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Unconditionality of orthogonal spline systems in L?
by

MARKUS PASSENBRUNNER (Linz)

Abstract. We prove that given any natural number k and any dense point se-
quence (tn), the corresponding orthonormal spline system is an unconditional basis in
reflexive LP.

1. Introduction. In this work, we are concerned with orthonormal
spline systems of arbitrary order k with arbitrary partitions. We let (¢,,)22,
be a dense sequence of points in the open unit interval (0, 1) such that each
point occurs at most k times. Moreover, define ty := 0 and ¢; := 1. Such
point sequences are called admissible.

For n > 2, we define S,(Lk) to be the space of polynomial splines of order k
with grid points (tj)?:o, where the points 0 and 1 both have multiplicity k.

), and therefore there
exists f,gk) S Sék) that is orthonormal to S(k_)l. Observe that fT(Lk) is unique

n

For each n > 2, the space 87(1]‘;_)1 has codimension 1 in S,(Zk

up to sign. In addition, let (fék))}zszJrQ be the collection of orthonormal

polynomials in L?[0, 1] such that the degree of fT(Lk) is k+n — 2. The system

of functions (ﬁgk))ff’:_k_s_2 is called the orthonormal spline system of order

k corresponding to (tp)5>,. We will frequently omit the parameter k and
. : (k)

write f, instead of fn .

The purpose of this article is to prove the following

THEOREM 1.1. Let k € N and (t,)n>0 be an admissible sequence of knots
in [0,1]. Then the corresponding general orthonormal spline system of order
k is an unconditional basis in LP[0, 1] for every 1 < p < oc.

A celebrated result of A. Shadrin [12] states that the orthogonal projec-
tion operator onto S,gk) is bounded on L*°[0,1] by a constant that depends
only on k. As a consequence, (f,)n>—_k+2 is a basis in LP[0,1], 1 < p < oc.
There are various results on the unconditionality of spline systems restrict-
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ing either the spline order k or the partition (t,)n>0. The first result in this
direction, in [I], states that the classical Franklin system—the orthonor-
mal spline system of order 2 corresponding to dyadic knots—is an uncon-
ditional basis in LP[0,1], 1 < p < oo. This was extended in [3] to uncon-
ditionality of orthonormal spline systems of arbitrary order, but still with
dyadic knots. Considerable effort has been made to weaken the restriction
to dyadic knot sequences. In the series of papers [7, 9, 8] this restriction
was removed step-by-step for general Franklin systems, with the final result
that for each admissible point sequence (t,)n>0 with parameter k£ = 2, the
associated general Franklin system forms an unconditional basis in LP[0, 1],
1 < p < 0o. We combine the methods used in [9, 8] with some new inequal-
ities from [I1] to prove that orthonormal spline systems are unconditional
in LP[0,1], 1 < p < oo, for any spline order k and any admissible point
sequence (tp)n>0-

The organization of the present article is as follows. In Section [2} we
give some preliminary results concerning polynomials and splines. Section
develops some estimates for the orthonormal spline functions f,, using the
crucial notion of associating to each function f,, a characteristic interval J,, in
a delicate way. Section [4 treats a central combinatorial result concerning the
number of indices n such that a given grid interval J can be a characteristic
interval of f,. In Section [5| we prove a few technical lemmata used in the
proof of Theorem and Section [f] finally proves Theorem We remark
that the results and proofs in Sections [5 and [6] closely follow [3].

2. Preliminaries. Let k be a positive integer. The parameter k will
always be used for the order of the underlying polynomials or splines. We use
the notation A(t) ~ B(t) to indicate the existence of two constants ¢, ca > 0
that depend only on k, such that ¢; B(t) < A(t) < ¢ B(t) for all ¢, where ¢
denotes all implicit and explicit dependences that the expressions A and B
might have. If the constants c1, co depend on an additional parameter p, we
write A(t) ~p B(t). Correspondingly, we use the symbols <, 2, <p, 2. For
a subset E of the real line, we denote by |E| its Lebesgue measure and by
1g its characteristic function.

First, we recall a few elementary properties of polynomials.

PROPOSITION 2.1. Let 0 < p < 1. Let I be an interval and A be a subset
of I with |A| > p|I|. Then, for every polynomial Q of order k on I,

max |Q(t)] Sp sup[Q(1)]  and Jle@ldt <, [ 1Q)] dt.
el teA T A

LEMMA 2.2. Let V' be an open interval and f be a function satisfying
Sy [f@)dt < AV for some A > 0. Then, denoting by Ty f the orthogonal
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projection of f - 1y onto the space of polynomials of order k on 'V,

(2.1) 1TV flI 720y S X2V
Moreover,
(2.2) 1TV fllzeevy S I fllzevy, 1< p < oo,

Proof. Let l;, 0 < j <k —1, be the jth Legendre polynomial on [—1,1]
with the normalization [;(1) = 1. In view of the integral identity
li(x) = 71T7§(x + Va2 —1cosp) dp, xeC\{-1,1},
0
l; is uniformly bounded by 1 on [—1, 1]. We have the orthogonality relation
1
(2.3) | li(2)lj() do =
-1

where §(+, -) denotes the Kronecker delta. Now let o := inf V and 8 := sup V.
For

2
2j + 1

6(iy7), 0<i,57<k-—1,

zﬂw) =22y (B2 2B, s e o)

relation still holds for the sequence (lv)k,%7 that is,

B
V1 (@)1 () do =

«

2
2j +1

So, Ty f can be represented in the form

k-1 .
25 +1
Tyf =Y o= (R
§=0

Thus we obtain

?T‘

1
ITv £l 2v ISR8]

k—1

v
DN 2oy =D
j=0

7=0

1 —
11 Wl oo vy S N lp2 gy VY2

<[ fllzr vy Z
Now, (2.1)) is a consequence of the assumption |, |f(t)|dt < A|V|. If we set
p' = p/(p— 1), the second inequality (2.2) follows from

2j —|— 1
1TV fllr vy < Z

e 15 W o o) 15 oy S 1F 2o

since ||l}/HLp(V) S H/|1/p_1/2 for0<j<k—landl1<p<oo. m
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We now let
(24) T:(OZTIZ"':TIC<T]€+1S"'STM<TM+1 :"':TM+]C:1)
be a partition of [0, 1] consisting of knots of multiplicity at most k, that is,
Ti < Tigg forall 1 <4 < M. Let Sf(rk ) be the space of polynomial splines
of order k with knots 7. The basis of L®-normalized B-spline functions in
87@ is denoted by (N; x)M, or for short (N;),. Corresponding to this basis,
there exists a biorthogonal basis of S, denoted by (Nz*k)f\il or (NF)M,.
Moreover, we write v; = T4 — T;.

We now recall a few important results on the B-splines IV; and their dual
functions NV}

PROPOSITION 2.3. Let 1 <p< oo and g = Zj]\/il a;Nj. Then
(2.5) lagl S 1517 P lgllee,y,  1<i<M,

where Jj is the subinterval [7;, Ti41] of [17j, Tjqk| of mazimal length. Addi-
tionally,

M
1/p 1
(2.6) lglly ~ (- laslvs) " = ey M) o
j=1
Moreover, if h = Zj\il bj N7, then
S 1-p\ /P 1/p—1\M
(2.7) 19l S (D lastv} ™) =l ™) e
j=1

The two inequalites (2.5)) and ([2.6]) are Lemmata 4.1 and 4.2 in [0, Chap-

ter 5], respectively. Inequality ([2.7)) is a consequence of the celebrated result

of Shadrin [I2] that the orthogonal projection operator onto Séf“ ) is bounded

on L* independently of 7. For a deduction of from this result, see [4]
Property P.7].

The next task is to estimate the inverse of the Gram matrix
((Ni ks Nj,k>)%:1. Before we do that, we recall the concept of totally positive
matrices: Let @, , be the set of strictly increasing sequences of m integers
from the set {1,...,n}, and A be an n x n-matrix. For a, 8 € Qpmn, We
denote by Ala; (] the submatrix of A consisting of the rows indexed by «
and the columns indexed by (. Furthermore, we let o/ (the complement
of o) be the uniquely determined element of @, that consists of all
integers in {1,...,n} not occurring in «. In addition, we use the notation
Ao B) == Ald; B].

DEFINITION 2.4. Let A be an n x n-matrix. Then A is called totally
positive if

det Alo;; ] >0 for a, 8 € Qmpn, 1 <m < n.
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The cofactor formula b;; = (—1)*7 det A(j;)/det A for the inverse B =
(bij)%zl of the matrix A leads to

PROPOSITION 2.5. The inverse B = (b;j) of a totally positive matriz
A = (a;j) has the checkerboard property:

(=1)*by; >0 for all i, ;.
THEOREM 2.6 ([5]). Let k € N and T be an arbitrary partition of [0, 1]
as in (2.4). Then the Gram matric A = (<Ni,kaNj,k>)%:1 of the B-spline

functions is totally positive.

This theorem is a consequence of the so called basic composition formula
[10, Chapter 1, equation (2.5)] and the fact that the kernel N; ;(x), depend-
ing on the variables 7 and z, is totally positive [L0, Chapter 10, Theorem 4.1].
As a consequence, the inverse B = (bij)%zl of A has the checkerboard pro-
perty by Proposition

THEOREM 2.7 ([11]). Let k € N, let T be the partition defined as in
(2.4) and (bij)%zl be the inverse of the Gram matriz ((Ni,kaNj,k»%:l of
the B-spline functions N;j of order k corresponding to T. Then

|bij| < C , 1<4,j <M,
Tmax(i,j)+k — Tmin(4,§)

where the constants C' > 0 and 0 < v < 1 depend only on k.

Let f € LP[0,1] for some 1 < p < oo. Since the orthonormal spline system
(fn)n>—k+2 is a basis in LP[0, 1], we can write f = > 2, 5 ay fn. Based on
this expansion, we define the square function Sf := (ZZO:_,HQ \anfn|2) 1/2
and the maximal function M f := sup,, ‘ anm anfn‘. Moreover, given a
measurable function g, we denote by Mg the Hardy-Littlewood maximal

function of g, defined as
Mg(w) := sup 1|7 { g(1)| dt,
I>x T

where the supremum is taken over all intervals I containing x.
A corollary of Theorem [2.7is the following relation between M and M:

TueOREM 2.8 ([11]). If f € L'[0,1], we have
Mf(t) S Mf(t), tel01].

3. Properties of orthogonal spline functions. This section deals
with the calculation and estimation of one explicit orthonormal spline func-

tion fy(Lk) for fixed £ € N and n > 2 induced by the admissible sequence
(tn)o2,. Let ip be an index with k41 < ip < M. The partition 7 is defined
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as follows:
7—:(0:7_1:"':7_k<7—k+1S"'STiO
S"'STM<TM+1:"':TM+IC:1)7

and T is defined to be 7 with Ti, removed. In the same way we denote
by (N; : 1 < i < M) the B-spline functions corresponding to 7, and by
(N; : 1 <i < M —1) those corresponding to 7. Béhm’s formula [2] gives
the following relationship between NN; and ]\NfZ

Ni(t) = Ni(t) if 1<i<ig—k—1,
~ Tig—Ti Ti+k+1"Tig P . .
(3.1) N;(t) = N;(t)+ Niy1(t) ifip—k <i<ip—1,
Tit+k—Ti Titk+1—Ti+1
Ni(t) = Nip1(t) ifig <i< M—1.

To calculate the orthonormal spline functions corresponding to T and T,
we first determine a function g € span{N; : 1 < i < M} such that g L N;
for all 1 < j < M — 1. That is, we assume that g is of the form

M
g= ZajN;,
j=1

where (N7 : 1 < j < M) is the system biorthogonal to (N; : 1 <i < M).
In order for g to be orthogonal to N;, 1 < j7 < M — 1, it has to satisfy the
identities

M
0=(g,N;)=> a;(N;,N), 1<i<M-—1.
j=1

Using (3.1)), this implies a; =0if 1 <i<ip—k—1orig+1<i < M. For
190 — k < i <ig— 1, we have the recursion formula
Tidkal — Ti Tig — Ti
(3.2) Q1 —t o
Titk+1 = Tit1 Titk — T

=0,

which determines the sequence (o) up to a multiplicative constant. We
choose

io—1
o _p = H Te+k — Tig
w0—k — -
T — T
t=ig—k41 Lt TTE

for symmetry reasons. This starting value and the recursion (3.2)) yield the
explicit formula

(3.3) » »
J— 10—
aj = (—1)j_i°+k( I = )( [] =" _Tm) io—k < j <o
: < j <ip.
Totk — T, Toak — T,
t=ig—k+1 PR T O N2y TR T
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So,
0 20 M
1= 30w 30 Sae
Jj=io—k j=io—k =1
where (bjg)%zl is the inverse of the Gram matrix ((/N;, Ng>)%:1. We remark

that the sequence () alternates in sign and since the matrix (b; )%:1 is
checkerboard, we see that the B-spline coefficients of g, namely

10

(3.4) wy 1= Z ajbj, 1< M,
J=to—k
satisfy
io 20
(3.5) | > agbie = D b, 1< <M
Jj=to—k J=io—k

In Definition below, we assign to each orthonormal spline function
a characteristic interval that is a grid point interval [7;, 7;11] and lies close
to the newly inserted point 7;,. We will see later that the choice of this in-
terval is crucial proving important properties that are needed to show that
the system ( fé’“))go:_k 4o is an unconditional basis in LP, 1 < p < oo, for
all admissible knot sequences (,)n>0. This approach was already used by
G. G. Gevorkyan and A. Kamont [§] in the proof that general Franklin sys-
tems are unconditional in LP, 1 < p < oo, where the characteristic intervals
were called J-intervals. Since we give a slightly different construction here,
we name them characteristic intervals.

DEFINITION 3.1. Let 7,7 be as above and Ti, the new point in 7 that
is not present in 7. We define the characteristic interval J corresponding to
Ti, as follows.

(1) Let
A(O)::{'—k<'<'; LTkl <2 mi }
io—k<j<io: |l i)l <2 min [, 7]
be the set of all indices j for which the support of the B-spline func-

tion N; is approximately minimal. Observe that A0 is nonempty.
(2) Define

A = {j e A0 |aj| = max |Oég|}.
e A0)
For an arbitrary, but fixed index j(® € AM) get JO) .= [ij) , Tj(o)Jrk].
(3) The interval J(© can now be written as the union of k grid intervals
k—1
JO) — U [Tj(mH,Tj(o)Hﬂ] with () as above.
=0
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We define the characteristic interval J = J(7;,) to be one of the
above k intervals that has maximal length.

We remark that in the definition of A9, we may replace the factor 2 by
any other constant C' > 1. It is essential, though, that C' > 1 in order to
obtain the following theorem which is crucial for further investigations.

THEOREM 3.2. With the above definition (3.4) of wy for 1 < ¢ < M and
the index 79 given in Definition
(3.6) lw;] 2 bj ;-

Before we start the proof of this theorem, we state a few remarks and

lemmata. For the choice of 5(9) in Definition we have, by construction,
the following inequalities: for all ig — k < ¢ < ig with £ # j(©),

B led <lagol or e >2, min_inmoll

We recall the identity

7j—1 o i0—1 o
38 lojl=( IT ) (] 252%) d-ksisio
Y4

tmin k1 Te+k — Te i Te+k — T¢
Since by ,
0
wio| = Y lajb o) > lagol bjo ol
j=io—k

in order to show (3.6), we prove the inequality
‘Ozj(o)’ >Dp >0

with a constant Dy, only depending on k. By (3.8)), this inequality follows
from the more elementary inequalities

(3.9) Tio — T 2 To+k — Tigs io—k—FleSj(O)—l,

' Tot+k — Tig 2 Tio — Tt JOr1<e<ig—1.

We will only prove the second line of ([3.9) for all choices of j(9. The first
line is proved by a similar argument. We observe that if (9 > iy — 1, then
there is nothing to prove, so we assume

(3.10) 7O <y —2.

Moreover, we need only show the single inequality

(3.11) T +k+1 — Tio 2 Tio — Tj(0) 415

since if we assume , then for any j© +1 < ¢ <ig—1,

To+k — Tig = T 4+k+1 — Tio e Tip — Tj(0)41 > Tiy — T
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We now choose j to be the minimal index in the range i > j > j(© such
that
(3.12) laj| < Jevjo -
If there is no such j, we set j = ig + 1.
If j <ip, we employ (3.8]) to deduce that (3.12)) is equivalent to
j—1
(3.13)  (1jqp — m5)'00) 11 (Tig — Te)
=5V (ig—k+1)
o JA(io—1)
—5(7(0) o
< (T 4x — 7)) T (ke — i),
0=j0)+1
where (-, -) is the Kronecker delta. Furthermore, let m in the range ig — k <
m < ig be such that 7,41 — T = ming,_g<s<io (Ts4k — Ts)-
Now, from the minimality of j and (3.7]), we obtain

(3.14) Tork — 70> 2Tk — Tm),  JO+1<L<G -1
Thus, by definition,
(3.15) m<j9 or m>j

LEMMA 3.3. In the above notation, if m < O and j — @ > 2, then
we have (3.11)), or more precisely,

(3.16) Tj0) 441 — Tio > Tig — Tj(0) 41
Proof. We expand the left hand side of (3.16]) as
TiO4k+1 — Tio = T 4k+1 — TjO 41 — (Tio - Tj(0>+1)'
By (3.14) (observe that j — j(©) > 2), we conclude that
T +k+1 — Tio > 2Tk — Tm) — (Tig — Tj<0)+1)'
Since m + k > i and m < j(© we finally obtain
TiO) 4kt1 — Tio = Tip — Tj(0)41- ®

LEMMA 3.4. Let §9, j and m be as above. If O +1 <0< j—1 and
m > j, we have
Tip — T¢ 2 To+1+k — Tig-
Proof. Let 5 41 < ¢ < j—1. Then from we obtain

(A7) Tig—Te = Ter14k—Te— (Ter 14k —Tio) = 2(Timek—Tm) — (Te4 14k —Tig)-
Since we have assumed m > 7 > £+ 1, we get m+k > £+ 1+ k, and
additionally we have m < ig by definition of m. Thus (3.17)) yields

Tio — T¢ = To4+1+k — Tig-
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Since the index ¢ was arbitrary in the range j© +1 < ¢ < j — 1, the proof
of the lemma is complete. »

Proof of Theorem . We employ the above definition of j(©, j, and m
and split our analysis into a few cases, distinguishing various possibilities
for 5(© and j. In each case we will show ([3.11).

CASE 1: There is no j > 79 such that laj| < ]aj<o)\. In this case, (3.15)
implies m < j©. Since j© < ig — 2 by (3.10), we apply Lemma to
deduce (3.11]).

CASE 2: ig —k +1 < j(© < j < iy — 1. Using the restrictions on j©
and 7, we see that (3.13]) becomes

J j—1
(o —70) [ Gerr—70) = (T —75) [] (70 —70).
e=j0)+1 £=4(0)
This implies
i—1
(Tjk = T)(Tip — Tj@) 3 Tio — Te

Tj0) 4k+1 — Tio 2

Tj© 4k — Tj©) Te+14+k — Tig

=50 41
Since by definition of j(©), we have in particular T4k —Tj0) < 2(Tj4k —Tj),
we conclude further that
j—1
Tio — T4(0) .
(3.18) i) pr1 — Tio > o T 1041 _Tio "7
’ 2 Te+1+k — Tig
=5(0) 41

If j = 7 41, the assertion (3.11]) follows from (3.18)), since the product
is then empty.

If > 5O + 2 and m < j©, we use Lemmato obtain (3.11)).

If j > j© 4+ 2 and m > j, we apply Lemma to the terms in the
product appearing in (3.18]) to deduce (3.11)).

This finishes the proof of Case 2.

CASE 3: 49—k +1 < j© < j = 4y. Recall that j(O < iy —2=7j—-2
by . If m < O, Lemma gives . So we assume m > j. Since
io = j and m < i, we have m = j. The restrictions on j(©, j imply that
condition is nothing else than

i0—1 io—1
(Tj(0)+k - Tj(O)) H (Te+k — Tig) = H (Tio — 7e)-
=50 41 0=5(0)

Thus, in order to show (3.11]), it is enough to prove that there exists a con-
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stant Dy > 0 only depending on k such that

ig—1
P o 7T S D;..

(3.19)

TjO 4k — 750 Te+k — Tig

01=5(0)42
First observe that by Lemma (3.4

Tig — Tj(o) > Tj(0>+k+2 — Tig > Tj(o)-i-k — Tig-
Inserting this inequality in the left hand side of (3.19) and applying Lem-
ma directly to the terms in the product, we obtain (3.19).

CaSE 4: ig — k = j© < j = ip. We have j© < iy — 2 by (B.10). If
m < ) just apply Lemma to obtain (3.11)). Thus we assume m > j.
Since igp = j and m < ig, we have m = j. The restrictions on ;@ j imply

that (3.13]) takes the form

i0—1 i0—1
II Gw-m)= [ (-7
f=i07k+1 €=i07k+1

Thus, to show (3.11]), it is enough to prove that there exists a constant
Dy, > 0 only depending on k such that

i0—1

[ =
Toor — Ty

t=ig—kt2 kT Tio

But this is a consequence of Lemma [3.4] finishing the proof of Case 4.
CASE 5: ig — k = j©) < j <y — 1. In this case, (3.11)) becomes

(3.20) Tio+1 — Tio 2 Tio — Tig—k+1
and is nothing else than
J g1
(3.21) H (Tesk — Tig) = (Tj4k — Tj) H (Tio — 72)-
£=i07k‘+1 €=i07k+1

For j =ig—k+1, follows easily from . If we assume j — (@ > 2
and m < 7, we just apply Lemmato obtain . If j—5© > 2 and
m > j, then is equivalent to the existence of a constant Dy > 0 only
depending on k such that

j—1
(Tj+k — 75) Tp=iy o (Tio — 70)
J
Hﬁ:io_k+2 (TE—I—k - Tio)
This follows from the obvious inequality 741 — 7; > Tj44 — Ti, and from

Lemma Thus, the proof of Case 5 is complete, thereby concluding the
proof of Theorem .
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We will use this result to prove lemmata connecting the LP norm of the
function g and the corresponding characteristic interval J. Before we start,
we need another simple

LEMMA 3.5. Let C = (Cij);-fj:l be a symmetric positive definite matriz.

Then for (dij)} ;=1 = C~! we have
c;t <dy, 1<i<n.
Proof. Since C is symmetric, it is diagonalizable:
C = SAST,

for some orthogonal matrix S = (s;;)7;_; and for the diagonal matrix A
consisting of the eigenvalues A\1,..., A, of C. These eigenvalues are positive,
since C is positive definite. Clearly,

Cct=8a"18".
Let ¢ be an arbitrary integer in the range 1 < i <n. Then

n

n

2 2y—1

Cii = Z Sif)‘f and dii = Z Sz’€>‘£ .
/=1 /=1

1

Since >, s% = 1 and the function z — 27! is convex on (0,00), we

conclude by Jensen’s inequality that
n -1 n
al= () <N = di
=1 =1
LEMMA 3.6. Let T, T be as above and g= Z]Nil wiNj be the function
in span{N; : 1 < i < M} that is orthogonal to every N;j, 1 < i < M —1,

with (wj)j]\il given in (3.4). Moreover, let o = g/||gl|2 be the L?-normalized
orthogonal spline function corresponding to the mesh point ;,. Then

lellzocy ~ lellp ~ 1TVP72, 1< p < oo,

where J s the characteristic interval associated to the point T;,, given in

Definition [3.1]
Proof. As a consequence of ([2.5)), we get

(3.22) 91l o) Z 117 w0 -
By Theorem lwi| Z bjo jo, where we recall that (bij)%zl is the
inverse of the Gram matrix (aij)%zl = ((Ni,Nj))%zl. Now we invoke

Lemma and (2.6 to infer from (3.22) that
Igllzecry 2 1117000 50 > !Jll/paj_«ln,j(m

= T[Nyl 2 17w,
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Since, by construction, J is the maximal subinterval of J ©) and there are
exactly k subintervals of J(©), we finally get

(3.23) gl o 2 11771

On the other hand, g = a;N¥, so we use . ) to obtain

0
Jj=io—k =J" 5>

o 1—p 1/p
lally S (D2 gt} )
j=io—k
Since |a;| <1 for all j and v is minimal (up to the factor 2) among the
values v;, ig — k < j <ip, we can estimate this further by

1/p—1
lally < viis "
We now use the inequality |J| < v;0) = |J©| from the construction of .J to
get
(3.24) lglly < IJ\l/’H-

The assertion of the lemma now follows from and ( after renor-

malization. m

We denote by d7(x) the number of points in 7 between x and J counting
the endpoints of J. Correspondingly, for an interval V' C [0, 1], we denote by
d7 (V') the number of points in 7 between V and J counting the endpoints
of both J and V.

M

LEMMA 3.7. Let T, T be as above and g= ZJ L w;Nj be orthogonal to

every N;, 1 <i < M —1, with (w])] L asin . Moreover, let ¢ = g/|g]|2
be the normalized orthogonal spline function correspondmg to Ti,, and v < 1
the constant from Theorem [2.7) depending only on the spline order k. Then

A7 (75)
~ |J| + dist(supp Nj, J) + v;
Moreover, if x < inf J, then

(3.25) lwj| < forall1 <j< M.

r)|J|1/2 o
| J| + dist(z, J))1-1/»’ <p < o0.

(3.26) el ez S (

Similarly, for x > sup J,

3.27 ’J‘lﬂ 1<p<

Proof. We begin by showing (|3 . By definition of w; and ay (see (3.4))

and (3.3))), we have

< .
wjl £, max - bel-
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Now we invoke Theorem to deduce

o—i
e
minio—kgffio (Tmax(ﬂ,j)Jrk - Tmin(f,j))

(3.28) |wjl S

<
~ T 5
mMing, —k<¢<ig (Tmax(ﬁ,j)—f—k: - 7_rnin(ﬂ,j))

where the second inequality follows from the location of J in the interval
[Tio—ks Tio+k)- It remains to estimate the minimum in the denominator. Fix
f with ig — k < £ < 4. First we observe that

(3.29) Tmax(£,j)+k — Tmin(,j) = Tj+k — Tj = |supp Nj| = v;.

Moreover, by definition of J,

. 0
(3.30)  Tmax(¢,5)+k — Tmin((,5) = iojglglggio(ﬂ% — ) > [JO2 > 17)/2.

If now j > £, then

(331) Tmax(€,5)+k — Tmin(¢,5) = Tj+k — T¢ > Ti+k — Tig

> max(7; — sup JO) 0),

since 7;, < sup J(©. But max(r; — sup J©,0) = dist([r}, 7j14], J©) due to
the fact that inf J(© < Tio < To4k < Tj4+ for the current choice of j. Addi-
tionally, dist([r;, 7j4x], J) < |JO| + d([rj,7j44), J©). So, as a consequence
of (B:31),

(3.32) Tomax(t.)+k — Tmin(e,j) = dist([7j, 7], J) — |7,

An analogous calculation proves (3.32) also in the case j < ¢. We now

combine (3.28]) with (3.29)), (3.30) and (3.32)) to obtain (3.25).

Next we consider the integral ( {|g(¢)[P dt) VP for 2 < inf J. The anal-
ogous estimate follows from a similar argument. Let 75 be the first
grid point in T to the right of x and observe that supp N, N[0, 75) = 0 for
r > s. Then

s—1
lolzr0) < Nolznomy < | wibif
=1

By (2.6),

1/p\s—1
91l Loy < [l (wiri ™) ;2 [l -
We now use (3.25)) for w; to get
"}/dT(Ti)I/-l/p s—1
191l rr0,0) S ( - ; ) :
|J| + dist(supp Ni, J) + v ),y || o
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Since v; < |J|+dist(supp N;, J)+v; for all 1 < i < M and dist(supp V;, J)+
v; > dist(z, J) for all 1 <1i < s — 1, the last display yields

91l 0.0) S (1] + dist(, 1)~ 2| (v )2
The last ¢P-norm is a geometric sum with largest term 47(*), so
~dT (@)
gl zr0.2) S (715 dist(@, 7)) 177"

This concludes the proof, since we have seen in the proof of Lemma that
lgllz ~ 717/, =

REMARK 3.8. Analogously we obtain
AT (7)| J|1/2

su ) <  max .
ijlg%fj OIS j—k<i<j—1 |J| 4+ dist(supp N;, J) + v;

- AT (T5) | J|1/2
~ |J‘ =+ diSt(Ja [ijla Tj]) + |[Tj*1’7—j]|7

since [7j_1,7;] C supp N; whenever j —k <i < j—1.

4. Combinatorics of characteristic intervals. Let (¢,)72, be an ad-
missible sequence of points and (f,);2_, o the corresponding orthonormal
spline functions of order k. For n > 2, the associated partitions 7, to f, are
defined to consist of the grid points (tj)?:(], the knots tg = 0 and t; = 1
having both multiplicity k£ in 7,. If n > 2, we denote by J7(LO) and J, the
characteristic intervals J(© and .J from Definition [3.1] associated to the new
grid point ¢,. If —k +2 < n < 1, we additionally set J,, := [0, 1]. For any
x € [0, 1], we define dy,(z) to be the number of grid points in 7, between x
and J,, counting the endpoints of .J,,. Moreover, for a subinterval V of [0, 1],
we denote by d,, (V) the number of knots in 7,, between V' and J,, counting
the endpoints of both V' and J,. Finally, if

To=0="71="=Tnk < Tkl
< S Tantk—1 < Taptk = 0 = Taptok-1 = 1),

and if ¢, = 7,,4,, then we denote by ¢, ¢ the point Trio+£-
For the proof of the central Lemma of this section, we need a com-
binatorial lemma of Erdds and Szekeres:

LEMMA 4.1 (Erdés—Szekeres). Let m be an integer. Every sequence
(T1,- -, T(n_1)241) of real numbers of length (n—1)24+1 contains a monotone
sequence of length n.

We now use this result to prove a lemma about the combinatorics of the
characteristic intervals J,,:
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LEMMA 4.2. Let z,y € ()52, be such that x < y and 0 < 5 < 1/2.
Then there exists a constant Fy only depending on k such that

NO = Card{n : JTL g [:an]a |JTL| Z (1 - ﬁ)|[$ay]|} S Fk7
where card ¥ denotes the cardinality of the set E.

Proof. If n is such that J, C [z,y] and |J,| > (1 — B)|[z,y]|, then, by
definition of J,,, we have t,, € [0, (1 — 8)z + By| U [Bx + (1 — B)y, 1]. Thus,
by the pigeon-hole principle, in one of the two sets [0, (1 — )z + fBy] and
[Bx + (1 — B)y, 1], there are at least

Ng—1
Nllz\‘02 J—l—l

indices n with J,, C [z,y] and |J,,| > (1 — 8)|[z,y]|. Assume without loss of
generality that this set is [8z+ (1— )y, 1]. Now, let (n;)!, be an increasing
sequence of indices such that t,, € [fx + (1 — B)y,1] and J,, C [z,y],
|Jn;| = (1 = B)|[z,y]| for every 1 < i < Nj. Observe that for such ¢, J,, is
to the left of ¢,,. By the Erd6s—Szekeres Lemma the sequence (tm)ﬁ\gl

contains a monotone subsequence (tmi)ivjl of length

Ny :=|v/Ny—1|+1.
If (tmi)fvjl is increasing, then Ny < k. Indeed, if No > k41, there are at
least k points (namely t,,,, ..., %y, ) in the sequence Ty, , between inf J,

k+1 MEk+1
and ¢y, . This is in conflict with the location of Jy,, ;.
If (tmi)f\fl is decreasing, we let
51 < - S5

be an enumeration of the elements in 7,,, such that inf.J,,, <s <t,,,. By
definition of J,,,, we obtain L < k + 1. Thus, there are at most k intervals
[s¢, Se41],1 < € < L—1, contained in [inf Jp,, , ty, ]. Again, by the pigeon-hole
principle, there exists one index 1 < ¢ < L—1 such that the interval [sy, $p41]

contains (at least)
Ny —1
N3 ;:{ 2 J+1

k

points of the sequence (tmi)ZNjI. Let (trz.)fvj1 be a subsequence of length N3
of such points. Furthermore, define

Ny = [N3/k|.
Since (tn.)l]-\[:g1 is decreasing, we have a collection of N4 disjoint intervals
L= (tr o t7F) Clseysen], 1< p< Ny

Consequently, there exists (at least) one index p such that
(L] < [[se, sea]l/Na-
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We next observe that the definition of J,,, yields
[Ty | = [[s0, se41][-
We thus get
(4.1) SO 2 1l = (1= )l y)l = (1= B)| i, |
> (L= B)llse; sexall = (1= B)Na| L.
On the other hand, the construction of J,(,O?k implies in particular
(4.2) IO < 2685 —tr,.,) = 2|1,

The inequalities (4.1) and (4.2)) imply N4 < 2/(1 — ) < 4. Since Ny only
depends on k, this proves the assertion of the lemma.

5. Technical estimates

LEMMA 5.1. Let f = Zf:_k+2 anfrn and V be an open subinterval
of [0,1]. Then

1/2
(5.1) I S lassioldt s § (3 lasfi02) " at,
vejer vV - jer
where I' :== {j : J; CV and —k +2 < j < oco}.
Proof. If |V| =1, then (5.1) holds trivially, so we assume that |V| < 1.
We define z := inf V, y :=sup V and fix n € I'. The definition of I" implies
n > 2, since J; = [0,1] for —k +2 < j < 1. We only estimate the integral

in (5.1) over [y, 1]; the integral over [0,z] is estimated similarly. Lemma [3.7]
implies

1
PACIEREIRIPARS
y

Applying Lemma [3.6] yields

1
(5.2) V() dt <A@\ | £a(2)] dt.

Yy JIn
Now choose = 1/4 and let J# be the unique closed interval that satisfies
|J%| = B|J,| and inf J? = inf J,.

Since f, is a polynomial of order k on J,, we apply Proposition to ((5.2))
and estimate further

(5:3) Slanfu®]dt S5O [ lanfu®ldt <=0 | (X layy002) " a

Y JTBL JE jer
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Define I'y :== {j € I' : d;(y) = s} for s > 0. For fixed s > 0 and ji, jo € I,
we have either

JjyNJj, =0 or supd; =supJj,.
So, Lemma implies that there exists a constant F}, only depending on k,
such that each ¢t € V belongs to at most Fj intervals Jjﬁ , J € Is. Thus,
summing over j € [, from we get

S lasmlas 32§ (S lanor)” a

jelsy jer. o ier
1/2
S’YSS(Z\aefz(t)F) dt.
v ter

Finally, we sum over s > 0 to obtain (5.1)). =
Let g be a real-valued function defined on [0, 1]. We denote by [g > A]
the set {x € [0,1] : g(x) > A} for any A > 0.

LEMMA 5.2. Let f = >3, 5 anfn with only finitely many nonzero
coefficients an, A >0, r <1 and

Ex=[Sf> ), Bi,=[Mlg, >1].

Then
E, C BAJ"

Proof. Fix t € Ej. Since Sf = (Y02 ;.5 \anfn\2)1/2 is continuous ex-
cept possibly at finitely many grid points, where it is continuous from the
right, there exists an interval I C E) such that ¢ € I. This implies

(M1g,)(t) = sup U]~ | 1p, () de
U U
:Sup‘E)\ﬂU’ ’E)\ﬂﬂzﬂ:
s UL 1|
so t € By ,, proving the lemma. =
LEMMA 5.3. Under the assumptions of Lemmal5.2], define

A={n:J, ¢ By, and =k +2 <n < oo} and g:Zanfn.
neA

1>

Then
(5.4) | Sgt)?dt < | Sg(t)dt.
E, ES

Proof. If By, = [0,1], the index set A is empty, and thus (5.4]) holds
trivially; so assume B} , # [0,1]. Then we apply Lemma (for n > 2) and
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the fact that J,, = [0 1] for n <1 to obtain

S Sg() Z S |an fn(t) |2 dt < Z S |an fn(t) ’2dt

Ey neA Ey neA Jp
We split the last expression into

I := Z S |anfn(t)’2dt7 I := Z S |anfn(t)|2dt'
neA JnNES neA J,NEy
For I;, we clearly have
(5.5) LY \lanfa@®)Pdt = | Sg(t)? dt.
neA B ES

It remains to estimate I. First we observe that by Lemma E) C By,.
Since the set By, = [M1g, > r| is open in [0, 1], we decompose it into a
countable collection (V;)72, of disjoint open subintervals of [0, 1]. Utilizing
this decomposition, we estimate

(5.6) L<Y Y| lanfa®)dt.
neA j:|JnNV;[>0 JnNVj
If n € Aand |J, NV, > 0, then, by definition of A, J, is an interval
containing at least one endpoint x € {inf Vj},sup V;} of V; for which
Mlg, () <.
This implies
|ExNJ,NV;| < r|J,NVj|  or equivalently |ESNJ,NV;| > (1—r)[J,NVj|.

This inequality and the fact that |f,|? is a polynomial of order 2k — 1 on .J,
allow us to use Proposition to deduce from (5.6) that

L5Y, > | lanfu®)Pat

nEA j:|JunV;]>0 E{NJnNV;

<> lanfa@®)Pdt

neA ESNJnNBy
<>V lanfa(®)Pdt = | Sg(t)* dt.
neA ES ES
Combined with (5.5)), this completes the proof. =
LEMMA 5.4. Let V be an open subinterval of [0,1], z := infV, y :=
supVoand f =37 . oanfn € LP[0,1] for 1 < p < 2 with supp f C V. Let
R > 1 satisfy Ry <1 for the constant v from Theorem 2.7 Then

oo

(57) S Bl o S 11
n=n(V)
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where n(V) = min{n : 7, NV # 0} and V= (7,y) withz =z —2|V| and
y=y+2V|]

Proof. First observe that V¢ = [0,7] U [§, 1]. We estimate only the part
corresponding to [0,Z] and assume that z > 0. The other part is treated

analogously.
Let m > 0 and define
(5.8) T = {neN:nZn(V), card{ignzigtigx}:m}.

We remark that T}, is finite, since the sequence (t,)52, is dense in [0, 1].
We now split T}, into the following six subsets:

TV = {neT,: J, C [z 2]},
T2 ={neTy:Fey, |J,N[E]>|V], Jo ¢ [E ]},
T = {neT,:J,C|0,7]or

(z € Jp with |J, N [2,2]] < |V|and J, & [2,2])},
TW ={neTy,:zel, |J,N[E]|>|V], Jo ¢ [E ]},
T = {neTy:J,Clz,yor

(z € Jp with |J, N [Z,2]] < |V|and J, & [2,2]) },
T ={n €Ty Jy C 7,1 or (§€ J, with J, ¢ [2,7]) }.

We treat each of these separately. Before examining sums like the one in
(5.7) with n restricted to one of the above sets, we note that for all n we
have, by definition of a,, = (f, f,,) and the support assumption on f,

(59) fanl? < Y17 de- (§1a @)

v v
where p’ = p/(p — 1) denotes the conjugate Holder exponent to p.
Caseline T = {neTy:J, Clz,z]}. Let T = Tr(nl)\{minTT(nl)}.

By definition, the interval J,, is at most k—1 grid points in 7,, away from ,,.
Since the number m of grid points between z and x is constant for all
n € T, there are only 2(k — 1) possibilities for J,, with n € ﬁsll) By
Lemma [4.2| applied with 8 = 0, every J, is a characteristic interval of at
most F}, points t,,, and thus

(5.10) card T\ < 2(k — 1)F), + 1.
By Lemmata [3.7] and [3.6] respectively,

(5.11)

[fa@®)F dt S AP D fallp and || fa()F dt S AP fullh
|4
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for n € T}, Furthermore, d,,(7) 4+ dn (V') = m by definition of d,,, the loca-

tion of J,, and the fact that n € T&l). So, using ((5.9), (5.11)) and Lemma
we get

> VP

n€T7<nl)

2N

[e=]

—1

< > RGP a (§1aoF a)" I erd
14 0

neTr(n1> v

S S0 RV @O ) £, £ ()P dt
nGTf,ﬁ v

< S By (O dt.
n€T7<n1> v

Finally, we employ ((5.10) to obtain

2

(5.12) 3 R W|g, [ S O dt < (Ry)P™ | [£()P dt,
1%

[e=]

nETr(nl)
which concludes the proof of Case 1.
CasE 2n e TP ={n €Ty 7€ Jy, |Jun[F 2| > V], Ju & [72]}. In
this case we have d,,(V) = m, and thus Lemma [3.7| implies
VP dt < [ fall ooy [V S APl 22|V,
v
We use (5.9) and this estimate to obtain

anl?fally < § 1Pt (§ 1500 at)" 15l
\%4 \%

S VI @P dt AP | 2PV full
|4
Lemma [3.6] further yields
(5.13) (anlP |l fally S 7™ Ju PPV (0P dt
1%
<A TPV IPTHIF.

If ng < n1 < -+ < ngis an enumeration of all elements in T,g ), by definition
of qu ) we have

Jng D Jpy DD, and | Jp | > |V,
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Thus, Lemma [£.2] and the fact that 1 < p < 2 imply

(5.14) D7 ' oy P < VI,
nETr(n2)
We finally use (5.13)) and (5.14)) to conclude that
(5.15) > B Oay Pl fallh S (RY)PHIVIETIAL D 1 al' P
nGTT(nQ) nETfnz)

Sp (B)P" 1 £l

CasE 3:n e T ={n € Ty : J, C [0,7] or (F € J, with |.J, N [F, 2] <
V| and J,, ¢ [z,x])}. Forn € T,g’), we denote by (z;)", the finite sequence
of points in 7, N|[Z, 2] in increasing order and counting multiplicities. If there

exists n € TT(,‘? ) such that 21 is the right endpoint of J,, and € J,,, we define

x* := x1. If not, we set z* := Z. By definition of Tr(,?) and z*, we have

(5.16) V| <[z, z]| <2|V].
Furthermore, for all n € TTS’ ),

Jp C[0,2] and |[z*, 2] N T, =m.
Moreover,
(5.17) m+dp(2%) — k < dp(V) <m+dy(z7),

where the exact value of d, (V) depends on the multiplicity of z* in T,
(which cannot exceed k). By Lemma 3.7/ and (5.17) we have

sup | (1)] < ymin@t) 1Tl
te\l/) mhs |Jn] + dist(z, J,)
Hence
’ , « n p'/2
(5.18) S |fa (D) dt < V] - 4P (tdn(e) | Jn

v (1o + dist(z, 1))

Employing (5.9), (5.18]) and Lemma gives

’ p—1
B Wla | fally < RV pe) Pt - (§1faoF dt)” | fall

\% \%
dn (V ~1, p(m+tdn(z* [Jul"2
< RP ( )Hf”g’wp ,yp( +dn( ))(|Jn|+dist(x, Jn))pran
|

dn, (V —1 m-+dpn (x*
S RV gy gprine )
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Inequality (5.17)) then yields
|
519) RPUMiq P P < (Rry)Plmtdn(e P\ |Jn '
(519 P ully < RPN Y
We now have to sum this inequality. In order to do this we split our
analysis depending on the value of d,(z*). For fixed j € Ny we consider

ne T with dp(z*) = j. Let § = 1/4. Then, by Lemma each point ¢
)

(which is not a grid point) belongs to at most Fj, intervals Jf with n € T,(,?
and d,,(z*) = j. Here JJ, is the unique closed interval with

|J8| = B|J,| and inf J? = inf.J,.
Furthermore, for ¢t € J,, we have

|Jn| + dist(x, J,) > x —t.

Hence
| Jn] VP! 1 vt
< dt
Z (|Jn] + dist(z, J,))P — b Z S (x —t)P
,(n nETT(,?) Jff
( *)=3 dn(z*)=j
Fk p—1 v —p < | |p—1
< F|V| _io(fﬁ —t)7Pdt 5p (a1 <1,

where in the last step we used (5.16)). Combining (5.19) and the last in-
equality and summing over j (here we use the fact that Ry < 1), we arrive
at

(5.20) > B Wlay Pl fallb Spor (By)P™ (1 f -
nETT(,?)
CasE dn € TW = (n e Ty : € Jy, |JuN[F2]| > V], Jp ¢
[, z]}. We can ignore the cases m = 0 and (m = 1 and [z,z] N T, = {x})
since these are settled in Case 2. We define Téﬁl ) to be the set of all remaining
indices from Tﬁ ). Let n € Tﬁ ). Then the definition of Téf ) implies
(5.21) dn (V) = dn([z,y]) = 0.

Moreover, there exists at least one point of 7, in V (since n > n(V) for
n € T,,) and at least one point of 7y, in [z, x] (since m > 1). Thus we have

(5.22) VI < |Jul <3V
Since x € J, for all n € ﬁ%), the family {J, : n € T } is a decreasing

collection of sets. Inequality (5.22)) and a multiple application of Lemma
with sufficiently large § gives a constant ¢ depending only on k£ such that

(5.23) card T < ¢y..
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We employ Lemmata [3.7] and [3.6] to get

81

(5.24) S ()P dt S AP [T PP = AP JPIE  AP f B,
0
Hence
Z RP4(V)|q,, [P S ()|P dt
neTid 0
RO CVACIE O Ninopa
neT® V v 0
> V1@ P dt-falpA 1 fall < D2 A1,
neTdV neTid

where we used (5.21) and (5.9)) in the first inequality, (5.24) in the second
and Lemma in the last one. Consequently, considering ([5.23)), the last

display implies

2

(5.25) > rr g, [P S @ dt <"1
neﬁ(f)

=]

CASE 5:n € T ={n € T : J, C [2,7] or (z € Jp with |J, N [F,2]| <
V| and J,, ¢ [Z,z])}. If there exists n € T with z,, = inf J,, then we
define 2’ = x,,. If there exists no such index, we set 2’ = x. We now fix

neT. By definition of 2’ and 7,
(5.26) m+dp(2) — k < dp(Z) <m+ dp(2).

The exact relation between d,,(Z) and d,(z’) depends on the multiplicity of
the point 2’ in the grid 7,. By definition of T, (5 ),

dist(z, J,) <5|V| and [|V| < dist(z, J,).
Moreover,
(5.27) |Ja] < |2, 9] <4|V] and d,(V) < dn(2).
The last two displays now imply
|Jn| + dist(z, J,) ~ |V].
Lemma together with the former observation, yields

‘Jn’p/2 < pdn(E)’Jn‘p/2
(In| + dist(z, Jn) )P~ ™~ V=t

[ fa (B dt S AP

O ]
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Inserting ([5.26]) in this inequality, we get

2
(t)[P dt < APLdn()+m) [ Jul”/

5.28 .
( ) |[V|p—1

OL,aH

For each n € Tr(r? ), we split [2/,7] into three disjoint subintervals Iy,
1 < /¢ < 3, defined by

Il = [Qf,,inf JTL]) I2 = JTL7 I3 = [Sup Jnag]

Correspondingly, we set

anei= | fO)fa(t)dt, £=1,2,3.

NV

We start by analyzing the choice £ = 2 and first observe that by definition
of IQ,

(5.29) anal? < falls, § 1707 dt.
JIn

We split the index set Trsf ) further and look at the set of those n € T, ,%5 ) such
that d,,(z) = j for fixed j € Ny. These indices n may be arranged in packets
such that the intervals J, from one packet have the same left endpoint and
the maximal intervals of different packets are disjoint. Observe that the
intervals J,, from one packet form a decreasing collection of sets. Let J,,
be the maximal interval of one packet. Define Z; := {n € e dn(2') = 7,
Jn C Jng}- Then we use (5.27) and (5.29) to estimate

N

Eyji= Y R Wja | Sl fa@)[P dt
nel;

o

8]

< RISl V()P - S (6)P dt.

TLGIJ' Jn

o

Continuing, we use ((5.28) to get
. , J,,|P/2
By SO § S0P dt- 3 | fall#oetm Pl
JIng nel; |V|p
By Lemma .6, || fully ~ J[/#~Y/2, and thus
| TP

By S (Ry)PP™ \ (f(@)Fdt- |‘;|p_1-
JnD nEI]-
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We apply Lemma [£.2] to the above sum to conclude that

p—1 )
By S (RyPi™ § £t sl < (o § s

Jno J"O

where in the last inequality we used ([5.27)). Now, summing over all maximal
intervals J,, and over j finally yields (note that Ry < 1)

(5.30) > R Y)|gy, 5|

nET,(,?)

[ Fa(OF dt Sp,r A" (11115

OL,-o%iz

This completes the proof of the case £ = 2.
Now consider ¢ = 3. Fix j € Ny and let (n;,)72; be the subsequence of
all n € T, ,%5 ) with dn(z") = j. For two such indices n1 < ny we have either

(inf Jp, =inf J,, and J,, C Jp,) or supJy,, <infJ,,.

Observe that J,, = Jp, is possible, but by Lemma (with 8 = 0) only Fj
times, with Fj only depending on k. Therefore, with 3, := supJ,,, for
r>1and By, =Y,

dnj,s (an,r) Z Fk;

Thus for s > r > 1 by Lemmata [3.7] and [3.6] we obtain

sS—7T

-1, s>2r>1.

an,rfl

’ /dnv - / /ST /
(5.31) D s OF dt S 2705 o [0 <5 o I
Br

and similarly, using also (5.26]),

(5.32) | fog o [Pt S AP 0as @ f B APmbdn @) g e,

O e ]

Choosing k := v/2F) < 1, we deduce that

y Prjr—1

a5 |P—\ (t)fu. (8) dt]” —\st W fO S (0]

S 6"‘]’,7‘—1 ﬁn]’,r—l ,

DA \f(t)]pdt-( | \fnj,s(t)\”’dt)p/p-

=1 Prjr Brjr
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We now use inequality ((5.31) to obtain

Brj oy

(5.33) Jan, 3P YA P dt- ||,
r=1 ,Bn .

Combining (5.33)) and (5.32] - yields

d
By = Z ROl ar s P F 180 = S B an, sl oo

werld =1
dn(z')=j
S - B”j,r—l
S YR A Syl N @ dE AT f B
1 =l B, s

Using again Lemma [3.0] gives

'B"j,r—l
By S RY | f@Pde- Y A" SRy I
r>1 ﬁ"jm s>r

Summing over j finally yields

(5.34) > B Way s P f 117002 Ser A I,
n€T<5)
since Ry < 1. This finishes the proof of the case ¢ = 3.
We now come to the final part, £ = 1. Fix j and n such that d,(z') = j
and let Ly, ..., L;y be the grid intervals in the grid 7, between 2’ and J,,
from left to right. Observe that f, is a polynomial on each L;,,. We define

bin:= | fOft)dt, 1<i<j

L'L,n
For n with d,(2') = j, we clearly have a,; = Zgzl bin, and Holder’s in-
equality implies

i o\P/P
(5.35) binl? < § A Pa- (§ 1@ ar)""
Li,n Li,n

Remark [3.8] yields the bound

sup [fult) < A7 ]2
u - R
teLl; n " ~ |Jn‘ =+ dlSt(JTLa Ll,n) + |Lz,n|

and inserting this in ([5.35]) gives

(5.36)  [binl? < | |F@)Pdt AP0
Li,n

|Jn‘p/2|Li,n|p_l
(’Jn| + diSt(Jn, Lz,n) + ’Lz,n‘)p
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Observe that we have the elementary inequality

‘Jn’pﬂ‘Li,n‘p_l ‘Jn|p/2

([Jn] + dist(Jn, Lin) + [Lin] )P [VIP~1
|Jn]

— vt

Combining , and allows us to estimate (recall that we

have assumed that d,(z') = j)

(5.37)

(| Jn| + dist(Jn, Lin) + | Lin])P2

81

(5.38)  RP(V)|p, P S (t)|P dt
0
S J ’p/2‘L. |p—1 |J |P/2
< RPI~P(—1) P dt - [/ L . APG+m)
SR ) Ot G Lo T B

Li,n

] J+m—1 ’J |
SJRPJ,VP(QJJF )|V\p T (|Jn] + dist(Jn, Lin) + |Lin|)P™ 2 S |f()[F dt.
Li,n

For fixed j and ¢ we consider those indices n such that d,(z') = j, and
the corresponding intervals L; ,. These intervals can be collected in packets
such that all intervals from one packet have the same left endpoint and
the maximal intervals of different packets are disjoint. For § = 1/4, we
denote by Jg the unique interval that has the same right endpoint as J,
and length f|J,|. The intervals J,, corresponding to L;,’s from one packet
can now be grouped in the same way as the L;,’s, and thus Lemma
implies the existence of a constant Fj depending only on k such that every
point ¢t € [0,1] belongs to at most Fj intervals J;? corresponding to the
intervals L; ,, from one packet.

We now consider one such packet and denote by u* the left endpoint of
(all) intervals L;,, in the packet. Then for ¢ € J we have

(5.39) | Jn| + dist(Lip, Jn) + |Lin| > |t —u*].
If L} is the maximal interval of the packet, (5.38)) and ([5.39)) yield

Z de" ’bzn|p||anLP (0,7)

n: L; , in one packet
RPIAp(2j+m=i)

S Ty 2 Ml ] dist(Li, Ja) + [Lial}P2 § 1) dt
n Li,n
RPIp(2j+m=i)

S D

L* n Jg

(3
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Since every point ¢ belongs to at most F}, intervals Jf in one packet of L;,,’s,
by using J, C [2/,7] and p < 2 we get

Z Rrdn(V) ]b

n: L; n in one packet

HLP (0,7)

RPi~p(2j+m—i) v )
STt VIr@pde- [t — w2 dt
Ly u*

S RAPEEED | f dt,
L;

where in the last inequality we used ([5.27). Since the maximal intervals L}
of different packets are disjoint, we can sum over all packets (for fixed j
and 7) to obtain

(5.40) Y BNl fallf oz S BPAPEHO|£D,

nET,(nE’)
dn(z")=3

Let s := /2 < 1. Then for n such that d,(z') = j we have
J » i

(A1) Janal” = [ bia| = [ W0
i=1 i=1

Combining (5.41)) with (5.40) we get

Z Rpdn(V) |ay n|p||fn||LP (0,7)

nGT(S)
dn(z')=7

J

p L
< Z K P=7) 1D [P

i=1

J
SJP ZKP(Z_J) Z de |bz n|prTL”LP 0,7)
=1

nET;,?)
dn (z')=j

J
Z PUI) RPIAPEIFM=0|| £|B < (R )PP | f[B.

Since Ry < 1, we sum over j to conclude that finally

(5.42) > RO an 1P falll o0 2) Ser P IFIE-
nETr(rf)
This finishes the proof of the case £ = 1.
We can now combine the inequalities for ¢ = 1,2, 3, that is, (5.42]), (5.30))
and ((5.34), to complete the analysis of Case 5 with the estimate

(5.43) Y B Oanl?| fullf o0z Sor VIS
nET(5)
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CASE 6: n € T = {neTy:J, Clylor(yeJ, with J, ¢
[z,9])}. Similarly to (5.8), we use the symmetric splitting of the indices n
into

Trs:={nz2n(V):|ly,y] N Ta| = s},
where r stands for “right”. These collections are again split into six subcol-

(@)

lections Tr¢, 1 <14 < 6, where the two of interest are

_{neTrs yEJn7|J ﬂ[ ”>|V|J gZ[y, ]}’
:{neTr,S:JnC[y,l] or
(7 € Jn with |J, N[y, 7] < V] and J & [y, 7))}

The results ((5.15)) and (5.20]) for 7T 12 and 7Y respectively had the form

> RP W an |P)| full® Spor (RY)P™ £,
neTPur®

Observe that the p-norm of f,, on the left hand side is over the whole interval
[0, 1]. The same argument as for 7, 53 ) and Té? ) yields

(5.44) > R Pl fallh Spor (RPN FIIB.
ner?ur®)

Now, since

T(6) 72 7B
U m < U r,s r,s

m>0 s>0
inequality (b.44]) implies

(545) Y > mREja P £l

m=0p,e7(®
oo
<> Y RVl fallh Spr 11
5=0 per@ur?
After summing (5.12), (5.15), (5.20), (5.25) and (5.43)) over m, we add in-
equality (5.45]) to obtain finally

S RO | £l 0z Sor 115
n>n(V)

The symmetric inequality
dn (V)
S RO anP Il Sor IFIE
n>n(V)

is proved analogously, and thus the proof of the lemma is complete. u
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6. Proof of the main theorem. In this section, we prove our main
result, Theorem that is, unconditionality of orthonormal spline sys-
tems corresponding to an arbitrary admissible point sequence (t,),>0 in
reflexive LP.

Proof of Theorem [1.1. We recall the notation

st = (% lacu®)" Mi0 = s | aufult)
n=—k+2 mz—k+2', "y o
when
f: Z anfn~
n=—k+2

Since (fn)n2 _p4o is a basis in LP[0,1], 1 < p < oo, Khintchine’s inequality
implies that a necessary and sufficient condition for (f,)p2_, ., to be an
unconditional basis in LP[0,1] for 1 < p < oo is

(6.1) 1SHlp ~p Ifllp, f € L7[0,1].

We will prove (6.1) for 1 < p < 2 since the case p > 2 then follows by a
duality argument.
We first prove the inequality

(6.2) 1fllp <p (1S F1lp-

Let f € LP[0,1] with f = >"7° ;5 anfn. We may assume that the sequence
(@n)n>—k+2 has only finitely many nonzero entries. We will prove (6.2) by
showing that [[ M f|l, Sp 1S f]lp-

We first observe that

(6.3) IMFIE=p | AP1p(N) dx
0
with ¥(A) := [M f > \]. We will decompose f into two parts o1, ¢2 and esti-
mate the distribution functions ¢;(\) := [My; > A/2], i € {1, 2}, separately.
To define @;, for A > 0 we set
Ey = [Sf>>\], By = [M]l]_:;)\ >1/2],
I''={n:J,CBy,—k+2<n<oo}, A:=T¢
recall that J, is the characteristic interval corresponding to the grid point
t, and the function f,. Then, let

P1 = Z anfn and o= Zanfn-

nel’ neA
Now we estimate 11 = [Mp1 > \/2]:
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Vi A) =|{t € By : Mp1(t) > N2} + [{t & By : Mpi(t) > A/2}|

2 2
< ‘B)\|+X S M@l(t)dtg ’B)\|+X S Z|anfn(t)’dt
B BS nel’

We decompose B), into a disjoint collection of open subintervals of [0, 1] and
apply Lemma [5.1] - to each of those intervals to deduce that

W) S B+ § SF0d= B+ | Sf@dety | Si)

BA By\Ex E\NB)y

< [Bal+|Ba\ Eal + 1 S Sf(t)dt
EA
where in the last inequality we simply used the definition of E). Since the

Hardy-Littlewood maximal function operator M is of weak type (1,1), we
have |By| < |Ey|, and thus finally

(6.4) n) S 1B+ | S0

E,\
We now estimate ¢2(A). From Theorem[2.8|and the fact that M is a bounded
operator on L?[0, 1] we obtain

P2(A) S )\QHszHz S )\2|1902H2 QHSM!%

1
=3 ( | Sea(t)?dt+ | SgOQ(t)th).
o0 ES
We apply Lemma [5.3] to the first summand to get
1
(6.5) Y2(A) S 2 S Sepa(t)? dt.

C

Thus, combining (6.4)) and . glves
PO < i) + a0 S 1B + 5 § S50 e+ 35 § S50

)\2
E)\ E$
Inserting this into (6.3)), we obtain
IMFIE < p \ AP B dh+p | A2 | SF(t)dtdA
0 0 E\
p \ W73\ Sf(t)? dtdx
0 E
1 Sf(t) 1 00

=|SfIs+p\Sr@) | AW 2dxdt+p\Sr@)® | A Pandt,
0 0 0 Sf(t)
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and thus, since 1 < p < 2,

IMfllp <p 1S F1lp-

So, the inequality || f|l, $p 1Sf]lp is proved.
We now turn to the proof of

(6.6) ISFllp Sp 1Fllps 1 <p <2

It is enough to show that S is of weak type (p, p) whenever 1 < p < 2. This is
because S is (clearly) also of strong type 2 and we can use the Marcinkiewicz
interpolation theorem to obtain (6.6 . Thus we have to show

(6.7) ISf > Al Sp IFIR/A7, f € LP[0,1], A> 0.
We fix f and A > 0, define G := [M f > A] and observe that

(6.8) Gl Sp IFI5/X°,
since M is of weak type (p, p), and, by the Lebesgue differentiation theorem,

(6.9) Ifl| <A ae. onGS.

We decompose the open set G\ C [0,1] into a collection (V)72 of disjoint
open subintervals of [0, 1] and split f into

o
hi=f-lgs+ Y Tv,f, g:=f—h,
j=1
where for fixed index j, Ty, f is the projection of f - 1y, onto the space of
polynomials of order k on the interval V;.
We treat the functions h, g separately. The definition of A implies

IRl = § If I2dt+Z§ (Tv, (¢

GS 7j=1V;

(SN

since the intervals V; are disjoint. We apply to the first summand and
(2.1) to the second to obtain

IRl5 S X7 Y A1 dt + NG,
GS

and thus, in view of ,
R[I3 <p X7PIFIE.

Hence

4 4 £ 117
[1Sh > A/2]] < 51IShll5 = 35 [IR15 Sp 7557

which concludes the proof of (6.7) for h.
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We turn to the proof of for g. Since p < 2, we have

(6.10) Sg(ty = ( Y |<g,fn>|2fn<t>2)p/2s S g S PO
n=—k+2 n=—*k+2

For each j, we define V to be the open interval with the same center as Vj
but with 5 times its length. Then set G := = U L, Vin[0,1] and observe that

|G| < 5|G|. We get
~ op
189> A2l < (Gl + 35 | Sg(t)” dt.
G

By and , this becomes
159> M2l AP (I + S § 1o Pl de).

n=—k+2 éi

But by definition of g and (2.2)),

lgllp = >~V 1£(8) = Tv, £t |”dt<p2§|f )P dt S 115,

iV

so to prove |[Sg > A/2]| < A7P||f||, it is enough to show that

(6.11) Yo N Hg PP dt < llgllp.
n:—k+2§§\

We let g; := g - 1y,. The supports of g; are disjoint and we have lgllh =
> =1 lgjllp- Furthermore g = 377%, g; with convergence in LP. Thus for
each n,

oo
gafn Z g]afn
7j=1

and it follows from the definition of g; that
| g;(t)p(t)dt =0
Vj

for each polynomial p on V; of order k. This implies that (g;, f,) = 0 for
n < n(Vj), where

n(V) :=min{n: T, NV #0}.
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Thus, for all R > 1 and every n,

612) (g, )l =] D g ful]

j:n>n(Vj)

<( > RUOi(g, )[R0

j:n>n(Vj)

S( Z den(Vj)ng’anp)( Z R pd(V)>p/p7

j:n>n(Vj) j:n>n(Vj)

where p’ = p/(p — 1). If we fix n > n(V}), there is at least one point of the
partition 7, contained in V;. This implies that for each fixed s > 0, there
are at most two indices j such that n > n(V;) and d,(V;) = s. Therefore,

( Z R_p/dn(vj)>p/p Sp 1’
j:n=n(Vj)
and from (6.12)) we obtain
‘<gvfn>p§p Z den gjafn>| .
j:n>n(V;)
Now we insert this inequality in (6.11]) to get

e}

SV Ugs ) PIEa ()P dt

n=—k+2 Gi

Z > Ry, )P S | ()P dt

n—*k+2] n>n(Vj) GS

< > > BRIy £l | )P dt
n=—k+2 j:n>n(Vj) \7].0
Z > B ((gy, f) P | (®)]P dt

: >H(V ) ‘7]_0

We choose R > 1 such that Ry < 1 for v < 1 from Theorem and apply
Lemma [5.4] to obtain

[e.9]

YoV Kot PLEa()P at PZHQJ » = llgllp,

n=7k+2 éc

proving (|6 and hence || Sf[|h <p || fI|5- Thus the proof of Theorem [1.1] H is
complete "
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