STUDIA MATHEMATICA 221 (2) (2014)

Diagonals of projective tensor products
and orthogonally additive polynomials

by

QINGYING BU and GERARD BUSKES (University, MS)

Abstract. Let E be a Banach space with 1-unconditional basis. Denote by A(®,, » E)
(resp. A(®, s+ E)) the main diagonal space of the n-fold full (resp. symmetric) projective
Banach space tensor product, and denote by A(®y, x| E) (resp. A(®, s, - F)) the main
diagonal space of the n-fold full (resp. symmetric) projective Banach lattice tensor product.
We show that these four main diagonal spaces are pairwise isometrically isomorphic, and
in addition, that they are isometrically lattice isomorphic to Ef,), the completion of the
n-concavification of E. Using these isometries, we also show that the norm of any (vector
valued) continuous orthogonally additive homogeneous polynomial on E equals the norm
of its associated symmetric linear operator.

1. Introduction. For every continuous n-homogeneous polynomial P
and its associated symmetric n-linear operator Tp we have the Polarization
Inequalities: ||P|| < [|[Tp|| < (n™/n!)||P]|. It is known that || Tp| = || P|| for
every polynomial P with any Hilbert space as its domain and any Banach
space as its range (see [0, Proposition 1.44] and [7]), while there is a polyno-
mial P with ¢; as its domain such that [|Tp| = (n™/n!)||P]| (see [6, Example
1.39] and [7]). It is of interest to find which n-homogeneous polynomials P
satisfy |[Tp| = || P,

A homogeneous polynomial P on a vector lattice is called orthogonally
additive if P(x +y) = P(xz) + P(y) whenever x and y are disjoint. In this
paper, E will be a Banach space with a l-unconditional basis (such F is
a Banach lattice with coordinatewise order). We show that for any (vector
valued) continuous orthogonally additive homogeneous polynomial P on E
its associated symmetric linear operator Tp satisfies | Tp|| = || P||. To obtain
this result from the linearization of orthogonally additive n-homogeneous
polynomials given by Benyamini, Lassalle, and Llavona in [2], it suffices to
show that A(®,, r E), the main diagonal space of the n-fold full projective
Banach space tensor product, is isometrically isomorphic to A(®y, 5= E), the
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main diagonal space of the n-fold symmetric projective Banach space tensor
product. It is this new result that we prove in this paper, and we emphasize
that our proof does not depend on the degree of homogeneity. To get the
announced isometry, we first show that A(®,  F) is isometrically isomor-
phic to A(®n’|ﬁ| E), the main diagonal space of the n-fold full projective
Banach lattice tensor product. Secondly, we show that A(@n,s,7T E) is iso-
metrically isomorphic to A(®n,s,|7r| E), the main diagonal space of the n-fold
symmetric projective Banach lattice tensor product. Finally, by using Ba-
nach lattice structure, we show that A(®n,|ﬂ| E) is isometrically isomorphic
to A(@n s|x| E), which, therefore, implies that A(®p r E) is isometrically iso-
morphic to A(@,%SJr E). As a consequence, we also show that each of these
four main diagonal spaces is isometrically isomorphic to Ej,}, the completion
of the n-concavification of F.

2. Preliminaries. For a Banach space X, let ®, X denote the n-fold
algebraic tensor product of X. The projective tensor norm on ®, X is de-

fined by
m m
ulle = inf { 3" lwrsll -+ lonpll 0= @16 @+ @20 € @0 X},
k=1 k=1

U E Qp X.
Let ®,, » X denote the completion of (®,, X, ||-||x), called the n-fold projective
tensor product of X. For 11 ® - - Q@ x,, € R, X, let 21 Q- - - ®5 Ty, denote its
symmetrization, that is,

71 Qs Qs T :% Z xa(1)®"'®mo(n)a
cem(n)
where m(n) is the group of permutations of {1,...,n}. We write ®, X
for the n-fold symmetric algebraic tensor product of X, that is, the linear
span of {x] ®; -+ Qs xp : z1,...,2, € X} in ®, X. Each u € ®,, s X has
a representation u = Y ;" \pg ®g - -+ @ T where A1, ..., Ay, are scalars
and x1,...,x,;, are vectors in X. The symmetric projective tensor norm on

®n,s X is defined by
m m
e = g { 3 el -zl 2 0= 3 A @4 @ 25 € @e X .
k=1 k=1

UE QpsX.

Let ®, 5 X denote the completion of (@5 X, | - ||s,x), called the n-fold
symmetric projective tensor product of X.

For the basic knowledge about (symmetric) projective tensor products,
we refer to [0], [7], and [16].

For a Banach lattice F, let ®, FE denote the n-fold vector lattice tensor
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product of E. The positive projective tensor norm on ®,, E is defined by

m
el = inf { 3 llz e
k=1

m
[ lonel: zig € B ful €D w1x @ @ ang s
k=1
u € Ry E,

where E denotes the positive cone of E. Let ®n7‘7r‘ FE denote the completion
of (®n E, || - [||), which is a Banach lattice, called the positive n-fold pro-
jective tensor product of E. Let ®, ¢ E denote the n-fold symmetric vector
lattice tensor product of E. The positive symmetric projective tensor norm
on ®p s F is defined by

m m
1wl g,x| = inf{z Nkl llael|™ : ze € BT Jul <7 [ Al @ -+ @4 l“k}v
=1 =1
UE Qps .

Let @y, s |r| E denote the completion of (®n,s E, || - [|5x|), Which is a Banach
lattice, called the positive n-fold symmetric projective tensor product of E.
For the basic knowledge about (symmetric) vector lattice tensor products

and positive (symmetric) projective tensor products, we refer to [§], [9] and
[18] (also see [3]).

3. Diagonals of projective tensor products. In this section we as-
sume that X is a Banach space with a 1-unconditional basis {e; : i € N}. Gel-
baum and Lamadrid [10] showed that {e; ® e; : (i,5) € N?} with the square
order is a basis of ®g ., X (it is not necessarily an unconditional basis). For
instance, Kwapieni and Pelczyniski [14] proved that {e; ® e; : (4,7) € N?} is
not an unconditional basis of ®2,7r ly. In general, Grecu and Ryan [I1] estab-
lished that {e;;, ®---®e;, : (i1,...,i,) € N} with the order defined in [I1]
is a basis of ®y, r X. They also showed that {e;, ®s - ®se;, ¢ (i1,...,in) €
N™ iy > .-+ >i,} with the order defined in [I1] is a basis of @y, 5 X.

Let A(®pr X) (resp. A(®p s X)) denote the main diagonal space of
®@n.r X (resp. @y s« X), that is, the closed subspace spanned in ®y, » X (resp.
in ®,, s X) by the tensor diagonal {e; ® ---®e; : i € N}. A combination of
[12, Theorem 3.12] and [0, Lemma 2| yields the following lemma.

LEMMA 3.1. The tensor diagonal {e;®- - -®e; : i € N} is a 1-unconditional
basis of A(®nx X), and the projection Q : @px X — A(@px X) defined by

€, @ Qe ifi = - =in,

0 otherwise,

ansse|

is bounded with ||Q] < 1.
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We will use the following Rademacher averaging formula to show that
the tensor diagonal {e; @ -+~ ®e; : i € N} is a basis of A(®y, 5 X). For this
formula see |17, Lemma 2.22| and [I3, Lemma 2.3].

RADEMACHER AVERAGING. Let Zy,. .., Z, be vector spaces and ;€ Z;
fori=1,...,.nandk=1,...,m. Then

éxl,k@)...@xn,k—x(zhg a:lk) <Zrk g;nk>

0 k=1

where (1) is the sequence of Rademacher functions on [0, 1].

LEMMA 3.2. The tensor diagonal {e; ® --- ® e; : i € N} is a basis of
A(&n,s,x X) and the projection Qs : On,s.n X — A(@n,s.x X) defined by

ei1®8”'®86in Zf/Ll:...:/Ln’

0 otherwise,

Qs(eil Qs+ Qs ein) = {

is bounded with ||Qs|| < 1.

Proof. Since {e;, ®s---®se€;, & (i1,...,0,) € N i3 > ... >14,} is a basis
of ®n,s,ﬂ X, the tensor diagonal {e¢; ® --- ® ¢; : i € N} is a basic sequence,
and hence a basis of A(®y, s, X). Next we show that Qs is bounded with
12l < 1.

Define s : @, X — ®p s X by s(v) = D00 21 Qs -+ @ T i, for every
V=) 1@ ® Tn € ®n X. Then s is a bounded linear projection
and so can be extended to ®, » X with values in ®,, s » X (see [7]). Take any
u = Zilz---zin biy....in€i; Qs -+ Qg €, € QpsxX. For every p,q € N with

p <q, let
q

Up,g = Z biy,....in€i1; Ps -+ Bs €y, -

112 2ln, 01,0 in =P

Then for every € > 0 there exist \y € R and z, = Y ;0  aire; € X, k =
1,...,m, such that

m m
up,q:ZAkxk‘ ®s @5z and Z|>‘k| el < Nlupgllsx + e
k=1 k=1

Note that {e;; ®s - - ®se;, : (i1,...,in) € N", 43 > -+ > 4,} is a basis of
®n’577rX and

Upg = $(Up,q) Z)‘k Z Wiy o @iy oS (€5 @ -+ ® €4,)

U1 5eeein

Z &iteonsin ( Z Ne@iy o -+ az‘n,k> €ip Ds D5 iy s
k=1

112> >in
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where §;, .. 4, are positive integers obtained by adding equal terms. In par-

ticular, & .. ; =1 for ¢ € N. Thus

m
bi.i=Y aiy, p<i<q

By Rademacher averaging,

q
H Z b, i€ @ s €
i=p

S,
m  q
o DD IR
S,
k=1 i=p
m
< |
kzl\ k| - Z (a;rei) ®s -+ Ds (a; 1€:) on

Em:‘)\ﬂ H (iaz ,ri(t ) Qs+ Bs (Zq:ai,kn(t)ei) dt
k=1 i=p i=p

q n m
[ S assrsoe| e < 30 Il el < Jupallon -+
i=p k=1

S,

and hence, for every p,q € N with p < ¢,

q q
H E bi.. iei Qs - Qse; < H E biy,...in€i Vs Vs €4,
. S, . . . . S,
1=p 112 2in, 81, in =P

It follows that @ is well defined and bounded with [|Qs]| < 1. m

REMARK 3.3. Note that for every u € ®, s X we have |Ju||r < ||ulls» <
(n™/n)|Jullx (see [7]). Thus A(®y s X) is isomorphic to A(®,, » X), and
hence {e; ® --- @ e; : i € N} is an unconditional basis of A(® s, X). In
Section 4 we will show that {e; ® --- ®e; : i € N} is also a 1-unconditional
basis of A(®p 5.5 X).

By a Banach lattice with a Schauder basis we mean a Banach lattice in
which the unit vectors form a basis and the order is defined coordinatewise.
It follows that such a Schauder basis is 1-unconditional. Conversely, every
Banach space with a 1-unconditional basis is a Banach lattice with the order
defined coordinatewise. In what follows, E is a Banach lattice with a basis
{e; : i € N}. As a special case of [4) Lemma 22|, the set {e;®e; : (i,7) € N?}
with any order is a (1-unconditional) basis of ®27|W|E . The following lemma
can be proved in a similar way.
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LEMMA 3.4. The tensor basis {e;; ®---®e;, = (i1,...,in) € N} with any
order is a (1l-unconditional) basis of ®n7|ﬂ| E, and the tensor basis
{€i, ®s -+ ®sei, + (i1,...,0n) € N 43 > -+ > i} with any order is a
(1-unconditional) basis of ®n,s7|7r|E.

Let A(&y, x| E) (resp. A(®, x| E)) denote the main diagonal space of
®n7|ﬂ| E (resp. ®n’s’|ﬂ E), that is, the closed subspace spanned in ®n7|ﬂ| E
(resp. in ®n,s,‘ﬂ| E) by the tensor diagonal {e; @ --- ®e; : i € N}. It follows
from the above lemma that {e; ® --- ® ¢; : i € N} is a (1-unconditional)
basis of both A(®n7‘ﬂ| E) and A(@n,s,w E).

THEOREM 3.5. The three main diagonal spaces A(@y  E), A(®n,|ﬂ E),
and A(®n7s’|w| E) are pairwise isometrically isomorphic.

Proof. First we show that A(®, . E) is isometrically isomorphic to
A(@p,jr E). Since {e; ® --- ® e; : i € N} is a basis of both A(®p« E)
and A(®, |- E), it suffices to show that [|ulz = [ulljy for every u =
Zﬁzl ai€i ® - - Q €. X

Let Q : @pr B — A(®pnx E) be the projection defined in Lemma 3.1,
and for every t € N, define Qt : A(®p  E) = AR E) by

[e%s) t
Qt(zai€i®"'®ei) :Zai€i®"'®€i.
i=1 i=1

Then @, is a bounded projection with ||Q] < 1.
On the one hand, for every € > 0, u has a representation

m
Uzle,k®"‘®xn,ke®nE
k=1

such that

m
D Nzrsll- - lenkl < llullx +e
k=1

Since |u| <> |21k ® - @ |@p k], it follows that

m
lullie <Dl
k=1

which implies that [|ul[| < [ullx-
On th(? other hand, for every ¢ > 0 there exists v = > /" | y1 x®- - QY i €
@n E C Qp |z E with y;x € Et for1 < j<mnand 1<k < msuch that

lu| <wv and
m
Z Yyl - | Ynk
k=1

|zl < luflr +e

| < lulljx +e-
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Write ;= > ooy bijrei for 1 <j<mnand 1<k <m. Then

UV = E 5 bzl,l,k zn,n k€iq Q- ® €i -

k=1i1,...,in

Note that {e;, ® ---®e;, : (i1,...,i,) € N} is a l-unconditional basis of
the Banach lattice ®n7‘ﬂ| E and the original order on ®n7|7r| E coincides with
the coordinatewise order. Thus

t

:Z’ai|€i - ®e < Zzbz’l’k anez® - ® €.

i=1 k=1 1i=1

lu

Since {e;®--®e; : i € N} is a l-unconditional basis of A(®,, » E), it follows
that A(®, - F) is a Banach lattice with the order defined coordinatewise.
That is, || - || is a lattice norm on A(®,, » E). Thus

m t
lull» < \ZZ T
k=1 i=1

m
<yl Nymell <l + e,
k=1

®ei|| = 1Qro Q)] < vl

which implies that ||ullx < [[ul]|z-

Next we show that A(®n,‘7r| E) isisometrically isomorphic to A(®n787|7r| E).
Since {e; ®--- ®e; : i € N} is a basis of both A(®,, - E) and A(Q,,  x E),
it suffices to show that [|ull|| = [[ulls x| for every u = S A ®--®e.
It follows from the definitions that [|ul]|z < [|ulls r- Thus we only need to
show that HU’HS,lﬂ" < ||u”w.

Since F is a Banach lattice, for every z1,...,z, € FE, one can define

1/n

(coordinatewise) the expression z7"" - - -22/™ to be an element of E (see |15,
Section 1.d]). It follows from [15, Proposition 1.d.2] that

(3.1) a7 |zl V7)< a7 V™

DefineT:Ex---x E — A(®n737|7r‘ E) D
oo
T((Eh”_,mn) — Zal,i"'an,iei ®s ®s €;

for every x, = > 7  apie; € E for 1 < k < n. Now for any p,q € N with
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p < ¢, by (3.1) and Lemma 3.2 we have

q
H Z a1 anilei ®s - Qg €

s,|m]
i=p
q
= (’al,i ... an,z"l/nei) Rs -+ g (‘al,i - an,i|1/n€i)
i:p 37|7T‘
q
B QS( D (avi -t |"ei) @ - @5 (Jar, - an,inll/nein)> sl
U15eeein=p ’
q
<] X e analmen) ®s- @ i ani M)
115000y in =P ST
q q
- (Z a1 - "an,z’|1/n€i) Qs -+ Ds (Z |ay; - 'an,i|1/n€i>
i=p i=p s, ||
a n g 1/n g 1/nn
=D lari-ang|"Me|| = H(Z jaxq ei) (Z |ani ei)
i=p 1=p i=p
q q
< Zal,iei H Zamei ,
i=p i=p

which implies that T is well defined and that ||T|| < 1. It is clear that
T is a positive n-linear operator. Note that every Banach lattice with a
(1-unconditional) basis is Dedekind complete. By [3l Proposition 3.3| there
exists a positive linear operator T : ®n7|7r| E — A(@n,&W E) such that
IT®|=|IT|| <1and T® (21 @ - ®xy) = T(21,...,1,) for every x1,..., 2,
€ E. Since

t t
T®(u) = ZaiT(ei7"'aei) = Zai6i® e =u,
i=1 i=1
it follows that [|ul|s - = ||T®(u)Hsy‘,,| < [ufljr|- =

4. Relations to concavification. In this section we assume that F is
a Banach lattice with a (1-unconditional) basis {e; : i € N}. For every a € R
and every o > 0 we define a® = sign(a) - |a|®. For every x = Y .2, a;e; we
define x® coordinatewise, that is,

(e 9]
o «
T —E a;'e;.
i=1

It follows that if z = )", a;e; € E (that is, Y ., a;e; converges in E) then
" = 3 2 aj'e; € E. Let E,) denote the n-concavification of E (see [13],
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Section 1.d|). It follows that

oo oo
Epy = {x" = Za?ei T = Zaiei € E}
i=1 i=1

In other words,
o (o)
Eqy = {x = Zaiei st/ = Zail/nei € E}
i=1 i=1

For every = € E(,) we define

m m
. 1
lellm, = inf { D eyl s ax € BL), 1<k <m, J2l <3 ).
k=1 k=1

Then ||- ||z, is a lattice norm on E,), which may not be complete (see [4]).
Let Ej, denote the completion of E(,) with respect to ||| g, . Then Ej, is a
Banach lattice. Note that E(,), being a vector lattice, satisfies the Riesz De-
composition Property (see [I, Theorem 1.13|). Thus the lattice norm || - || En)

on FE(, has the following equivalent form:

m m
. 1
|zl £, :mf{z ka/nH% : xkeE(‘;), 1<k<m, \x!szk}, T € Eyy.
k=1 k=1
REMARK 4.1. If £ = ¢, for 1 < p < oo then E,) = {,,, as vector

spaces. In the case that p > n, I is n-convex, and hence Ej,) = E(,) = {y/p
as Banach spaces. Thus the norm || - ||z, is the £,/,-norm on E,. For
p < n, E satisfies the lower n-estimate. It follows from [4, Proposition 21]
that Ej, = {1 as Banach spaces. Thus the norm | - | g, is the ¢;-norm
on E(n)

THEOREM 4.2. Let E be a Banach lattice with a basis. Then Ep, is
isometrically lattice isomorphic to A(®n’sﬂ‘ﬂ| E).

PTOOf. Define ¢ : E(n) — A(®n,s,|7r\ E) by

o oo
$(=") = ¢< 3 a?ei) =S e @, 0y
=1 =1

for every 2" € E(,), where z = Y2, aie; € E. Now for every p,q € N with
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p < q, we have

q
H E ale; s Qs €

s €1 Ws s €
i=p

q
D lail"e @ - @ e
i=p
q
Do lanlen ®s - ®slai, e,

8| 8|7

IN

S7|7.r‘

_ (Zlaﬂei) ®s...®s(zq:|a¢\ei> .

)

It follows that ¢ is well defined and

(4.1) lo(z™)]ls Vz = Zaiei €E.

i=1

It is easy to see that ¢ is a vector lattice homomorphism. Next we show that
it is an isometry.

Take any « = Y77, af'e; € E(,). For every ¢ > 0, choose z = 72, al'e;

€ E(tl) for 1 <k < m such that |z| <> ;" ) and

m

1
Sl 1% < lzllg,, + <.
k._

Then, by (4.1),

o = WDl < o (L),
<Y lo(@n) s < Z "I < 1]l +e,
k=1

which implies that ||¢(z)sx < 2] 5,, -

For the reverse inequality, for every € > 0 choose A\, € RT and v, =
Yoo brie; € ET for 1 <k < m such that [¢(z)| < Y5, Meyk ®s -+ Qs Ui
and

D Mllgrl™ < @) s ) + -
k=1
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Then

o
D latles @ - @ €5 = ¢(|z]) = [$(2)|
=1
m
<) Mk @s - D U
k=1

m
=D e Y briei, ®s e s b i,
k=1

ilr“vin

Note that the order on ®n,s,|ﬂ F is coordinatewise. Thus
oo m oo m

Slal) = 3 alec 0+ Dues 3N D bisei @ @ee = 6 3 M.
i=1 k=1 =1 k=1

Since ¢ is bipositive, we have || < Y}, A\gy}, and hence

Izl £ <D Aellyel™ < o)

k=1

|s x| + €5

which implies that ||z(|g,, < ||¢(x)lls,jx|-
In conclusion, we have shown that ¢ is an isometry, and hence ¢ can be
extended isometrically from E,) to its completion Ej,), still denoted by ¢.
We can now easily show that ¢ is onto. Indeed, take any > 7, a;e; ®s
e Rg e € A(®n,57‘ﬂ| E). Define x, = Yy ;0 ag/nei € F for each m € N.
Then 2!, = > ae; € E(ny and ¢(7,) = 22;1 aje; Qg -+ - Qg €;, which in
turn converges to » 2 aie; @5 -+ D5 €; in ARy, 47 E). =

In particular, if E is n-convex then F,) is a Banach lattice (see [13,
Section 1.d|), and hence E(,) = Ejy)- This yields the following.

COROLLARY 4.3. If E is n-convex then A(®n757|ﬂ| E) = Ey,) lattice iso-
metrically.

The following special case of our results is Proposition 21 of [4].

PROPOSITION 4.4. If E satisfies the lower n-estimate with constant M
then A(®,, 4| E) is lattice isomorphic (and isometric if M = 1) to {;.

We now arrive at the main result of this paper.

THEOREM 4.5. All four main diagonal spaces A(@pr E), A(@nsx E),
A(®n7|w| E), and A(@n’s,w E) are pairwise isometrically isomorphic.

Proof. 1t follows from Remark 3.3 and Theorems 3.5 and 4.2 that
A(®psx E) is isomorphic to Ej,) via the mapping ¢ : E,) — A(@psxE)
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defined by
o
= Za?ei Qs -+ Qs €
i=1

for every 2" = Y77 ajle; € E(,y where z = ) 7 a;e; € E, with

nn
(42) el <160 ag, .. 5 < e, @€ B,

Since Ej,) is a vector lattice, there is an order (which is the coordinatewise
order) in A(®psr E) induced by Ej,) such that A(®psx E) is a vector
lattice. Next we show that the norm on A(®y, s F) is a lattice norm.

Let Qs : Qpsx B — A(@n s, I2) be the projection defined in Lemma 3.2.
Take any z =Y =, alle; € E( ) For every € > 0, choose z, = > 2, a;'pei €

+
By

i=1

for 1 <k < m such that z = >_]" | z;, and

1
ZH VI < Nl2lls,, +e.

Thus

m

Z xk ’s7r ZHZG kez®s' ®sez
= Z HQS( (ail,keil) ®s - Os (ain,kein))

= U150e0in

10 H Z Qi ken) ©s - D (i, x61,)

B Fr) - ()

1
Zn VI < Nellg,, + e

[o(x) |,

S,

20

S,

s,

s,

which implies that Hgi)(x)”sm < ||$||E(n)7 and hence ||¢p(z)|sr = ||:1:|]E(n> by

(4.2). Since E(y) is dense in Ep,), it follows that [|¢(z)|sx = [lz[/g,,, for
every x € E[';}. Note that || - [[g,,, is a lattice norm on Ej,. Thus || - [|sx
is also a lattice norm on A(é)n,s,7r E). Hence for every x € E[n], we have
l6@@)llsx = [[l6@)Il], . = le(2Dllsx = (Il = =], which implies

that A(®y, s F) is isometrically isomorphic to Ej,)- The proof is complete
by Theorems 3.5 and 4.2. =
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COROLLARY 4.6. The tensor diagonal {e; ® --- @ e; :€ N} is a 1-
unconditional basis of A(@nsx E).

5. Applications to polynomials. In this section we assume that Y is
a Banach space and F is a Banach lattice with a (1-unconditional) basis
{e; : i € N}. Recall that an n-linear operator 7' : E X --- x E — Y is
called orthosymmetric if T'(z1,...,z,) = 0 whenever zy,...,x, € E with
x; L xjforsomei # jand ¢,j = 1,...,n. Also recall that an n-homogeneous
polynomial P : E — Y is called orthogonally additive if P(xz +vy) = P(z) +
P(y) whenever z,y € E with x L y. Let P,("E;Y) denote the space of all
continuous n-homogeneous orthogonally additive polynomials from E to Y.
In particular, denote P,("E;R) by P,("E).

For Banach spaces Z and Y, let £(Z;Y") denote the space of all contin-
uous linear operators from Z to Y, and let Z* := L£(Z;R). Theorem 4.2,
Proposition 4.4, and [3, Corollary 4.4] have the following consequences (see
also [2, Theorem 2.3]).

COROLLARY 5.1. Po("E;Y) is isometrically isomorphic to L(E,;Y ).
In particular, Po(" E) is isometrically isomorphic to (Epp))* = (E, || - HE(H))*'

COROLLARY 5.2. If E satisfies the lower n-estimate with constant 1 then
Po("E;Y) is isometrically isomorphic to L(€1;Y). In particular, Po("E) is
isometrically isomorphic to .

REMARK 5.3. We cover the well known results of Sundaresan [19] (see
also [2]). If £ = ¢, for 1 <p < oo then by Remark 4.1, Ej,; = £, if p > n,
and (Eqy, || - 1&.,)) = Cp/m: || - ley) if p < n. It follows from Corollary 5.1

that Py ("lp) = £y (p—n) if p > n, and Po("l}) = b if p < .

For an n-homogeneous polynomial P: Z - Y, let Tp: Zx--- X Z =Y
denote the symmetric n-linear operator associated to P. The Polarization
Inequality states that | P|| < ||Tp| < (n"/n!)||P|| (see [7]). It is known that
if Z is a Hilbert space then for every n-homogeneous polynomial P : Z — Y,
we have || Tp|| = || P]| (see [6, Proposition 1.44] and [7]). Now define the n-
homogeneous polynomial P(x) = ay - --a, for every x = (a;); € ¢1. Then
P : 0y — Rand [|[Tp| = (n"/n))||P] (see [6, Example 1.39] and [7]). Next
we will show that every continuous n-homogeneous orthogonally additive
polynomial P : E — Y satisfies ||Tp|| = || P||.

THEOREM 5.4. For every P € P,("E;Y), | Tp| = ||P|-

Proof. Take any P € P,("E;Y). It follows from [3, Lemma 4.1] that
its associated symmetric n-linear operator Tp is orthosymmetric. By lin-
earization of P there exists P € L(®ns, F;Y) such that |P|| = ||P|| and
Pz ® --- ® x) = P(x) for every x € E. By linearization of Tp there
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exists Tp € L(&n F;Y) such that |Tp| = ||Tp| and Tp(z1 @ - @ xy)
= Tp(acl,.. xy) for every xy,...,z, € E. For every € > 0 there exists
u € ®n,TE such that HuH7r < 1 and |Tp| < | Tp(u)| + . Note that
{ei, ® - ®@e;, + (i1,...,0n) € N} with the order defined in [11] is a

basis of ®n,ﬂ E. We write

E Aiy,..yin€iy @+ @ €4,y

U15eenyin

Let Q : ®pn E — A(®nx E) be the projection defined in Lemma 3.1. Then

D
H Zai,...,iez‘ X
i=1
It follows from Theorem 4.5 that
el = Il < ITp(u)] +c = | 2 e Trlen o)

0150
= H Z ai.iTp(ei, ... e
i=1
B o0
= HP<Z%...,¢€¢ QK- Q ei) ‘ +e
i=1
- o0
< ”PHH Zai,...,iei Q- Qe
i=1
- o0
= HPHH Zaz’,...,iei X---Qe
i=1 T

which implies that || Tp|| < ||P||, and hence [|Tp| = ||P]|. =

ei|| =Q)lx < flufl~ < 1.

’—i—e

+e<||P|+e=|P| +e,
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