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Distances between Hilbertian operator spaces

by

Seán Dineen (Dublin) and Cristina Radu (Rio de Janeiro)

Abstract. We compute the completely bounded Banach–Mazur distance between
different finite-dimensional homogeneous Hilbertian operator spaces.

Introduction. The operator space analogue of the Banach–Mazur dis-
tance, dcb, has been developed and used effectively by Pisier [1, 4, 5] and
Zhang [7] in the study of operator spaces. In this paper we make some fur-
ther contributions to this topic. We consider the n-dimensional Hilbertian
row operator space Rn and measure its distance to the interpolated space,
Eθ := (E,E∗)θ, where E is also an n-dimensional homogeneous Hilbertian
operator space; we also measure the distance from Rθ := (Rn)θ := (Rn, Cn)θ
to E.

Our methods are basic and do not require complicated general estimates.
It may be the case that some of these results are known to experts or are
part of the folklore of the subject but we have been unable to find them
in the literature. In a further article the second author has developed an
approach that applies to the interpolated spaces between any two homoge-
neous Hilbertian operator spaces [6]. We refer to [1, 4, 5] for background
material on operator spaces and completely bounded operators.

Banach–Mazur distance. We measure the distance between the oper-
ator spaces E and F using the (completely bounded version of the) Banach–
Mazur distance.

Definition 1. If E and F are operator spaces then

dcb(E,F ) = inf{‖u‖cb‖u−1‖cb | u : E → F a complete isomorphism}.

If E and F are operator spaces and u : E → F is a completely bounded
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operator, we let E∗ and F ∗ denote the operator duals of E and F , re-
spectively, and let u∗ : F ∗ → E∗ denote the transpose mapping. Since
‖u‖cb = ‖u∗‖cb (see [5, p. 40]) we see that

dcb(E,F ) = dcb(E∗, F ∗).

Restricted to all n-dimensional operator spaces the mapping log dcb(·, ·)
is a metric and so we have the triangle inequality

log dcb(E,G) ≤ log dcb(E,F ) + log dcb(F,G)

for any triple of operator spaces E,F,G. We shall frequently use the follow-
ing multiplicative form of this inequality:

dcb(E,G) ≤ dcb(E,F ) · dcb(F,G).

Definition 2.

(a) An operator space is Hilbertian if, as a Banach space, it is isometric
to a Hilbert space.

(b) ([5, p. 172]) An operator space E is homogenous if for all linear
mappings u : E → E we have ‖u‖ = ‖u‖cb.

In this article we confine ourselves to finite-dimensional homogeneous
Hilbertian complex operator spaces. Examples include Rn, the n-dimensio-
nal row Hilbertian operator space, and its operator dual Cn, the n-dimen-
sional column Hilbertian operator space; Rn ∩ Cn and its operator dual
Rn + Cn; and min(`n2 ) and its operator dual max(`n2 ). We refer to [4, 5] for
details.

If E and F are two homogeneous Hilbertian operator spaces of the same
finite dimension then all isometries from E to F have the same completely
bounded norm [5, p. 219], and we let ‖E → F‖cb denote this norm.

We now state the following important result of Zhang [7].

Proposition 1. If E and F are two homogeneous Hilbertian operator
spaces of the same finite dimension then

dcb(E,F ) = ‖E → F‖cb · ‖F → E‖cb.
The following result shows that the combined distance from Rn and Cn

to any n-dimensional homogeneous Hilbertian operator space is fixed.

Proposition 2. If E is an n-dimensional homogeneous Hilbertian op-
erator space then

dcb(Rn, Cn) = dcb(Rn, E) · dcb(E,Cn) = n.

Proof. By [5, Proposition 9.2.1] a unitary operator from a Hilbertian
homogeneous operator space to itself is a complete contraction. It suffices
to apply this result, the averaging process used in [5, Proposition 10.1], and
[4, Corollary 9.8] to complete the proof.
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Let (e1i)
n
i=1 and (ei1)

n
i=1 denote, respectively, the standard basis for

Rn and Cn in B(`n2 ). We denote by Rn ∩ Cn the operator subspace of
B(`n2 ) ⊕∞ B(`n2 ) spanned by (e1i ⊕ ei1)

n
i=1. This is an n-dimensional ho-

mogeneous Hilbertian operator space. Its operator dual, Rn +Cn, is also an
n-dimensional homogeneous Hilbertian operator space [5, p. 184].

We let E denote the complex conjugate of the operator space E (see [5,
p. 63]). The operations of taking complex conjugates and dual commute,
that is, E∗ = E

∗
. We have

Rn = Rn and Cn = Cn

where we identify operator spaces which are completely isometric (see [5,
pp. 63 and 65]). Hence

(Rn ∩ Cn)∗ = Rn + Cn = Rn+Cn = Rn+Cn and (Rn + Cn)∗ = Rn∩Cn.

We let min(`n2 ) and max(`n2 ) denote, respectively, the n-dimensional ho-
mogeneous Hilbertian operator space with its minimal, respectively maxi-
mal, operator space structure (see [5, p. 71]). We have

(min(E))∗ = max(E∗)

for any operator space E.

By [4, p. 28],

min(`n2 )∗ = max((`n2 )∗) = max(`n2 ).

Operator spaces E0 and E1 are called compatible if they can be continuously
injected into the same topological vector space. This allows one to define
a continuum of operator spaces, (E0, E1)θ, θ ∈ [0, 1], that interpolate be-
tween E0 and E1. The following interpolation estimate will be most useful
[5, p. 57].

Proposition 3. Let (E0, E1) and (F0, F1) be two compatible couples of
operator spaces. If a linear operator T : E0 ∩ E1 → F0 ∩ F1 extends to
completely bounded operators T0 : E0 → F0 and T1 : E1 → F1, then it
extends to a completely bounded operator Tθ : (E0, E1)θ → (F0, F1)θ and

(1) ‖Tθ‖cb(Eθ,Fθ) ≤ ‖T0‖
1−θ
cb(E0,F0)

‖T1‖θcb(E1,F1)
.

We rephrase Proposition 3 in a more suitable form for our purposes (this
is essentially reiteration as given in [4, Proposition 2.1, p. 22]).

Lemma 1. Let (E0, E1) and (F0, F1) be two compatible couples of opera-
tor spaces. If a linear operator T : E0 ∩E1 → F0 ∩ F1 extends to completely
bounded operators T0 : E0 → F0 and T1 : E1 → F1 and 0 ≤ α < β ≤ 1, then
for α ≤ θ ≤ β we have

(2) ‖Tθ‖cb(Eθ,Fθ) ≤ {‖Tα‖cb(E0,F0)}
β−θ
β−α · {‖Tβ‖cb(E1,F1)}

θ−α
β−α .
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Proof. For 0 ≤ ω ≤ 1 we have, by (1),

‖T(1−ω)α+ωβ‖cb ≤ ‖Tα‖1−ωcb · ‖Tβ‖ωcb.

If we let θ = (1− ω)α+ ωβ then ω = θ−α
β−α and 1− ω = β−θ

β−α . Making these
substitutions completes the proof.

The spaces E and E∗ are compatible for any operator space E and, if
Eθ := (E,E∗)θ, then, since E∗ = E

∗
, we have

E∗θ = E1−θ.

Any two Hilbertian operator are compatible and the following general result
is due to Pisier [4, Corollary 2.4].

Proposition 4. If E is an n-dimensional Hilbertian operator space and
OHn is Pisier’s n-dimensional self-dual Hilbertian operator space then

OHn = (E,E∗)1/2.

Distances to Rn

Proposition 5. If 0 ≤ θ ≤ 1, E is an n-dimensional homogeneous
Hilbertian operator space and Eθ = (E,E∗)θ, then

dcb(Eθ, Rn) = dcb(E,Rn)1−θ · dcb(E,Cn)θ.

Proof. We first interpolate between the identity inclusions Rn → E and
Rn → E∗. We have

‖Rn → Eθ‖cb ≤ ‖Rn → E‖1−θcb · ‖Rn → E∗‖θcb
≤ ‖Rn → E‖1−θcb · ‖E → Cn‖θcb.

Next, interpolating between the mappings E → Rn and E∗ → Rn we obtain

‖Eθ → Rn‖cb ≤ ‖E → Rn‖1−θcb · ‖E∗ → Rn‖θcb
≤ ‖E → Rn‖1−θcb · ‖Cn → E‖θcb.

Combining these two estimates leads to

dcb(Eθ, Rn) = ‖Eθ → Rn‖cb · ‖Rn → Eθ‖cb
≤ ‖E → Rn‖1−θcb · ‖Cn → E‖θcb · ‖Rn → E‖1−θcb · ‖E → Cn‖θcb
= dcb(E,Rn)1−θ · dcb(E,Cn)θ.

A similar argument with Cn replacing Rn implies

dcb(Eθ, Cn) ≤ dcb(E,Cn)1−θ · dcb(E,Rn)θ.

Hence, by Proposition 2,

n = dcb(Rn, Cn) ≤ dcb(Rn, Eθ) · dcb(Eθ, Cn)

≤ dcb(E,Rn)1−θ · dcb(E,Cn)θ · dcb(E,Cn)1−θ · dcb(E,Rn)θ

= dcb(E,Rn) · dcb(E,Cn) = n.
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This implies we have equality at all stages. Hence, for 0 ≤ θ ≤ 1,

dcb(Rn, Eθ) = dcb(Rn, E)1−θ · dcb(Cn, E)θ.

This completes the proof.

Example 1. (a) Let E = Rn. Then E∗ = R∗n = Cn = Cn and

dcb(Rn, Rn) = 1 and dcb(Rn, Cn) = n.

Letting Rθ = (Rn, R∗n) = (Rn, Cn)θ = (Rn, Cn)θ we obtain

dcb(Rθ, Rn) = dcb(Rn, Rn)1−θ · dcb(Rn, Cn)θ = nθ, dcb(Rθ, Cn) = n1−θ.

This result is due to Zhang [7] (see also Mathes [2, 3]).

(b) Let E = Rn ∩ Cn. Then, as previously noted, E∗ = Rn + Cn and
Eθ = (Rn ∩ Cn, Rn + Cn)θ. By [5, Theorem 10.5] we have

dcb(Rn ∩ Cn, Rn) = dcb(Rn ∩ Cn, Cn) =
√
n.

Proposition 5 implies

dcb((Rn ∩ Cn)θ, Rn) = dcb(Rn ∩ Cn, Rn)1−θ · dcb(Rn ∩ Cn, Cn)θ

= n(1−θ)/2 · nθ/2 =
√
n.

In proving this result we have also shown

dcb((Rn + Cn)θ, Rn) =
√
n.

(c) Let M = min (`n2 ). By [5, Theorem 10.5] we have the same estimates
as in part (b) and hence letting Mθ := (min (`n2 ),max (`n2 ))θ we obtain

dcb(Mθ, Rn) = dcb(Mθ, Cn) =
√
n

for all 0 ≤ θ ≤ 1.

Distances between Rθ and Rψ

Notation. For 0 ≤ α, β ≤ 1 we define ‖α, β‖ by letting (1)

n‖α,β‖ = ‖Rα → Rβ‖cb.
Clearly ‖α, β‖ ≥ 0 for all α and β, ‖α, α‖ = 0 for all α and, for 0 ≤ α, β ≤ 1,

dcb(Rα, Rβ) = n‖α,β‖+‖β,α‖.

If 0 < α < 1 then, by Example 1(a), dcb(Rα, Cn) = n1−α and hence

(3) ‖α, 1‖+ ‖1, α‖ = 1− α.

Using Lemma 1 we obtain the following estimates.

(1) The notation ‖α, β‖Rn would be more accurate, but since we only use this notation
in connection with row and column operator spaces, this, hopefully, will not cause any
confusion.
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Lemma 2. For 0 ≤ α ≤ θ ≤ β ≤ 1:

‖α, θ‖ ≤ ‖α, β‖
β − α

(θ − α),(a)

‖θ, α‖ ≤ ‖β, α‖
β − α

(θ − α),(b)

‖β, θ‖ ≤ ‖β, α‖
β − α

(β − θ),(c)

‖θ, β‖ ≤ ‖α, β‖
β − α

(β − θ).(d)

Proof. We prove the first two parts; the others are proved in the same
way. Interpolating between I : Rα → Rα and I : Rα → Rβ and using
Lemma 1 we obtain

‖α, θ‖ ≤ ‖α, α‖ · β − θ
β − α

+ ‖α, β‖ · θ − α
β − α

.

Since ‖α, α‖ = 0 this proves (a).

For (b) we again use Lemma 1 but now interpolate between I : Rα → Rα
and I : Rβ → Rα to obtain

‖θ, α‖ ≤ ‖α, α‖ · β − θ
β − α

+ ‖β, α‖ · θ − α
β − α

=
‖β, α‖
β − α

· (θ − α).

We shall also need the following lemma. It is a simple consequence of
Proposition 3.

Lemma 3. For 0 ≤ α ≤ 1 we have

lim
β→α
‖α, β‖ = lim

β→α
‖β, α‖ = 0.

Proof. Suppose β → α+. All other cases are proved the same way. Fix
α0 > α and suppose α < β < α0 for all β. We interpolate, using Proposi-
tion 2, between the isometric identity mappings Rα → Rα and Rα → Rα0

to obtain

1 ≤ ‖Rα → Rβ‖cb ≤ ‖Rα → Rα0‖
(β−α)/(α0−α)
cb ,

and this gives the required result.

Proposition 6. If 0 ≤ α, β ≤ 1 then ‖α, β‖+ ‖β, α‖ = |β − α| and

n|β−α| = dcb(Rα, Rβ) = n‖α,β‖+‖β,α‖.

Proof. We may suppose α < β. By Example 1(a) and the triangle in-
equality,

n = dcb(Rn, Cn) = dcb(R0, R1) ≤ dcb(R0, Rα) · dcb(Rα, Rβ) · dcb(Rβ, R1)

= nα · dcb(Rα, Rβ) · n1−β
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and

(4) nβ−α ≤ dbc(Rα, Rβ) = n‖α,β‖+‖β,α‖.

From Lemma 2(a)&(b) and (3),

‖α, β‖+ ‖β, α‖ ≤ ‖α, 1‖
1− α

(β − α) +
‖1, α‖
1− α

(β − α)

=
(‖α, 1‖+ ‖1, α‖)

1− α
(β − α) = β − α.

Combining this with (4) completes the proof.

Our next result is a sharpening of Proposition 6. We use the following
notation. For n a non-negative integer we let Dn = {j2−n | 0 ≤ j ≤ 2n} and
let D =

⋃∞
n=0Dn, the set of dyadic numbers in [0, 1]. Note that Dn ⊂ Dn+1

for all n and D0 = {0, 1}.
Proposition 7. For 0 ≤ α ≤ β ≤ 1 we have

(5) ‖α, β‖ = ‖β, α‖ = (β − α)/2.

Proof. We may suppose α < β. By Proposition 6, ‖α, β‖+‖β, α‖ = β−α
for all α, β and it suffices to prove ‖α, β‖ = (β − α)/2. We first prove this
by induction for all α, β in D. The result for D0 is well known since

n‖0,1‖ = ‖Rn → Cn‖cb = ‖Cn → Rn‖cb =
√
n.

Suppose the result holds for Dn. Let α = p2−n−1 and β = q2−n−1, where p
and q are positive integers, lie in Dn+1. We consider several cases.

Case 1: both p and q are even. Then α, β ∈ Dn, and our induction
hypothesis implies that ‖α, β‖ = (β − α)/2.

Case 2: p is odd and q is even. Let α′ = α−2−n−1 = (p−1)2−n−1. Then
p− 1 is even and α′ and β both belong to Dn. By our induction hypothesis

‖α′, β‖ = (β − α′)/2 = (β − α+ 2−n−1)/2.

Since α′ < α < β, Lemma 2 implies

‖α, β‖ ≤ ‖α
′, β‖

β − α′
· (β − α) =

‖α′, β‖
β − α+ 2−n−1

· (β − α) =
β − α

2

and, using Proposition 6, a similar estimate for ‖β, α‖ proves (5) in this case.

Case 3: p is even and q is odd. We let β′ = β + 2−n−1. Then β′ =
(q + 1)2−n−1 and both α and β′ lie in Dn. By our induction hypothesis

‖α, β′‖ = (β′ − α)/2 = (β + 2−n−1 − α)/2.

Since α < β < β′, Lemma 2 implies

‖α, β‖ ≤ ‖α, β
′‖

β′ − α
· (β − α) =

‖α, β′‖
β + 2−n−1 − α

· (β − α) =
β − α

2
,

and, as above, (5) follows also in this case.
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Case 4: p and q are both odd. We use α′ as in Case 2. By Case 3 we
have ‖α′, β‖ = (β − α′)/2. Now α′ < α < β and hence Lemma 2 implies

‖α, β‖ ≤ ‖α
′, β‖

β − α′
· (β − α) =

β − α
2

,

and, as above, (5) follows also in this case.

We have established (5) whenever α and β are dyadic rationals in [0, 1].
Now suppose α and β are arbitrary elements in [0, 1], α < β. Since D is dense
in [0, 1] we can choose a decreasing sequence (αm)∞m=1 in D and an increasing
sequence (βm)∞m=1 in D such that limn→∞ αm = α and limn→∞ βm = β. We
may also suppose that α1 < β1. Since

[α, β] ⊂ [α, αn] ∪ [αn, βn] ∪ [βn, β]

for all integers n, we have, by Lemma 3 and the triangle inequality,

n‖α,β‖ = ‖Rα → Rβ‖cb
≤ ‖Rα → Rαn‖cb · ‖Rαn → Rβn‖cb · ‖Rβn → Rβ‖cb
≤ lim inf

n→∞
‖Rαn → Rβn‖cb = lim

n→∞
n(βn−αn)/2 = n(β−α)/2.

Hence ‖α, β‖ ≤ (β − α)/2. Similarly one can show ‖β, α‖ ≤ (β − α)/2; but,
since ‖α, β‖+ ‖β, α‖ = β − α, we obtain

‖α, β‖ = ‖β, α‖ = (β − α)/2

as required.

Distances to Rθ

Proposition 8. If 0 ≤ θ ≤ 1 then

dcb(Rθ, Rn ∩ Cn) = n(1+|2θ−1|)/4.(6)

Proof. By [5, p. 221], ‖Rn∩Cn → Rn‖cb = 1 and ‖Rn∩Cn → Cn‖cb = 1.
Interpolating we have, for all θ,

‖Rn ∩ Cn → Rθ‖cb = 1.(7)

By [5, p. 222],

(8) ‖Rn → Rn ∩ Cn‖cb = n1/2,

and by [5, p. 220],

‖OHn → Rn ∩ Cn‖cb = n1/4.

By Lemma 1,

(9) ‖(Rn,OHn)θ → Rn ∩ Cn‖cb ≤ n(1−θ)/2 · nθ/4 = n1/2−θ/4.

Since R1/2 = OHn reiteration implies (Rn,OHn)θ = Rθ/2. Hence (9) can be
rewritten as

‖Rθ/2 → Rn ∩ Cn‖cb ≤ n1/2−θ/4
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for 0 ≤ θ ≤ 1, or as

(10) ‖Rθ → Rn ∩ Cn‖cb ≤ n(1−θ)/2

for 0 ≤ θ ≤ 1/2. By Proposition 6, ‖Rn → Rθ‖cb = nθ/2. By the triangle
inequality

n1/2 = ‖Rn → Rn ∩ Cn‖cb ≤ ‖Rn → Rθ‖cb · ‖Rθ → Rn ∩ Cn‖cb
= nθ/2 · ‖Rθ → Rn ∩ Cn‖cb,

and hence

(11) n(1−θ)/2 ≤ ‖Rθ → Rn ∩ Cn‖cb.
Combining (10) and (11) we obtain, for 0 ≤ θ ≤ 1/2,

n(1−θ)/2 = ‖Rθ → Rn ∩ Cn‖cb,
and hence, using (7),

(12) dcb(Rθ, Rn ∩ Cn) = n(1−θ)/2.

Interchanging Rn and Cn in (12) we see that, for 0 ≤ λ ≤ 1/2, we have

dcb(Cλ, Rn ∩ Cn) = n(1−λ)/2.

Since R1−λ = Cλ we obtain, on letting 1− λ = θ,

(13) dcb(Rθ, Rn ∩ Cn) = dcb(Cλ, Rn ∩ Cn) = n(1−λ)/2 = nθ/2

for 1/2 ≤ θ ≤ 1. Combining (12) and (13) yields (6).

Corollary 1. If 0 ≤ θ ≤ 1 then

(14) dcb(Rθ, Rn + Cn) = n(1+|2θ−1|)/4.

Proof. By Proposition 8 we have

dcb(Rθ, Rn + Cn) = dcb(R∗θ, (Rn + Cn)∗) = dcb(R1−θ, Rn ∩ Cn)

= n(1+|2(1−θ)−1|)/4 = n(1+|2θ−1|)/4.

Proposition 9. There exists a positive constant A such that for all n
and θ we have

A
√
n ≤ dcb(min(`n2 ), Rθ) ≤

√
n,(15)

A
√
n ≤ dcb(max(`n2 ), Rθ) ≤

√
n.(16)

Proof. We prove the first result; the second one can be proved in the
same way. By [5, 10.23],

‖min(`n2 )→ Rn‖cb = ‖min(`n2 )→ Cn‖cb =
√
n.

By interpolation, for 0 ≤ θ ≤ 1,

‖min(`n2 )→ Rθ‖cb ≤
√
n.
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By the definition of minimal operator spaces any isometry into min(`n2 ) has
cb-norm 1. Hence, the above implies

(17) dcb(min(`n2 ), Rθ) ≤
√
n.

Since (min(`n2 ))∗ = max(`n2 ) and R∗θ = R1−θ we have

‖Rθ → max(`n2 )‖cb = ‖(max(`n2 ))∗ → R∗θ‖cb = ‖min(`n2 )→ R1−θ‖cb ≤
√
n,

and since ‖max(`n2 )→ Rθ‖cb ≤ 1 we have

dcb(max(`n2 ), Rθ) ≤
√
n.(18)

By [5, Theorem 3.8] there exists a positive constant c such that, for every
positive integer n,

(19) cn ≤ dcb(max(`n2 ),min(`n2 )) ≤ n.
For 0 ≤ θ ≤ 1 let

αθ = min

{
dcb(Rθ,min(`n2 ))√

n

∣∣∣∣ n ∈ N
}

and let
α := inf{αθ | 0 ≤ θ ≤ 1}.

By (17), 0 ≤ α ≤ 1. Suppose α = 0. Choose θ′ such that αθ′ < c and then
choose n0 so that

dcb(Rθ′ ,min(`n0
2 ))

√
n0

< c.(20)

For θ′ and n0 we have, by (18)–(20),

cn0 ≤ dcb(max(`n0
2 ),min(`n0

2 )) ≤ dcb(max(`n0
2 ), Rθ′) · dcb(Rθ′ ,min(`n0

2 ))

<
√
n0 · (c

√
n0) = cn0.

This is impossible, so α > 0. Hence for all θ ∈ [0, 1] and all positive n,

dcb(Rθ,min(`n2 )) ≥ α
√
n.(21)

Combining (17) and (21) we obtain (15).
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