
STUDIA MATHEMATICA 221 (2) (2014)

Polaroid type operators and compact perturbations

by

Chun Guang Li and Ting Ting Zhou (Changchun)

Abstract. A bounded linear operator T acting on a Hilbert space is said to be
polaroid if each isolated point in the spectrum is a pole of the resolvent of T . There are
several generalizations of the polaroid property. We investigate compact perturbations of
polaroid type operators. We prove that, given an operator T and ε > 0, there exists a
compact operator K with ‖K‖ < ε such that T +K is polaroid. Moreover, we characterize
those operators for which a certain polaroid type property is stable under (small) compact
perturbations.

1. Introduction. This paper is inspired by [1, 4, 5], where the stability
of polaroid type properties under some commuting perturbations is studied.
The purpose of this paper is to investigate the perturbations of polaroid
type properties under small compact perturbations.

Throughout this paper, H denotes a complex separable infinite-dimen-
sional Hilbert space. We let B(H) denote the algebra of all bounded linear
operators on H, and K(H) the ideal of compact operators in B(H).

Let T ∈ B(H). We denote by σ(T ), σp(T ), σs(T ) and σa(T ) the spectrum,
the point spectrum, the surjectivity spectrum and the approximate point
spectrum of T respectively. Denote by kerT and ranT the kernel and the
range of T respectively. The ascent of T is defined as the smallest non-
negative integer p := p(T ) such that kerT p = kerT p+1. If such an integer
does not exist we define p(T ) =∞. Analogously, the descent of T is defined
as the smallest non-negative integer q := q(T ) such that ranT p = ranT p+1.
If such an integer does not exist we define q(T ) =∞. It is well known that
if p(T ) and q(T ) are finite then p(T ) = q(T ).

Recall that T is Drazin invertible if p(T ) and q(T ) are finite; this holds
if and only if 0 is a pole of the resolvent of T (see [13, Proposition 50.2]).
Moreover, T is left Drazin invertible if p(T ) <∞ and ran(T p(T )+1) is closed.
Analogously, T is right Drazin invertible if q(T ) < ∞ and ran(T q(T )) is
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closed. We say λ ∈ σa(T ) is a left pole of T if T −λ is left Drazin invertible,
and λ ∈ σs(T ) is a right pole of T if T − λ is right Drazin invertible.

Given a subset σ of C, we denote by isoσ the set of all isolated points
of σ.

The notion of polaroid operators was first introduced in [11].

Definition 1.1. We say that T ∈ B(H) is polaroid, denoted by T ∈ (P),
if every λ ∈ isoσ(T ) is a pole of the resolvent of T .

The polaroid property is often used as a basic condition to study Weyl’s
theorem for operators and its generalizations (see [2, 3, 4, 8, 9, 11]). Since
people are interested in the stability of Weyl type theorems under pertur-
bations, we are going to study small compact perturbations of polaroid
properties.

Some other variants of the polaroid property are introduced in [2].

Definition 1.2. We say that T ∈ B(H) is a-polaroid, denoted by T ∈
(AP), if every λ ∈ isoσa(T ) is a pole of the resolvent of T ; T ∈ B(H) is said
to be left polaroid, denoted by T ∈ (LP), if every λ ∈ isoσa(T ) is a left pole
of T ; T ∈ B(H) is said to be right polaroid, denoted by T ∈ (RP), if every
λ ∈ isoσs(T ) is a right pole of T .

It is easy to see that

T a-polaroid ⇒ T left polaroid ⇒ T polaroid,

and

T left polaroid ⇔ T ∗ right polaroid.

In [10], Duggal introduced the concept of hereditarily polaroid operators.

Definition 1.3. We say that T ∈ B(H) is hereditarily polaroid, denoted
by T ∈ (HP), if the restriction of T to each closed invariant subspace is
polaroid.

The purpose of this paper is to investigate compact perturbations of
Hilbert space operators with polaroid properties. We shall prove that given
T ∈ B(H) and ε > 0, there exists K ∈ K(H) with ‖K‖ < ε such that T +K
is polaroid. Moreover, we shall study the stability of polaroid properties
under (small) compact perturbations. In order to state our main results, we
first introduce some notations and terminology.

An operator T ∈ B(H) is called semi-Fredholm if ranT is closed and
either nulT or nulT ∗ is finite, where nulT , dim kerT and nulT ∗ ,
dim kerT ∗; in this case, indT , nulT − nulT ∗ is called the index of T .
In particular, if −∞ < indT < ∞, then T is called a Fredholm operator.
T is called a Weyl operator if it is Fredholm of index 0. The Wolf spec-
trum σlre(T ), the Weyl spectrum σw(T ) and the essential approximate point
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spectrum σea(T ) are defined by

σlre(T ) , {λ ∈ C : T − λ is not semi-Fredholm},
σw(T ) , {λ ∈ C : T − λ is not Weyl},

σea(T ) ,
⋂

K∈K(H)

σa(T +K).

ρs-F(T ) , C \ σlre(T ) is the semi-Fredholm domain of T . It is known that

C \ σea(T ) = {λ ∈ ρs-F(T ) : ind(T − λ) ≤ 0}.
We denote

ρ+s-F(T ) , {λ ∈ ρs-F(T ) : ind(T − λ) > 0},
ρ−s-F(T ) , {λ ∈ ρs-F(T ) : ind(T − λ) < 0},
ρ0s-F(T ) , {λ ∈ ρs-F(T ) : T − λ is Weyl}.

For T ∈ B(H) and λ ∈ ρs-F(T ), the minimal index of λ−T is defined by

min ind(λ− T ) = min{nul(λ− T ), nul(λ− T )∗}.
It is well known that the function λ 7→ min ind(λ−T ) is constant on every

component of ρs-F(T ) except for an at most denumerable subset ρss-F(T ) of
ρs-F(T ) without limit points in ρs-F(T ). Furthermore, if µ ∈ ρss-F(T ) and λ
is a point of ρs-F(T ) in the same component as µ but λ /∈ ρss-F(T ), then

min ind(λ− T ) < min ind(µ− T ).

ρss-F(T ) is called the set of singular points of the semi-Fredholm domain
ρs-F(T ); ρrs-F(T ) = ρs-F(T ) \ ρss-F(T ) is the set of regular points. For details,
one can see [12, Corollary 1.14].

For λ0 ∈ C and δ > 0, we denote Bδ(λ0) = {λ ∈ C : |λ− λ0| < δ}.
We let E(T ) = {λ ∈ σlre(T ) : ∃δ > 0 such that ind(T − µ) < 0 for

µ ∈ Bδ(λ) \ {λ} and min ind(T − µ) = 0 for µ ∈ Bδ(λ) \ [{λ} ∪ ρss-F(T )]}.
The main results of this paper are listed below.

Theorem 1.4 (Main Theorem 1). Given T ∈ B(H) and ε > 0, there
exists K ∈ K(H) with ‖K‖ < ε such that T +K ∈ (P).

Theorem 1.5 (Main Theorem 2). Let T ∈ B(H). Then the following
statements are equivalent:

(1) Given ε > 0, there is K ∈ K(H) with ‖K‖ < ε such that T+K /∈ (P).
(2) There exists K ∈ K(H) such that T +K /∈ (P).
(3) isoσw(T ) 6= ∅.
Theorem 1.6 (Main Theorem 3). Let T ∈ B(H). Then the following

statements are equivalent:

(1) Given ε>0, there is K ∈ K(H) with ‖K‖ < ε such that T+K∈(AP).
(2) E(T ) = ∅.
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Theorem 1.7 (Main Theorem 4). Let T ∈ B(H). Then the following
statements are equivalent.

(1) Given ε>0, there is K∈K(H) with ‖K‖<ε such that T+K /∈(AP).
(2) There exists K ∈ K(H) such that T +K /∈ (AP).
(3) isoσw(T ) 6= ∅ or ρ−s-F(T ) 6= ∅.
The rest of this paper is organized as follows. In Section 2, we make

some preparations. In Section 3, we give the proofs of the main results. In
Section 4, we study compact perturbations of the left and right polaroid
properties. Section 5 is devoted to investigating the compact perturbations
of the hereditarily polaroid property.

2. Preparations. Let T ∈ B(H). If σ is a clopen subset of σ(T ), then
there exists an analytic Cauchy domain Ω such that σ ⊂ Ω and [σ(T )\σ]∩Ω
= ∅. We let E(σ;T ) denote the Riesz idempotent of T corresponding to σ,
that is,

E(σ;T ) =
1

2πi

�

Γ

(λ− T )−1 dλ,

where Γ = ∂Ω is positively oriented with respect toΩ in the sense of complex
variable theory. In this case, we denoteH(σ;T ) = ranE(σ;T ). If λ ∈ isoσ(T ),
then {λ} is a clopen subset of σ(T ) and we simply write H(λ;T ) instead of
H({λ};T ); if, in addition, dimH(λ;T ) <∞, then λ is called a normal eigen-
value of T . The set of all normal eigenvalues of T will be denoted by σ0(T ).

Obviously, each normal eigenvalue of T is a pole of the resolvent of T .

Lemma 2.1 ([15, Theorem 2.10]). Let T ∈ B(H) and suppose that σ(T )
= σ1 ∪ σ2, where σi (i = 1, 2) are clopen subsets of σ(T ) and σ1 ∩ σ2 = ∅.
Then H(σ1;T ) + H(σ2;T ) = H, H(σ1;T ) ∩ H(σ2;T ) = {0} and T admits
the matrix representation

T =

[
T1 0

0 T2

]
H(σ1;T )

H(σ2;T )
,

where σ(Ti) = σi (i = 1, 2).

Lemma 2.2 ([12, Corollary 3.22]). Let T ∈ B(H) and suppose that T
admits the representation

T =

[
A C

0 B

]
H1

H2

,

where σs(A) ∩ σa(B) = ∅. Then T ∼ A⊕B.

Using the above lemma, we can obtain the following result, whose proof
is left to the reader.
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Corollary 2.3. Let T ∈ B(H) and suppose that σ is a clopen subset
of σ(T ). Then

T =

[
A ∗
0 B

]
H(σ;T )

H(σ;T )⊥
∼

[
A 0

0 B

]
H(σ;T )

H(σ;T )⊥
,

where σ(A) = σ and σ(B) = σ(T ) \ σ.

If S, T ∈ B(H), then S ∼ T denotes that S and T are similar. By [6,
Theorem 2.11] and Lemma 2.2, we can obtain the following lemma.

Lemma 2.4. Let T ∈ B(H). Then:

(1) T is Drazin invertible if and only if

T ∼

[
T1 0

0 T2

]
M
M⊥

,

where T1 is nilpotent and T2 is invertible.
(2) If 0 ∈ isoa(T ), then T is left Drazin invertible if and only if

T ∼

[
T1 0

0 T2

]
M
M⊥

,

where T1 is nilpotent and T2 is left invertible.

Lemma 2.5 ([7, Proposition 6.9]). Let T ∈ B(H) and λ0 ∈ isoσ(T ).
Then the following statements are equivalent:

(1) λ0 ∈ σ0(T ).
(2) λ0 ∈ ρ0s-F(T ).
(3) λ0 ∈ ρs-F(T ).

Lemma 2.6 ([14, Lemma 3.2.6]). Let T ∈ B(H) and suppose that ∅ 6=
Γ ⊂ σlre(T ). Then, given ε > 0, there exists a compact operator K with
‖K‖ < ε such that

T +K =

[
N ∗
0 A

]
M
M⊥

,

where

(1) N is a diagonal normal operator of uniformly infinite multiplicity,
and σ(N) = σlre(N) = Γ ,

(2) σ(T ) = σ(A), σlre(T ) = σlre(A) and ind(T − λ) = ind(A− λ) for all
λ ∈ ρs-F(T ).

Lemma 2.7 ([16, Corollary 2.9]). Given T ∈ B(H) and ε > 0, there
exists K ∈ K(H) with

‖K‖ < ε+ max{dist[λ, ∂ρs-F(T )] : λ ∈ σ0(T )}
such that σp(T +K) = ρ+s-F(T ).
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3. Proof of the main theorems. For nonzero vectors x, y ∈ H, we
define the rank-one operator x ⊗ y ∈ B(H) as (x ⊗ y)z = 〈z, y〉x for each
z ∈ H.

We first give a useful lemma.

Lemma 3.1. Let T ∈ B(H) and ε > 0. Then there exists K ∈ K(H) with
‖K‖ < ε such that isoσ(T +K) = σ0(T +K) and

min ind(T +K − λ) = min ind(T − λ)

for all λ ∈ ρ−s-F(T ).

Proof. If isoσ(T )∩σlre(T ) = ∅, by Lemma 2.5 we have isoσ(T ) = σ0(T ).
In this case, we need to do nothing. If isoσ(T ) ∩ σlre(T ) 6= ∅, without loss
of generality we assume that isoσ(T ) ∩ σlre(T ) = {λn}∞n=1; the proof of the
finite case is similar.

By Corollary 2.3, we have

T =


A1 ∗ · · · ∗
0 A2 · · · ∗

0 0
. . .

...

0 0 · · · B


H1

H2

...

H0

=

[
A ∗
0 B

]
H⊥0
H0

,

where σ(An) = {λn},
⊕n

k=1Hk =
∑n

k=1H(λk;T ) for each n ≥ 1 and H0 =
H	

⊕∞
k=1Hn. It is not difficult to see that σ(B) ⊂ σ(T ) \ {λn}∞n=1.

For ε > 0, by Lemma 2.6, there exists a compact operator K0 on H⊥0
with ‖K0‖ < ε/2 such that

A+K0 =

[⊕∞
n=1 λnIn ∗

0 A0

] ⊕∞
n=1Mn

H⊥0 	 (
⊕∞

n=1Mn)
,

where

• dimMn =∞ and In is the identity operator on Mn for each n ≥ 1,
• σ(A0) = σ(A), σlre(A0) = σlre(A) and ind(A0 − λ) = ind(A − λ) for

all λ ∈ ρs-F(A).

Fix n ≥ 1. Choose an onb {e(n)k }
∞
k=1 of Mn and define

Kn = αn

∞∑
k=1

1

k
e
(n)
k ⊗ e

(n)
k ,

where 0 < αn < ε/2n+1 with Bαn(λn) ∩ σ(T ) = {λn} and Bαn(λn) ∩
Bαm(λm) = ∅ for m 6= n. We denote

K0 =

[
K0 0

0 0

]
H⊥0
H0

.
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We let K =
∑∞

n=0Kn. Noting that
∑∞

n=0 ‖Kn‖ < ε, we have K ∈ K(H)
and ‖K‖ < ε. It suffices to prove that isoσ(T + K) ⊂ σ0(T + K) and
min ind(T +K − λ) = min ind(T − λ) for all λ ∈ ρ−s-F(T ).

Noting that

T +K =


⊕∞

n=1(λnIn +Kn) ∗ ∗
0 A0 ∗
0 0 B


⊕∞

n=1Mn

H⊥0 	 (
⊕∞

n=1Mn)

H0

,

it is not difficult to see that

• isoσ(T +K) = {λn + αn/k : n, k ≥ 1} ∪ σ0(B) = σ0(T +K),
• for λ ∈ ρ−s-F(T ), we have λ /∈ σ(A0)∪ σ(

⊕∞
n=1(λnIn +Kn)) and hence

nul(T +K − λ) = nul(B − λ) = nul(T − λ).

If λ0 ∈ ρ−s-F(T +K), we have

min ind(T +K − λ0) = nul(T +K − λ0) = nul(B − λ0)
= nul(T − λ0) = min ind(T − λ0).

Proof of Theorem 1.4. For ε > 0, by Lemma 3.1, there exists K ∈ K(H)
with ‖K‖ < ε such that isoσ(T + K) = σ0(T + K); then it is easy to see
that T +K ∈ (P).

Lemma 3.2. Let T ∈ B(H) and suppose that isoσ(T )∩σlre(T ) 6= ∅. Then
for each ε > 0 there exists K ∈ K(H) with ‖K‖ < ε such that T +K /∈ (P).

Proof. Fix λ0 ∈ isoσ(T )∩σlre(T ). By Corollary 2.3, T can be written as

T =

[
A ∗
0 B

]
H(λ0;T )

H(λ0;T )⊥
,

where σ(A) = {λ0} and σ(B) = σ(T ) \ {λ0}. Noting that λ0 ∈ σlre(T ), we
have dimH(λ0;T ) =∞ and σlre(A) = {λ0}.

For ε > 0, by Lemma 2.6, there exists a compact operatorK1 onH(λ0;T )
with ‖K1‖ < ε/2 such that

A+K1 =

[
λ0I ∗
0 A0

]
M

H(λ0;T )	M
,

where

• dimM =∞ and I is the identity operator on M,
• σ(A0) = σlre(A0) = {λ0}.
Choose an onb {en}∞n=1 of M and define K2 ∈ K(H) by

K2 =

∞∑
k=1

ε

k + 1
ek+1 ⊗ ek.
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We denote

K1 =

[
K1 0

0 0

]
H(λ0;T )

H(λ0;T )⊥
.

In addition, we let K = K1 + K2; then K ∈ K(H) and ‖K‖ < ε.
Moreover, T +K can be written as

T +K =

λ0I +K2 ∗ ∗
0 A0 ∗
0 0 B

 M
H(λ0;T )	M
H(λ0;T )⊥

=

[
A1 ∗
0 B

]
H(λ0;T )

H(λ0;T )⊥
.

It is easy to see that A1−λ0 is not nilpotent. Noting that σ(λ0I+K2) =
σ(A0) = {λ0} and λ0 /∈ σ(B), we have λ0 ∈ isoσ(T + K). We claim that
T +K − λ0 is not Drazin invertible. Otherwise, by Lemma 2.4, we have

T +K − λ0 ∼

[
T1 0

0 T2

]
H1

H⊥1
,

where T1 is nilpotent and T2 is invertible. Using a matrix calculation and
[12, Theorem 3.19], it is easy to see that A1 − λ0 and T1 are similar; this
means that A1 − λ0 is nilpotent, a contradiction. Hence the claim follows
and T +K /∈ (P).

Proof of Theorem 1.5. (1)⇒(2). This relation is obvious.

(2)⇒(3). If T + K /∈ (P) for some K ∈ K(H), then there exists λ0 ∈
isoσ(T +K) such that λ0 is not a pole of the resolvent of T +K. By Lemma
2.5, we have λ0 ∈ σlre(T + K) = σlre(T ). Noting that λ0 ∈ isoσ(T + K),
there exists δ > 0 such that T +K−λ is invertible for all λ ∈ Bδ(λ0)\{λ0}.
Hence ind(T − λ) = 0 for all λ ∈ Bδ(λ0) \ {λ0}. Thus λ0 ∈ isoσw(T ), so
isoσw(T ) 6= ∅.

(3)⇒(1). If isoσw(T ) 6= ∅, we choose λ0 ∈ isoσw(T ). For ε > 0, we
denote

σ1 = {λ ∈ σ0(T ) : dist[λ, ∂ρs-F(T )] ≥ ε/2} and σ2 = σ(T ) \ σ1.

Then σ1 is a finite clopen subset of σ(T ). By Corollary 2.3, T admits the
representation

T =

[
A ∗
0 B

]
H(σ1;T )

H(σ1;T )⊥
,

where σ(A) = σ1, σ(B) = σ2 and it is easy to verify that

max{dist[λ, ∂ρs-F(B)] : λ ∈ σ0(B)} < ε/2.

By Lemma 2.7, there exists a compact operator K1 on H(σ1;T )⊥ with
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‖K1‖ < ε/2 such that σp(B +K1) = ρ+s-F(B). We denote

K1 =

[
0

K1

]
H(σ1;T )

H(σ1;T )⊥
;

then K1 ∈ K(H) and ‖K1‖ < ε/2.
Since λ0 ∈ isoσw(T ), there exists δ > 0 such that ind(T + K1 − λ) = 0

for all λ ∈ Bδ(λ0) \ {λ0}. For fixed λ ∈ Bδ(λ0) \ {λ0}, it is easy to see that
ind(B+K1− λ) = 0 and hence λ /∈ σp(B+K1). It follows that B+K1− λ
is invertible. Noting that λ0 /∈ σ(A), we have λ0 ∈ isoσ(T +K1).

Since λ0 ∈ isoσw(T ), we have λ0 ∈ σlre(T ) and hence λ0 ∈ σlre(T +K1)∩
isoσ(T + K1). By Lemma 3.2, there exists K2 ∈ K(H) with ‖K2‖ < ε/2
such that T +K1 +K2 /∈ (P).

As a corollary of [12, Theorem 3.47], we have the following result.

Lemma 3.3 ([12, Theorem 3.47]). Let T ∈ B(H) and ε > 0. Then there
exists K ∈ K(H) with ‖K‖ < ε such that:

(1) There exists no singular point in the components of ρ−s-F(T +K) with
minimum index zero.

(2) min ind(T +K − λ) = min ind(T − λ) for all λ ∈ ρrs-F(T ).

Proof of Theorem 1.6. (1)⇒(2). If E(T ) 6= ∅, there exists λ0 ∈ σlre(T )
and δ>0 such that ind(T−λ) < 0 for all λ ∈ Bδ(λ0)\{λ0} and min ind(T−λ)
= 0 for almost all λ ∈ Bδ(λ0) \ {λ0}.

Fix µ0 ∈ Bδ(λ0) \ {λ0} such that min ind(T − µ0) = 0. Then T − µ0 is
bounded below. Hence there exists ε0 > 0 such that

‖(T − µ0)x‖ ≥ 2ε0

for all x ∈ H with ‖x‖ = 1.
We are going to show that T + K /∈ (AP) for any K ∈ K(H) with

‖K‖ < ε0. Otherwise, there exists K0 ∈ K(H) with ‖K0‖ < ε0 such that
T+K0 ∈ (AP). We claim λ0 /∈ isoσa(T+K0). In fact, if λ0 ∈ isoσa(T+K0),
then since T + K0 ∈ (AP), the operator T + K0 − λ0 is Drazin invertible,
which means that λ0 ∈ isoσ(T + K0), a contradiction. It follows that λ0 /∈
isoσa(T + K0) and hence there exists a sequence {λn}∞n=1 ⊂ σp(T + K0) ∩
(Bδ(λ0) \ {λ0}) such that λn → λ0.

Noting that ‖(T − µ0)x‖ ≥ 2ε0 for all x ∈ H with ‖x‖ = 1, we have

‖(T +K0 − µ0)x‖ ≥ ‖(T − µ0)x‖ − ‖K0x‖ ≥ ε0
for all x ∈ H with ‖x‖ = 1.

This means that min ind(T +K0 − λ) = 0 for all λ in an open neighbor-
hood of µ0, hence min ind(T+K0−λ) = 0 for almost all λ ∈ Bδ(λ0). Now we
can deduce that {λn}∞n=1 are singular points in a component of ρ−s-F(T +K0)
with minimum index zero.
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Fix λn ∈ Bδ(λ0). Then λn ∈ isoσa(T +K0), and since T +K0 ∈ (AP),
it follows that T +K0 − λn is Drazin invertible. Hence λn ∈ isoσ(T +K0),
a contradiction.

(2)⇒(1). For ε > 0, by Lemma 3.3, there exists K1 ∈ K(H) with ‖K1‖ <
ε/2 such that

(a) there exists no singular point in the components of ρ−s-F(T+K1) with
minimum index zero,

(b) min ind(T +K1 − λ) = min ind(T − λ) for all λ ∈ ρrs-F(T ).

By Lemma 3.1, there exists K2 ∈ K(H) with ‖K2‖ < ε/2 such that

• isoσ(T +K1 +K2) = σ0(T +K1 +K2),
• min ind(T+K1+K2−λ) = min ind(T+K1−λ) for all λ ∈ ρ−s-F(T+K1).

Let K = K1 +K2. It suffices to show that T +K ∈ (AP).

If λ0 ∈ isoσa(T +K), there exists δ > 0 such that T +K −λ is bounded
below for all λ ∈ Bδ(λ0)\{λ0}. We claim that ind(T +K−λ) = 0 for all λ ∈
Bδ(λ0)\{λ0}. In fact, suppose that ind(T+K−λ) < 0 for allλ ∈ Bδ(λ0)\{λ0}.
By the construction of K1 and K2, we have min ind(T −λ) = 0 for almost all
λ ∈ Bδ(λ0)\{λ0}. Noting thatE(T ) = ∅, we have λ0 /∈ σlre(T ) = σlre(T+K).

Now we have λ0 ∈ ρs-F(T +K) and hence ind(T +K−λ0) < 0. It follows
that 0 < nul(T +K − λ0) <∞. By the construction of K2, we have

min ind(T +K1 − λ0) = min ind(T +K1 +K2 − λ0) > 0,

and

min ind(T +K1 − λ) = min ind(T +K1 +K2 − λ) = 0

for all λ ∈ Bδ(λ0) \ {λ0}.
This means that λ0 is a singular point in a component of ρ−s-F(T + K1)

with minimum index zero, which contradicts (a).

Hence ind(T + K − λ) = 0 for all λ ∈ Bδ(λ0) \ {λ0}. This means that
λ0 ∈ isoσ(T +K) = σ0(T +K), hence λ0 is a pole of T +K.

Proof of Theorem 1.7. (1)⇒(2). This is obvious.

(2)⇒(3). If isoσw(T ) = ρ−s-F(T ) = ∅, we are going to show that T +K ∈
(AP) for all K ∈ K(H). For fixed K ∈ K(H) and λ0 ∈ isoσa(T +K), there
exists δ > 0 such that T + K − λ is bounded below for λ ∈ Bδ(λ0) \ {λ0}.
Hence ind(T − λ) ≤ 0 for λ ∈ Bδ(λ0) \ {λ0}. Since ρ−s-F(T ) = ∅, it follows
that ind(T − λ) = 0 for λ ∈ Bδ(λ0) \ {λ0}. Noting that isoσw(T ) = ∅, we
have λ0 /∈ σlre(T ) = σlre(T +K). Since ind(T +K−λ) = ind(T −λ) = 0 for
λ ∈ Bδ(λ0) \ {λ0}, we conclude that λ0 ∈ isoσ(T +K). By Lemma 2.5, we
have λ0 ∈ σ0(T +K) and hence λ0 is a pole of T +K.

(3)⇒(1). If isoσw(T ) 6= ∅, by Theorem 1.5 there exists K ∈ K(H) with
‖K‖ < ε such that T +K /∈ (P), hence T +K /∈ (AP).
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If ρ−s-F(T ) 6= ∅, let Ω be a component of ρ−s-F(T ). Fix a λ0 ∈ ∂Ω; obviously,
λ0 ∈ σlre(T ). For ε > 0, by Lemma 2.6, there exists K1 ∈ K(H) with
‖K1‖ < ε/2 such that

T +K1 =

[
λ0 ∗
0 A

] ∨
{e}
H1

,

where ‖e‖ = 1 and H1 = {e}⊥.
We denote

σ1 = {λ ∈ σ0(A) : dist[λ, ∂ρs-F(A)] ≥ ε/4} and σ2 = σ(A) \ σ1.
Then σ1 is a finite clopen subset of σ(A).

By Corollary 2.3, A can be written as

A =

[
A1 ∗
0 A2

]
H1(σ1;A)

H1 	H1(σ1;A)
,

where σ(A1) = σ1 and σ(A2) = σ2. It is easy to verify that

max{dist[λ, ∂ρs-F(A2)] : λ ∈ σ0(A2)} < ε/4.

By Lemma 2.7, there exists a compact operator K2 on H1 	H1(σ1;A)
with ‖K2‖ < ε/4 such that σp(A2 +K2) = ρ+s-F(A2). We denote

K2 =

0

0

K2


∨
{e}

H1(σ1;A)

H1 	H1(σ1;A)

.

Choose a λ1 ∈ Ω such that |λ1−λ0| < ε/4. We define a rank-one operator
K3 as K3 = (λ1−λ0)e⊗e. Let K = K1+K2+K3. Then K ∈ K(H), ‖K‖ < ε
and

T +K =

λ1 ∗ ∗
0 A1 ∗
0 0 A2 +K2


∨
{e}

H1(σ1;A)

H1 	H1(σ1;A)

.

We claim that T + K /∈ (AP). Since ind(T + K − λ1) < 0, we have
ind(A2+K2−λ1)<0. Hence there exists δ>0 such that ind(A2+K2−λ)<0
for all λ ∈ Bδ(λ1). Noting that σp(A2 + K2) = ρ+s-F(A2), we conclude that
A2 +K2−λ is bounded below for all λ ∈ Bδ(λ1). Since σ(A1)∩Bδ(λ1) = ∅,
it follows that T +K − λ is bounded below for all λ ∈ Bδ(λ1) \ {λ1}. Since
λ1 ∈ σp(T +K), we have λ1 ∈ isoσa(T +K).

On the other hand, since λ1 /∈ isoσ(T +K), we conclude that λ1 is not
a pole of the resolvent of T +K. Hence T +K /∈ (AP).

4. Left (right) polaroid and compact perturbations. As a gener-
alization of Theorem 1.4, we get the following result.
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Theorem 4.1. Given T ∈ B(H) and ε > 0, there exists K ∈ K(H) with
‖K‖ < ε such that T +K ∈ (LP) and T +K ∈ (RP).

Proof. If isoσea(T ) = ∅, we shall show that T ∈ (LP). In fact, if λ0 ∈
isoσa(T ), we can deduce that λ0 ∈ ρs-F(T ) and hence 0 < nul(T −λ0) <∞.
This means that λ0 is a singular point in ρs-F(T ). By [12, Theorem 3.38],
we have

T ∼

[
A 0

0 B

]
M
M⊥

,

where M is a finite-dimensional Hilbert space, σ(A) = {λ0} and λ0 ∈
ρrs-F(B). It is easy to see that A − λ0 is nilpotent and B − λ0 is bounded
below. By Lemma 2.4, we can deduce that λ0 is a left pole of T and we
have T ∈ (LP). On the other hand, if isoσea(T

∗) = ∅, on can deduce that
T ∈ (RP).

We directly assume that isoσea(T )={λn}∞n=1 and isoσea(T
∗)={µn}∞n=1.

The proof of the other cases is similar or easier.
It is easy to see that {λn}∞n=1∪{µn}∞n=1 ⊂ σlre(T ). For ε > 0, by Lemma

2.6, there exists K0 ∈ K(H) with ‖K0‖ < ε/4 such that

T +K0 =

[⊕∞
n=1 λnIn ∗

0 A

] ⊕∞
n=1Hn
H0

,

where

• dimHn =∞ and In is the identity operator on Hn;
• H0 = H	 (

⊕∞
n=1Hn);

• σ(A) = σ(T ), σlre(A) = σlre(T ) and ind(A − λ) = ind(T − λ) for all
λ ∈ ρs-F(T ).

One can easily deduce that {µn}∞n=1 ⊂ σlre(A
∗). By Lemma 2.6 applied

to A∗, there exists a compact operator F0 on H0 with ‖F0‖ < ε/4 such that

A+ F0 =

[
B ∗
0
⊕∞

n=1 µnI
′
n

]
H0 	 (

⊕∞
n=1Mn)⊕∞

n=1Mn

,

where

• dimMn =∞ and I ′n is the identity operator on Mn;
• σ(B) = σ(A), σlre(B) = σlre(A) and ind(B − λ) = ind(A − λ) for all
λ ∈ ρs-F(A).

We choose 0 < αn < ε/2n+2 such that Bαn(λn) \ {λn} ⊂ ρs-F(T ) and

{Bαn(λn)}∞n=1 are pairwise disjoint. For fixed n ≥ 1, choose an onb {e(n)k }
∞
k=1

of Hn. We define

Kn = αn

∞∑
k=1

1

k
e
(n)
k ⊗ e

(n)
k .
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Also, choose 0 < βn < ε/2n+2 such that Bβn(µn) \ {µn} ⊂ ρs-F(T ) and

{Bβn(µn)}∞n=1 are pairwise disjoint. Select an onb {f (n)k }
∞
k=1 of Mn. We

define

Fn = βn

∞∑
k=1

1

k
f
(n)
k ⊗ f (n)k .

We denote

F0 =

[
0 0

0 F0

] ⊕∞
n=1Hn
H0

.

Let K =
∑∞

i=0Ki +
∑∞

i=0 Fi. Then K ∈ K(H) and ‖K‖ < ε. It suffices
to show that T +K ∈ (LP) ∩ (RP). Now, T +K can be written as

T +K =


⊕∞

n=1(λnIn +Kn) ∗ ∗
0 B ∗
0 0

⊕∞
n=1(µnI

′
n + Fn)


⊕∞

k=1Hn
H0 	 (

⊕∞
k=1Mn)⊕∞

k=1Mn

.

It is easy to check that each λn is a limit of eigenvalues of T + K and
each µn is a limit of eigenvalues of T ∗ +K∗.

If λ0 ∈ isoσa(T + K), we claim that λ0 /∈ σlre(T + K). Indeed, if λ0 ∈
σlre(T + K), it is easy to see that λ0 ∈ isoσea(T ) and hence λ0 is a limit
of eigenvalues of T + K, a contradiction. Hence λ0 ∈ ρs-F(T + K) and we
have 0 < nul(T + K − λ0) < ∞. This means that λ0 is a singular point
in ρs-F(T + K). Using [12, Theorem 3.38] again, we see T + K − λ0 is left
Drazin invertible. If µ0 ∈ isoσs(T + K), we consider T ∗ + K∗ and use a
similar argument to deduce that T +K − µ0 is right Drazin invertible.

Theorem 4.2. Let T ∈ B(H). Then the following are equivalent:

(1) Given ε>0, there is K∈K(H) with ‖K‖<ε such that T +K /∈(LP).
(2) There exists K ∈ K(H) such that T +K /∈ (LP).
(3) isoσea(T ) 6= ∅.

Proof. (1)⇒(2). This is obvious.

(2)⇒(3). Suppose that isoσea(T )=∅ and K∈K(H). Since isoσea(T+K)
= isoσea(T ) = ∅, as in the proof of Theorem 4.1, we can deduce that T +K
∈ (LP).

(3)⇒(1). Suppose that isoσea(T ) 6= ∅ and choose λ0 ∈ isoσea(T ). Then
λ0 ∈ σlre(T ) and there exists δ > 0 such that ind(T − λ) ≤ 0 for all
λ ∈ Bδ(λ0) \ {λ0}.

For ε > 0, there exists K1 ∈ K(H) with ‖K1‖ < ε/2 such that

T +K1 =

[
λ0I ∗
0 A

]
H⊥1
H1

,
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where dimH⊥1 = ∞, σlre(A) = σlre(T ) and ind(A − λ) = ind(T − λ) for all
λ ∈ ρs-F(T ).

We let

σ1 = {λ ∈ σ0(A) : dist[λ, ∂ρs-F(A)] ≥ ε/4} and σ2 = σ(A) \ σ1.

Then σ1 is a finite clopen subset of σ(A). By Corollary 2.3, A can be written
as

A =

[
A1 ∗
0 A2

]
H1(σ1;A)

H1 	H1(σ1;A)
,

where σ(A1) = σ1 and σ(A2) = σ2. It is easy to verify that

max{dist[λ, ∂ρs-F(A2)] : λ ∈ σ0(A2)} < ε/4.

By Lemma 2.7, there exists a compact operator K2 on H1 	H1(σ1;A)
with ‖K2‖ < ε/4 such that

σp(A2 +K2) = ρ+s-F(A2).

We denote

K2 =

0

0

K2

 H⊥1
H1(σ1;A)

H1 	H1(σ1;A)

.

Then K2 ∈ K(H) and ‖K2‖ < ε/4.

Choose an onb {en}∞n=1 of H⊥1 . We let

K3 =
∞∑
k=1

ε

k + 3
ek+1 ⊗ ek.

Then K3 ∈ K(H) and ‖K3‖ = ε/4. We let K = K1 + K2 + K3. Then
K ∈ K(H) with ‖K‖ < ε and T +K admits the representation

T +K =

λ0I +K3 ∗ ∗
0 A1 ∗
0 0 A2 +K2

 H⊥1
H1(σ1;A)

H1 	H1(σ1;A)

.

Since there exists δ > 0 such that ind(A− λ) ≤ 0 for λ ∈ Bδ(λ0) \ {λ0},
for fixed λ ∈ Bδ(λ0) \ {λ0} it is easy to verify that ind(A2 − λ) ≤ 0, hence
ind(A2 +K2 − λ) ≤ 0. Noting that σp(A2 +K2) = ρ+s-F(A2), it follows that
A2 +K2 − λ is bounded below.

It is easy to see that λ0 /∈ σ(A1) and σ(λ0I + K3) = {λ0}. Hence λ0 ∈
isoσa(T + K). On the other hand, since λ0 ∈ σlre(A) = σlre(A2), we have
λ0 /∈ σp(A2 +K2). Noting that σp(λ0I +K3) = ∅, we have λ0 /∈ σp(T +K).
We claim that T+K−λ0 is not left Drazin invertible. Otherwise, by Lemma
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2.4, we have

T +K − λ0 ∼

[
T1 0

0 T2

]
H1

H⊥1
,

where T1 is nilpotent and T2 is bounded below.

Since T + K − λ0 is injective, it follows that T1 is absent and hence
T + K − λ0 is bounded below. This means that K3 is bounded below, a
contradiction. Hence the claim follows and T +K /∈ (LP).

We have the following result, dual to Theorem 4.2.

Theorem 4.3. Let T ∈ B(H). Then the following are equivalent:

(1) Given ε>0, there is K∈K(H) with ‖K‖<ε such that T+K /∈(RP).
(2) There exists K ∈ K(H) such that T +K /∈ (RP).
(3) isoσea(T

∗) 6= ∅.

5. Hereditarily polaroid and compact perturbations. We first
state the main results of this part.

Theorem 5.1. Let T ∈ B(H) and suppose that ρ+s-F(T ) = ∅. Then given
ε > 0, there exists K ∈ K(H) with ‖K‖ < ε such that T +K ∈ (HP).

Theorem 5.2. Given T ∈ B(H) and ε > 0, there exists K ∈ K(H) with
‖K‖ < ε such that T +K /∈ (HP).

Recall that T ∈ B(H) is a triangular operator if it admits an upper
triangular matrix representation, i.e.

(3.1) T =


a11 a12 · · ·
0 a22 · · ·
...

...
. . .


e1

e2
...

,

with respect to a suitable onb {en}∞n=1.

Lemma 5.3 ([12, Theorem 6.4]). Let T ∈ B(H). Then the following are
equivalent:

(1) Given ε > 0, there exists K ∈ K(H) with ‖K‖ < ε such that T +K
is triangular.

(2) ρ−s-F(T ) = ∅.

Lemma 5.4 ([12, Theorem 3.40]). Let T ∈ B(H) be a triangular operator
with matrix representation (3.1), and let d(T ) = {ann}∞n=1 be the diagonal
sequence of T . If M is a non-zero invariant subspace of T ∗, then the com-
pression TM of T to M is triangular with d(TM ) ⊂ d(T ). Furthermore,
card{n : ann ∈ σ} = dimH(σ;T ) for each clopen subset σ of σ(T ).
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Using a technique in the proof of [12, Theorem 3.40], we can now prove
Theorem 5.1.

Proof of Theorem 5.1. If ρ+s-F(T ) = ∅, for any given ε > 0, by Lemma
5.3, there exists K ∈ K(H) with ‖K‖ < ε such that T ∗ + K∗ admits a
representation

(3.2) T ∗ +K∗ =


a11 a12 · · ·
0 a22 · · ·
...

...
. . .


e1

e2
...

,

where {en}∞n=1 is an onb of H. In addition, for suitable K, we can assume
that aii 6= ajj for i 6= j. We claim that T +K ∈ (HP).

If T +K /∈ (HP), there exists an invariant subspace H1 of T +K such
that (T +K)|H1 is not polaroid. Hence T +K admits a representation

T +K =

[
A ∗
0 B

]
H1

H⊥1
,

where A is not polaroid.
Since T ∗ + K∗ has form (3.2), where aii 6= ajj for i 6= j, there exists a

linearly independent sequence {fn}∞n=1 with

fn ∈ ker(T ∗ +K∗ − ann) ∩
( n∨
k=1

{ek}
)

for n ≥ 1

such that
∨∞
n=1{fn} = H.

Noting that

T ∗ +K∗ =

[
B∗ ∗
0 A∗

]
H⊥1
H1

,

we have

H1 = PH1H = PH1

( ∞∨
n=1

{fn}
)

=

∞∨
n=1

{PH1fn} ⊂
∞∨
n=1

ker(A∗ − ann) ⊂ H1,

where PH1 is the orthogonal projection with range H1.
It follows that H1 =

∨∞
n=1{PH1fn}, where PH1fn ∈ ker(A∗ − ann) for

each n ≥ 1. There exists a linearly independent subsequence {PH1fnk
}∞k=1

such that H1 =
∨∞
k=1{PH1fnk

}. It is easy to see that A∗ has an upper
triangular matrix with respect to an onb of H1 obtained by Gram–Schmidt
orthonormalization of {PH1fnk

}∞k=1, and d(A∗) = {anknk
}∞k=1.

Since A /∈ (P), there exists λ0 ∈ isoσ(A) such that A− λ0 is not Drazin
invertible. By Corollary 2.3, A admits a representation

A =

[
A1 ∗
0 A2

]
H1(λ0;A)

H1 	H1(λ0;A)
,
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where σ(A1) = {λ0} and σ(A2) = σ(A) \ {λ0}. Since A − λ0 is not Drazin
invertible, we have dimH1(λ0;A) =∞.

By Lemma 5.4, we conclude thatA∗1 is triangular with d(A∗1)⊂{anknk
}∞k=1,

and

dimH1(λ0;A
∗) ≤ card{k : anknk

= λ0}.
Noting that aii 6= ajj for i 6= j, it follows that dimH1(λ0;A

∗) ≤ 1 and hence
dimH1(λ0;A) ≤ 1, a contradiction.

Now we are going to prove Theorem 5.2.

Proof of Theorem 5.2. For fixed ε > 0, choose a λ0 ∈ σlre(T ). By Lemma
2.6, there exists K1 ∈ K(H) with ‖K1‖ < ε/2 such that

T +K1 =

[
λ0I ∗
0 B

]
M
M⊥

,

where dimM = ∞ and I is the identity operator on M. By Lemma 3.2,
there exists a compact operator K2 on M with ‖K2‖ < ε/2 such that
λ0I +K2 is not polaroid. We let

K2 =

[
K2

0

]
M
M⊥

and K = K1 +K2.

Then K ∈ K(H) with ‖K‖ < ε and (T + K)|M is not polaroid, hence
T +K /∈ (HP).

Noting that Theorem 5.1 is established for ρ+s-F(T ) = ∅, we conclude this
paper with the following problem.

Problem 5.5. Given T ∈ B(H) and ε > 0, can one find K ∈ K(H) with
‖K‖ < ε such that T +K ∈ (HP)?
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