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Factorization and extension of positive
homogeneous polynomials
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To the memory of Aleksander Pełczyński

Abstract. We study the following problem: Given a homogeneous polynomial from
a sublattice of a Banach lattice to a Banach lattice, under which additional hypotheses
does this polynomial factorize through Lp-spaces involving multiplication operators? We
prove that under some lattice convexity and concavity hypotheses, for polynomials certain
vector-valued norm inequalities and weighted norm inequalities are equivalent. We com-
bine these results and prove a factorization theorem for positive homogeneous polynomials
which is a variant of a celebrated factorization theorem for linear operators due to Maurey
and Rosenthal. Our main application is a Hahn–Banach extension theorem for positive
homogeneous polynomials between Banach lattices.

1. Introduction. The study of polynomials and multilinear mappings
between Banach spaces has recently gained importance within Banach space
theory as well as other branches of analysis. The contemporary literature
shows that multilinear functional analysis contributes to the solution of
various problems in modern mathematics (see for example the recent ar-
ticle [18]).

This article has a twofold aim. We prove factorization theorems for ho-
mogeneous polynomials between Banach spaces, and we use these results in
order to study when a given positive homogeneous polynomial defined on
a subspace X0 of a Banach function lattice X extends to the whole space X.
Our main result is as follows: Let 1 ≤ r, s, t < ∞ and m ∈ N be such that
1 ≤ t ≤ r/m ≤ r ≤ s. Then for every positive m-homogeneous polynomial
P : X0 → Y from a sublattice X0 of an s-convex Banach function lattice
X into a t-concave Banach function lattice Y there are multiplication op-
erators Mf : X → Lr and Mg : Lr/m → Y as well as an m-homogeneous
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polynomial Q : Lr → Lr/m such that the composition MgQMf extends P
from X0 to X.

The problem of extending homogeneous polynomials from subspaces of
Banach spaces to the whole space has gained the interest of many mathema-
ticians—motivated by the seminal paper [1] by Aron and Berner where ho-
mogeneous polynomials on X are extended to the bidual. Since then, sev-
eral works have appeared concerning the extension of polynomials (see, e.g.,
[2, 5, 6, 7, 19, 27] and the surveys given in [14, 30]).

Here we follow an alternative approach which was successfully applied
within linear theory. In order to explain this idea recall that, given 1 ≤
p < ∞, a (linear) operator T : E → F between Banach spaces is said to be
p-summing if there is a constant C > 0 such that for any finite collection of
elements x1, . . . , xn in X, we have( n∑

k=1

‖Txk‖pF
)1/p

≤ C sup
x∗∈BE∗

( n∑
k=1

|x∗(xk)|p
)1/p

,(1.1)

where, as usual, we denote by BE∗ the unit ball of the Banach dual space
E∗ of E.

A. Pietsch discovered that the theory of p-summing operators (which is at
the very heart of modern Banach space theory) is ruled by the following the-
orem (nowadays known as Pietsch’s domination theorem, see [28, Theorem
2]): An operator T : E → F is p-summing if and only if there is a (regular)
Borel probability measure µ on (BE∗ , σ(E

∗, E)) and a constant C > 0 such
that

‖Tx‖F ≤ C
( �

BE∗

|x∗(x)|p dµ(x∗)
)1/p

, x ∈ E.(1.2)

In other terms, the vector-valued norm inequality (1.1) (through a nowa-
days standard separation argument) turns out to be equivalent to the weighted
norm inequality (1.2). Since the work of Kwapień [20], Maurey [25], and
Rosenthal [29] and many others there is a huge amount of similar results
with a tremendous impact on operator theory in Banach spaces.

The general idea is as follows: If an operator T satisfies a vector-valued
norm inequality (which in many interesting cases turns out to be for free!),
then it even satisfies a weighted norm inequality, and this allows one to
decode a lot of a priori hidden information on T .

To see an example, recall the fundamental Maurey–Rosenthal theorem
which states (see again [25, 29] and also [8]): If ν is a σ-finite measure space
on some measurable space (Ω,Σ), then an operator T from a quasi-Banach
space E into Lp(ν) for 0 < p < r < ∞ satisfies the vector-valued norm
inequality
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∥∥∥( n∑
k=1

|Txk|r
)1/r∥∥∥

Lp(ν)
≤ C

( n∑
k=1

‖xk‖rE
)1/r

, x1, . . . , xn ∈ E,(1.3)

if and only if there exists a density function w ∈ L0(ν) such that the following
weighted norm inequality holds:( �

Ω

|Tx|r

w
dν
)1/r

≤ C‖x‖E , x ∈ E(1.4)

(with the implicit understanding that Tx = 0 a.e. on the set {ω ∈ Ω; w(ω)
= 0}).

Moreover, it can be proved that for 0 < p < r ≤ 2 every operator
T : Lq(µ)→ Lp(ν) satisfies (1.3). This fact in combination with the equiva-
lence of (1.3) and (1.4) has numerous applications in various different topics
of analysis (see, e.g., [13] or [16]).

In the present article we wish to clarify to which extent this circle of
ideas generalizes to m-homogeneous polynomials between Banach lattices—
exploiting mainly ideas of [8] and [10] we will see that at least for positive
homogeneous polynomials the outcome seems satisfying. Let us point out
that in the recent article [23] it is proved that certain vector-valued norm
inequalities for multilinear operators are equivalent to domination theorems,
which then under some mild additional assumptions can be expressed in
terms of factorization through Orlicz spaces.

To give a first flavor of the factorization results we aim at, we recall
a well-known substitute of Pietsch’s domination theorem for homogeneous
polynomials: Given 1 ≤ r < ∞, an m-homogeneous polynomial P : E → F
between Banach spaces is said to be r-dominated if there is a constant C > 0
such that for each choice of vectors x1, . . . , xn ∈ E,( n∑

k=1

‖Pxk‖
r/m
F

)m/r
≤ C sup

‖x∗‖≤1

( n∑
k=1

|x∗(xk)|r
)m/r

.(1.5)

Geiss [17] (see also [3, 4, 24, 26]) proved that an m-homogeneous polynomial
P : E → F is r-dominated if and only if there is a Borel probability measure
µ on (BE∗ , σ(E

∗, E)) and a constant C > 0 such that for every x ∈ E,

‖Px‖F ≤ C
( �

BE∗

|x∗(x)|r dµ(x∗)
)m/r

.(1.6)

Clearly, an operator is r-dominated if and only if it is r-summing, and hence
this equivalence at least formally includes the equivalence of (1.1) and (1.2)
as a special case.

2. Preliminaries. We shall use standard notation and notions from Ba-
nach space theory, as presented, e.g., in [9, 13, 21]. Recall that for an integer
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m a mapping P : E → F between Banach spaces is said to be a (bounded)
m-homogeneous polynomial whenever there is a (bounded) m-linear map-
ping ϕ : E × · · · × E → F such that P (x) = ϕ(x, . . . , x) for all x ∈ E. For
the theory of homogeneous polynomials we refer to [15]. An m-homogeneous
polynomial P : X → Y between Banach lattices is said to be positive if its
unique associated symmetric m-linear mapping L : X × · · · ×X → Y is pos-
itive in the sense that L(x1, . . . , xm) ≥ 0 for all choices of positive elements
x1, . . . , xm ∈ X. Note that an m-homogeneous polynomial P : Rm → R is
positive if and only if all coefficients in its expansion are positive, and also
that there arem-homogeneous polynomials which are positive on the positive
cone of X but are not positive in the sense of the definition given here. For
a careful study of positive polynomials on Riesz spaces see [22].

Let (Ω,Σ, µ) be a complete measure space and let L0(µ) denote the
space (of all equivalence classes) of real-valued measurable functions on Ω.
A quasi-Banach (function) lattice X on (Ω,Σ, µ) (on (Ω,µ) for short) is
a subspace of L0(µ), which is complete with respect to a quasi-norm ‖ · ‖
and which has the property: x ∈ L0(µ), y ∈ X, |x| ≤ |y| µ-a.e. implies x ∈ X
and ‖x‖X ≤ ‖y‖X ; moreover we will assume that there exists u ∈ X with
u > 0 µ-a.e.

A quasi-Banach function space X on (Ω,µ) is said to be σ-order con-
tinuous if ‖xn‖X → 0 for every sequence (xn) in X such that 0 ≤ xn ↓ 0
µ-a.e. We use without reference the well-known fact that if X is a σ-order
continuous Banach lattice on a σ-finite measure space (Ω,µ), then the Ba-
nach dual space X∗ can be identified with the Köthe function lattice X ′ of
all x ∈ L0(µ) such that

‖x‖X′ = sup
‖y‖X≤1

�

Ω

|xy| dµ <∞.

A quasi-Banach lattice X = (X, ‖ · ‖) is said to be p-convex (0 < p < ∞),
respectively q-concave, 0 < q < ∞, if there exists a constant C > 0 such
that ∥∥∥( n∑

k=1

|xk|p
)1/p∥∥∥ ≤ C( n∑

k=1

‖xk‖p
)1/p

,

respectively, ( n∑
k=1

‖xk‖q
)1/q

≤ C
∥∥∥( n∑

k=1

|xk|q
)1/q∥∥∥

for every choice of elements x1, . . . , xn ∈ X. The optimal constant C in
this inequality is called the p-convexity (respectively, q-concavity) constant
ofX, and is denoted byM (p)(X) (respectively, byM(q)(X)). A quasi-Banach
lattice is said to have nontrivial convexity whenever it is p-convex for some
0 < p <∞.
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Suppose we are given a quasi-Banach lattice X on (Ω,µ). For any 0 <
r < ∞ we define Xr to be the quasi-Banach lattice of all x ∈ L0(µ) such
that |x|1/r ∈ X equipped with the quasi-norm ‖x‖Xr =

∥∥|x|1/r∥∥r
X
. It is well

known and easy to verify that if X is r-convex, then there exists a Banach
function lattice Y on (Ω,µ) such that x ∈ X if and only if |x|r ∈ Y and

(M (r)(X))−1‖x‖X ≤ ‖x‖Y r ≤ ‖x‖X .

Thus when we consider a quasi-Banach lattice X with nontrivial convexity,
we can assume without loss of generality that there exists 0 < t < ∞ such
that M (t)(X) = 1, which is equivalent to

(2.1)
∥∥(|x|t + |y|t)1/t∥∥

X
≤ (‖x‖tX + ‖x‖tX)1/t, x, y ∈ X.

Throughout the paper we always assume that the quasi-Banach lattices we
consider have nontrivial convexity, satisfy (2.1), and in addition are maximal.
We recall that a quasi-Banach lattice X is said to be maximal (or X has the
Fatou property) whenever 0 ≤ xn ↑ x a.e., xn ∈ X, and supn≥1 ‖xn‖X < ∞
implies that x ∈ X and ‖xn‖X → ‖x‖X .

Examples of maximal Banach function lattices are Lp-spaces, mixed
Lp-spaces, Lorentz and Marcinkiewicz spaces as well as Orlicz spaces.

3. Weighted norm inequalities for polynomials. The following no-
tion is taken from [8]. We call a nonempty set U together with a map
◦ : R+ × U → U , ◦(λ, x) := λx, a homogeneous set (with respect to ◦).
If then X is a quasi-Banach space and φ : U → X a homogeneous mapping
in the sense that φ(λx) = λφ(x) for all λ ≥ 0 and x ∈ U , then U is said to
be homogeneously represented by φ in X.

Here we will be mainly interested in the following three special cases.

Example 3.1.

(1) U = X a quasi-Banach lattice and φ : U → X the identity map.
(2) U = E a quasi-Banach space, X = Lr(µ) with 0 < r ≤ ∞ and µ

a Dirac measure, and φ : U → Lr(µ), φx := ‖x‖E 1.
(3) U = E a quasi-Banach space, X = `∞(BE∗), and φ : U → `∞(BE∗),

(φx)(x∗) := x∗(x).

We call a mapping P : U → V between two homogeneous sets U and V
m-homogeneous if P (λx) = λmP (x) for every λ ≥ 0 and x ∈ U .

For m = 1 the following theorem is the main result [8, Theorem 2]—its
proof reduces the case of arbitrary m to m = 1.

Theorem 3.2. Let 0 < r <∞ and m ∈ N. Let U be a set homogeneously
represented by φ in the r-convex quasi-Banach lattice X on (Ω1, µ), and
V a set homogeneously represented by ψ in the r/m-concave quasi-Banach
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lattice Y on (Ω2, ν). Suppose that P : U → V is an m-homogeneous mapping
such that for every finite sequence (xk)

n
k=1 in U we have∥∥∥( n∑

k=1

|ψ(Pxk)|r/m
)m/r∥∥∥

Y
≤
∥∥∥( n∑

k=1

|φ(xk)|r
)1/r∥∥∥m

X
.

Then there exist a positive functional ϕ : Xr → R and a positive function
w2 ∈ L0(ν) such that

sup
‖x‖X≤1

ϕ(|x|r)1/r ≤M (r)(X), sup
‖y‖Lr/m(ν)≤1

‖wm/r2 y‖Y ≤M(r/m)(Y ),

and ( �

Ω2

|ψ(Px)|r/m

w2
dν

)m/r
≤ ϕ(|φ(x)|r)m/r, x ∈ U.

If in addition X is σ-order continuous on a σ-finite measure space, then
there exists a positive function w1 ∈ L0(µ) with sup‖x‖X≤1 ‖w

1/r
1 x‖Lr(µ) ≤

M (r)(X) such that( �

Ω2

|ψ(Px)|r/m

w2
dν

)m/r
≤
( �

Ω1

|φ(x)|rw1 dµ
)m/r

, x ∈ U.

Proof. Define a new scalar multiplication on U by

λ ◦ u := λ1/mu, (λ, u) ∈ R+ × U.

Then the mapping

φm =

m∏
k=1

φ : (U, ◦)→ Xm

defines a homogeneous representation of (U, ◦) in the r/m-convex Banach
function space Xm(µ), and (see, e.g., [8, Lemma 2])

M (r/m)(Xm) =M (r)(X)m <∞.

Moreover, the mapping P : (U, ◦)→ V is homogeneous, and∥∥∥( n∑
k=1

|ψ(Pxk)|r/m
)m/r∥∥∥

Y
≤
∥∥∥( n∑

k=1

|φ(xk)|r
)1/r∥∥∥m

X

=
∥∥∥( n∑

k=1

|φm(xk)|r/m
)m/r∥∥∥

Xm
.

By [8, Theorem 2] there exist a positive functional ϕ : (Xm)r/m → R with

sup
‖x‖Xm≤1

ϕ(|x|r/m)m/r ≤M (r)(X)m
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and a positive function w2 ∈ L0(ν) with

sup
‖y‖Lr/m(ν)≤1

‖wm/r2 y‖Y ≤M(r/m)(Y ),

which in addition satisfy( �

Ω2

|ψ(Px)|r/m

w2
dν

)m/r
≤ ϕ(|φm(x)|r/m)m/r = ϕ(|φ(x)|r)m/r, x ∈ U.

In particular, ϕ : Xr → R and

sup
‖x‖X≤1

ϕ(|x|r)1/r ≤M (r)(X).

To complete the proof it is enough to note the obvious fact that if X is
σ-order continuous, then so is Xr.

According to our three basic examples from 3.1 (of homogeneous repre-
sentations of homogeneous sets in quasi-Banach function spaces) we present
three corollaries of the preceding theorem representing the apparently most
important special cases. The proof of the implication (1)⇒(2) in all three
corollaries is an immediate consequence of Theorem 3.2 and the correspond-
ing example in 3.1, whereas the proof of the converse (2)⇒(1) in each case
only needs a straightforward calculation.

Corollary 3.3. Let 0 < r < ∞ and m ∈ N. Suppose that X is an r-
convex quasi-Banach lattice on (Ω1, µ), Y is an r/m-concave quasi-Banach
lattice on (Ω2, ν), and X0 a sublattice of X. Then for every m-homogeneous
polynomial P : X0 → Y the following two statements are equivalent:

(1) For every finite sequence (xk)
n
k=1 in X0,∥∥∥( n∑

k=1

|Pxk|r/m
)m/r∥∥∥

Y
≤
∥∥∥( n∑

k=1

|xk|r
)1/r∥∥∥m

X
.

(2) There exist a positive functional ϕ : Xr → R and a positive function
w2 ∈ L0(ν) such that

sup
‖x‖X≤1

ϕ(|x|r)1/r ≤M (r)(X), sup
‖y‖Lr/m(ν)≤1

‖wm/r2 y‖Y ≤M(r/m)(Y ),

and ( �

Ω2

|Px|r/m

w2
dν

)m/r
≤ ϕ(|x|r)m/r, x ∈ U.

If in addition X is σ-order continuous on a σ-finite measure space,
then there exists a positive function w1 ∈ L0(µ) such that
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Ω2

|Px|r/m

w2
dν

)m/r
≤
( �

Ω1

|x|rw1 dµ
)m/r

, x ∈ U.

The second corollary is the polynomial analog of the Maurey–Rosenthal
theorem—for the linear case see again the equivalence of (1.3) and (1.4) in
the introduction.

Corollary 3.4. Let 0 < r < ∞ and m ∈ N. Let E be a Banach
space and Y an r/m-concave quasi-Banach lattice on (Ω, ν). Then for every
m-homogeneous polynomial P : E → Y the following two statements are
equivalent:

(1) For every finite sequence (xk)
n
k=1 in X0,∥∥∥( n∑

k=1

|Pxk|r/m
)m/r∥∥∥

Y
≤
( n∑
k=1

‖xk‖rE
)m/r

.

(2) There is a positive function w2 ∈ L0(ν) such that( �

Ω

|Px|r/m

w2
dν
)m/r

≤ ‖x‖mE , x ∈ E.

Finally, we present an extension of the domination theorem for r-do-
minated polynomials P : E → F given in the introduction (equivalence of
(1.5) and (1.6)); this result follows immediately from the following corollary if
we represent E in the canonical way homogeneously in X = X0 = `∞(BE∗).

Corollary 3.5. Let 0 < r < ∞ and m ∈ N. Let X0 be a sublattice of
an r-convex quasi-Banach lattice X on (Ω,µ), and F a Banach space. Then
for every m-homogeneous polynomial P : X0 → F the following statements
are equivalent:

(1) For every finite sequence (xk)
n
k=1 in X0,( n∑

k=1

‖Pxk‖
r/m
F

)m/r
≤
∥∥∥( n∑

k=1

|xk|r
)m/r∥∥∥

X
.

(2) There exists a positive functional ϕ : Xr → R such that

sup
‖x‖X≤1

ϕ(|x|r)1/r ≤M (r)(X)

and
‖P (x)‖F ≤ ϕ(|x|r)m/r, x ∈ X0.

If in addition X is σ-order continuous on a σ-finite measure space, then
there is a positive function w ∈ L0(µ) such that

‖P (x)‖F ≤
( �

Ω

|x|rw dµ
)m/r

, x ∈ X0.
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4. Norm estimates for positive polynomials. Recall the following
well-known theorem of Krivine (see, e.g., [21, II, 1.d.9]): For every positive
operator T : X → Y between Banach lattices, every 1 ≤ r < ∞, and every
choice of finitely many x1, . . . , xn ∈ X we have∥∥∥( n∑

k=1

|Txk|r
)1/r∥∥∥

Y
≤ ‖T‖

∥∥∥( n∑
k=1

|xk|r
)1/r∥∥∥

X
.

Provided r ≥ m there is a polynomial counterpart of this vector-valued
norm inequality.

Proposition 4.1. Let X and Y be Banach lattices, 1 ≤ r < ∞, and
m ∈ N with r ≥ m. Then for every positive m-homogeneous polynomial
P : X → Y and for every finite sequence (xk)

n
k=1 in X we have∥∥∥( n∑

k=1

|Pxk|r/m
)m/r∥∥∥

Y
≤ ‖P‖m

m

m!

∥∥∥( n∑
k=1

|xk|r
)1/r∥∥∥m

X
.

Proof. The required inequality follows from its m-linear analog from [10,
Theorem 6.2] which states: If φ : X1 × · · · × Xm → Y is a positive m-
linear operator between Banach lattices, and 1 ≤ s ≤ ∞ such that 1/s =
1/r1 + · · · + 1/rm with 1 ≤ rj ≤ ∞, 1 ≤ j ≤ m, then for every choice of
finitely many elements x(j)1 , . . . , x

(j)
n in Xj , 1 ≤ j ≤ m, we have

(4.1)
∥∥∥( n∑

i=1

|φ(x(1)i , . . . , x
(m)
i )|s

)1/s∥∥∥
Y
≤ ‖φ‖

m∏
j=1

∥∥∥( n∑
i=1

|x(j)i |
rj
)1/rj∥∥∥

Xj
.

Given a positive m-homogeneous polynomial P : X → Y between Banach
lattices, its associated symmetric m-linear mapping L : X × · · · ×X → Y is
positive by our hypothesis, i.e., L(x1, . . . , xm) ≥ 0 for all choices of positive
elements x1, . . . , xm ∈ X. Applying (4.1) to L and s = r/m, r1 . . . = rm = r
we obtain, for every choice of finitely many x1, . . . , xn ∈ X,∥∥∥( n∑

k=1

|L(xk, . . . , xk)|r/m
)m/r∥∥∥

Y
≤ ‖L‖

∥∥∥( n∑
k=1

|xk|r
)1/r∥∥∥m

X
.

Since L(xk, . . . , xk) = Pxk for each 1 ≤ k ≤ m, and by polarization ‖L‖ ≤
mm

m! ‖P‖ (see, e.g., [15, 2.1]), we obtain the desired estimate.

This result in particular implies that for r ≥ m the second statement of
Corollary 3.3 always holds, a fact which we are going to exploit in the next
section.

5. Factorization and extension of positive polynomials. The fol-
lowing extension as well as factorization theorem for positivem-homogeneous
polynomials between Banach function spaces is our main result.
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Theorem 5.1. Let 1 ≤ r, s, t < ∞ and m ∈ N be such that 1 ≤ t ≤
r/m ≤ r ≤ s. Let X be a σ-order continuous and s-convex Banach lattice on
(Ω1, µ), X0 a sublattice of X, and Y a t-concave Banach lattice on (Ω2, ν).
Then for every m-homogeneous positive polynomial P : X0 → Y there are
multiplication operators Mf : X → Lr(µ) and Mg : Lr/m(ν) → Y as well
as an m-homogeneous polynomial Q : Lr(µ) → Lr/m(ν) such that MgQMf

extends P from X0 to X:

Lr(µ)

X0 ↪→ X

Mf

?

Mg

-Q
Lr/m(ν)

Y-
MgQMf

6

Proof. Assume without loss of generality that ‖P‖ = 1. Moreover, by
the fact that u-convexity is a property decreasing in u, and u-concavity
a property increasing in u, we know thatX is r-convex and Y is r/m-concave.
Then by Corollary 3.3 and Proposition 4.1 there exist positive functions
w1 ∈ L0(µ) and w2 ∈ L0(ν) such that

sup
‖x‖X≤1

‖w1/r
1 x‖Lr(µ) ≤M

(r)(X), sup
‖y‖Lr/m(ν)≤1

‖wm/r2 y‖Y ≤M(r/m)(Y )

and ( �

Ω2

|Px|r/m

w2
dν

)m/r
≤
( �

Ω1

|x|rw1 dµ
)m/r

, x ∈ X0.

We may assume without loss of generality that both w1 and w2 are strictly
positive. Let L : X0 × · · · × X0 → Y be the unique symmetric, bounded
m-linear mapping such that for all x ∈ X0 we have

P (x) = L(x, . . . , x).

Define, for x1, . . . , xm ∈ X0,

Q0(x1w
1/r
1 , . . . , xmw

1/r
1 ) := L(x1, . . . , xm)

1

w
m/r
2

,

and letM
w

1/r
1

: X0 → Lr(µ) be multiplication by w1/r
1 . We are going to prove

that
Q0 : Mw

1/r
1

X0 × · · · ×Mw
1/r
1

X0 → Y

is a well-defined, bounded and m-linear mapping, where the range M
w

1/r
1

X0
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is considered as a subspace of Lr(µ). Indeed, by the polarization formula we
have, for all choices of x1, . . . , xm ∈ X0,

L(x1, . . . , xm) =
1

m!

1�

0

r1(t) . . . rm(t)P
( m∑
i=1

ri(t)xi

)
dt,

where rk denotes the kth Rademacher function (see, e.g., [15, 1.4 and 1.12]).
Hence by (1) and the continuous Minkowski inequality (by assumption 1 ≤
r/m)( �

Ω2

|Q0(x1w
1/r
1 , . . . , xmw

1/r
1 )|r/mdν

)m/r
=

( �

Ω2

∣∣∣∣ 1m!

1�

0

r1(t) . . . rm(t)
P (
∑m

i=1 ri(t)xi)

w
m/r
2

dt

∣∣∣∣r/m dν)m/r

≤ 1

m!

1�

0

( �

Ω2

∣∣∣∣P (∑m
i=1 ri(t)xi

w
m/r
2

∣∣∣∣r/m dν)m/r dt
≤ 1

m!

1�

0

( �

Ω1

∣∣∣ m∑
i=1

ri(t)xi

∣∣∣rw1dµ
)m/r

dt

≤ 1

m!

1�

0

( m∑
i=1

‖xiw1/r
1 ‖r

)m
dt =

1

m!

( m∑
i=1

‖xiw1/r
1 ‖r

)m
.

But then Q0 is well-defined, and being obviously m-linear and continuous at
zero, it is bounded. Since it can be easily seen that M

w
1/r
1

X0 is a dense
subspace of Lr(µ) (see also [11, Lemma 3.3]), the mapping Q0 extends
to a bounded m-linear mapping Lr(µ) × · · · × Lr(µ) → Lr/m(ν). Define
the bounded m-homogeneous polynomial Q : Lr(µ) → Lr/m(ν) to be the
restriction of Q0 to the diagonal. By construction we see that as desired
M
w
m/r
2

QM
w

1/r
1

extends P . Putting f = w
1/r
1 and g = w

m/r
2 completes the

proof.

In the scale of Lp-spaces we obtain the following corollary which is well-
known in the linear case m = 1.

Corollary 5.2. Let 1 ≤ r, s, t < ∞ and m ∈ N be such that 1 ≤ t ≤
r/m ≤ r ≤ s.

(1) For every positive m-homogeneous polynomial P : Ls(µ) → Lt(ν)
there is a factorization
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Lr(µ)

Ls(µ)

Mf

?

Mg

-Q
Lr/m(ν)

Lt(ν)-
P

6

where Q is an m-homogeneous polynomial and Mf as well as Mg are
multiplication operators.

(2) Let X0 be a sublattice of Ls(µ). Then every positive m-homogeneous
polynomial P : X0 → Lt(ν) extends to an m-homogeneous polynomial
Q : Ls(µ)→ Lt(ν).
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