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A1-regularity and boundedness
of Calderón–Zygmund operators
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Dmitry V. Rutsky (St. Petersburg)

Abstract. The Coifman–Fefferman inequality implies quite easily that a Calderón–
Zygmund operator T acts boundedly in a Banach lattice X on Rn if the Hardy–Littlewood
maximal operator M is bounded in both X and X ′. We establish a converse result under
the assumption that X has the Fatou property and X is p-convex and q-concave with
some 1 < p, q < ∞: if a linear operator T is bounded in X and T is nondegenerate in
a certain sense (for example, if T is a Riesz transform) then M is bounded in both X
and X ′.

The purpose of the present work is to establish the following theorem
showing that the boundedness of Calderón–Zygmund singular integral op-
erators T and the boundedness of the Hardy–Littlewood maximal operator
M in both the lattice and its dual is actually the same property for a fairly
general class of Banach lattices. This constitutes a substantial improvement
over the respective results of [24].

The (standard) definitions and basic facts concerning Banach lattices
and Calderón–Zygmund operators can be found in Section 1. The notion of
an A2-nondegenerate operator is introduced in Definition 6 below; for now
we say that R can be any of the Riesz transforms {Rj}nj=1 (or the Hilbert
transform H if n = 1). We fix a σ-finite measurable space (Ω,µ) which we
understand as a space for the second variable ω in (x, ω) ∈ Rn ×Ω (unless
indicated otherwise, all operators are assumed to act in the first variable x
only); this allows us to naturally include lattices with mixed norm such as
X(lr) in this setting.

Theorem 1. Suppose that X is a Banach lattice of measurable functions
on Rn × Ω that has the Fatou property and X is p-convex and q-concave
with some 1 < p, q <∞. Let R be a Calderón–Zygmund operator in L2(Rn)
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such that both R and R∗ are A2-nondegenerate. The following conditions are
equivalent:

(1) The Hardy–Littlewood maximal operator M acts boundedly in X and
in the order dual X ′ of X.

(2) All Calderón–Zygmund operators act boundedly in X.
(3) R acts boundedly in X.

The implication (1)⇒(2) is Proposition 5 in Section 1. Although it is hard
to come by this sufficient condition for boundedness of Calderón–Zygmund
operators in the literature, it is certainly not new; see [14, Remark 4.3].
The implication (2)⇒(3) is trivial. The implication (3)⇒(1) is Theorem 16
in Section 3. The argument itself is technically rather simple; however, it
relies heavily on the theory of Ap-regular Banach lattices, a part of which
we develop further in Section 2, and the proof taken as a whole involves
two distinct applications of the Fan–Kakutani fixed point theorem and a
variant of the Maurey–Krivine factorization theorem, which is based on the
Grothendieck theorem.

We now briefly outline some examples. The classical case of weighted
Lebesgue spaces X = Lp(w) is perhaps the best illustration for Theorem 1:
the theory of Muckenhoupt weights (see, e.g., [27, Chapter 5]) individually
links the conditions of Theorem 1 to the Muckenhoupt condition Ap on
the weight w . Another classical type of lattice are rearrangement invariant
spaces (also called symmetric spaces) such as Orlicz and Lorentz spaces
(and, as a particular case, the Lebesgue spaces Lp, which are a part of the
previous example). In this case the conclusion of Theorem 1, at least for
n = 1 and the Hilbert transform R = H, follows from the equivalence of its
conditions to the conditions pX > 1 and pX′ > 1 on the upper Boyd indices
pX and pX′ ; see, e.g., [21], [26], [3], [17, Chapter 2, §6] (by duality pX′ < 1
if and only if qX > 1 for the lower Boyd index qX ; see, e.g., [17, Chapter 2,
Theorem 4.11]).

However, the p-convexity and q-concavity assumptions on X imposed in
Theorem 1 imply that if X is symmetric then pX ≥ p > 1 and qX ≤ q <∞
(see, e.g., [20, Vol. 2, §2.b]), so the conditions in its conclusion are always sat-
isfied in this case (since X is then an interpolation space between Lr and Ls
with some 1 < r < s <∞; see, e.g., [4]). Very recently in [1] these classical
results were extended to a general case of weighted Lorentz spaces Λpu(w)
(which also covers the case of weighted Lebesgue spaces; however, the condi-
tions n = 1 and R = H are still assumed). A different type of nonhomogene-
ity arises in the case of variable exponent Lebesgue spaces X = Lp(·) (and,
more generally, in Musielak–Orlicz spaces), and it was only recently that
effective characterizations of boundedness of the Hardy–Littlewood maxi-
mal operator M in Lp(·) in terms of the exponent p(·) and other interesting
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properties have been developed; it seems, nonetheless, that a complete char-
acterization of boundedness even for some Calderón–Zygmund operators in
these spaces has not been achieved yet, so Theorem 1 seems to provide new
information in this extensively researched setting. For more remarks on the
case of variable exponent Lebesgue spaces see Section 4 below.

The paper is organized as follows. In Section 1 we provide the definitions
and basic properties that will be used in the text and prove the implication
(1)⇒(2) of Theorem 1. Section 2 contains a new sufficient condition for
A1-regularity. In Section 3 we prove the converse implication (3)⇒(1) of
Theorem 1. Further remarks are given in Section 4.

1. Preliminaries. In this section we briefly go over the basic definitions
and facts used throughout this work. For the generalities on real harmonic
analysis see, e.g., [8], [27]; for Banach lattices and their properties see, e.g.,
[13, Chapter 10], [20]. A space of homogeneous type (S, ν) is a quasimetric
space equipped with a Borel measure ν that has the doubling property , i.e.
ν(B(x, 2r)) ≤ cν(B(x, r)) for all x ∈ S and 0 < r <∞ with some constant c,
where B(x, r) is the ball of radius r centered at x. The main example here
is the Euclidean space S = Rn equipped with the Lebesgue measure.

Aquasi-normed lattice of measurable functions is a quasi-normed spaceX
of measurable functions in which the norm is compatible with the natural
order: if |f | ≤ g a.e. for some function g ∈ X then f ∈ X and ‖f‖X ≤ ‖g‖X .
For simplicity we only work with lattices X such that suppX = S ×Ω.

For a Banach lattice X of measurable functions, any order continuous
functional f on X (in the sense that for any sequence xn ∈ X such that
supn |xn| ∈ X and xn → 0 a.e. one also has f(xn) → 0) has an integral
representation f(x) =

	
xyf for some measurable function yf which can be

identified with f . The set X ′ of all such functionals is a Banach lattice with
the norm defined by ‖f‖X′ = supg∈X, ‖g‖X=1

	
|fg|. The lattice X ′ is called

the order dual of the lattice X.
The norm of a lattice X is said to be order continuous if for any non-

increasing sequence xn ∈ X converging to 0 a.e. one also has ‖xn‖X → 0.
Order continuity of the norm of a Banach lattice X is equivalent to X∗ = X ′,
and it is also equivalent to density of the simple functions (i.e. of the linear
span of the set {χE} where E ranges over the measurable sets) in X.

A lattice X has the Fatou property if for any fn, f ∈ X such that
‖fn‖X ≤ 1 and fn converges to f a.e. we have f ∈ X and ‖f‖X ≤ 1. The
Fatou property of a lattice X is equivalent to (ν × µ)-closedness of the unit
ball BX of X (here and elsewhere, (ν × µ)-convergence means convergence
in measure in any measurable set E such that (ν × µ)(E) < ∞). If X is
a Banach lattice then the Fatou property is equivalent to order reflexivity
of X, i.e. to X ′′ = X. For a lattice X either the Fatou property or the order
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continuity of norm is sufficient to guarantee that the lattice X ′ is norming
for X, i.e. ‖f‖X = supg∈X′, ‖g‖X′=1

	
fg for all f ∈ X.

To illustrate the above properties we briefly consider a couple of ex-
amples. Lattices satisfying the Fatou property are ubiquitous. All modular
spaces satisfy it (see, e.g., [9, Theorem 2.3.17]). Sometimes the Fatou prop-
erty is even assumed implicitly or by default in the literature; however, it
seems natural not to do so here, since the technique used in some of the
core arguments of this work heavily relies on in. The space c0 of sequences
converging to 0 with the uniform norm is an example of a Banach lattice
that does not have the Fatou property but has order continuous norm. The
Lebesgue space Lp has order continuous norm if and only if p <∞.

For any quasi-normed lattices X and Y on the same measurable space
the set of pointwise products

XY = {fg | f ∈ X, g ∈ Y }
is a quasi-normed lattice with the norm defined by

‖h‖XY = inf
h=fg

‖f‖X‖g‖Y .

If both X and Y have the Fatou property then so does XY . If either X or
Y has order continuous quasi-norm then the quasi-norm of XY is also order
continuous.

For any δ > 0 and a quasi-normed lattice X, the lattice Xδ consists of
all measurable functions f such that |f |1/δ ∈ X, with quasi-norm ‖f‖Xδ =∥∥|f |1/δ∥∥δ

X
. For example, Lδp = Lp/δ. It is easy to see that (XY )δ = XδY δ for

any X, Y and δ, and Xδ naturally inherits many properties from X. For any
0 < δ ≤ 1, if X is a Banach lattice then so is Xδ. If X and Y are Banach
lattices then for any 0 < δ < 1 the lattice X1−δY δ, sometimes called the
Calderón–Lozanovsky product of X and Y , is also Banach; moreover, one has
a useful relation (X1−δY δ)′ = (X ′)1−δ(Y ′)δ (see [5], [22]). If Z = X1−δY δ

has either the Fatou property or order continuous norm then Z is an exact
interpolation space of exponent δ between X and Y ; see, e.g., [23], [5], [17].

Let 1 ≤ p, q < ∞. A Banach lattice X is said to be p-convex with
constant C if ∥∥∥( N∑

j=1

|fj |p
)1/p∥∥∥

X
≤ C

( n∑
j=1

‖fj‖pX
)1/p

for any {fj}Nj=1 ⊂ X; and X is said to be q-concave with constant c if( n∑
j=1

‖fj‖qX
)1/q

≤ c
∥∥∥( N∑

j=1

|fj |q
)1/q∥∥∥

X

for any {fj}Nj=1 ⊂ X. If X is p-convex then X ′ is p′-concave, and if X
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is q-concave then X ′ is q′-convex. It is well known (see, e.g., [20, Vol. 2,
Proposition 1.d.8]) that a Banach lattice that is p-convex and q-concave can
be renormed to make its p-convexity and q-concavity constants equal to 1.
It is easy to see that a lattice with the Fatou property which is p-convex
and q-concave with some 1 < p, q <∞ is reflexive and has order continuous
norm.

For a quasi-normed lattice X and weight w such that 0 ≤ w ≤ ∞ almost
everywhere, the weighted lattice X(w) is defined by

X(w) = {g | g/w ∈ X}

with the quasi-seminorm defined by ‖f‖X(w) = ‖fw−1‖X . This somewhat
cumbersome definition is needed because the more natural definitionX(w) =
{wh | h ∈ X} is meaningless if the weight w takes value +∞ on a set of
positive measure, and it seems easier to allow this in the definition and
work with weighted lattices that may be quasi-normed rather than nego-
tiate finiteness of w every time. Thus in this setting one has g = 0 on
the set where w = 0, g restricted to the set {w = +∞} is an arbitrary
measurable function, and ‖ · ‖X(w) is a quasi-norm for weights w such that
(ν × µ)({w = +∞}) = 0. If w = 0 on a set of positive measure, we regard
X(w) as merely a set of functions with a quasi-seminorm under our con-
ventions, since then suppX(w) 6= suppX. In majorization arguments it is
usually possible to avoid dealing with “bad” weights with the help of the
following simple proposition.

Proposition 2 ([24, Proposition 3.2]). Suppose that X is a Banach
lattice on (Σ,µ). Then for every f ∈ X such that f 6= 0 identically and
ε > 0, there exists g ∈ X such that g > |f | a.e. and ‖g‖X ≤ (1 + ε)‖f‖X .

The construction of the weighted lattice yields

L∞(w) = {f | |f | ≤ Cw a.e.}.

It is easy to see that [X(w)]′ = X ′(w−1). Some caution is required since
the definition of the weighted Lebesgue space Lp(w) arising from the defini-
tion of the weighted lattice above differs from the “classical” one with the
norm defined by ‖f‖pp,w =

	
|f |pw , which is often used in the literature; the

latter norm corresponds to the norm of Lp(w
−1/p) in our notation. Thus

all weighted lattices are defined in the same way everywhere in this paper;
however, one has to pay attention to this difference. We adopt the natural
conventions 0−1 =∞ and ∞−1 = 0 in all expressions involving weights.

The (centered) Hardy–Littlewood maximal operator

Mf(x, t) = sup
r>0

1

ν(B(x, r))

�

B(x,r)

|f(z, t)| dν(z), x ∈ S, t ∈ Ω,
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is well-defined for a.e. x ∈ S, t ∈ Ω, and all measurable functions f on
(S ×Ω, ν × µ) that are locally summable in the first variable. We say that
a nonnegative measurable function w on (S × Ω, ν × µ) belongs to the
Muckenhoupt class Ap for some 1 ≤ p <∞ with a constant C if

ess sup
t∈Ω

‖M‖Lp(w−1/p(·,t))→Lp,∞(w−1/p(·,t)) ≤ C.

In the case p > 1 this condition is equivalent to

ess sup
t∈Ω

‖M‖Lp(w−1/p(·,t)) ≤ C
′

with a constant C ′ estimated in terms of C and p, and vice versa. The
class A1 is characterized by the estimate Mw ≤ C ′w almost everywhere,
while the classes Ap for p > 1 are characterized by the well-known Mucken-
houpt condition

(1) ess sup
x∈S, t∈Ω

sup
r>0

[
1

ν(B(x, r))

�

B(x,r)

w(u, t) dν(u)

]

×
[

1

ν(B(x, r))

�

B(x,r)

w(u, t)−1/(p−1) dν(u)

]p−1
<∞.

The class A∞ may be defined as the class of weights w satisfying the reverse
Hölder inequality

(2) ess sup
x∈S, t∈Ω

sup
r>0

[
1

ν(B(x, r))

�

B(x,r)

[w(u, t)]q dν(u)

]1/q

×
[

1

ν(B(x, r))

�

B(x,r)

w(u, t) dν(u)

]−1
<∞

with some q > 1, and we can define the A∞ constant of the weight w to be
the supremum in (2). It is well known that w ∈ A∞ if and only if w ∈ Ap

with some 1 < p <∞, and the value of p and the Ap constant of w can be
estimated in terms of the A∞ constant of w and vice versa.

The following notion was introduced in [24] as an important particular
case of so-called BMO-regularity introduced in [12].

Definition 3. A quasi-normed lattice X on (S×Ω, ν×µ) is Ap-regular
with constants (C,m) if for any f ∈ X there exists a majorant g ∈ X, that
is g ≥ |f |, such that ‖g‖X ≤ m‖f‖X and g ∈ Ap with constant C.

Proposition 4 ([24, Proposition 1.2]). A quasi-normed lattice X on
(S×Ω, ν×µ) is A1-regular if and only if the maximal operator M is bounded
in X.
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We say that T is a Calderón–Zygmund operator if T is a singular integral
operator that is bounded in L2(Rn), its kernel K(x, y) satisfies

(3) |K(x, s)−K(x, t)| ≤ CK
|s− t|γ

|x− s|n+γ
, x, s, t ∈ Rn, |x− s| > 2|s− t|,

with some γ > 0, and the kernel K∗(y, x) = K(x, y) of the adjoint operator
T ∗ satisfies the same estimates. It is well known that Calderón–Zygmund
operators T are bounded in Lp for all 1 < p <∞.

The Coifman–Fefferman inequality [6]

(4)
�
|Tf |pω ≤ C

�
(Mf)pω, 0 < p <∞,

holds true for Calderón–Zygmund operators T , any weights ω ∈ A∞ and all
locally summable functions f such that the right-hand side of (4) is finite;
the constant C does not depend on f and is estimated in terms of the A∞
constant of the weight ω.

We are now ready to prove the implication (1)⇒(2) of Theorem 1, which
can be stated as follows.

Proposition 5. Suppose that X is a Banach lattice on Rn ×Ω having
either the Fatou property or order continuous norm and both X and X ′ are
A1-regular. Then any Calderón–Zygmund operator T is bounded in X.

Indeed, let f ∈ X and g ∈ X ′, and let h be an A1-majorant of g in X ′.
Then �

(Mf)h ≤ ‖Mf‖X‖h‖X′ ≤ c1‖f‖X‖g‖X′ <∞,

and the Coifman–Fefferman inequality (4) with p = 1 implies that�
(Tf)g ≤

�
|Tf |h ≤ c

�
(Mf)h ≤ cc1‖f‖X‖g‖X′

with certain constants c and c1 independent of f and g, which shows that
T acts boundedly in X.

Definition 6. A mapping T : L2 → L2 is called A2-nondegenerate with
constants (C,m) if boundedness of T in a lattice L2(w

−1/2) with norm at
most m implies that w ∈ A2 with constant C.

We remark that by [24, Proposition 3.7] an A2-nondegenerate linear
operator T in L2(Rn) is also A2-nondegenerate as an operator in L2(Rn×Ω)
acting in the first variable. The nature of A2-nondegeneracy is illustrated
by the following well-known result.

Proposition 7 ([27, Chapter 5, §4.6]). Suppose that T is a Calderón–
Zygmund operator with kernel K and there exist some u ∈ Rn and a con-
stant c such that for any x ∈ Rn and t 6= 0 we have

(5) |K(x, x+ tu)| ≥ ct−n.
Then T is A2-nondegenerate.
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It is easy to see that the Hilbert transform H on R with kernel K(x, y) =
c1/(x− y) and the Riesz transforms Rj , 1 ≤ j ≤ n, on Rn with kernels
Kj(x, y) = cn(yj − xj)/|y − x|n+1, where cn 6= 0 are some constants, satisfy
condition (5) for u = ej , ej being the jth coordinate basis vector of Rn, and
thus all these operators are A2-nondegenerate.

2. A lemma about Ap-regularity

Theorem 8. Suppose that X is a Banach lattice of measurable functions
on (S ×Ω,µ× ν) such that X has the Fatou property, and

(1) X is Ap-regular with constants (c1,m1) for some 1 < p <∞,
(2) Xδ is A1-regular with constants (c2,m2) for some δ > 0.

Then X is A1-regular with an estimate for the constants depending only on
the corresponding Ap-regularity constants of X, the A1-regularity constants
of Xδ and the value of δ.

This theorem is easily derived from the corresponding result for Ap

weights with the help of a fixed point argument.

Lemma 9. Suppose that a weight w on (S × Ω,µ× ν) satisfies w ∈ Ap

and w δ ∈ A1 with some 1 < p < ∞ and δ > 0. Then w ∈ A1 with an
estimate for the constants depending only on δ and on the constants of the
Ap condition for w and the A1 condition for w δ.

Lemma 9 is essentially a particular case X = L∞(w) of Theorem 8. To
prove Lemma 9, fix some ω ∈ Ω such that w(·, ω) ∈ Ap and w δ(·, ω) ∈ A1,
and let B(x, r) ⊂ S, x ∈ S, r > 0, be an arbitrary ball in S. Then consecutive
application of the Ap condition satisfied by w , the Jensen inequality with
the convex function t 7→ t−δ(p−1), t > 0, and the A1 condition satisfied by
w δ yields

(6)
1

ν(B(x, r))

�

B(x,r)

w(u, ω) dν(u)

≤ c
[

1

ν(B(x, r))

�

B(x,r)

[w(u, ω)]
− 1
p−1 dν(u)

]−(p−1)

= c

[
1

ν(B(x, r))

�

B(x,r)

[w(u, ω)]
− 1
p−1 dν(u)

]−δ(p−1)· 1
δ

≤ c
[

1

ν(B(x, r))

�

B(x,r)

[w(u, ω)]δ dν(u)

]1/δ
≤ c′w(x, ω)
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for almost all x ∈ S with some constants c and c′ depending only on the
constants of the Ap condition for w and the A1 condition for w δ, and on the
value of δ. Since ω, x and B are arbitrary, (6) implies that w ∈ A1 with the
necessary estimates of the constants, which concludes the proof of Lemma 9.

In order to reduce Theorem 8 to Lemma 9 we need to show that under the
conditions of Theorem 8 every function f ∈ X has a majorant w such that w
is an Ap-majorant of f in X and simultaneously w δ is an A1-majorant of |f |δ
in Xδ, with appropriate estimates on the constants. At first glance it may
seem that there is little reason to suspect existence of a common majorant in
sets that look vastly different (for example, a majorant w such that w δ ∈ A1

may not even be locally summable in the first variable, while on the other
hand a majorant w ∈ Ap may vanish near some points); however, careful
application of the celebrated Fan–Kakutani fixed point theorem allows us to
establish the existence of a common majorant in this setting with relative
ease.

Theorem ([10]). Suppose that K is a compact set in a locally convex
linear topological space. Let Φ be a mapping from K to the set of nonempty
convex compact subsets of K. If the graph

Γ (Φ) = {(x, y) ∈ K ×K | y ∈ Φ(x)}
of Φ is closed in K × K then Φ has a fixed point, i.e. x ∈ Φ(x) for some
x ∈ K.

We will also need the following sets of nonnegative a.e. measurable func-
tions w on (S ×Ω, ν × µ) (see also [24, Section 3]):

BAp(C) =
{

w
∣∣∣ ess sup

ω∈Ω
‖M‖Lp(w−1/p(·,ω)) ≤ C

}
,

BA1(C) =

{
w

∣∣∣∣ ess sup
Mw

w
≤ C

}
.

These are the sets of Muckenhoupt weights with fixed bounds on the con-
stants (“the ball of Ap”).

Proposition 10 ([24, Proposition 3.4]; see also [12, Lemma 4.2]). Sup-
pose that 1 ≤ p <∞ a.e. and C ≥ 0. The set BAp(C) is a nonempty convex
cone which is also logarithmically convex and closed in measure.

We are now ready to prove Theorem 8. The technical details of this proof
as well as the general pattern are similar to those for the main result of [24].
By using [24, Proposition 3.6] it is sufficient to establish the existence of
a suitable majorant for every function f ∈ X with ‖f‖X ≤ 1 such that
E = supp f has positive finite measure and f ≥ β on E with some β > 0,
since the set of such functions is dense in measure in the nonnegative part
of the closed unit ball B of X. We fix such a function f .



240 D. V. Rutsky

By Proposition 2 there exists some function a ∈ X ′ with ‖a‖X′ = 1
such that a > 0 almost everywhere. This implies that for any u ∈ B we
have

	
|u|a ≤ ‖u‖X‖a‖X′ ≤ 1, i.e. ‖u‖L1(a−1) ≤ 1. Let 0 < α ≤ β ≤ 1 be a

sufficiently small number to be determined later, and let

D = {χE log g | g ∈ B, g ≥ χEα}.

It is easy to see that D is a bounded set in Y = L2(a
−1/2) for any given E

and α, because
�

E∩{g<1}

|log g|2a ≤ |logα|2‖χE‖X‖a‖X′ ≤
1

β
|logα|2

and �

E∩{g≥1}

|log g|2a =
�

E∩{g≥1}

4|log(g1/2)|2a ≤ 4
�
|g|a ≤ 4

for any χE log g ∈ D; D is convex because B is logarithmically convex, and
D is closed in measure, so D is compact in the weak topology of Y .

Observe that since A1-regularity of X implies A1-regularity of Xγ for
all 0 < γ < 1, we may assume that 0 < δ < 1, otherwise the conclusion of
Theorem 8 is immediate. We define a set-valued map Φ in D ×D by

Φ((log u, log v)) =
{

(log u1, log v1) | u1, v1 ∈ X,
u1 ∈ B ∩BAp(c1), v1 ∈ B, v δ1 ∈ BA1(c2), f ∨ (u ∨ v) ≤ A(u1 ∧ v1)

}
.

For any (log u, log v) ∈ D×D we have w = f∨u∨v ∈ X with ‖w‖X ≤ 3, and
by the assumptions there exist some a, b ∈ X such that a ∈ BAp(c1), b

δ ∈
BA1(c2), a ≥ w , b ≥ w and ‖a‖X ≤ 3m1, ‖b‖X ≤ (3m2)

1/δ. Thus choosing

A = (3m1)∨(3m2)
1/δ and α = βA−1 yields (log u1, log v1) ∈ Φ((log u, log v))

with u1 = (1/A)a and v1 = (1/A)b, so Φ takes nonempty values. The con-
dition f ∨ (u ∨ v) ≤ A(u1 ∧ v1) is of course equivalent to (and a shorthand
for) the six inequalities f ≤ Au1, f ≤ Av1, u ≤ Au1, v ≤ Au1, u ≤ Av1 and
v ≤ Av1. It is easy to see using Proposition 10 that the graph Γ of Φ is a
convex set and Γ is closed with respect to convergence in measure.

Let us verify that Γ is closed in Y × Y . Indeed, the weak topology of
Y ×Y is metrizable on a bounded set D×D. If xj ∈ Γ and xj → x ∈ Y ×Y
then there exists some sequence yj of convex combinations of xj such that
yj → x in the strong topology of Y × Y , and yj ∈ Γ by the convexity
of Γ . Strong convergence in Y implies convergence in measure, so yj → x
in measure. Since Γ is closed in measure, it follows that x ∈ Γ and thus Γ
is indeed closed in Y × Y . From this we also infer that the values of Φ are
convex and closed in the compact set D × D, and thus they are compact
in Y × Y .
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By the Fan–Kakutani fixed point theorem there exists some

(log u, log v) ∈ D ×D

such that (log u, log v) ∈ Φ((log u, log v)). This implies that u and v are
pointwise equivalent to one another with a constant of equivalence depend-
ing only on A (which, in turn, only depends on the values of m1, m2 and δ),
and so w = Au is a majorant of f such that w ∈ Ap and w δ ∈ A1 with
appropriate estimates on the constants. By Lemma 9 it follows that w ∈ A1

with suitable estimates on the constants, which concludes the proof of The-
orem 8.

We will need the following proposition, which is a simple consequence of
duality and the properties of Ap weights.

Proposition 11 ([24, Proposition 2.3]). Suppose that X is a Banach
lattice on (S × Ω, ν × µ) such that X ′ is a norming space for X. If X ′ is
A1-regular then X1/q is A1-regular for all q > 1. If X ′ is Ap-regular with
some p > 1 then X1/p is A1-regular.

Theorem 8 has an interesting immediate application.

Proposition 12. Let X be a Banach lattice on (S × Ω, ν × µ) having
the Fatou property. Suppose that both X and X ′ are A∞-regular. Then X
and X ′ are also A1-regular.

Indeed, since X and X ′ are A∞-regular, they are also Ap-regular with

some p < ∞, which by Proposition 11 means that both (X ′)1/p and X1/p

are A1-regular, and it remains to apply Theorem 8 to X and X ′ with
δ = 1/p.

Corollary 13. Suppose that X is a Banach lattice on Rn having the
Fatou property, and both X and X ′ are A∞-regular. Then any Calderón–
Zygmund operator T is bounded in X.

This corollary, which strengthens Proposition 5, immediately follows
from Propositions 12 and 5.

3. Necessity of A1-regularity. The proof of the following result can
be found in [24, Theorem 2.6].

Theorem 14. Suppose that Y is a Banach lattice on (S×Ω, ν×µ) with
an order continuous norm. If a linear operator T is bounded in Y 1/2 then for
every f ∈ Y ′, m > 1 and a > KG‖T‖Y 1/2→Y 1/2, KG being the Grothendieck
constant, there exists a majorant w ≥ |f | with ‖w‖Y ′ ≤ m

m−1‖f‖Y ′ such that

‖T‖L2(w−1/2)→L2(w−1/2) ≤ a
√
m.
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The following result is a direct precursor to a very deep and nontrivial
fact that the so-called BMO-regularity is self-dual at least for Banach lattices
having the Fatou property; see [12], [15], [24].

Theorem 15 ([24, Theorem 1.6]). Suppose that X is a Banach lattice
on (S×Ω, ν×µ) having the Fatou property. Suppose also that XLq for some
1 < q <∞ is a Banach lattice and XLq is Ap-regular for some 1 ≤ p <∞.
Then X is Ap+1-regular.

We are now ready to prove the implication (3)⇒(1) of Theorem 1, which
can be stated as follows.

Theorem 16. Suppose that X is a Banach lattice of measurable func-
tions on (S × Ω, ν × µ) such that X is p-convex and q-concave for some
1 < p, q < ∞ and X has the Fatou property. Let T be a linear operator
on L2(S × Ω) such that both T and T ∗ are A2-nondegenerate and T acts
boundedly in X and in all Ls for 1 < s < ∞. Then the lattices X and X ′

are A1-regular.

By p-convexity Xp is also a Banach lattice with the Fatou property, and
so Xp(1−θ)Lθt is also a Banach lattice for all 1 ≤ t ≤ ∞ and 0 < θ < 1.
Choosing θ = 1 − 1/p shows that Ys = XLs is a Banach lattice for all
sufficiently large s. The lattice Ys has the Fatou property and has order
continuous norm (because Ls has order continuous norm for s <∞). Since
T is bounded in X and in Ls for all 1 < s <∞, by the interpolation property

mentioned in Section 1 the operator T is also bounded in X
1/2

L
1/2
s = Y

1/2
s

for all 1 < s < ∞. Theorem 14 and A2-nondegeneracy of T then imply
that the lattice Y ′s = X ′Ls′ is A2-regular for all sufficiently large s. By
Theorem 15 it follows that the lattice X ′ is A3-regular, and furthermore by
Proposition 11 the lattice X1/3 is A1-regular.

Since the convexity assumptions of Theorem 16 imply that X and X ′

have order continuous norm, we haveX ′ = X∗ andX = (X ′)∗, and moreover
X ∩ L2 is dense in X and X ′ ∩ L2 is dense in X ′, so the duality relation

�
(Tf)g =

�
f(T ∗g) for f ∈ X ∩ L2 and g ∈ X ′ ∩ L2

shows that boundedness of T in X implies boundedness of T ∗ in X ′ and
vice versa.

Repeating the argument above with X ′ in place of X (X ′ is q′-convex
since X is q-concave) and with T ∗ in place of T shows that X is A3-regular

and (X ′)1/3 is A1-regular.

Finally, we apply Theorem 8 to X and to X ′ with p = 3 and δ = 1/3,
which establishes that X and X ′ are both A1-regular. The proof of Theo-
rem 16 is complete.
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4. Concluding remarks. The theory of Calderón–Zygmund operators
naturally generalizes to spaces of homogeneous type. However, we cannot
just replace Rn by a space of homogeneous type in the statement of The-
orem 1 because it is not clear for which of these spaces there is at least
one suitably nondegenerate linear operator R. The individual implications,
however, still work in the form of Proposition 5 and Theorem 16.

The p-convexity and q-concavity assumptions of Theorem 1 are proba-
bly superfluous; so far we can only say for sure that they are not used in
the implication (1)⇒(2). We conjecture that these assumptions are actually
a consequence of any of the conditions of Theorem 1; that condition (1)
implies p-convexity and q-concavity with some 1 < p, q < ∞ is known to
hold true at least for variable exponent Lebesgue spaces (see, e.g., [9, The-
orem 4.7.1]), and it seems that it is possible to adapt the same argument
to cover suitable nondegenerate singular integral operators as well. Recently
in [7, Theorem 5.42] it was established that if all Riesz transforms Rj are
bounded in Lp(·) then the exponent p(·) is bounded away from 1 and ∞.

Furthermore, it is easy to see that the assumptions of p-convexity and
q-concavity could be eliminated from Theorem 16 if we assume boundedness
of T and T ∗ in X1/2 and (X ′)1/2 instead of just X. It is, however, unclear
whether boundedness of a Calderón–Zygmund operator T in X implies its
boundedness in X1/2; this seems plausible because T acts boundedly from
L∞ to BMO, but as far as we know, all available interpolation results that
make it possible to replace L∞ by BMO as an endpoint in the appropriate
interpolation scale (see, e.g., [16], [25]) work only under the assumption that
both Xα and (X ′)α are A1-regular for some α > 0, which is a consequence
of what we are trying to establish in this setting.

There is a different approach to the implication (3)⇒(1) of Theorem 1
that works at least in certain cases. Let S = {Ql} be a collection of cubes
or balls. We define operators

ASf(x) =
∑
Q∈S

fQχQ(x) and A�
Sf(x) =

(∑
Q∈S

(fQ)2χQ(x)
)1/2

for all locally summable functions f ; here fQ = |Q|−1
	
Q f(z) dz for Q ∈ S.

It is easy to see that if the cubes or balls from S are pairwise disjoint then
A�
Sf = ASf almost everywhere for nonnegative functions f .

Proposition 17. Suppose that a singular integral operator T with kernel
K satisfying (5) is bounded with norm C in a Banach lattice X having the
Fatou property. Then for any collection S = {Ql} of cubes or balls we have

(7) ‖A�
Sf‖X ≤ ca

∥∥∥f(∑
l

χQl

)1/2∥∥∥
X

for all f such that the right-hand side of (7) is well-defined, with a constant
ca independent of f and S.



244 D. V. Rutsky

Observe that Proposition 17 also implies that if a suitably nondegen-
erate operator T acts boundedly in X then all operators AS with disjoint
collections S of cubes or balls are uniformly bounded in X. In particular, it
is well known that taking collections S consisting of a single cube implies
that if (7) holds true for X = Lp(w

−1/p), 1 < p < ∞, then w ∈ Ap, and
thus X is A1-regular. It is not clear in general whether either (7) or uniform
boundedness of AS is related to other properties of interest. Of course, one
immediately observes that such operators AS are bounded in Lp for both
p = 1 and p = ∞, so their uniform boundedness in a lattice X does not
necessarily mean that X is A1-regular. However, and somewhat surprisingly,
this implication holds true at least in the case of variable exponent Lebesgue
spaces X = Lp(·) if we also assume that X is p-convex and q-concave for some
1 < p, q < ∞; see, e.g., [9, Theorem 5.7.2]. Thus not only the converse to
[7, Theorem 5.39] is true for nondegenerate operators, which answers posi-
tively [7, Problem A.17], but there is also no need to involve the complicated
machinery of the main results of the present work.

Let us prove Proposition 17. First, observe that (5) implies by [27, Chap-
ter 5, §4.6] that there exists a constant c > 0 and some x0 ∈ Rn \ {0} such
that for any ball B ⊂ Rn of radius r > 0 and any locally summable nonneg-
ative function f supported on B we have

(8) |Tf(x)| ≥ cfB
for all x ∈ B±rx0. Let S ′ = {Q′l} with Q′l = Ql+x0 being the cubes or balls
Ql shifted by x0, and set fl = fχQl . We may assume that f is nonnegative
and the right-hand side of (7) is finite. It follows that the sequence valued
function F = {fl} belongs to X(l2) with ‖F‖X(l2) = ‖f(

∑
l χQl)

1/2‖X .
Using the nondegeneracy assumption (8) and the Grothendieck theorem
(which shows that T is bounded in X(l2); see, e.g., [18]) we can easily
obtain an estimate

(9) c−1
∥∥∥(∑

l

χQ′l(fQl)
2
)1/2∥∥∥

X
≤
∥∥∥(∑

l

χQ′l |Tfl|
2
)1/2∥∥∥

X

≤ ‖TF‖X(l2) ≤ CKG‖F‖X(l2) = CKG

∥∥∥f(∑
l

χQl

)1/2∥∥∥
X
,

KG being the Grothendieck constant. On the other hand, repeating this
estimate for G = {gl}, gl = χQ′lfQl , in place of F and with the order of Ql
and Q′l reversed shows that

(10) c−1‖A�
Sf‖X = c−1

∥∥∥(∑
l

χQl(fQl)
2
)1/2∥∥∥

X
≤
∥∥∥(∑

l

χQl |Tgl|
2
)1/2∥∥∥

X

≤ ‖TG‖X(l2) ≤ CKG‖G‖X(l2) = CKG

∥∥∥(∑
l

χQ′l(fQl)
2
)1/2∥∥∥

X
.

Combining (9) and (10) yields (7) with ca = (CcKG)2.
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There is an interesting generalization of Proposition 5 which is easily ob-
tained from certain less classical results. It is well known (see, e.g., [2], [11])
that

(11) M ]
λ(Tf) ≤ cMf

almost everywhere for a wide variety of operators T including Calderón–
Zygmund operators and all locally summable functions f with c indepen-
dent of f , where M ]

λ is the Strömberg local sharp maximal function. S0 de-
notes the set of all measurable functions f on Rn whose nonincreasing re-
arrangement f∗ satisfies f∗(+∞) = 0. The following result is similar to the
well-known duality relation between H1 and BMO.

Theorem 18 ([19, Theorem 1]).�
|fg| ≤ c

�
(M ]

λf)(Mg)

for any f ∈ S0 and locally summable function g, with some c and λ inde-
pendent of f and g.

Now we are ready to obtain the following extension of Proposition 5.

Theorem 19. Suppose that X, Y and Z are Banach lattices on Rn hav-
ing the Fatou property, S0 is dense in X, and the Hardy–Littlewood maximal
operator M acts boundedly from X to Z and from Y ′ to Z ′. Then any op-
erator T that satisfies estimate (11) acts boundedly from X to Y .

Theorem 19 follows at once from Theorem 18, since for any f ∈ X ∩ S0
and g ∈ Y ′ we have the estimate�

|(Tf)g| ≤ c
�
[M ]

λ(Tf)][Mg] ≤ c1
�
(Mf) (Mg)(12)

≤ c1‖Mf‖Z‖Mg‖Z′ ≤ c2‖f‖X‖g‖Y ′
with some c, c1 and c2 independent of f and g.

Since M is a positive operator and Mg ≥ g almost everywhere for any
locally summable g, the assumptions of Theorem 19 imply that X ⊂ Z and
Y ′ ⊂ Z ′, which in turn implies that X ⊂ Z ⊂ Y . Unlike the case X = Y =Z,
it is presently unclear whether Theorem 19 admits a converse similar to
Theorem 16 below. In other words, if a suitably nondegenerate Calderón–
Zygmund operator T acts boundedly from X to Y , does it follow that X ⊂ Y
and there exists a lattice Z satisfying the conditions of Theorem 19?
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