈ Lp. Letting

gB
.
=

∞∑
n=1

gn
‖gn‖2n

,

we deduce that gB ∈ Lp. It suffices to show now that gB 6∈ Lq for any q < p.
Fix such a q; then rn > q for large enough n, and so

(‖gn‖2n)q
�
|gB|q ≥

�
|gn|q =

∑
m

(
1

mµ(Bn,m)

)q/rn
µ(Bn,m)

=
∑
m

(
1

m

)q/rn
µ(Bn,m)

(rn−q)/rn

= µ(Bn,1)
(rn−q)/rn

∑
m

(
1

m

)q/rn
=∞.
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Proof of Theorem 1.7(b). Since µ is infinite and σ-finite, each Borel set D
of infinite measure can be written as an infinite disjoint union of Borel sets of
infinite measure. To see this it is enough to verify that D contains an infinite
disjoint union of Borel sets of infinite measure Dn. In effect, we can define
inductively Borel sets Ck ⊂ D such that 1 ≤ µ(Ck) < ∞; and let (Mn)
be a pairwise disjoint family of infinite subsets of N. Then Dn

.
=
⋃
k∈Mn

Ck
is a family of Borel sets with the desired properties. The conclusion then
follows from Lemma 2.5 and the same argument that was used in the proof
of Theorem 1.7(a).

The proof of Theorem 1.7(c) is a combination of the constructions from
the proofs of parts (a) and (b):

Proof of Theorem 1.7(c). Consider Un, Nn and fm as in the proof of
Theorem 1.7(a). Since µ(X \

⋃
nNn) = ∞, X \

⋃
nNn can be written as a

disjoint union of Borel sets Dm of infinite measure. Then by Lemma 2.5, for
eachm there is a norm-one function gDm ∈ Lp\

⋃
q<p L

q which is zero outside
of Dm. Then the norm-one functions (fm + gDm)/2, m ∈ N, are in S′p and
have almost disjoint supports.

3. Qualitative spaceability. Before proceeding with our investigation
of the set Sp, we briefly discuss some qualitative aspects of studying space-
ability. The starting point of such studies is always a topological vector
space V and an (often highly nonlinear) subset S ⊂ V . The first step is
to find a closed linear structure W in S ∪ {0}, and the second step is fre-
quently to determine how big, in terms of dimension, W can be. But one
might also wish to determine what other properties we can expect W to
satisfy. For instance, Rodríguez-Piazza [24] proved that, in C([0, 1]), the set
of nowhere differentiable functions, together with the zero function, contains
an isometric copy of every separable Banach space. This result was improved
by Hencl [20], who showed the same for the set of nowhere approximatively
differentiable and nowhere Hölder functions. It is worth noting that the prop-
erty “S∪{0} contains a copy of the original space V ” is more restrictive than
“S is maximal spaceable in V ”; several examples show that these properties
are not equivalent in many cases (take for instance V = L1[0, 1] and S a
subspace isomorphic to `2). Another example of “S ∪ {0} contains a copy
of V ” is obtained as an application of 1.7(b):

Corollary 3.1. `p \
⋃

0<q<p `q contains an isometric (and, if p ≥ 1,
also complemented) copy of `p.

These remarks naturally motivate new directions of investigation con-
cerning spaceability. In our context of nowhere p-integrable functions, we
can pose the following:
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Problem 2. Under appropriate assumptions, which subspaces of Lp have
(isometric, complemented, etc.) copies in Sp ∪ {0} (or in (Lp \

⋃
0<q<p L

q)

∪ {0}, or in S′p ∪ {0})?
The same could be asked when studying the spaceability of any other sub-

set of a topological vector space. In the remainder of this section, we present
some initial results towards solving this problem (Theorems 3.2 and 3.3, and
Corollary 3.4):

Theorem 3.2. Suppose that 1 ≤ p < ∞, and that (X,µ) is a positive
Borel measure space such that Sp(X) is nonvoid. Then Sp(X × [0, 1]) ∪ {0}
contains a copy of `2.

Theorem 3.3. Sp([0, 1])∪{0} contains a copy of `2 for each 1 ≤ p <∞.

Corollary 3.4. Sp([0, 1]n) ∪ {0} contains a copy of `2 for each 1 ≤
p <∞ and each n ∈ N.

Note that Corollary 3.4 follows easily by induction from Theorems 3.2
and 3.3. Note also that Theorem 3.3 is another improvement of Theorem 1.4
(for p ≥ 1), in a different direction compared to the improvement provided
by Theorem 1.7(a).

To prove Theorem 3.2, we shall need some auxiliary results. The first one
is a corollary of the following:

Theorem 3.5 (Kitson and Timoney [21, Theorem 3.3]). Let (En) be a
sequence of Banach spaces and F be a Fréchet space. Let Tn : En → F be
continuous linear operators and W .

= span{
⋃
n Tn(En)}. If W is not closed

in F , then F \W is spaceable.

Corollary 3.6. Let E be an infinite-dimensional Banach space and V
be the linear span of a sequence of elements of E. Then E \ V is spaceable.
In particular, if E is a sequence space, then the set of elements x = (xn)
of E such that xn 6= 0 for infinitely many n is spaceable.

Proof. Note that, for the first part, it suffices to show that E \ V is
spaceable when E is the closed linear span of (xn) and V is the linear
span of (xn), for some linearly independent sequence (xn) in E. But in
this case, defining Tn : Rn → E by Tn(λ1, . . . , λn)

.
=
∑n

j=1 λjxj , we have
V = span{

⋃
n Tn(Rn)}. Since V is not closed in E, we can apply Theorem 3.5

to conclude the proof of the first part.
For the second part, just apply the first part to V = span{en : N}, where

{en : n ∈ N} is the canonical basis of E.

The sequence space we will be interested in will be `2. Recall that, if rn
are the Rademacher functions defined on [0, 1] by rn(t)

.
= sign(sin(2nπt))

and 0 < p < ∞, then (rn), as a sequence in Lp[0, 1], is equivalent to the
canonical basis of `2.
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Lemma 3.7. Let (an) ∈ `2 have infinitely many nonzero entries. Then
for all nonempty open U ⊂ [0, 1] we have (

∑
anrn)|U 6≡ 0, where

∑
anrn is

a series in Lp[0, 1] (0 < p <∞).

Proof. Let (an) and U be as in the statement, and set

f
.
=

∞∑
n=1

anrn, f<j
.
=

j−1∑
n=1

anrn, f≥j
.
=

∞∑
n=j

anrn.

The set U contains an interval of the form I = [k/2N , (k + 1)/2N ] for some
N ∈ N and k = 0, . . . , N − 1. Note that f<N is constant in I, but since we
have infinitely many nonzero an’s, f≥N is not constant in I. Thus f cannot
be constant in I.

Proof of Theorem 3.2. By Corollary 3.6, there is a closed infinite-dimen-
sional subspace F of span{rn : n ∈ N} such that, for each nonzero element∑∞

n=1 anrn from F , infinitely many an’s are nonzero. By Lemma 3.7, for
each nonzero element h of F and each nonvoid open subset U ⊂ [0, 1], we
have h|U 6≡ 0. Note that F , being a closed infinite-dimensional subspace of
a space isomorphic to `2, is isomorphic to `2.

Let f be a norm-one element of Sp(X), and define Φ : F → Lp(X× [0, 1])
by

Φ
( ∞∑
n=1

anrn

)
(x, t)

.
= f(x)

∞∑
n=1

anrn(t).

Note that the support of Φ(h) is σ-finite for each h ∈ F , and Φ is clearly an
isometric isomorphism onto its range. By Fubini’s theorem,∥∥∥Φ( ∞∑

n=1

anrn

)∥∥∥p
p
=

�

X

1�

0

∣∣∣f(x) ∞∑
n=1

anrn(t)
∣∣∣p dt dx

=

1�

0

( �
X

|f(x)|p dx
)∣∣∣ ∞∑
n=1

anrn(t)
∣∣∣p dt

=

1�

0

∣∣∣ ∞∑
n=1

anrn(t)
∣∣∣p dt = ∥∥∥ ∞∑

n=1

anrn

∥∥∥p
p

for all
∑∞

n=1 anrn ∈ F . It follows that Φ(F ) is an `2-isomorphic subspace of
Lp(X × [0, 1]).

It remains to show that Φ(F ) ⊂ Sp(X× [0, 1])∪{0}. Let
∑∞

n=1 anrn be a
nonzero element of F , U× (a, b) be a nonvoid basic open subset of X× [0, 1],
and p ≤ q <∞. Then

�

U×(a,b)

∣∣∣Φ( ∞∑
n=1

anrn

)∣∣∣q = b�

a

∣∣∣ ∞∑
n=1

anrn(t)
∣∣∣q dt �

U

|f(x)|q dx
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converges if q = p (by Khinchin’s inequality and since f is p-integrable),
and does not converge if q > p (since the first factor is strictly positive by
Lemma 3.7 and f is not q-integrable). This concludes our proof.

Before proceeding to the proof of Theorem 3.3, we point out that it is
not hard to prove, using Theorem 3.2, that (Lp[0, 1] \

⋃
q>p L

q[0, 1]) ∪ {0}
contains a copy of `2, for 1 ≤ p < ∞. In effect, recall that there exists
a measure-preserving Borel isomorphism ψ from [0, 1]2 onto [0, 1], which
in turn induces an isometric isomorphism Ψ from Lp([0, 1]2) onto Lp[0, 1],
defined by Ψ(f) .= f ◦ ψ−1. It is easy to verify that, for each f ∈ Lp([0, 1]2)
and each q > p, f is q-integrable if and only if Ψ(f) is q-integrable; in
particular, no function in Ψ(Sp([0, 1]2)) is q-integrable for any q > p, and the
claim follows. But the nowhere part is lost, since ψ is not a homeomorphism.
We thus need to provide a finer construction.

Proof of Theorem 3.3. Let µ be the Lebesgue measure on [0, 1], that is,
the unique Borel measure such that µ([k/2n, (k + 1)/2n]) = 1/2n for every
n ∈ N and k = 0, 1, . . . , 2n−1. Denote by λ the Lebesgue measure on {0, 1}N,
that is, the unique Borel measure such that λ(〈s〉) = 1/2|s| for every finite
sequence s of zeros and ones, where |s| is the length of s and 〈s〉 stands
for the set of all x ∈ {0, 1}N such that x(k) = s(k) for k = 1, . . . , |s|. Let
g : {0, 1}N → [0, 1] be given by g(x) =

∑∞
n=1 x(n)/2

n. Note that g−1(k/2n)
consists of two elements x, y such that x is a binary representation of k/2n
with x(m) = 0 for m > n, and y is a binary representation of k/2n with
x(m) = 1 for m > n. Moreover g−1(t) is a singleton if t is not of the form
k/2n.

Claim 1. µ(A) = λ(g−1(A)) for every Borel set A in [0, 1], and λ(B) =
µ(g(B)) for every Borel set B in {0, 1}N.

It is enough to show this for A = [k/2n, (k+1)/2n] and B = 〈s〉. Let s be
a finite sequence of zeros and ones which is the binary representation of the
number k/2n. Then |s| = n and g−1(A) = 〈s〉. Thus λ(g−1(A)) = λ(〈s〉) =
1/2n = µ(A).

Let n = |s| and define k = s(n)+2s(n− 1)+22s(n− 2)+ · · ·+2n−1s(1).
Then g(B) = g(〈s〉) = [k/2n, (k + 1)/2n]. Thus

µ(g(B)) = µ([k/2n, (k + 1)/2n]) = 1/2n = 1/2|s| = λ(B).

Claim 1 is thus proved.

Claim 2. F : Lp[0, 1] → Lp({0, 1}N) given by F (f)
.
= f ◦ g is an

isometric isomorphism between Lp[0, 1] and Lp({0, 1}N), with inverse L :
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Lp({0, 1}N)→ Lp[0, 1] given by

L(h)(t)
.
=


h(g−1(t)) if t ∈ [0, 1] is not of the form k/2n,

h(x) if t = k/2n and x is the binary representation

of t with x(m) = 0, m > n.

Moreover, F |Lq [0,1] = Lq({0, 1}N) for each q > p.

If A is a Borel set in [0, 1] and f = χA is the characteristic function of a
set A, then by Claim 1 we have

(3.1)
�

[0,1]

f dµ = µ(A) = λ(g−1(A)) =
�

{0,1}N
χg−1(A) dλ =

�

{0,1}N
f ◦ g dλ.

It is easily seen that (3.1) also holds if f is a step function, and it follows
that �

[0,1]

|f | dµ =
�

{0,1}N
|f ◦ g| dλ

for each f ∈ L1[0, 1]. It follows easily that ‖f‖p = ‖f ◦ g‖p for f ∈ Lp[0, 1].
This shows that F is norm-preserving and F |Lq [0,1] = Lq({0, 1}N) for each
q > p.

It is clear that L is a left inverse for F . Note that, for a given h in
Lp({0, 1}N), F (L(h)) possibly differs from h on a countable set of elements
x ∈ {0, 1}N with x(m) = 1 for almost every m. Since λ is a continuous
measure, we have λ({x ∈ {0, 1}N : h(x) 6= F (L(h))(x)}) = 0. This means
that h and F (L(h)) are the same element of Lp({0, 1}N). Thus Claim 2 is
proved.

Claim 3. F (Sp([0, 1])) = Sp({0, 1}N) and L(Sp({0, 1}N)) = Sp([0, 1]).

Let f ∈ Sp([0, 1]) and fix a basic set 〈s〉 in {0, 1}N. Note that there exists
a positive integer k such that g(〈s〉) = [k/2n, (k + 1)/2n], where n = |s|.
Since

F (f)χ〈s〉 = (f ◦ g)χ〈s〉 = (fχ[k/2n,(k+1)/2n]) ◦ g = F (fχ[k/2n,(k+1)/2n])

and fχ[k/2n,(k+1)/2n 6∈ Lq[0, 1], it follows by the previous claim that F (f)χ〈s〉
is not in Lq({0, 1}N). This means that F (f) is nowhere Lq. We have thus
proved that F (Sp([0, 1])) ⊂ Sp({0, 1}N) and, in view of the previous claim,
that L(Sp({0, 1}N)) ⊃ Sp([0, 1]).

Now let h ∈ Sp({0, 1}N) and fix a set [k/2n, (k+1)/2n]. Let s be a finite
set which is the binary representation of k/2n. Since hχ〈s〉 is not in Lq for
q > p, we have

L(hχ〈s〉) = (h ◦ g−1)χ[k/2n,(k+1)/2n] = L(h)χ[k/2n,(k+1)/2n].

Thus L(h) is nowhere Lq and the proof of Claim 3 is complete.
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Given two positive Borel measure spaces X and Y , and 0 < p < ∞, we
shall say that a map ϕ : Lp(X)→ Lp(Y ) preserves Sp if ϕ(Sp(X)) ⊂ Sp(Y ).
Claim 3 asserts in particular that both F and L preserve Sp.

Claim 4. There is an isometric isomorphism G from Lp({0, 1}N) onto
Lp({0, 1}N × {0, 1}N) which preserves Sp.

Let ϕ : {0, 1}N × {0, 1}N → {0, 1}N be defined by
ϕ((x(1), x(2), . . . ), (y(1), y(2), . . . ))

.
= (x(1), y(1), x(2), y(2), . . . ).

It is well known that ϕ is a homeomorphism of {0, 1}N×{0, 1}N and {0, 1}N.
Fix two finite sequences s and s′ of zeros and ones. Note that

1

2|s|
1

2|s′|
= λ(〈s〉)λ(〈s′〉) = λ× λ(〈s〉 × 〈s′〉)

and
λ(ϕ(〈s〉 × 〈s′〉)) = 1

2|s|+|s′|
.

The last equality follows from the fact that ϕ(〈s〉×〈s′〉) is a subset of {0, 1}N
with exactly |s|+ |s′| coordinates fixed.

Using this we infer that λ × λ(A) = λ(ϕ(A)) for any Borel subset A of
{0, 1}N × {0, 1}N. Then G : Lp({0, 1}N × {0, 1}N) → Lp({0, 1}N) defined by
G(f)

.
= f ◦ϕ has inverse given by G−1(h) = h◦ϕ−1 and satisfies the desired

condition. This completes the proof of Claim 4.
Mimicking the reasoning used to prove Claims 1–3, we can show that

T : Lp({0, 1}N × [0, 1])→ Lp({0, 1}N × {0, 1}N) defined by
T (f)(x, y)

.
= f(x, g(y))

is an onto isometric isomorphism which preserves Sp. Hence, we have built
the following chain of Sp-preserving isometric isomorphisms:

Lp({0, 1}N × [0, 1])
T→ Lp({0, 1}N × {0, 1}N) G→ Lp({0, 1}N) L→ Lp[0, 1].

Theorem 1.7 implies that Sp({0, 1}N) is nonempty, and thus an application of
Theorem 3.2 gives us a copy of `2 in Sp({0, 1}N× [0, 1])∪{0}. The conclusion
follows immediately.

4. Dense-lineability: proof of Theorem 1.7(d). Before proceeding
to the proof of Theorem 1.7(d), which will also be via Lemma 2.3, we estab-
lish some notation. First, recall that a family {Ai : i ∈ I} of infinite subsets
of N is said to be almost disjoint if Ai ∩Aj is finite for any distinct i, j ∈ I.
It is well known that there is a family of almost disjoint subsets of N of
cardinality continuum; a way to see this is to take an enumeration {qn} of
the rational numbers and to consider, for each x ∈ R, a subsequence (qnxk)
of (qn) converging to x; then the family {{nxk}k∈N : x ∈ R} has the desired
property.
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Let then {A′α : α < c} be a family of almost disjoint subsets of N. Fix a
sequence of integers 1 = n0 < n1 < · · · such that

nk+1−1∑
i=nk

1

i
≥ 1,

and consider Mk
.
= {nk, nk + 1, . . . , nk+1 − 1}. Define, for each α < c, Aα

.
=⋃

{Mk : k ∈ A′α}. Note that the family {Aα : α < c} is almost disjoint and∑
i∈Aα

1

i
=∞

for each α < c. We fix {Aα : α < c} in what follows.

Proof of Theorem 1.7(d). For a fixed Borel setA of positive finite measure
and α < c we define a function hαA as follows. Let {An,m : n,m ∈ N}
be a family of pairwise disjoint subsets of A of positive measure such that
µ(An,m) ≥ 2µ(An,m+1), and let (rn) be a strictly decreasing sequence of reals
tending to p. Put

hαn
.
=
∑
m∈Aα

am,nχAn,m ,(4.1)

where arnm,nµ(An,m) = 1/m. Then a similar argument to that used in Lem-
ma 2.4 shows that the A-supported norm-one function

hαA
.
=

∞∑
n=1

hαn
‖hαn‖2n

(4.2)

is in Lp \
⋃
q>p L

q.
As in the proof of Theorem 2.2, fix a basis (Un) for X, and let Nn ⊂ Un

be a sequence of pairwise disjoint nowhere dense Borel sets satisfying 0 <
µ(Nn) < 1/2n. For each α < c, by defining hαNn as in (4.2) and putting

fα
.
=

∞∑
n=1

hαNn
2n

,

we obtain fα ∈ Sp of norm one.
Note that any ordinal number α < c is of the form β + n, where β is a

limit ordinal and n = 0, 1, 2, . . . . Let {Bβ : β < c} be an indexation of all
Borel subsets of X. Then the set {(Bβ, n) : β < c, n ∈ N} has cardinality c,
thus there is a bijection (Bβ, n) 7→ α(β, n) onto all ordinals less than c.

For β < c and n ∈ N consider the functions

(4.3) gβ,n
.
= gα(β,n)

.
= χBβ +

1

n
fα(β,n).

By our construction, the linear span of {gα(β,n) : β < c, n ∈ N} is dense
in the set of all simple functions on X, and therefore it is also dense in Lp.



28 Sz. Głąb et al.

We will show that any nontrivial linear combination of functions of the form
(4.3) is in Sp. Let (β1, n1), . . . , (βk, nk) be distinct and consider b1, . . . , bk ∈ R
which are not all zero, and write

g
.
= b1g

β1,n1 + · · ·+ bkg
βk,nk

= (b1χBβ1 + · · ·+ bkχBβk ) +
b1
n1
fα(β1,n1) + · · ·+ bk

nk
fα(βk,nk).

Consider αi
.
= α(βi, ni), and note that α1, . . . , αk are distinct ordinals. We

can then write

g = (b1χBβ1 + · · ·+ bkχBβk ) +
b1
n1
fα1 + · · ·+ bk

nk
fαk

= (b1χBβ1 + · · ·+ bkχBβk ) +
b1
n1

∞∑
n=1

hα1
Nn

2n
+ · · ·+ bk

nk

∞∑
n=1

hαkNn
2n

.

Consider the family {Al,m : l,m ∈ N} of pairwise disjoint subsets of Nn

of positive measure such that µ(Al,m) ≥ 2µ(Al,m+1), and construct hαiNn as
in (4.1), using these subsets and the corresponding al,m. Consider N ∈ N
such that the sets C1

.
= Aα1 \ {1, . . . , N}, C2

.
= Aα2 \ {1, . . . , N}, . . . , Ck

.
=

Aαk \ {1, . . . , N} are disjoint; this is possible since {Aα : α < c} is almost
disjoint. Then we have

hαil =
∑

m∈Aαi

amχAl,m =
∑

m∈Aαi∩{1,...,N}

amχAl,m +
∑
m∈Ci

amχAl,m ,

and thus

hαiNn =

∞∑
l=1

hαil
‖hαil ‖2l

=

∞∑
l=1

1

‖hαil ‖2l
( ∑
m∈Aαi∩{1,...,N}

amχAl,m +
∑
m∈Ci

amχAl,m

)

=
∞∑
l=1

1

‖hαil ‖2l
∑

m∈Aαi∩{1,...,N}

amχAl,m +

∞∑
l=1

1

‖hαil ‖2l
∑
m∈Ci

amχAl,m .

Writing wi
.
=
∑∞

l=1
1

‖hαil ‖2l
∑

m∈Ci amχAl,m for each i = 1, . . . , k, by our
construction each wi is in Lp\

⋃
q>p Lq and w1, . . . , wk have disjoint supports;

more precisely, the support of each wi is N i
n
.
=
⋃
m

⋃
l∈Ci Al,m. Note that

span{fαiχ⋃
nN

i
n
} ⊂ Sp. The fact that g ∈ Sp follows then from the fact that

adding a simple function to a function from Sp results in a function from Sp.
Since Lp(X,µ) is separable, it has dimension c, as does span{gα(β,n) :

β < c, n ∈ N}, which concludes our proof.

5. Algebrability: proof of Theorem 1.7(e)

Proof of Theorem 1.7(e). Let (Un) be a basis for X. Similarly to the
construction at the beginning of the proof of Theorem 1.7(a), one can find
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pairwise disjoint nowhere dense Borel sets Nn such that Nn ⊂ Un and 0 <
µ(Nn) < 1/2n. Using Lemma 2.3, we can find for each n a pairwise disjoint
family (Nn,j)j of Borel subsets of Nn satisfying

µ(Nn,j+1) ≤
1

j + 1
µ(Nn,j).

Note that, for each n, j, we have µ(Nn,j) ≤ 1/(j!2n). Let Bj
.
=
⋃
nNn,j .

Then all nonvoid open subsets of X intersect each Bj in nonnull sets, and
on the other hand µ(Bj) =

∑
n µ(Nn,j) ≤ 1/j!.

Let {θα : α < c} be a set of real numbers strictly greater than 1 such that
the set {ln θα : α < c} is linearly independent over the rational numbers. For
each α < c, define

gα
.
=
∞∑
j=1

θjαχBj .

For each α the series
∑

j θ
pj
α /j! converges, thus gα ∈ Lp for all α < c and

0 < p <∞.
Let us show that {gα : α < c} is a set of free generators, and the algebra

generated by this set is contained in G ∪{0}. It suffices to show that, for any
positive integers m and n, for every matrix (kil : i = 1, . . . ,m, l = 1, . . . , n)
of nonnegative integers with nonzero and distinct rows, for all α1, . . . , αn < c
and for all β1, . . . , βm ∈ R which do not vanish simultaneously, the function

g
.
= β1g

k11
α1
· · · gk1nαn + · · ·+ βmg

km1
α1
· · · gkmnαn

=
∞∑
j=1

(
β1(θ

k11
α1
· · · θk1nαn )j + · · ·+ βm(θ

km1
α1
· · · θkmnαn )j

)
χBj

is in G. First, let us show that it is in
⋂

0<p<∞ L
p. Fix p and, for each

i = 1, . . . ,m, put θi
.
= θki1α1

· · · θkinαn . Then
�
|g|p ≤

� [ ∞∑
j=1

(|β1|θj1 + · · ·+ |βm|θ
j
m)

pχBj

]
(5.1)

≤
∞∑
j=1

Q(θj1, . . . , θ
j
m)

j!
,

where Q : (x1, . . . , xm) 7→ (|β1|θj1 + · · · + |βm|θ
j
m)p. It is straightforward to

find C, b > 0 such that Q(θj1, . . . , θ
j
m) < C + bj for all j. Thus the sum on

the right hand side of (5.1) converges, and g ∈ Lp.
Since ln θi = ln(θki1α1

· · · θkinαn ) = ki1 ln θα1 + · · ·+ kin ln θαn and ln θα1 , . . . ,
ln θαn are Q-linearly independent, the numbers ln θ1, . . . , ln θm are distinct.
By the strict monotonicity of the logarithmic function we may assume that

θ1 > · · · > θm;(5.2)
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we may also assume β1 6= 0. Then we can write

g =
∞∑
j=1

(β1θ
j
1 + · · ·+ βmθ

j
m)χBj .

From (5.2) and since β1 is assumed to be nonzero, we can find j0 ∈ N such
that

|β2|θj2 + · · ·+ |βm|θ
j
m < 1

2 |β1|θ
j
1

for all j ≥ j0. Then for those j,

|β1θj1 + · · ·+ βmθ
j
m| ≥ |β1|θ

j
1 −

∣∣∣β2θj2 + · · ·+ βmθ
j
m

∣∣∣
≥ |β1|θj1 − (|β2|θj2 + · · ·+ |βm|θ

j
m) >

1
2 |β1|θ

j
1.

Since each nonvoid open subset of X intersects all Bj in nonnull sets, the
inequality above shows that g is nowhere essentially bounded.

5.1. Comments and open problems. As a corollary of Theorem 1.7(e)
we have the following:

Corollary 5.1. If µ is an atomless and outer regular positive Borel
measure on X with full support and 0 < p <∞, then

Gp
.
= {f ∈ Lp(µ) : f is nowhere L∞(µ)}

is strongly c-algebrable.

It is a straightforward exercise for the reader to show, using a construction
similar to the one used to prove Theorem 1.7(a), that Gp is spaceable in Lp.
To finish this section we pose the following problem:

Problem 3. Does Gp ∪ {0} admit dense or closed subalgebras of Lp?

6. When are there nowhere q-integrable functions in Lp? We
conclude this work with a couple of remarks and questions on necessary/
sufficient conditions on a positive Borel measure space (X,µ), so that there
exist nowhere q-integrable Borel functions in Lp(X). An obvious necessary
condition is that µ has full support, so we will always assume that. It is not
hard to see that it is also necessary thatX has the countable chain condition,
as Proposition 6.1 below shows. Recall that X is said to have the countable
chain condition (or ccc, in short) if any family consisting of open nonempty
pairwise disjoint subsets of X is countable.

Proposition 6.1. Let X be a topological space without the ccc, assume
that µ is a positive Borel measure on X with full support, fix 0 < q <∞ and
let f : X → R be a Borel function. If f |U is not in Lq(U) for any nonvoid
open set U , then f is not in Lp(X) for any 0 < p <∞.
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Proof. Let (Us)s∈S be an uncountable family of pairwise disjoint non-
empty open sets. Since f |Us is not in Lq(Us) for any Us, f does not vanish
on Us. Thus for each 0 < p <∞ and each s ∈ S, ‖f |Us‖p > 0. Fix 0 < p <∞.
Since S is uncountable, at least one of the sets

Sn
.
=
{
s ∈ S :

�

Us

|f |p dµ ≥ 1/n
}

is uncountable. Hence
	
X |f |

p dµ =∞.

The next natural step is to pose the following:

Problem 4. Suppose that X has the ccc, and that µ is a positive Borel
measure on X with full support. Given 0 < p < ∞, does there exist a Borel
p-integrable function f : X → R which is nowhere q-integrable for all q > p?

We provide a partial answer to the problem above through a consistency
result. Recall first that the product of two spaces with the ccc does not need
to have the ccc, but this statement is independent of ZFC. Under Martin’s
axiom, the product of two ccc spaces does not have the ccc, but in some
models of ZFC there exists a topological space called a Suslin line, which
has the ccc but its square does not (cf. [22]).

Theorem 6.2. It is consistent with ZFC that there is a topological space
X satisfying the ccc such that, for any positive Borel measure µ on X with
full support and any 0 < p < ∞, there is no Borel function f : X → R in
Lp(µ) but nowhere Lq(µ) for any q > p.

Proof. It is consistent with ZFC that there exists a Suslin lineX. Suppose
that there is a Borel function f : X → R in Lp(µ) but nowhere Lq(µ) for all
q > p. Let f̃ : X2 → R be defined by f̃(x, y) = f(x)f(y). Clearly f̃ is Borel,
and since supp f is σ-finite, so is supp f̃ = (supp f)2. Fubini’s theorem then
implies that �

X2

|f̃ |p d(µ× µ) = ‖f‖2pp ,

and for any two nonvoid open sets U, V ⊂ X and q > p we have�

U×V
|f̃ |q d(µ× µ) =

�

U

|f |q
�

V

|f |q =∞.

Hence f̃ is a Borel function in Lp(µ × µ) but nowhere Lq(µ × µ) for each
q > p, and µ × µ is a positive Borel measure with full support. Since X2

does not have the ccc, we get a contradiction.

Finally we turn our attention to the presence of countable π-bases. First,
note that there exist topological spaces X with countable π-bases but admit-
ting no countable bases, and with positive Borel measures with full support
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defined on them: take for example the Sorgenfrey line (the set of real num-
bers with the topology generated by intervals of the form [a, b)) with the
Lebesgue measure. The Sorgenfrey line RS has a countable π-basis, so we
can apply Theorem 1.7 to show that Sp(RS) is `p-spaceable; but any basis
of the Sorgenfrey line has cardinality c.

It turns out that the presence of a countable π-basis in X is also not
necessary for the existence of nowhere q-integrable functions in Lp(X). In
fact, we have more.

Theorem 6.3. Let X be a topological space with a countable π-basis.
Suppose that µ is an atomless and outer-regular Borel probability measure
on X with full support. Assume that κ is an uncountable cardinal number.
Let Y = Xκ be the Tychonoff product of κ many copies of X, and consider
on Y the measure λ = µκ, the product of κ many copies of µ. Then Sp(Y )
is spaceable in Lp(Y ).

Proof. Let (Un) be a countable π-base in X. By the construction used
to prove Theorem 1.7(a) applied to X and µ, there is a norm-one basic
sequence f1, f2, . . . of elements of Sp(X) with pairwise disjoint supports,
and with each fi of the form

∑∞
k=1 akχAk where Ak are Borel subsets of X.

For (xα)α<κ ∈ Xκ, put f̃i((xα)α<κ)
.
= fi(x0). Then (f̃i) is a norm-one basic

sequence in Lp(Y ) with pairwise disjoint supports. We need to show that
each f̃i is in Sp(Y ). Note that f̃i is of the form

∑∞
k=1 akχÃk , where Ãk

.
=

Ak ×
∏

1≤α<κX.
Let V be a nonempty open subset of Y . We may assume that V is of the

form
∏
α<κWα where Wα are nonempty open subsets of X, and there is a

finite set F ⊂ κ such that Wα = X if α ∈ κ \ F . Let F0 = F \ {0}. We have
V =W0 ×

∏
1≤α<κWα and

�

V

|f̃i|q dλ =
�

V

∞∑
k=1

|ak|qχÃkdλ =

∞∑
k=1

|ak|qλ(Ãk ∩ V )

=

∞∑
k=1

|ak|qλ
(
(Ak ∩W0)×

∏
1≤α<κ

Wα

)
=

∞∑
k=1

|ak|qµ(Ak ∩W0)
∏
α∈F0

µ(Wα)

=
∏
α∈F0

µ(Wα)
�

W0

|fi|q dµ =∞.

Similarly we get �

Y

|f̃i|p dλ =
�

X

|f |p dµ <∞.
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