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Sharp inequalities for Riesz transforms

by

Adam Osękowski (Warszawa)

Abstract. We establish the following sharp local estimate for the family {Rj}dj=1 of
Riesz transforms on Rd. For any Borel subset A of Rd and any function f : Rd → R,�

A

|Rjf(x)| dx ≤ Cp‖f‖Lp(Rd)|A|
1/q, 1 < p <∞.

Here q = p/(p− 1) is the harmonic conjugate to p,

Cp =

[
2q+2Γ (q + 1)

πq+1

∞∑
k=0

(−1)k

(2k + 1)q+1

]1/q
, 1 < p < 2,

and

Cp =

[
4Γ (q + 1)

πq

∞∑
k=0

1

(2k + 1)q

]1/q
, 2 ≤ p <∞.

This enables us to determine the precise values of the weak-type constants for Riesz
transforms for 1 < p <∞. The proof rests on appropriate martingale inequalities, which
are of independent interest.

1. Introduction. The purpose of this paper is to establish a class of
sharp inequalities for Riesz transforms in Rd. These objects are fundamental
examples of Calderón–Zygmund singular integral operators and are given by

Rjf(x) =
Γ
(
d+1
2

)
π(d+1)/2

p.v.
�

Rd

xj − yj
|x− y|d+1

f(y) dy

for j = 1, . . . , d (see e.g. Stein [St]). In the particular case d = 1, this family
has only one element, the so-called Hilbert transform H on R. There is an
alternative definition of Rj : it can be defined as the Fourier multiplier with
symbol iξj/|ξ|, ξ ∈ Rd \ {0}, i.e., we have the identity

(1.1) R̂jf(ξ) = i
ξj
|ξ|
f̂(ξ) for ξ ∈ Rd \ {0}.
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The problem of studying various norms of these objects and their extensions
is classical and has interested many mathematicians. The celebrated result
of M. Riesz [R] states that the Hilbert transform H is a bounded operator
on Lp(R) if and only if 1 < p < ∞. Pichorides [P] and Cole (unpublished;
see [G]) identified the precise values of these norms:

(1.2) ‖H‖Lp(R)→Lp(R) = Ep :=


tan

(
π

2p

)
if 1 < p ≤ 2,

cot

(
π

2p

)
if p ≥ 2.

Using the so-called method of rotations, Iwaniec and Martin [IM] extended
this result to the d-dimensional setting. They proved that for 1 < p < ∞,
any function f ∈ Lp(Rd) and any j = 1, . . . , d, we have

(1.3) ‖Rjf‖Lp(Rd) ≤ Ep‖f‖Lp(Rd),

and that the constant Ep cannot be decreased for any fixed j, p and d. An al-
ternative, probabilistic proof of the estimate (1.3), based on a sharp inequal-
ity for orthogonal martingales, was given by Bañuelos and Wang [BW1].

The motivation for the results obtained in this paper comes from the ques-
tion about (1.3) in the limit case p = 1. Riesz transforms are not bounded
on L1, but there are several important substitutes for (1.3). For example,
Kolmogorov [K] proved the weak-type (1, 1) estimate

‖Hf‖L1,∞(R) ≤ c1‖f‖L1(R)

for some universal constant c1 < ∞. Here, for 1 ≤ p < ∞ and any Borel
function f : Rd → R, we define the weak pth norm of f by

‖f‖Lp,∞(Rd) = sup
λ>0

[
λp|{x ∈ Rd : |f(x)| ≥ λ}|

]1/p
.

The optimal value of c1 was found by Davis [D] to be equal to

1 + 1
32

+ 1
52

+ 1
72

+ · · ·
1− 1

32
+ 1

52
− 1

72
+ · · ·

' 1.34 . . . .

This result was further extended by Janakiraman [J], who identified the best
constant in the corresponding weak-type (p, p) bound for 1 ≤ p ≤ 2. Namely,
he showed that

‖Hf‖Lp,∞(R) ≤ cp‖f‖Lp(R),

where the optimal cp is equal to

cp =

(
1

π

∞�

−∞

∣∣ 2
π log |t|

∣∣p
t2 + 1

dt

)−1/p
.

The question about the best weak-type constant in the range p > 2 remains
open. Another open problem concerns the sharp analogues of the above
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estimates for Riesz transforms. In fact, it is not even known whether Riesz
transforms satisfy the weak-type (1, 1) estimate with a constant which does
not depend on the dimension.

We will establish another version of (1.3), which is related to the action
of Rj from Lp(Rd) to L1(Rd). This in turn provides some information on the
weak-type constants for Riesz transforms, under a proper renorming of the
space Lp,∞(Rd).

Throughout the paper, we use the convention that for any 1 < p < ∞,
the number q stands for the harmonic conjugate to p, i.e., q = p/(p− 1).

Our main result can be stated as follows:

Main Theorem 1.1. Fix 1 < p < ∞, let f ∈ Lp(Rd) and assume that
A is a Borel subset of Rd. Then for any j = 1, . . . , d, we have

(1.4)
�

A

|Rjf(x)| dx ≤ Cp‖f‖Lp(Rd)|A|1/q,

where

Cp =

[
2q+2Γ (q + 1)

πq+1

∞∑
k=0

(−1)k

(2k + 1)q+1

]1/q
, 1 < p < 2,

and

Cp =

[
4Γ (q + 1)

πq

∞∑
k=0

1

(2k + 1)q

]1/q
, 2 ≤ p <∞.

The constant is the best possible for each p, d and j.

This yields the following sharp weak-type (p, p) inequality for Riesz trans-
forms. It is well-known (see e.g. Grafakos [Gr]) that the quantity

|||f |||Lp,∞(Rd) = sup
0<|A|<∞

|A|−1/q
�

A

|f(x)| dx

defines a norm on Lp,∞(Rd) for 1 < p <∞. Thus the above theorem imme-
diately gives the following.

Theorem 1.2. For any 1 < p <∞, f ∈ Lp(Rd), d ≥ 1, and j = 1, . . . , d,
we have

(1.5) |||Rjf |||Lp,∞(Rd) ≤ Cp‖f‖Lp(Rd),

and the constant Cp is the best possible.

Some remarks about the constants Cp are in order. First, we see the same
phenomenon as in (1.3): the best constants in (1.4) and (1.5) do not depend
on the dimension. Next, for 1 < p < 2, the series in the definition of Cp is
the famous β function (see Abramowitz and Stegun [AS, p. 807]), related to
the Bernoulli and Euler polynomials, and Catalan’s constant. On the other
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hand, for 2 ≤ p < ∞, the constant Cp can be rewritten using Riemann’s
zeta function:

Cp = [4π−q(1− 2−q)Γ (q + 1)ζ(q)]1/q.

Let us say a few words about the proof and the organization of the paper.
Theorem 1.1 will be established with the use of probabilistic methods. More
precisely, we will present the proof of a sharp estimate for continuous-time
martingales which can be regarded as a dual to (1.4). This is done in the
next section. In Section 3 we establish (1.4) and in the final part of the paper
we address the sharpness of this estimate.

2. A martingale inequality

2.1. Background and the formulation of the result. Assume that
(Ω,F ,P) is a complete probability space, equipped with (Ft)t≥0, a nonde-
creasing family of sub-σ-fields of F such that F0 contains all the events of
probability 0. Let X and Y be adapted real-valued martingales with right-
continuous trajectories that have limits from the left. The symbol [X,Y ] will
stand for the quadratic covariance process of X and Y ; see e.g. Dellacherie
and Meyer [DM] for details. The martingales X, Y are said to be orthogonal
if the process [X,Y ] is constant with probability 1. Following Bañuelos and
Wang [BW1] and Wang [W], we say that Y is differentially subordinate to
X if the process ([X,X]t− [Y, Y ]t)t≥0 is nonnegative and nondecreasing as a
function of t. Differential subordination of Y to X implies many interesting
inequalities which have found applications in many areas of mathematics;
see e.g. [BB], [BW1], [Bu1], [Bu2], [O1]–[O3], [Su] and [W].

Here is our main probabilistic result. (For any 1 ≤ p ≤ ∞, we use the
notation ‖X‖p = supt≥0 ‖Xt‖p for the pth norm of the martingale X.)

Theorem 2.1. Assume that X, Y are orthogonal martingales such that
Y is differentially subordinate to X and Y0 = 0. Then for any 1 < q < ∞,
we have

(2.1) ‖Y ‖q ≤ Cp‖X‖1/q1 ‖X‖
1/p
∞ ,

and the constant Cq cannot be improved.

To prove this statement, we will exploit the properties of a certain special
superharmonic function defined on the strip S = (−1, 1) × R. We consider
the cases q ≥ 2 and 1 < q < 2 separately.

2.2. Proof of Theorem 2.1 for q ≥ 2. This case is a little easier. Let
H = R × (0,∞) denote the upper half-plane and let U = Uq : H → R be
given by the Poisson integral

U(α, β) =
1

π

�

R

β
∣∣ 2
π log |t|

∣∣q
(α− t)2 + β2

dt− Cqp .
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Of course, the function U is harmonic on H; furthermore, it satisfies

(2.2) lim
(α,β)→(z,0)

U(α, β) = (2/π)q
∣∣log |z|

∣∣q − Cqp for z 6= 0.

Consider a conformal mapping ϕ(z) = ie−iπz/2, or, in real coordinates,

ϕ(x, y) =

(
eπy/2 sin

(
π

2
x

)
, eπy/2 cos

(
π

2
x

))
for (x, y) ∈ S = (−1, 1)× R.

One easily verifies that ϕ maps the strip S onto H. Define U = Uq on S by

(2.3) U(x, y) = U(ϕ(x, y)).

The function U is harmonic on S and, by (2.2), can be extended to the
continuous function on the closure S of S by U(±1, y) = |y|q. It is easy to
check that

(2.4) U(x, y) =
1

π

�

R

∣∣ 2
π log |s|+ y

∣∣q cos
(
π
2x
)(

s− sin
(
π
2x
))2

+ cos2
(
π
2x
) ds− Cqp

for (x, y) ∈ S. Further properties of U are investigated in the lemma below.

Lemma 2.2.

(i) We have U(0, 0) = 0.
(ii) The function U satisfies U(x, y) = U(−x, y) on S.
(iii) For any (x, y) ∈ S, we have Uyy(x, y) ≥ 0.
(iv) We have

(2.5) U(x, y) ≥ |y|q − Cqp |x| for all (x, y) ∈ S.
Proof. (i) We have

U(0, 0) = U(0, 1) =
2q+1

πq+1

∞�

0

|log t|q

t2 + 1
dt− Cqp =

2q+1

πq+1

∞�

−∞

|s|qes

e2s + 1
ds− Cqp

=
2q+2

πq+1

∞�

0

sqe−s
∞∑
k=0

(−e−2s)k ds− Cqp

=
2q+2

πq+1
Γ (q + 1)

∞∑
k=0

(−1)k

(2k + 1)q+1
− Cqp = 0.

(ii) follows immediately from the substitution s := −s in (2.4).
(iii) Simply apply (2.4) and the convexity of the function y 7→

∣∣log |s|+y
∣∣q

for any s.
(iv) By (iii) and the harmonicity of U , we have Uxx ≤ 0 on S. Thus,

by (i), it suffices to verify the majorization for x ∈ {0, 1}. If x = 1, then
both sides of (2.5) are equal. For x = 0, the bound becomes

1

π

�

R

∣∣ 2
π log |s|+ y

∣∣q
s2 + 1

ds ≥ |y|q + Cqp =
1

π

�

R

|y|q +
∣∣ 2
π log |s|

∣∣q
s2 + 1

ds.
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However, since q ≥ 2, for any y ∈ R and any s we have

(2.6)
∣∣ 2
π log |s|+ y

∣∣q +
∣∣ 2
π log |s| − y

∣∣q ≥ 2|y|q + 2
∣∣ 2
π log |s|

∣∣q.
Thus, dividing through by s2 + 1 and integrating over R with respect to s
yields the desired bound, because of the equality

�

R

∣∣ 2
π log |s|+ y

∣∣q
s2 + 1

ds =
�

R

∣∣ 2
π log |s| − y

∣∣q
s2 + 1

ds,

which can be verified by substituting s := 1/s into the integral on the right.

Recall the following well-known fact (see e.g. [DM] for details). For any
semimartingale X there exists a unique continuous local martingale part Xc

of X satisfying

[X,X]t = |X0|2 + [Xc, Xc]t +
∑

0<s≤t
|∆Xs|2

for all t ≥ 0. Here ∆Xs = Xs − Xs− denotes the jump of X at time s.
Furthermore, [Xc, Xc] = [X,X]c, the pathwise continuous part of [X,X].

Lemma 2.3 ([BW2, Lemma 2.1]). If X, Y are semimartingales, then Y
is differentially subordinate and orthogonal to X if and only if Y c is differ-
entially subordinate and orthogonal to Xc, |Y0| ≤ |X0| and Y has continuous
paths.

We are ready to prove the martingale inequality.

Proof of (2.1) for q ≥ 2. With no loss of generality, we may assume that
‖X‖∞ = 1. Let t ∈ (0,∞) and (Zs)s≥0 = ((Xs, Ys))s≥0. Since U is of class
C∞ on S, we may apply Itô’s formula to obtain

U(Zt) = U(Z0) + I1 + 1
2I2 + 1

2I3 + I4,

where

I1 =

t�

0+

Ux(Zs−) dXs +

t�

0+

Uy(Zs−) dYs,

I2 = 2

t�

0+

Uxy(Zs−) d[Xc, Y ]s,

I3 =

t�

0+

Uxx(Zs−) d[X,X]cs +

t�

0+

Uyy(Zs−) d[Y, Y ]s,

I4 =
∑

0<s≤t
{U(Zs)− U(Zs−)− Ux(Zs−)∆Xs}.

Note that above we have used the equalities Ys− = Ys and Y = Y c, which
are due to the continuity of paths of Y . By Lemma 2.2(ii), (iv) and the
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harmonicity of U , the function U(·, 0) is concave and even on [−1, 1], and
hence U(Z0) ≤ U(0, 0) = 0. The term I1 has zero expectation, since the
stochastic integrals are martingales. I2 = 0 because of the orthogonality of
Xc and Y . The differential subordination together with Lemma 2.2(iii) give

I3 ≤
t�

0

Uxx(Zs−) d[X,X]cs +

t�

0

Uyy(Zs−) d[X,X]cs = 0.

Finally, each summand in I4 is nonpositive, by the concavity of U(·, y) for
any fixed y ∈ R (see Lemma 2.2(iii)). Therefore, by Lemma 2.2(ii),

(2.7) E|Yt|q − CqpE|Xt| ≤ EU(Xt, Yt) ≤ 0,

and (2.1) is established. The sharpness of this estimate will follow from the
optimality of Cp in (1.4): see the remark at the end of Section 4.

2.3. Proof of Theorem 2.1 for 1 < q < 2. Though the arguments
may seem similar, there are several important differences. The formula for
the special function used in the previous subsection does not work here,
because the majorization (2.5) fails to hold: indeed, the bound (2.6) is no
longer valid. Thus we need a different function; in fact, as we will see, the
object we will construct will not be harmonic on S, but only superharmonic.

To introduce the proper function for 1 < q < 2, we start, as previously,
by defining the auxiliary function U = Uq : H → R. It is given essentially by
the same formula as before:

U(α, β) =
1

π

�

R

β
∣∣ 1
π log |t|

∣∣q
(α− t)2 + β2

dt

(the only essential difference is that the summand −Cqp is thrown out). Ob-
viously, U is harmonic on H and satisfies

(2.8) lim
(α,β)→(z,0)

U(α, β) =

(
1

π

)q∣∣log |z|
∣∣q for z 6= 0.

The crucial fact is that we will not copy U onto S as previously, but
will use two separate copies onto two half-strips (−1, 0)×R and (0, 1)×R.
Formally, consider the conformal mapping ϕ(z) = −e−iπz which maps
(0, 1)× R onto H. Define U = Up on (0, 1)× R by

(2.9) U(x, y) = U(ϕ(x, y))− Cqpx.

The function U is harmonic on (0, 1)× R and, by (2.8), can be extended to
a continuous function on [0, 1]× R by

U(0, y) = |y|q, U(1, y) = |y|q − Cqp .
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Finally, extend U to the whole S by U(x, y) = U(−x, y). It is easy to check
that

(2.10) U(x, y) =
1

π

�

R

∣∣ 1
π log |s|+ y

∣∣q sin(πx)

(s+ cos(πx))2 + sin2(πx)
ds− Cqp |x|

for (x, y) ∈ S. Further properties of U are given in the lemma below.

Lemma 2.4.

(i) The right-hand partial derivative Ux(0+, 0) is equal to 0.
(ii) For any (x, y) ∈ S, we have Uyy(x, y) ≥ 0.
(iii) We have

(2.11) U(x, y) ≥ |y|q − Cqp |x| for all (x, y) ∈ S.

(iv) For any (x, y) ∈ S, we have Uyyy(x, y) ≤ 0.
(v) The function U is superharmonic on S.

Proof. (i) From (2.10), we compute that

Ux(0+, 0) =
�

R

∣∣ 1
π log |s|

∣∣q
(s+ 1)2

ds− Cqp

=

∞�

0

∣∣ 1
π log s

∣∣q
(s+ 1)2

ds+

∞�

0

∣∣ 1
π log s

∣∣q
(s− 1)2

ds− Cqp

=
2

πq

[∞�
1

(log s)q

(s+ 1)2
ds+

∞�

1

(log s)q

(s− 1)2
ds

]
− Cqp

=
2q

πq

[∞�
1

(log s)q−1

s(s+ 1)
ds+

∞�

1

(log s)q−1

s(s− 1)
ds

]
− Cqp

=
4q

πq

∞�

1

(log s)q−1

s2 − 1
ds− Cqp =

4q

πq

∞�

0

tq−1e−t

1− e−2t
dt− Cqp

=
4q

πq

∞∑
k=0

∞�

0

tq−1e−(2k+1)t dt− Cqp

=
4Γ (q + 1)

πq

∞∑
k=0

(2k + 1)−q − Cqp = 0.

(ii) This is shown word-for-word as in the case q ≥ 2.
(iii) By (ii) and the harmonicity of U on the half-strip (0, 1) × R, we

get Uxx ≤ 0 on this set, and hence it suffices to show the majorization for
x ∈ {0, 1}. However, when x = 0 or x = 1, both sides of (2.11) are equal.
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(iv) By Fubini’s theorem,

Uy(x, y) =
q

π

∞�

−∞

sin(πx)
∣∣ 1
π log |s|+ y

∣∣q−2( 1
π log |s|+ y

)
(s+ cos(πx))2 + sin2(πx)

ds.

Therefore, for ε ∈ (0, y) we have

2Uy(x, y)−Uy(x, y− ε)−Uy(x, y+ ε) =
q

π

∞�

−∞

fy,ε
(
1
π log |s|

)
sin(πx)

(s+ cos(πx))2 + sin2(πx)
ds,

where

fy,ε(h) = 2|y+h|q−2(y+h)−|y−ε+h|q−2(y−ε+h)−|y+ε+h|q−2(y+ε+h).

Denote the latter integral by I. After splitting it into integrals over the
nonpositive and nonnegative half-lines, and substituting s = ±er, we get

I =

∞�

−∞
fy,ε(r/π)gx(r) dr,

where

gx(r) =
sin(πx)er

(er + cos(πx))2 + sin2(πx)
+

sin(πx)er

(er − cos(πx))2 + sin2(πx)
.

Observe that fy,ε(h) ≤ 0 for h ≥ −y, and fy,ε(−y + h) = −fy,ε(−y − h) for
all h. Furthermore, gx is even and, for r > 0,

(gx)′(r) =
sin(πx)er(1− er)

[(er + cos(πx))2 + sin2(πx)]2
+

sin(πx)er(1− er)
[(er + cos(πx))2 + sin2(πx)]2

≤ 0.

This implies I ≤ 0 and, since ε ∈ (0, x) was arbitrary, the function U(x, ·) :
y 7→ Uy(x, y) is convex on (0,∞).

(v) The function U is symmetric with respect to the y-axis, continuous
on S and harmonic on the half-strips (0, 1)×R and (−1, 0)×R. Thus we will
be done if we show that the one-sided derivative Ux(0+, y) is nonpositive for
y 6= 0. Since U satisfies U(x, y) = U(x,−y) on S (substitute s := 1/s
in (2.10)), we may restrict ourselves to y ≥ 0. Observe that the integral
in (2.10) remains unchanged if we make the substitution x := 1 − x. Con-
sequently, its partial derivative with respect to x vanishes at x = 1/2, and
hence further differentiation with respect to y yields Uxy(1/2, y) = 0 for all
y. Next, using (iv) and the harmonicity of Uy, we get Uxxy(x, y) ≥ 0 for
y ≥ 0, and thus for any (x, y) ∈ (0, 1/2) × (0,∞) we have Uxy(x, y) ≤ 0. It
remains to use (i) to complete the proof.

Proof of (2.1) for 1<q<2. As previously, we may assume that ‖X‖∞=1.
In comparison with the case q ≥ 2, we need to overcome the problem that U
is not of class C2 (so Itô’s formula cannot be applied). This can be done by
an appropriate mollification argument. Let g : R2 → [0,∞) be a C∞ radial
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function, supported on the unit ball and satisfying
	
R2 g = 1. For any δ > 0,

define U δ : S → R by

U δ(x, y) =
�

[−1,1]2
U
(
(1− δ)x+ δu, (1− δ)y + δv

)
g(u, v) du dv.

This function is superharmonic and inherits the concavity with respect to
the variable y. Furthermore, we have U δ(0, 0) ≤ U(0, 0), because U is super-
harmonic and g is radial. Finally, by (2.11), we easily check that

U δ(x, y) ≥
∣∣(1− δ)|y| − δ∣∣q − Cqp(1− δ)|x| − Cqpδ.

Consequently, if we repeat the reasoning from the case q ≥ 2, for any t ≥ 0
we obtain

E
∣∣(1− δ)|Yt| − δ∣∣q ≤ Cqp(1− δ)E|Xt|+ Cqpδ ≤ Cqp‖X‖1 + Cqpδ.

It suffices to let δ → 0, apply Fatou’s lemma and take the supremum over t
to get the claim.

3. Inequalities for Riesz transforms. There is a well-known repre-
sentation of Riesz transforms in terms of the so-called background radiation
process, introduced by Gundy and Varopoulos [GV]. Let us briefly describe
this connection. Throughout this section, d is a fixed positive integer. Sup-
pose that Z = (X,Y ) is a Brownian motion in Rd×R starting from the origin.
For any y > 0, introduce the stopping time τ(y) = inf{t ≥ 0 : Yt = −y}.
If f belongs to S(Rd), the class of rapidly decreasing functions on Rd, let
Wf : Rd × [0,∞) → R stand for the Poisson extension of f to the upper
half-space. That is,

Wf (x, y) := Ef(x+Xτ(y)).

For any (d + 1) × (d + 1) matrix A we define the martingale transform
A∗f by

A∗f(x, y) =

τ(y)�

0+

A∇Wf ((x, y) + Zs) · dZs.

Note that A∗f(x, y) is a random variable for each x, y. Now, for any f ∈ C∞0 ,
any y > 0 and any matrix A as above, define T yAf : Rd → R through the
bilinear form

(3.1)
�

Rd

T yAf(x)g(x) dx =
�

Rd

E
[
A∗f(x, y)g(x+Xτ(y))

]
dx,

where g runs over C∞0 (Rd). Less formally, T yf is given as the following
conditional expectation with respect to the measure P̃ = P⊗ dx (dx denotes
Lebesgue’s measure on Rd): for any w ∈ Rd,

T yAf(w) = Ẽ[A ∗ f(x, y) |x+Xτ(y) = w];
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see Gundy and Varopoulos [GV] for the rigorous statement of this equality.
The interplay between the operators T yA and Riesz transforms is explained
in the following theorem; consult [GV] or Gundy and Silverstein [GS].

Theorem 3.1. Let Aj = [aj`m], j = 1, . . . , d, be the (d + 1) × (d + 1)
matrices given by

aj`m =


1 if ` = d+ 1, m = j,

−1 if ` = j, m = d+ 1,

0 otherwise.

Then T y
Ajf → Rjf almost everywhere as y →∞.

We turn to the dual version of Theorem 1.1.

Theorem 3.2. For any 1 < q < ∞, f ∈ Lq(Rd), d ≥ 1 and 1 ≤ j ≤ d,
we have the sharp estimate

(3.2) ‖Rjf‖Lq(Rd) ≤ Cp‖f‖
1/q

L1(Rd)
‖f‖1/p

L∞(Rd)
.

Proof. Fix j ∈ {1, . . . , d}, x ∈ R and y > 0. By a standard density
argument, it suffices to establish the estimate (3.2) for f ∈ C∞0 (Rd) satisfying
‖f‖L∞(Rd) ≤ 1. Consider the pair ξ = (ξt)t≥0, η = (ηt)t≥0 of martingales
given by

ξt = Wf ((x, y) + Zτ(y)∧t) = Wf (x, y) +

τ(y)∧t�

0+

∇Wf ((x, y) + Zs) · dZs,

ηt =

τ(y)∧t�

0+

Aj∇Wf ((x, y) + Zs) · dZs,

for t ≥ 0. Observe that ‖ξ‖∞ ≤ 1, because f , and hence alsoWf , are bounded
in absolute value by 1. Then the martingale η is differentially subordinate
to ξ, since [ξ, ξ]t − [η, η]t equals

|Wf (x, y)|2 +
∑

k/∈{j,d+1}

τ(y)∧t�

0+

∣∣∣∣∂Wf

∂xk
((x, y) + Zs)

∣∣∣∣2 ds
and is nonnegative and nondecreasing as a function of t. Furthermore, ξ and
η are orthogonal, which is a direct consequence of the equality 〈Ajx, x〉 = 0,
valid for all x ∈ Rd. Indeed, [ξ, η]t equals

τ(y)∧t�

0+

〈
Aj∇Wf ((x, y) + Zs),∇Wf ((x, y) + Zs)

〉
ds = 0.
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Thus, by (2.1), we have

E|ητ(y)|q = sup
t≥0

E|ηt|q ≤ Cqp‖ξ‖1.

Integrating this estimate with respect to x ∈ Rd and using Fubini’s theorem,
we get �

Rd

E|A∗f(x, y)|q dx ≤ Cqp‖f‖L1(Rd).

Combining this with (3.1), we obtain
�

Rd

T y
Ajf(x)g(x) dx ≤

(
E

�

Rd

|A∗f(x, y)|q dx
)1/q(

E
�

Rd

|g(x+Xτ(y))|p dx
)1/p

≤ Cp‖f‖1/qL1(Rd)
‖g‖Lp(Rd).

Since C∞0 (Rd) is dense in Lp(Rd), the above estimate yields

‖T y
Ajf‖Lq(Rd) ≤ Cp‖f‖

1/p

L1(Rd)
.

It suffices to let y →∞ and apply the assertion of Theorem 3.1 and Fatou’s
lemma. The sharpness of the estimate will follow from the optimality of the
constant Cp in (1.4); see the end of Section 4.

Proof of (1.4). Fix f ∈ Lp(Rd) and set g = 1ARjf/|Rjf | (g = 0 if the
denominator is zero). By Parseval’s identity and (1.1), we get�

A

|Rjf(x)| dx =
�

Rd

Rjf(x)g(x) dx =
�

Rd

R̂jf(x)ĝ(−x) dx(3.3)

= −
�

Rd

f̂(x)R̂jg(−x) dx = −
�

Rd

f(x)Rjg(x) dx

≤ ‖f‖Lp(Rd)‖Rjg‖Lq(Rd) ≤ Cp‖f‖Lp(Rd)‖g‖
1/q

L1(Rd)
,

where in the latter passage we have used (3.2) and the fact that g takes values
in [−1, 1]. To complete the proof it suffices to note that ‖g‖L1(Rd) ≤ |A|.

4. Sharpness

4.1. Two conformal mappings. Let D denote the open unit disc of C
and let K : D∩H → H be defined by K(z) = −(1−z)2/(4z) (as previously,
H stands for the upper half-plane). It is not difficult to verify that K is
conformal, and hence so is its inverse L. Let us extend L to the continuous
function on H. Consider another conformal map F : D → S (recall that S
is the strip {z ∈ C : |Re z| < 1}), given by

F (z) =
2i

π
log

iz − 1

z − i
− 1.
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The following properties of L and F will be needed below. First, observe
that L maps the interval [0, 1] onto {eiθ : 0 ≤ θ ≤ π}. More precisely, we
have the following formula: if x ∈ [0, 1], then

(4.1) L(x) = eiθ,

where θ ∈ [0, π] is uniquely determined by x = sin2(θ/2). In addition,
L maps the set R \ [0, 1] onto the open interval (−1, 1); precisely, we have
the identity

(4.2) L(x) =

{
1− 2x− 2

√
x2 − x if x < 0,

1− 2x+ 2
√
x2 − x if x > 1.

In particular, we easily check that for any δ > 0, the function L is bounded
away from 1 outside any interval of the form [−δ, 1+δ], and |L(x)| = O(|x|−1)
as x→ ±∞.

The function F has the following properties:

F maps the unit circle onto the boundary of S,(4.3)
F maps [−1, 1] onto itself.(4.4)

4.2. Sharpness of (1.4) for d = 1 and 1 < p ≤ 2. For any posi-
tive integer n, consider the conformal map Vn : H → S given by Vn(z) =
F (L2n(z)), and define ϕn : R → R by the formula ϕn(x) =ReVn(x). Since
limz→∞ Vn(z) = 0, we see that Hϕn(x) = ImVn(x) for x ∈ R. Combining the
above facts about L and F , we observe that ImVn(x) = 0 for x ∈ R \ [0, 1]
and hence, using (4.1), we have

(4.5)
�

R

|Hϕn(x)|q dx =

1�

0

|ImF (L2n(x))|q dx

=
1

2

π�

0

|ImF (e2inθ)|q sin θ dθ

=
1

2

2nπ�

0

|ImF (eiθ)|q sin

(
θ

2n

)
dθ

2n

=
1

2

2π�

0

|ImF (eiθ)|q
n−1∑
k=0

sin

(
kπ

n
+

θ

2n

)
dθ

2n

=
1

2

2π�

0

|ImF (eiθ)|q
cos
(
θ−π
n

)
2n sin

(
π
2n

) dθ n→∞−−−→ 1

2π

2π�

0

|ImF (eiθ)x|q dθ

=
1

2π

2π�

0

∣∣∣∣ 2π log

(
sin θ

1− cos θ

)∣∣∣∣q dθ =
1

π

�

R

∣∣ 2
π log t

∣∣q
t2 + 1

dt = Cqp ,
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where in the last line we have applied Lemma 2.2(i). Next, set fn =
−|Hϕn|q−2Hϕn and fix ε > 0. Using Parseval’s identity and the above chain
of inequalities, we derive

�

R

Hfn(x)ϕn(x) dx = −
�

R

fn(x)Hϕn(x) dx(4.6)

= ‖Hϕn‖Lq(R)‖fn‖Lp(R) ≥ (Cp − ε)‖fn‖Lp(R),

provided n is sufficiently large. Then, we have |ϕn| ≤ 1 (since |ReF | ≤ 1),
and so

1�

0

|Hfn(x)| dx ≥
1�

0

Hfn(x)ϕn(x) dx

=
�

R

Hfn(x)ϕn(x) dx−
�

R\[0,1]

Hfn(x)ϕn(x) dx.

Now we shall prove that the last integral is smaller than ε‖fn‖Lp(R) for suffi-
ciently large n. To do this, it suffices to use Hölder’s inequality and combine
it with two facts: first, by the Lp-boundedness of the Hilbert transform,
‖Hfn‖Lp(R) ≤ Ep‖fn‖Lp(R), and second,

lim
n→∞

�

R\[0,1]

|ϕn(x)|q dx = 0,

since ϕn decreases to 0 sufficiently fast outside [0, 1] (see the remarks follow-
ing (4.2)). Putting all the above things together, if we take A = [0, 1] and
pick n large enough, we obtain

�

A

|Hfn(x)| dx > (Cp − ε)‖fn‖Lp(R) − ε‖fn‖Lp(R)

= (Cp − 2ε)‖fn‖Lp(R)|A|1/p.

Since ε was arbitrary, the constant Cp is indeed the best possible in (1.4).

4.3. Sharpness of (1.4) for d = 1 and 2 < p <∞. Here the argumen-
tation is slightly more complicated. Pick a ∈ (−1, 0) close to −1. Then F (a)
is also close to −1. The mapping z 7→ (z − a)/(az − 1) is conformal from D
onto D, and hence the function G : D → [−(1 +F (a))/2, (1−F (a))/2]×R,
given by

G(z) =
1

2
F

(
z − a
az − 1

)
− 1

2
F (a),

is also conformal. Next, let Wn(z) = G(L2n(z)) for z ∈ H, and set ψn(x) =
ReWn(x) for x ∈ R. Then Hψn(x) = ImWn(x) and repeating the reasoning
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from (4.5), we see that

lim
n→∞

�

R

|Hψn(r)|q dr =
1

2π

2π�

0

|ImG(eiθ)|q dθ.

To compute the latter integral, note that

ImG(eiθ) = Im

[
1

2
F

(
eiθ − a
aeiθ − 1

)
+

1

2

]
,

the function z 7→ 1
2F
(
z−a
az−1

)
+ 1

2 is conformal and maps D onto (0, 1) × R
and 0 to 1

2F (a) + 1
2 . On the other hand, the function (x, y) 7→ U(x, y) +Cqpx

is harmonic on (0, 1)× R and equals |y|p for x ∈ {0, 1}. This implies

lim
n→∞

�

R

|Hψn(r)|q dr = U
(
1
2 + 1

2F (a), 0
)

+ Cqp
(
1
2 + 1

2F (a)
)
.

Next, let An = {x ∈ R : ψn(x) = 1/2 − F (a)/2}. From (4.2) it follows that
if x /∈ [0, 1], then L2n(x) < 1, and hence the equality in the definition of An
cannot hold. Therefore, the arguments presented in (4.5) give

lim
n→∞

|An| = (2π)−1|{θ ∈ [0, 2π] : ReG(eiθ) = 1/2− F (a)/2}|.

However, ReG(eiθ) takes values in the set {(−1 − F (a))/2, (1 − F (a))/2}
and by the mean-value property, (2π)−1

	2π
0 ReG(eiθ) dθ = G(0). This yields

lim
n→∞

|An| = 1/2 + F (a)/2.

Finally, set fn = −|Hψn|q−2Hψn and pick ε > 0. Since ψn takes values in
the interval [−(1 + F (a))/2, (1− F (a))/2] ⊂ [−1, 1], we may write

�

An

|Hfn(x)| dx ≥
�

An

Hfn(x)ψn(x) dx

=
�

R

Hfn(x)ψn(x) dx−
�

R\An

Hfn(x)ψn(x) dx.

Arguing as in the case 1 < p ≤ 2, we show that
�

R\An

Hfn(x)ψn(x) dx ≤ ε
(

1 + F (a)

2

)1/q

‖fn‖Lp(R)

if n is large enough. Furthermore, by the above considerations,
�

R

Hfn(x)ψn(x) dx =
�

R

|Hψn(x)|q dx

≥
[
U

(
1 + F (a)

2
, 0

)
+ (Cqp − ε)

(
1 + F (a)

2

)]1/q
‖f‖Lp(R).
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Consequently,
�

An

|Hfn(x)| dx

≥
(

1 + F (a)

2

)1/q[ 2

1 + F (a)
U

(
1 + F (a)

2
, 0

)
+ Cqp − 2ε

]1/q
‖f‖Lp(R)

≥ (1− ε)
[

2

1 + F (a)
U

(
1 + F (a)

2
, 0

)
+ Cqp − 2ε

]1/q
‖f‖Lp(R)|An|1/q

for sufficiently large n. Letting ε → 0 and then a → −1, we see, by Lem-
ma 2.4(i), that the constant Cp is the best possible.

4.4. The case d > 1. Of course, it suffices to focus on the Riesz trans-
form R1 only. Suppose that for some C > 0 we have

(4.7)
�

A

|R1f(x)| dx ≤ C‖f‖Lp(Rd)|A|1/q

for all Borel subsets A of Rd and all Borel functions f : Rd → R. For t > 0,
define the dilation operator δt as follows: for any function g : R×Rd−1 → R,
let δtg(ξ, η) = g(ξ, tη); for any A ⊂ R×Rd−1, let δtA = {(ξ, tη) : (ξ, η) ∈ A}.
By (4.7), the operator Tt := δ−1t ◦R1 ◦ δt satisfies�

A

|Ttf(x)| dx = td−1
�

δ−1
t A

|R1 ◦ δtf(x)| dx(4.8)

≤ Ctd−1‖δtf‖Lp(Rd)|δ−1t A|1/q = C‖f‖Lp(Rd)|A|1/q.

Now fix f ∈ Lp(Rd) ∩ L2(Rd). It is not difficult to check that the Fourier
transform F satisfies the identity F = td−1δt ◦F ◦δt, and hence the operator
Tt satisfies the identity

T̂tf(ξ, η) = i
ξ

(ξ2 + t2|η|2)1/2
f̂(ξ, η)

for (ξ, η) ∈ R× Rd−1. By Lebesgue’s dominated convergence theorem,

lim
t→0

T̂tf(ξ, η) = T̂0f(ξ, η)

in L2(Rd), where T̂0f(ξ, η) = i sgn(ξ)f̂ . Combining this with Plancherel’s
theorem, we conclude that there is a sequence (tn)n≥1 decreasing to 0 such
that Ttnf converges to T0f almost everywhere. Using Fatou’s lemma and
(4.8), we obtain

(4.9)
�

A

|T0f(x)| dx ≤ C‖f‖Lp(Rd)|A|1/q.

Since L2(Rd) ∩ Lp(Rd) is dense in Lp(Rd), we easily verify that the above
estimate holds true for all f ∈ Lp(Rd). Next, fix ε > 0. By the reasoning
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from the one-dimensional case, there is a Borel subset B of R and h ∈ Lp(R)
such that
(4.10)

�

B

|Hh(x)| dx > (Cp − ε)‖h‖Lp(R)|B|1/p.

Define f : R×Rd−1 → R by f(ξ, η) = h(ξ)1[0,1]d−1(η). Then f ∈ Lp(Rd) and
T0f(ξ, η) = Hh(ξ)1[0,1]d−1(η), which is due to the identity

T̂0f(ξ, η) = i sgn(ξ)ĥ(ξ) ̂1[0,1]d−1(η).

Plug this into (4.9) with A = B × [0, 1]d−1 to obtain�

B

|Hh(ξ)| dξ ≤ C‖h‖Lp(Rd)|B|1/q.

This implies C > Cp, by (4.10) and the fact that ε > 0 was arbitrary.
Remark 4.1. The optimality of the constant Cp in (1.4) immediately

implies the sharpness of (2.1) and (3.2). Indeed, if any of these estimates
could be sharpened, this would yield an improvement of Cp in (1.4); see the
last passage in (3.3).
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