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Vector-valued inequalities for the commutators of fractional
integrals with rough kernels

by
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Abstract. Some conditions implying vector-valued inequalities for the commutator
of a fractional integral and a fractional maximal operator are established. The results
obtained are substantial improvements and extensions of some known results.

1. Introduction. Suppose that 0 < a < n, 2(x) is homogeneous of
degree zero on R" and £2 € L'(S"~1). Then the fractional integral operator
T« is defined by

2z —y)
|z — gyl

T.Q,af(x) = S
Rn
while the related fractional maximal operator Mg, , is given by

Moaf(@)=sw Lo | |2 —y)f)ldy.
t>0 1 ey|<t

When a = 0, we denote T by T, and the integral is the Cauchy prin-
cipal value. The operator Ty, , plays an important role in the study of the
homogeneous operator Ty,. For example, recently, Ding and Lu [DL1] ap-
plied several results on Ti; , to the study of mapping properties for a class
of multilinear singular integral operators with homogeneous kernel. If we
take £2(y') = 1, then T}, is just the Riesz potential I,, which has been
systematically studied by Riesz [R] on R™ although its one-dimensional ver-
sion appeared in earlier work of Weyl [W]. This operator plays an important
role in analysis, particularly in the study of smoothness properties of func-
tions. See the books by Stein and Weiss [SW] or Grafakos [G] for the basic
properties of these operators. The (LP, L") estimate of I, is the famous
Hardy-Littlewood—Sobolev theorem ([HL], [So]):

f(y) dy,
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THEOREM 1.1 (see [HL], [Sq]). Let 0 < o < n. For 1 < p < n/a and
1/r =1/p—a/n, there exists a constant C' > 0 such that for all f € LP(R™),
Mo fllr < Cll -

In 1971, Muckenhoupt and Wheeden [MW1] proved the (LP, L") bound-
edness of T, o, with rough kernel.

THEOREM 1.2 (see [MWI]). Let0 < a <n, 1 <p<n/a, and 1/r =
1/p—a/n. Suppose that §2 is homogeneous of degree zero on R™ and it is in
L4(S™1) for some q > p'. Let f € LP(R™). Then there exists a constant C,
independent of f, such that

1Teafller < Cllfllce.

In 1993, Chanillo, Watson and Wheeden [CWW] obtained the weak type

(1,n/(n — «)) of the fractional integral Ty, o with rough kernel.

THEOREM 1.3 (see [CWW]). Let 0 < o < n and let 2 € LM (=) (§7—1)
be homogeneous of degree zero on R™. Then for any X > 0 and any f € L*,

1 n/(n—a)
eR Toas@ >t <o(5hm)

where C' is independent of A and f.

In 2000, Ding and Lu [DL2] proved the (LP,L") boundedness of the
fractional maximal operator My, , and the fractional integral T'; .

THEOREM 1.4 (see [DL2]). Let 0<a<n, 1<p<n/a, 1/r=1/p—a/n,
and let 2 be homogeneous of degree zero on R™. Then for any f € LP(R™):

(i) if 2 € LY/ =) (§771), then |Maofller < C|lf | er,

(ii) if 2 € LI(S"Y) and ¢ > n/(n — ), then |[Toofller < C|fllLe,
where C' is independent of f.

In 2011, Chen and Ding |[CD2] proved that T is of weak type (p,r)
when 2 € L= (§7=1) Moreover, they applied weak type bounds for
T, and Marcinkiewicz interpolation to get the following result:

THEOREM 1.5 (see [CD2]). Let 0 < a < n, 1 < p < n/a, 1/r =
1/p — a/n, and suppose that §2 is homogeneous of degree zero on R™ and it

is in L/ ("=)(S"=1) Then for any f € LP(R"),
ITe.afllr < CllfllLr,
where C' is independent of f.

For 0 < o < n, the commutator of the fractional integral Ty, , and
b € BMO(R"™) is defined by

b, To.al () = | mw(w) ~ b(y)) () dy.
]Rn
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Here b € BMO(R"™) means that
1

Ibllzyvo = sup | [b(y) — boldy < oo
QCR" ‘Q| Q

with by = |Q| ™1 SQ b(x) dx. The related commutator of the fractional maxi-
mal operator Mg, o.p is given by

Mo apf(@) =sup—— | 120 —y)||b) - b)| | £()|dy-

t>0 ¢ | <t
When a = 0, we denote [b, Tp 0] by [b, Tr], which is defined by
2 —y
I X S e (ORI
R

However, {2 needs to have mean value zero in order to define the commutator
as a principal value. The operator [b, Ty, o] plays an important role in
the study of the homogeneous operator [b, Tp,].

It is well known that the commutator of a fractional integral is very
useful in harmonic analysis (see e.g. [CH|, [D1], [D2], [D3], [DLPI, [ST]). If
we take £2(y) = 1, then [b, T} 4] is just the commutator of b € BMO and the
Riesz potential I, that is,

b, L] f(z) = [b, T1,0]f(x) = S

R?’L
In 1982, Chanillo [CH] proved the (LP, L") boundedness of [b, I,]:

THEOREM 1.6 (see [CH]). Let b€ BMO, 0 < a <mn, 1 <p<n/a, and
1/p—1/r =a/n. Let f € LP(R™). Then there exists a positive constant C
independent of f such that

11b; La] fllz- < CllbllBymol| £ e-

In 2001, Ding, Lu and Zhang [DLP] gave an example where [b, I,] is
not of weak type (1,n/(n — «)), introduced a kind of maximal operator of
fractional order associated with the mean Luxemburg norm in the Orlicz
space, and using the technique of sharp functions obtained the following
result.

THEOREM 1.7 (see [DLP]). Let b € BMO, 0 < o < n, and &(t) =
t(1+1logtt). Then there exists a positive constant C such that for all A > 0
and f € L*(R"),

f)

|z —y|n—

(b(z) — b(y)) dy.

H{x € R" : |[b, I,]f(x)] > )\H(n—a)/n

< Co@(lamo)#( ()Ml {1+ & og 270/ W ]z |
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In 1993, Segovia and Torrea [ST| proved the weighted boundedness of
commutators for vector-valued integral operators with a pair of weights using
the Rubio de Francia extrapolation idea for weighted norm inequalities.
As an application, they obtained (LP(u?), L™ (v?)) boundedness of fractional
integrals when {2 satisfies some smoothness condition. In 1999, Ding and Lu
[DL1] extended the result of [ST] to general fractional integrals with rough
kernels.

THEOREM 1.8 ([DLI]). Let 0 < a <n, 1 <p<nj/a, and 1/r =1/p—
a/n. Suppose that §2 is homogeneous of degree zero on R™ and 2 € LI(S"1)
for q > p'. Let f € LP(R™). Then for b € BMO there exists a constant C
independent of f such that

(1) 116, To.al fller < ClibllBaoll £l 2,
(i) [IMaapfller < CllbllBmoll flLe-

Motivated by Theorems[1.4] and it is natural to ask whether the size
condition on 2 in Theorem [I.§| can be weakened. In this paper, we give a
positive answer to this question.

THEOREM 1.9. Let 0 < o < n, 1 <p < n/a, 1/r = 1/p—a/n, and
®&(t) = t(1 +log™ t). Suppose that (2 is homogeneous of degree zero on R™
and O(2) € LM =) (S"1) Let f € LP(R™). Then for b € BMO there
exists a constant C independent of f such that

I1Ma.anfller < CIS(2), 22 l[blBMOll f1 -

J=r
REMARK 1.10. Since ¢ > p’ and p’ > n/(n — a), we have
LY(S™ 1) ¢ Lia (log™ L)7a (8" 1).
This means that the size condition on {2 in Theorem [[.9is weaker than that
in Theorem |1.8](ii).

In faCt7 for {fs}sEZ S Lp(gq)’ as SUPge7, Mﬂ,a;bfs < CMQ,a;b(Supsez |f5|)a
for 1/r =1/p — a/n we get

Mq o <Cle)|, —=_|b
sup Mool | < CID) o [Bllmaio [ sup Il |,
By duality,
> Moaofs,, < CIADI, 2 blmo |3 1£I]| -
El<y/ SEL

Interpolating between the two inequalities above, for 1 < g < oo we get

| anr) ™| < clo@l, ool (S 1517) |

SEL SEZL
where C' is independent of { fs}.

e’
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COROLLARY 1.11. Let0 < a<n, 1 <p<n/a, 1/r=1/p—a/n, and
®(t) = t(1 + log™ t). Suppose that 2 is homogeneous of degree zero on R™
and &(2) € V=) (S"1) Let 1 < ¢ < 0o and {fs} € LP(£9)(R™). Then
for b € BMO, there exists a constant C independent of {fs} such that

[(Zamar) "], < Clo@, e, lbllo] (2 15:17) "]
SEZ seZ

Actually, we can apply Corollary to get the (LP(¢%), L"(¢7)) bound-

edness of [b, T o]. In fact, for any fixed 0 < ¢ < min{a, n — o}, we can find
0 < &1 < € such that

e’

(1.2) [P, mzess < ClIL s
and for {fs}sez € LP(17) (see [DL1]),
(1.3) b, Toalfs(@)] < ClMa,aterpfs(@)]*[Moa-cipfs(@)]"?,

where C depends on n, «, and 1. Then by applying the Holder inequality
twice and Corollary we get

|(S 1t tearr) ™| < clel, e bl (S 1509)

SEL SEZL
where C' is independent of {fs}.

COROLLARY 1.12. Let 0 < a <mn, 1 <p<n/a, and 1/r =1/p — a/n.
For any fized € > 0, suppose that 2 is homogeneous of degree zero on R™
and 2 € LV (1) Let 1 < q < oo and {fs} € LP(£7)(R™). Then
for b € BMO there exists a constant C independent of {fs} such that

) [(Siezear) | < Clbto| (1)
SEZ

SEL

)

Lp

e’

REMARK 1.13. Because ¢ > p’ and p’ > n/(n — «), there exists a con-
stant & > 0 such that LI(S"!) ¢ L™ (—==a)(§"~1) This means that the
size condition on {2 in Corollary is weaker than that in Theorem [L.8]i).

An interesting problem is whether for £2 € L™/(*=®)(§"~1) the commu-
tator Mg op or [b,T0n] is bounded from LP to L" for 1 < p < n/a and
1/r =1/p — a/n. Recall that in order to prove the (LP, L") boundedness of
Mg o or T with 2 € L (=) (8§7=1) Ding and Lu [DL2] have used the
Marcinkiewicz interpolation theorem between the weak type (1,n/(n — «))
and strong type (L®, L>®) of Mg, with 2 € L™ (=)(§7=1) and Chen
and Ding [CD2] have used the Marcinkiewicz interpolation theorem be-
tween the weak type (1,n/(n — «)) and weak type (p,r) of T with 2
in L™/ (”*a)(S”*I). Unfortunately, this key technique fails for Mg o and
[b,T0,q], because they are not of weak type (1,7/(n — )) (see Theorem([L.7).
Probably, we need to look for a new method. That is the main difficulty that
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prevented us from solving this problem completely. More precisely, we are
not able to obtain for Mg . and [b,T 4] analogues to Theorems (1)
and [L5

For 0 < a < 1, we can further weaken the size condition on {2 in Corol-

lary The main result of this article is:

THEOREM 1.14. Let 0<a<1, 1<p<n/a, and 1/r=1/p—a/n. Suppose
2 is homogeneous of degree zero on R"™ and 2 € L'~ (log™ L)?(S"1).
Let 1 < g < o0 and {fs} € LP(¢?)(R™). Then for b € BMO there exists a
constant C' independent of {fs} such that

(5 0 3m029) ], <t (12

SEL SEZ

L
REMARK 1.15. Note that for any € > 0,
Li=t=a (S"71) ¢ L (log™ L)*(S"7").

This means that the size condition on {2 in Theorem [I.14] is weaker than
that in Corollary for0 < a < 1.

REMARK 1.16. Since Mg 4y in Theorem is a positive operator, we
can get (LP(£9), L"(¢7)) bounds for Mg o from (LP, L") bounds for Mg oy
(see Corollary 1.11). Then by (L.3), we can get (LP(£?), L"(¢7)) bounds for
[b,T.q]. But the techniques in Corollary fail for [b, T o] with 2 in
L (=) (logt L)2(8™1). So we need to look for a new method. In the proof
of Theorem we use Littlewood—Paley theory, Bony paraproducts, and
Fourier transform estimates. These techniques are different from those for
fractional integral operators with rough kernels in [CH] and [DL1].

This paper is organized as follows. First, in Section 2, we give some
notations and definitions. In Section 3, we prepare some lemmas for the
proof of Theorem In Section 4, we give the proof of Theorem
Finally, in Section 5, we prove Theorem Throughout this note, the
letter “C'” will be used to denote positive constants which may be different
in different occurrences.

2. Definitions. Firstly, we recall some definitions which will be used
in the proof of Theorem

Let # € R and 1 < p < oo. The homogeneous Sobolev space Ly(R™) is
defined as the space of those tempered distributions modulo polynomials,

~

f € S'(R")/P, for which the expression (| - [?f)Y is a function in LP(R™).
For distributions f in L{(R™) we define

(2.1) ez = 1C- 1)Vl
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Let ¢ € S(R™) be a radial function which is supported in the unit ball
and satisfies (£) = 1 for || < 1/2. The function ¥(§) = p(£/2) — (&) is
supported in {1/2 < |{| < 2} and satisfies

> (2 =1

JEZ
for £ # 0. We denote by A; and G the convolution operators whose symbols
are ¥(277¢) and p(277€), respectively.

The paraproduct of Bony [B] between two functions f, g is defined by
wr(9) = Y (4, F)(Gj-39).
JEZ
At least formally, we have the Bony decomposition
fg=mp(g9) +mg(f) + R(f,9)
with
(2.2) R(f.9)=)_ > (Aif)(Aug).
€T |k—i|<2

We recall the definition of A, and A(p, ¢) weights for 1 < p,q < co. Let
1 < p < co. A locally integrable positive function w is said to be a weight
of class Ay if

i e (o) g )<

Q Q
A locally integrable positive function w on R™ is said to belong to A(p, q) if
—1
1 Var g e \'7
sup — \w(z qdaz) < w(x) -1 d:c) < 00.
cubeQeRn<\Q| ) i) Q) ) o)

Q Q

Moreover, the notations and denote the Fourier transform and
the inverse Fourier transform, respectively. As usual, forp > 1, p’ = p/(p—1)
denotes the dual exponent of p.

We collect the notation to be used throughout this paper:

1 o = | (S 15507) |

WA WV

)

jez L
/
171 = (] 17@Par)""
RTL

£l e (w) = ( | 1f(@)Pw(x) da;)l/p.

Rn
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3. Key lemmas. Let us begin with some lemmas, which will be used
in the proof of Theorem The first one is a direct consequence of Propo-
sition 4.6.4 in [G].

LemmaA 3.1 ([G]). Let ¢ € S(R™) with supp(¢) C {iL‘ 1/2 < |z| < 2},
and for k € Z define the multiplier operator Sy by Skf(é) (2 kf)f(f)
and S} by S3f = Sp(Skf). Let 1 < p,q < oo, {f;} € LP(£7), and let

{fix} € LP(9(£2)). Then
<c| (> !fjlq)l/q\

) (X (X ISkijQ)q/Q)l/q‘ 1

JEZ k€eZ JEZ
where C is independent of {f;};
<
o3

0 J(Z(Zsl))" =\

where C’ 18 mdependent of {fj,k},

(i) H (Z (Z \Sﬁfﬁ)q/g)l/qHLP < CH (Z Ifj\q)l/q‘
JEL " keZ JEL

where C' is independent of {f;};

(S stn)™)"

where C 18 mdependent of {fix}-

LeMmA 3.2 ([G]). (a) Let 1 <r <p < oo andw € LP. Then there exists
a constant Cy = C1(n,r,p, [w]a,) such that for every nonnegative function

g in L®/") (w) there is a function G(g) such that

I

Lr

)
P

/2\1/
7,

)

Lp

L= (Zumal)™) ),

JEZ " keZ

(i) 9 <G(g),
(11) ”G( )”LP/P ) (w) < 2”g||LP/(P*T>(w);
(iii) [G(g)w ]ATSCL

(b) Let 1 < p<r < oo and w € LP. Then there exists a constant Cy =
Ca(n,r,p,[w]a,) such that for every nonnegative function h in LP/(r=P) (1),
there is a function H(h) such that

(i) h < H(h),

(i) 1H R pore-m ) < 27l /o) ()

(iii) [H (k) tw]a, < Co.

Moreover, both constants C1(n,r,p, B) and Ca(n,r,p, B) increase as B in-
creases.

LEMMA 3.3. Suppose that the assumptions of Lemma[3.1] hold. Then for
b € BMO(R"), we have
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o> (; bosdn?))) < O||b||BMoH(je§% o

JEZ kel
where C' is independent of {f;};

I [OMOBEAT DR
< o[ (X (S 162)™) "] .

JEL " keZ
where C is independent of {fjr};

@ (S (S, <mmol(Sien)",
jez  ker JEL

where C' is independent of {f;};

> IS (e st )™) 7,
<l (3 (0 1e)") ™,

jez kez
where C' is independent of {fjr}-

Proof. We only need to prove (i). Without loss of generality, we may
take the dual of [b, Sj] as [b,S;]. In fact, if (i) holds, then there exists a
sequence {g;} € L (¢7) with 13z 19517 )/4)|,, <1 such that

(S sasa)™) . = | | S sttatornsor aa

JEZL keZ

HZZ;’M )[b, Silg; (@ dm‘

R" jEZ keZ
Then by the Holder inequality and (i), we get

(sl ).,

<[(Z(Z15e2)")) (2 (Siesida) )"
JELZ k€EZ JEZ k€eZ

< |( (k)™ L (S 1al) ™,
JeZ kel =

<[(Z (i),
JEZ  k€eZ

This is (ii).
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Now, we prove (i). If we get

(3.1) H( ( |5ka| )q/z)l/q‘ - < H(ZU}PI> /q‘ o

then since {Skfj }j,k is a linear operator, Theorem 2.13 in [ABKP] yields (i).
So it suffices to prove (3.1)).

The proof is divided into three cases. We first consider the case of 1 <
g < p < oo. It is well known (see [K]) that

(3.2 [> ) ],y < CMer

For g € LW/9"(w), we let G(|g|) be as in Lemma (a). By Lemma 3.2(a),
(3.2), and Holder’s inequality, we have

33 (S (Zmor)) s, =[S (Sises)"™

jeZ  keZ jez

— swp Hz(z]skf] \2) l9l(z dx‘/q

190l (/0 ()<t R jEZ ke

< o [T (SIS \2)”2G|g| w(z)da]

190l L(p/0) () St R jEZ ke

<C  sup | D 115@)°Gg)) (@)w(x) de

91l L /a) w) S Rn jez

<C sup ’Z‘f]’q‘

91l L (p/a)” (1) <1

<C  sup ’(Z’fj@ H H‘9|H2/(g/q>'

91l L w/0) @y <1 jez

<cl(xn)"

JEZ

1/q
Lp/q(w)

’1/q

1/
Lo/ G(lgl) Hug/q) (w)

Lr(w)

The argument for 1 < p < ¢ < oo is similar. Given w € A, and
(> ez |£j19)1/2 € LP(R™), we observe that

(S5l ™ e 15 w).

JEL
Applying Lemma (b), we have

H((S1n) ") = (S

JEZ JEZ
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and
a-pr. _q
q
[H((Z |fj|q> ) w}A < Cy = Ca(n,p,q, [w]a,).
JEL "

Then applying (3.2) and Holder’s inequality, we have, with X' := ., | fi[9,

o0 J(SE)") ey =15 (15058

Lp/q(ug
JEZ keZ
1/
- | (i) e s,
<| S (Tisess) Castrm | T,
JEZ k€eZ
/
( S Z (Z Sk [l ) Zl_p/q) w(z) d:x)l q”H(Zl_p/q)||2/p‘§(q—p)(w)
JEZ k€eZ
<o( XV IhPHE @y de) el
JEZ R"
<o | St de) s
R™ jEZ
<o ] wiua o)
1/q
_CH<]§;J£] ) 2 (w)’
For p = ¢, we get
(3.5) H(Z (Z|Skfj’2>p/2>1/p p
i€z kez Lp(w)
/
= [ (SI8isi @) wia) da
R" j€Z keZ
p/2\1/p||p
S (Z|f] ) dm_CH(ZU} > ) LP(w)
R®  j€Z JEZ

Combining (3.3)—(3.5)), we get (3.1]).

Obviously, (iii) and (iv) also hold by a similar proof to that for (i)
and (ii). =
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LEMMA 3.4. Let 1 < p,q,r < oo, {f;} €LP(£9), and 2 L™ (=) (g1,
Then for 1/r =1/p — a/n,
1/q
(>

(3.6) H( Mmf;) .. =ciel, -
JEZL

e’

where C' is mdependent of {fj}

Proof. Since supjez, Moo fj < CMg o(supjey | fi]), for 1/r =1/p—a/n
we get

(3.7) | iggMg,afjHU < Ol 72 ’j}elg\fj\HLp
By duality,
(3.8) H ZMmafjHU < 0|2, o Z 5

Interpolating between and ( ., we get (13.6) .

Similarly to the proof of Lemma 2.4 in [CD1], applying Lemma we
get the following result.

LEMMA 3.5. Let 0<a<n, 1<p,q,r<oo, {3 |gr %) /2}; € LP(£2),
and 2 € LM/ (=) (S"=1). Denote oy, o(x) = 2| 2(2") X {2k < |z <2h 41 ()
Then for 1/r =1/p — a/n,

H(Z <Z\0k,a *gk,j’2)q/2>1/q‘

JEZ ke

L

)

Lr

2)q/2>1/q‘

(j{: <j£:|gkg

jc7 kel

where C is independent of {gk;}.
Similarly to the proof of the lemma in [H|, we get

LEMMA 3.6. For 0 < o < 1 and 0 < § < oo, take mqs € CG(R™)
such that supp(meas) C {0/2 < |§| < 6}. Let Ty 5 be the multiplier operator
defined by

Ta,éf(g) = ma,5(£) (5)
Moreover, for b € BMO and k € N, denote by
Tospif () = Tos((b(x) — b(-))* f) (x)
the kth order commutator of Ty 5. If for some constants 0 < 3, 8 < 1, and
—1 <A< 1, mys satisfies
(3.9) ma,s(6)| < C(2796) " min{6”, 677},

(3.10) [Vrmas(6)] < C276) 6,
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then for any fized 0 < v < 1 there ezists a constant C =C(n, k,v,a,\,3) >0
such that

o550, f 1l < C(2728)* min{6”, 6~} b]Euoll 1l 2-

LEMMA 3.7 ([CD3]). For the multiplier Gy, (k € Z) defined in Section 2
and b € BMO(R"™),

T — 62k6
(3.11) Gub(e) — Giblw)] < I g

for any 0 < 6 < 1, where C' is independent of k and 6.
LEMMA 3.8 ([Da]). For any u € S'(R™), the following properties hold:

(1) AjAu=04f[j—il >2,

If we replace A; with S;, the above equalities also hold.

4. Proof of Theorem The main idea of the proof of Theorem
is taken from [H]. Without loss of generality, we may assume that b is real-
valued and [|b]|pmo = Ci. Define

H(b, f)(z) =suprt* | 700 £ (y)| dy.
r>0
lz—y|<r

By the John—Nirenberg inequality, there exist positive constants A and B
such that for any cube Q,

1 |b<x)bQ|>
— Vexp| 55221 4z < B,
|@!é p(AubuBMo 8

where bg is the mean value of b on the cube Q. Let C; = Amax{p/, r}.
Straightforward computation shows that for real-valued b € BMO with

1b]lBMO = Ch,

22| [ er®@-ta) 4y < p, ol j e 0@ 4z < B,
Q Q

and so e?®) € A(p,r) (1 < p,r < 00) (the Muckenhoupt weight class) with
the A(p,r) constant no more than B. By the weighted inequality for M,
(see [MW2]), where

Mo f(x) =supr—"t | |f(y)|dy,
r>0

1

|lz—y|<r
we have

(4.1) VG, )l < CIF Lo
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Hu [H] p. 15] proved that for 0 < t1,t3 < o0,

(4.2) tito < C(t1log(1 +t1) +e'2) < C(t1(1 4+ logt t1) + e'2).
Let &(t) = t(1 +log™* t) for t > 0. Then

(4.3) 12(£2)

By (4.2), we have

Mg apf(z) < CSI;%) rte | @2z - y)If (v)l dy

I e gnory S L.

|le—y|<r
+ Csupr e S el?@ =Wl £ ()| dy
r>0
|lz—y|<r

< Cig%ﬂ“*wra S D(2(x —y))|f(y)| dy

le—y|<r
+Csuprmte | OO f(y)|dy
r>0
|lz—y|<r

+Csuprt | LW p(y)dy

0
r> lx—y|<r

= I(f)(x) + LI(f)(x) + L1I(f)(x).
(4.1) shows that
Iz < Cllfllze,  HII(f)]r < Cll Iz
On the other hand, by Theorem [L.4]i), we get
(N zr < CNAN o 12U posin-er (gn-1y < ClIf| -
Therefore,
[Moapfller < Cllflle-
This completes the proof of Theorem

5. Proof of Theorem Recall that 0 < @ < 1 and
2(x—vy
b, Tonlf@) = | 259 () — b)) £ () dy.

z —y["
Let ¢ € C§°(R™) be a radial function such that 0 < ¢ < 1, supp(¢) C
{1/2 < |¢] < 2} and 3,5, ¢*(277€) = 1 for |¢] # 0. Define the multiplier
Si by 5if(6) = (21 F(€). Let By = {2/ € S"' : |2(a/)| < 2} and
Eg = {2’ € 87129 <|02(z')| < 2¢F!} for positive integers d. For d > 0,
let

2a(y') = 20 )xe,(y).
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Then 2(y') = 3450 L2a(y’)- Set

24(x
Ua,j,d(x) W(O?X{23<|x<21+1}( )

for j € Z. Set
Maga(€) = Fagal): - Mo a(6) = magal€)o(F™'6).
Define the operators T, ;j 4 and Té i by

Tl (€) = magal€F©), T, .F(€) =ml, ;o) F(©):

Denote by [b, T, ja] and [b, T .a) the respective commutators. Define the
operator V4 by

Vaah(z) =) b, Si-jT4 ;aSE1h(@).

JET

b, To.olh(@) =D > Vaudh(z)

d>0 leZ

Then

By the Minkowski inequality,
1/q
(51) H(Z’I)Tﬂafs ) ‘

If we can prove that for some 0 < 5 < 1,
(5.2)

[(Swear?) "]
SEZL

and for 1 < p,r,q <oo,1/r=1/p—a/n,

6:3) | (S Wararl?) || < il o, oo (S 150) "]
SEZ

SEZL
where C'is independent of [ and f, then we get Theorem[I.14] Indeed, taking

g =2 in (5.3, then interpolating between (5.2)) and (5.3)), for 1 < p,r < oo,
1/r=1/p—a/n,and 0 < 0; <1 we get

(5.4) H (" Varafol?) 1/2‘ .

SEL
1/2
< Ol =27 2y e o || (X2 157)
SEL

Next, interpolating between (5.3) and (5.4) again, for 1 < p,q,r < o0,
1/r=1/p—a/n,and 0 < 03 < 1 we get

<zzu(z|va,l,dfs )"

0leZ SEL

< CHQdHLOO2_B|”HbHBMOH (Z ’f3‘2>1/2’

SEZL

2n
L n+2a

LT

e’
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65 || (S eaar?)”|,

SEL

1/2
< Cwl—91622—0192ﬁ\l| ||-Qd||L°° HbHBMOH (Z ’fs|2) ’
SEZ

Take a large positive integer N such that N > 2(361602)~!. Then

S| (S Waratd) ™

d>0 leZ SEL

<3 Y (S Werati) "

d>0 Nd<|l| SEZL
=:J1 + Jo.

For Jy, using (5.5)), we get

7 SCHbHBMOZQd Z 250192|1|H<Z‘f8’q>1/q’j:p

d>0  |I|>Nd

< Clblmio | (S 14:7) ]
SEZ

Finally, by (5.3),

J2 < Clbllemo Y Y [12%(0(Ea) ™

d>00<|l|<Nd

e’

L’I‘

LT+Z Z H<Z|Va,z,dfs|q)l/q‘

d>00<|I|<Nd = s€Z

L’!‘

SEZL

e

(Z 7"

< Clbllpvo Y- N2 (o (E) = || (3 1£:17) /q‘
420 SEZ
< CHQHLﬁaogm)z||b\|BMoH (Z \fs!q)l/q‘ By
SEZ

Combining the estimates of J; and Jo, we get

5.9 S ( Wanat?)”

d>0 leZ SEZ

<CO+92], 2 1og+L)2)”bHBMOH (Z |fs‘Q)1/Q‘

e
SEZ
From (5.1) and (5.6)) it follows that
1/q
(S b7,

SEZ 1

q
COA 2] oy ooy ellmno| | (32 1507) |

SEZ
as desired.
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It remains to prove (5.2) and (5.3).
The proof of (5.2]). Write

[b Sl —J ]dSl J]f
[b Sl j] adel Jf5+Sl j[bT jd]Sl jfs+Sl —J Oéjd[b Sl J]f

>1/2‘2

Then

(5w

= [(S 1wttt

L2
/
(I st risasen ) ]
/
(I st sen)
SEZ jJEL
=11+ I+ I3.

To estimate I, I and I3, we claim that for any fixed 0 < 8 < 1, there exists
0 < v < 1 such that

(5.7) IT% bz < C27070%) 2 1 min{2°, 27} || 12,
(5.8) I[b, T ]dh]llm < 0270792 04| Lo min{2°*", 27"} 1Bl | maso ||| 2.

The proofs of (5.7) and will be given later.
From Plancherel’s theorem, it is easy to see that for 1 < p < oo,

1A lze = I 2P e = Iafllze,
and for 1 <p<n/aand 1/r=1/p—a/n,

(5.9) H(% )] < CH(% 0) "]

Now we estimate I, I» and I3 separately. By Lemma (iv) with ¢ = 2,

(5.7) and (5.9), we have
(5.10) L =Clblamo D > ITh ;aSti fsl72

SEZL JEL

< Olbllfuoll 2allz min{2?e, 272003 3 7% "a=20=0e 5 £ I7,
SEZ jEL

: av —20v —ja 172112
= CllblRsoll 2allf ming22e, 2720} S N(S7 2o ) |

L2
SEL JEZ

)72
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< C||bl[Enol|$2al|7 e min{22*, 272001 S 7 FA
SEL

= CObllEno | 2all7 = min{22*, 272 N |1, £
SEZ

(Sims2) "

.2
SEZL

. o 20 1/22
< ClIblaaro | 2allf min{22 !, 27200 | (S £ 2) |,

L n+H2a ’
SEL
Similarly, applying Lemma (iv) with ¢ = 2, (5.8) and (5.9)), we get
1/2(2
(5:11) I < Clblio | 2allf = ming22 ! 272 | (011 2)
SEL

HLWLHG '

= C|bllno | 2all o min{2**, 2—291)1}‘

Finally, we estimate I3. By (5.7)),
Iy < | Qulff min22*!, 27201) 7 5" 07200 | |5, Si_)fo(a) P

s€Z jel Rn

' a iy 1/2))2

= CJ|2allf o minf22r!, 2720 | (SN 27 514 2) |
SEZ JEL

=: C|24]|2 o min{22¥! 2-20v1y p2,

If we can prove

(5.12) P < Clitowo] (3 \fs|> |

2n
L n+2a

then we get

(5.13) I3 < C|24]3o min{22"!, 2_29vl}HbHBMOH<Z\fS ?) /2H .

Now we prove . There exists a sequence {g;s} € L*(¢%({?)) with
1 sez 2jez |9j, 2)1 2HL2 < 1 such that

B ‘ZZQ 7Y Sjlb Sil fu(x )gj,s(x)d:z:’

SEZ jEL

_‘ZZ | [b. 5] fs )277% 8,95 (x )daz‘.

sE€Z jELR®
Then by Holder’s inequality and Lemma ( ) with ¢ = 2, we get

Pg(JH(ZZHb, Sj]fs|2> /2‘ (ZlefjaSjgj,s) " ‘
SEL JEL SEL jEL
< clblo|[ (S 15) " zw [ S0001) " -
SEZL SEL jEL

2n
L n—2«a

2n
LntH2a

2n
n+2a
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Let 0(&) = [€|¢(§), and let Sj(? be the Littlewood—Paley operator associ-
ated with the bump (277¢); then 27795;g;(€) = 0(279€)|¢[ g7 (€) =
0(277€)1,9;,5(€). Hence (5.9) implies that

/ /
P < O|lbllsmo (Z | fs| 2)1 i L (ZZ 110579, 2)1 2‘ pE's
seZ SEL JEL
2 1/2 0 2\ /2
< C|Ibllsymo (Zu; ) L (ZZ\Sjgj,sl) \LQ
s€Z SEL jEL
/
< Clb||Bmo (Z|fs ) 1l (ZZ ‘9j,s|2)1 2‘ )
SEZ SEL jEL
< el (S 15P) ] 2
SEZ

which is ((5.12)). Combining - , we get .
Now we return to the proof and . Recall that

—
~ ~

Togaf (€) = ma;a(€) F(©), Té,j,df<s> mb 1(6)F(6),

where

Maja(€) = 0aja(§); Mg ;a(€) = maja€)s(276).
We define Té] ) = a] 427 Jf) (&) and denote by [b, Ta] 4] the relevant
commutator.

Since
27 +1 d
- 7r27"x T
ma,j,d(é) = S 'Qd(wl) S 2 t— rl—a dO’(.CU/),
Sn—l 2j

it is easy to get
(5.14) Ma,j,4(6)] < C|92a]| =2,
(5.15) [Vita,a(€)] < C2OHDT) 24| .

On the other hand, there exists 0 < o« < 1 < 1 such that
27+1
S —2mire’-€ YT dr

(5.16) Ta

< C2%)a - ¢

2J

Then by (5.16]) we get

(5.17) [M0,5.a(€)] < C29\ ¢ Qll e | |2 €7 do(2!)
Sn—l

< Clel=27€1" | 2al o~
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Since

(5.18) supp(mg, j4(277)) € {271 < J¢] <21},

by and we get

(5.19) Hma] 277 ) [z < 02007 minf2%, 27| Q2| Lo (5n-1),
where 0 = 1 — «. Since

Vmay d(2”' ) = (27 Vimaj.a(279€) 4+ maja(2776)Vip(27%),
by (5.14)) and (| we get

(5.20) vawd(zfﬂl)um < czaU*l)zlllHrzdumsnfl).

From ([5.18)—(5.20)), using Lemmawith § = 2!, we find that for any fixed
0<v<l,

1T bl < Ol 2all 2 min{2e, 2= ] .,
1B, T s bl 2 < Ol a2~ 0% minf2%, 2} bl ago 1l 2,

where C' is independent of j and I. Let § = min{aw, fv}; then by dilation

invariance, we get (5.7) and (5.8).

The proof of (5.3]). Since T a] Si—i =T j.aS? ; for any j,l € Z, we may
write

[b, SP T 5 aSi—51f

= b, ST (TSt f) + ST lby T dl (ST f) + St T ja([bs SP51F)-
Thus,
(5.21)

(5w, 7,

7L
7L

< H (Z ‘ > 16,57 )(TajaSt- fs)

SEZ JEL

<Z ‘ > St Tagallb, SEfs)

SEZ  jJEL

H(Z‘ZSI i1 T, dl (ST f5)

s€Z  jJEL
=:L1+ Ly + L3.

Below we estimate L; for i = 1,2, 3 separately. By Lemmas [3.3)iv), and
[3.1)(iii), for 1 < p < n/a and 1/r = 1/p — a/n we have
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nscl(X (2 |Taajad512ﬁfs|2)q/2)l/q’

SEZ  JEZ

LT‘

(Z (Z |5127jfs|2>q/2> 1/q

SEL  JEL

(S1n)
SEZL

< C|bllBmo || 24|

Ln « Lr

< Cllbl[Bmol[£2ll

Lna

Similarly,

(S 180)”

SEZ
Hence, by (5.21), to show (5.3]) it remains to estimate Ls. We will apply
Bony’s paraproducts. Since

fg=ms(g) +74(f) + R(f, 9),

Ly < C||bllzmo | £24]|

Lna

we have

b(2)(To,;.057j fs)(x)
= (T, 587,10 (0) (@) + R(b, T jaStj fs) (@) + m6(Ta,jaS7 i fs) ()
and
bSP ;i fs(z) = (57, 1) (0)(2) + R(b, SPifs) (@) +m(SEj fs) ().
Hence
b, Tuj,al ST fs(x) = b(2)(Taj,aST; fs) (@) — Taja(bS?_; fs)()
= 71, 505210 0)(@) = Toga(misz g, (0))(2)]
+ [R(, Ta,j,dslzfij)(w) — Toja(R(b, S7_; fs))(2)]
+ [m6(Ta,j.aST i fo) (@) = T j.a(mo(S7; fs) ()]

Thus,
(5.22)
b H (2 ‘ DSt [T ust 50 ®) — Tojalmsz 1.)(0))] ‘q) Uq‘ %
SEZ jEL
<Z)ZSI —J b TOCJdSl ]fS) - ,J, ( (b Sl st))])q)l/q‘ L
SEL JEZ
H<Z)ZSI J o ’]dSl ]fs)_ Jd(ﬂ'b(sl st))])q>1/q‘ Lr
SEL JEZ

=: My + My + Ms.
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The estimate of M. Recall that mg(f) = 3_,c4(4,f)(Gj-39). By Lem-
ma [3.8[1), we know that A;Sgg =0 for g € S’'(R"™) when |i — k| > 3. Then
(5:23)  m(r, ;45p 10)(0)(2) = Tay, d(W(sf_jfs)(b))(fE)
= Z {Ai(TejaSTE 1)) (Gisb) (@) = Toal(A:SE; £5) (Gisb))(w) }

)|<2

li—(1—

= Z [Gifgb, Ta,j7d](AiSZQ—jfs)(w)'

li—(1—j)I<2
Thus,

(5.24)
< (S| (G s Tt 1)) ]

lk|<2 s€Z jeZ

L
Without loss of generality, we may assume k = 0. By Lemma (iv),

(5.25) M < CH (Z (Z |[G1—j-3, Tw;d](Al—jsffjfs)F)q/z)I/q’

s€Z  jeL Lr
Note that
|[Gl—j—3b>Toc,j7d](Al—jSl2 ]fs)(l‘”
Q4(x —y)
:) | W(Gl j—sb(x) — Gi_j_3b(y)) A_; ST fs(y) dy‘

27 <|z—y|<2/ !

[2u(z ~y)
| alCsb(e) — Ggsb)l | A ST, 1wl dy.
27 <|z—y|<29+1

By Lemma [3.7] for any 0 < § < 1 we have
(5.26)  [[Gi—j3b, Toj.al A1 ST ; fs(2)]

<C

sl =yl £24(z — y)|
SCQU J 3)5‘53/’”b||BMO S 7|Al ]Sl gfs( )|dy

29 <Jz—y|<27+! o —y[ne

2! ©2a(z — y)|
SCTHbHBMO | Wml St fs(y)l dy
15

2 <|e—y|<27H!
2
= 07||b||BM0T|Q|,a,j,d(|Az—jSz{jfsD(x),
where

Ti0)ajafs(x) = Wfs(y) dy
2<fo—yl<tr © Y

and C is independent of § and [. Then, by (5.25)), (5.26]), and Lemmas
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and [3.1](iii), for 1 < p < n/a and 1/r = 1/p — a/n we have

621 My < 2 ool ( (X Maasallasst i f0E) "))

SEZ  JEZ Lr
16 /
< Ol oo | (32 (S 1anys2,02)") |
SEL  JEL
16 / /
< 2l 2, 25 oo | (3 (2 1s2,02) ") )|
SEL  JEL
19 /
< 2l 2, 25 Wlvio | (S 15:07) |
SEZ

where C' is independent of [ and 4.

The estimate of M. By Lemma [3.8(i), we know that for [k| < 2,
AitiSi—jg =0 for g € S'(R™) when |i — (I — j)| > 5. Thus
R(b, TujaSi-;fs) = Taja(R(b, SP; f)) (@)

=D > (Ad)(@)(TujalirkSi; fs) ()

i€Z [k|<2

~Toga( D D (Ab)(AL4SE £ (2)

i€Z |k|<2

2
=Y Y (A TasadinSt i £)(@)
k=—2 |i—(1—j)| <4
0 (A) (A k871 1)) (@)

2
= Z Z [Aib,Tayjyd](Ai—ﬁ—k:SlijfS)('r)'
k==2i—(I—7)|<4
Hence

Mp < Y H(Z ’ > SE 1A b, T gl (A jskSE i f)

k|<6  s€Z jeZ

q) 1/ q‘
Without loss of generality, we may assume that & = 0. By the equality above
and using Lemma [3.1(iv), the inequality sup;cz ||Ai(b)||z~= < C|bllBMO
(see [G]), and Lemmas [3.5]and B.1iii), for 1 < p < n/aand 1/r = 1/p—a/n

we have

(5.28)
M < Cswp |30 | (3 (3 Miotasal st ,£:07) ") |

SEL  jJEL

L

LT
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< ol | (5 (3 14msst0) ) ],

SEL  JEZL

< Cl[bllsmol|£2all 72+ (Z (Z |5127jfs!2>q/2)1/q

SEL  JEZL

e ()

SEZL

Lr

< Cllbl[Bmo | £24ll

The estimate of M3. By Lemma (ii), we know S;(A;gGi—sh) = 0 for
g,h € S'(R") if |j —i|] > 5. We get

5127]-(71'1)( ,]dSl ]fs)_ ,]d(ﬂ-b(‘s’l ]fs)))
= 52, ( S (AD)Gi T jaSE 1) — Toga( 3 (AD)(GisSE,12)) ) (@)

1E€EZ 1€Z
= > {82 ((Ab)(Gi—sTujaSE i 15) ()
li—(—j)|<4 )
Sl J a.j,d ((A b)(Gi—3S_ st))(a:)}

Thus, from Lemma [3.1{(iv), sup;ez [|Ai(b)[| 2~ < C||bllpmo, and Lemmas [3.5]
and- 3.1(1iii), for 1 <p <n/aand 1/r =1/p — a/n we get

(5.29)
My < Cfg HAz'(b>||L°°H (Z (Z |T|m7a,j,d(yc:l_js?,jfsl)\2>q/z)1/q’

SEL  JEZL

< ClbllBmol12all 2 (Z(Z‘Gl iSEstsl ) ) "

SE€EZ  jJEL

(Sez(gﬁ #)")
(2

70"

LT

p

< Cllblsmoll2all | 72e

< C|lbllBmol|£2all

Ln a p'
SEL
By (6.22) and (5.27)—(5.29), we get

L3 <

(S

SEZL
for | € Z, where C is independent of § and [. If [ > 0, we take § = 1/; then

(ers 0y

for I € Z, where C' is independent of [. This gives ([5.3)).

L3 <
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