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Vector-valued inequalities for the commutators of fractional
integrals with rough kernels

by

Yanping Chen (Beijing), Xinfeng Wu (Beijing) and
Honghai Liu (Jiaozuo)

Abstract. Some conditions implying vector-valued inequalities for the commutator
of a fractional integral and a fractional maximal operator are established. The results
obtained are substantial improvements and extensions of some known results.

1. Introduction. Suppose that 0 < α < n, Ω(x) is homogeneous of
degree zero on Rn and Ω ∈ L1(Sn−1). Then the fractional integral operator
TΩ,α is defined by

TΩ,αf(x) =
�

Rn

Ω(x− y)

|x− y|n−α
f(y) dy,

while the related fractional maximal operator MΩ,α is given by

MΩ,αf(x) = sup
t>0

1

tn−α

�

|x−y|<t

|Ω(x− y)f(y)| dy.

When α = 0, we denote TΩ,0 by TΩ, and the integral is the Cauchy prin-
cipal value. The operator TΩ,α plays an important role in the study of the
homogeneous operator TΩ. For example, recently, Ding and Lu [DL1] ap-
plied several results on TΩ,α to the study of mapping properties for a class
of multilinear singular integral operators with homogeneous kernel. If we
take Ω(y′) = 1, then T1,α is just the Riesz potential Iα, which has been
systematically studied by Riesz [R] on Rn although its one-dimensional ver-
sion appeared in earlier work of Weyl [W]. This operator plays an important
role in analysis, particularly in the study of smoothness properties of func-
tions. See the books by Stein and Weiss [SW] or Grafakos [G] for the basic
properties of these operators. The (Lp, Lr) estimate of Iα is the famous
Hardy–Littlewood–Sobolev theorem ([HL], [So]):
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Theorem 1.1 (see [HL], [So]). Let 0 < α < n. For 1 < p < n/α and
1/r = 1/p−α/n, there exists a constant C > 0 such that for all f ∈ Lp(Rn),

‖Iαf‖Lr ≤ C‖f‖Lp .
In 1971, Muckenhoupt and Wheeden [MW1] proved the (Lp, Lr) bound-

edness of TΩ,α with rough kernel.

Theorem 1.2 (see [MW1]). Let 0 < α < n, 1 < p < n/α, and 1/r =
1/p−α/n. Suppose that Ω is homogeneous of degree zero on Rn and it is in
Lq(Sn−1) for some q > p′. Let f ∈ Lp(Rn). Then there exists a constant C,
independent of f , such that

‖TΩ,αf‖Lr ≤ C‖f‖Lp .
In 1993, Chanillo, Watson and Wheeden [CWW] obtained the weak type

(1, n/(n− α)) of the fractional integral TΩ,α with rough kernel.

Theorem 1.3 (see [CWW]). Let 0 < α < n and let Ω ∈ Ln/(n−α)(Sn−1)
be homogeneous of degree zero on Rn. Then for any λ > 0 and any f ∈ L1,

|{x ∈ Rn : TΩ,αf(x) > λ}| ≤ C
(

1

λ
‖f‖L1

)n/(n−α)
,

where C is independent of λ and f.

In 2000, Ding and Lu [DL2] proved the (Lp, Lr) boundedness of the
fractional maximal operator MΩ,α and the fractional integral TΩ,α.

Theorem 1.4 (see [DL2]). Let 0<α<n, 1<p <n/α, 1/r=1/p− α/n,
and let Ω be homogeneous of degree zero on Rn. Then for any f ∈ Lp(Rn):

(i) if Ω ∈ Ln/(n−α)(Sn−1), then ‖MΩ,αf‖Lr ≤ C‖f‖Lp ,
(ii) if Ω ∈ Lq(Sn−1) and q > n/(n− α), then ‖TΩ,αf‖Lr ≤ C‖f‖Lp ,

where C is independent of f.

In 2011, Chen and Ding [CD2] proved that TΩ,α is of weak type (p, r)

when Ω ∈ Ln/(n−α)(Sn−1). Moreover, they applied weak type bounds for
TΩ,α and Marcinkiewicz interpolation to get the following result:

Theorem 1.5 (see [CD2]). Let 0 < α < n, 1 < p < n/α, 1/r =
1/p− α/n, and suppose that Ω is homogeneous of degree zero on Rn and it
is in Ln/(n−α)(Sn−1). Then for any f ∈ Lp(Rn),

‖TΩ,αf‖Lr ≤ C‖f‖Lp ,
where C is independent of f.

For 0 < α < n, the commutator of the fractional integral TΩ,α and
b ∈ BMO(Rn) is defined by

[b, TΩ,α]f(x) =
�

Rn

Ω(x− y)

|x− y|n−α
(b(x)− b(y))f(y) dy.
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Here b ∈ BMO(Rn) means that

‖b‖BMO = sup
Q⊂Rn

1

|Q|

�

Q

|b(y)− bQ| dy <∞

with bQ = |Q|−1
	
Q b(x) dx. The related commutator of the fractional maxi-

mal operator MΩ,α;b is given by

MΩ,α;bf(x) = sup
t>0

1

tn−α

�

|x−y|<t

|Ω(x− y)| |b(x)− b(y)| |f(y)| dy.

When α = 0, we denote [b, TΩ,0] by [b, TΩ], which is defined by

(1.1) [b, TΩ]f(x) = p.v.
�

Rn

Ω(x− y)

|x− y|n
(b(x)− b(y))f(y) dy.

However, Ω needs to have mean value zero in order to define the commutator
(1.1) as a principal value. The operator [b, TΩ,α] plays an important role in
the study of the homogeneous operator [b, TΩ].

It is well known that the commutator of a fractional integral is very
useful in harmonic analysis (see e.g. [CH], [D1], [D2], [D3], [DLP], [ST]). If
we take Ω(y) = 1, then [b, T1,α] is just the commutator of b ∈ BMO and the
Riesz potential Iα, that is,

[b, Iα]f(x) = [b, T1,α]f(x) =
�

Rn

f(y)

|x− y|n−α
(b(x)− b(y)) dy.

In 1982, Chanillo [CH] proved the (Lp, Lr) boundedness of [b, Iα]:

Theorem 1.6 (see [CH]). Let b ∈ BMO, 0 < α < n, 1 < p < n/α, and
1/p − 1/r = α/n. Let f ∈ Lp(Rn). Then there exists a positive constant C
independent of f such that

‖[b, Iα]f‖Lr ≤ C‖b‖BMO‖f‖Lp .
In 2001, Ding, Lu and Zhang [DLP] gave an example where [b, Iα] is

not of weak type (1, n/(n− α)), introduced a kind of maximal operator of
fractional order associated with the mean Luxemburg norm in the Orlicz
space, and using the technique of sharp functions obtained the following
result.

Theorem 1.7 (see [DLP]). Let b ∈ BMO, 0 < α < n, and Φ(t) =
t(1 + log+ t). Then there exists a positive constant C such that for all λ > 0
and f ∈ L1(Rn),

|{x ∈ Rn : |[b, Iα]f(x)| > λ}|(n−α)/n

≤ CΦ
(
Φ(‖b‖BMO)

)
‖Φ(f(·)/λ)‖L1

{
1 +

α

n
log+ ‖Φ(f(·)/λ)‖L1

}
.
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In 1993, Segovia and Torrea [ST] proved the weighted boundedness of
commutators for vector-valued integral operators with a pair of weights using
the Rubio de Francia extrapolation idea for weighted norm inequalities.
As an application, they obtained (Lp(up), Lr(vq)) boundedness of fractional
integrals when Ω satisfies some smoothness condition. In 1999, Ding and Lu
[DL1] extended the result of [ST] to general fractional integrals with rough
kernels.

Theorem 1.8 ([DL1]). Let 0 < α < n, 1 < p < n/α, and 1/r = 1/p −
α/n. Suppose that Ω is homogeneous of degree zero on Rn and Ω ∈ Lq(Sn−1)
for q > p′. Let f ∈ Lp(Rn). Then for b ∈ BMO there exists a constant C
independent of f such that

(i) ‖[b, TΩ,α]f‖Lr ≤ C‖b‖BMO‖f‖Lp ,
(ii) ‖MΩ,α;bf‖Lr ≤ C‖b‖BMO‖f‖Lp .
Motivated by Theorems 1.4 and 1.5, it is natural to ask whether the size

condition on Ω in Theorem 1.8 can be weakened. In this paper, we give a
positive answer to this question.

Theorem 1.9. Let 0 < α < n, 1 < p < n/α, 1/r = 1/p − α/n, and
Φ(t) = t(1 + log+ t). Suppose that Ω is homogeneous of degree zero on Rn
and Φ(Ω) ∈ Ln/(n−α)(Sn−1). Let f ∈ Lp(Rn). Then for b ∈ BMO there
exists a constant C independent of f such that

‖MΩ,α;bf‖Lr ≤ C‖Φ(Ω)‖
L

n
n−α ‖b‖BMO‖f‖Lp .

Remark 1.10. Since q > p′ and p′ > n/(n− α), we have

Lq(Sn−1) ⊂ L
n

n−α (log+ L)
n

n−α (Sn−1).

This means that the size condition on Ω in Theorem 1.9 is weaker than that
in Theorem 1.8(ii).

In fact, for {fs}s∈Z ∈ Lp(`q), as sups∈ZMΩ,α;bfs ≤ CMΩ,α;b(sups∈Z |fs|),
for 1/r = 1/p− α/n we get∥∥∥ sup

s∈Z
MΩ,α;bfs

∥∥∥
Lr
≤ C‖Φ(Ω)‖

L
n

n−α ‖b‖BMO

∥∥∥ sup
s∈Z
|fs|
∥∥∥
Lp
.

By duality,∥∥∥∑
s∈Z

MΩ,α;bfs

∥∥∥
Lr
≤ C‖Φ(Ω)‖

L
n

n−α ‖b‖BMO

∥∥∥∑
s∈Z
|fs|
∥∥∥
Lp
.

Interpolating between the two inequalities above, for 1 < q <∞ we get∥∥∥(∑
s∈Z

(MΩ,α;bfs)
q
)1/q∥∥∥

Lr
≤ C‖Φ(Ω)‖

L
n

n−α ‖b‖BMO

∥∥∥(∑
s∈Z
|fs|q

)1/q∥∥∥
Lp
,

where C is independent of {fs}.
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Corollary 1.11. Let 0 < α < n, 1 < p < n/α, 1/r = 1/p − α/n, and
Φ(t) = t(1 + log+ t). Suppose that Ω is homogeneous of degree zero on Rn
and Φ(Ω) ∈ Ln/(n−α)(Sn−1). Let 1 < q < ∞ and {fs} ∈ Lp(`q)(Rn). Then
for b ∈ BMO, there exists a constant C independent of {fs} such that∥∥∥(∑

s∈Z
(MΩ,α;bfs)

q
)1/q∥∥∥

Lr
≤ C‖Φ(Ω)‖

L
n

n−α ‖b‖BMO

∥∥∥(∑
s∈Z
|fs|q

)1/q∥∥∥
Lp
.

Actually, we can apply Corollary 1.11 to get the (Lp(`q), Lr(`q)) bound-
edness of [b, TΩ,α]. In fact, for any fixed 0 < ε < min{α, n− α}, we can find
0 < ε1 < ε such that

‖Φ(Ω)‖
L

n
n−ε1−α

≤ C‖Ω‖
L

n
n−ε−α ,(1.2)

and for {fs}s∈Z ∈ Lp(lq) (see [DL1]),

|[b, TΩ,α]fs(x)| ≤ C[MΩ,α+ε1;bfs(x)]1/2[MΩ,α−ε1;bfs(x)]1/2,(1.3)

where C depends on n, α, and ε1. Then by applying the Hölder inequality
twice and Corollary 1.11, we get∥∥∥(∑

s∈Z
|[b, TΩ,α]fs|q

)1/q∥∥∥
Lr
≤ C‖Ω‖

L
n

n−ε−α ‖b‖BMO

∥∥∥(∑
s∈Z
|fs|q

)1/q∥∥∥
Lp
,

where C is independent of {fs}.
Corollary 1.12. Let 0 < α < n, 1 < p < n/α, and 1/r = 1/p − α/n.

For any fixed ε > 0, suppose that Ω is homogeneous of degree zero on Rn
and Ω ∈ Ln/(n−ε−α)(Sn−1). Let 1 < q < ∞ and {fs} ∈ Lp(`q)(Rn). Then
for b ∈ BMO there exists a constant C independent of {fs} such that∥∥∥(∑

s∈Z
|[b, TΩ,α]fs|q

)1/q∥∥∥
Lr
≤ C‖b‖BMO

∥∥∥(∑
s∈Z
|fs|q

)1/q∥∥∥
Lp
.(1.4)

Remark 1.13. Because q > p′ and p′ > n/(n− α), there exists a con-
stant ε > 0 such that Lq(Sn−1) ⊂ Ln/(n−ε−α)(Sn−1). This means that the
size condition on Ω in Corollary 1.12 is weaker than that in Theorem 1.8(i).

An interesting problem is whether for Ω ∈ Ln/(n−α)(Sn−1), the commu-
tator MΩ,α;b or [b, TΩ,α] is bounded from Lp to Lr for 1 < p < n/α and
1/r = 1/p− α/n. Recall that in order to prove the (Lp, Lr) boundedness of
MΩ,α or TΩ,α with Ω ∈ Ln/(n−α)(Sn−1), Ding and Lu [DL2] have used the
Marcinkiewicz interpolation theorem between the weak type (1, n/(n− α))
and strong type (Ln/α, L∞) of MΩ,α with Ω ∈ Ln/(n−α)(Sn−1), and Chen
and Ding [CD2] have used the Marcinkiewicz interpolation theorem be-
tween the weak type (1, n/(n− α)) and weak type (p, r) of TΩ,α with Ω

in Ln/(n−α)(Sn−1). Unfortunately, this key technique fails for MΩ,α;b and
[b, TΩ,α], because they are not of weak type (1, n/(n− α)) (see Theorem 1.7).
Probably, we need to look for a new method. That is the main difficulty that
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prevented us from solving this problem completely. More precisely, we are
not able to obtain for MΩ,α;b and [b, TΩ,α] analogues to Theorems 1.4(i)
and 1.5.

For 0 < α < 1, we can further weaken the size condition on Ω in Corol-
lary 1.12. The main result of this article is:

Theorem 1.14. Let 0<α<1, 1<p<n/α, and 1/r=1/p−α/n. Suppose
Ω is homogeneous of degree zero on Rn and Ω ∈Ln/(n−α)(log+ L)2(Sn−1).
Let 1 < q < ∞ and {fs} ∈ Lp(`q)(Rn). Then for b ∈ BMO there exists a
constant C independent of {fs} such that∥∥∥(∑

s∈Z
|[b, TΩ,α]fs|q

)1/q∥∥∥
Lr
≤ C‖b‖BMO

∥∥∥(∑
s∈Z
|fs|q

)1/q∥∥∥
Lp
.

Remark 1.15. Note that for any ε > 0,

L
n

n−ε−α (Sn−1) ⊂ L
n

n−α (log+ L)2(Sn−1).

This means that the size condition on Ω in Theorem 1.14 is weaker than
that in Corollary 1.12 for 0 < α < 1.

Remark 1.16. Since MΩ,α;b in Theorem 1.9 is a positive operator, we
can get (Lp(`q), Lr(`q)) bounds for MΩ,α;b from (Lp, Lr) bounds for MΩ,α;b

(see Corollary 1.11). Then by (1.3), we can get (Lp(`q), Lr(`q)) bounds for
[b, TΩ,α]. But the techniques in Corollary 1.12 fail for [b, TΩ,α] with Ω in

Ln/(n−α)(log+ L)2(Sn−1). So we need to look for a new method. In the proof
of Theorem 1.14, we use Littlewood–Paley theory, Bony paraproducts, and
Fourier transform estimates. These techniques are different from those for
fractional integral operators with rough kernels in [CH] and [DL1].

This paper is organized as follows. First, in Section 2, we give some
notations and definitions. In Section 3, we prepare some lemmas for the
proof of Theorem 1.14. In Section 4, we give the proof of Theorem 1.9.
Finally, in Section 5, we prove Theorem 1.14. Throughout this note, the
letter “C ” will be used to denote positive constants which may be different
in different occurrences.

2. Definitions. Firstly, we recall some definitions which will be used
in the proof of Theorem 1.14.

Let θ ∈ R and 1 < p < ∞. The homogeneous Sobolev space Lpθ(R
n) is

defined as the space of those tempered distributions modulo polynomials,
f ∈ S ′(Rn)/P, for which the expression (| · |θf̂)∨ is a function in Lp(Rn).
For distributions f in Lpθ(R

n) we define

‖f‖Lpθ = ‖(| · |θf̂)∨‖Lp .(2.1)
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Let ϕ ∈ S(Rn) be a radial function which is supported in the unit ball
and satisfies ϕ(ξ) = 1 for |ξ| ≤ 1/2. The function ψ(ξ) = ϕ(ξ/2) − ϕ(ξ) is
supported in {1/2 ≤ |ξ| ≤ 2} and satisfies∑

j∈Z
ψ(2−jξ) = 1

for ξ 6= 0. We denote by ∆j and Gj the convolution operators whose symbols
are ψ(2−jξ) and ϕ(2−jξ), respectively.

The paraproduct of Bony [B] between two functions f , g is defined by

πf (g) =
∑
j∈Z

(∆jf)(Gj−3g).

At least formally, we have the Bony decomposition

fg = πf (g) + πg(f) +R(f, g)

with

R(f, g) =
∑
i∈Z

∑
|k−i|≤2

(∆if)(∆kg).(2.2)

We recall the definition of Ap and A(p, q) weights for 1 < p, q <∞. Let
1 < p < ∞. A locally integrable positive function w is said to be a weight
of class Ap if

[w]Ap = sup
cubeQ∈Rn

(
1

|Q|

�

Q

w(x) dx

)(
1

|Q|

�

Q

w(x)
− 1
p−1 dx

)p−1
<∞.

A locally integrable positive function w on Rn is said to belong to A(p, q) if

sup
cubeQ∈Rn

(
1

|Q|

�

Q

w(x)q dx

)1/q( 1

|Q|

�

Q

w(x)
− p
p−1 dx

) p−1
p

<∞.

Moreover, the notations “ ∧ ” and “∨” denote the Fourier transform and
the inverse Fourier transform, respectively. As usual, for p ≥ 1, p′ = p/(p−1)
denotes the dual exponent of p.

We collect the notation to be used throughout this paper:

‖{fj}‖Lp(`q) =
∥∥∥(∑

j∈Z
|fj |q

)1/q∥∥∥
Lp
,

‖f‖Lp =
( �

Rn
|f(x)|p dx

)1/p
,

‖f‖Lp(w) =
( �

Rn
|f(x)|pw(x) dx

)1/p
.
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3. Key lemmas. Let us begin with some lemmas, which will be used
in the proof of Theorem 1.14. The first one is a direct consequence of Propo-
sition 4.6.4 in [G].

Lemma 3.1 ([G]). Let φ ∈ S(Rn) with supp(φ) ⊂ {x : 1/2 ≤ |x| ≤ 2},
and for k ∈ Z define the multiplier operator Sk by Ŝkf(ξ) = φ(2−kξ)f̂(ξ),
and S2

k by S2
kf = Sk(Skf). Let 1 < p, q < ∞, {fj} ∈ Lp(`q), and let

{fj,k} ∈ Lp(`q(`2)). Then

(i)
∥∥∥(∑

j∈Z

(∑
k∈Z
|Skfj |2

)q/2)1/q∥∥∥
Lp
≤ C

∥∥∥(∑
j∈Z
|fj |q

)1/q∥∥∥
Lp
,

where C is independent of {fj};

(ii)
∥∥∥(∑

j∈Z

(∣∣∣∑
k∈Z

Skfj,k

∣∣∣2)q/2)1/q∥∥∥
Lp
≤ C

∥∥∥(∑
j∈Z

(∑
k∈Z
|fj,k|2

)q/2)1/q∥∥∥
Lp
,

where C is independent of {fj,k};

(iii)
∥∥∥(∑

j∈Z

(∑
k∈Z
|S2
kfj |2

)q/2)1/q∥∥∥
Lp
≤ C

∥∥∥(∑
j∈Z
|fj |q

)1/q∥∥∥
Lp
,

where C is independent of {fj};

(iv)
∥∥∥(∑

j∈Z

(∣∣∣∑
k∈Z

S2
kfj,k

∣∣∣2)q/2)1/q∥∥∥
Lp
≤ C

∥∥∥(∑
j∈Z

(∑
k∈Z
|fj,k|2

)q/2)1/q∥∥∥
Lp
,

where C is independent of {fj,k}.
Lemma 3.2 ([G]). (a) Let 1 ≤ r < p <∞ and w ∈ Lp. Then there exists

a constant C1 = C1(n, r, p, [w]Ap) such that for every nonnegative function

g in L(p/r)′(w) there is a function G(g) such that

(i) g ≤ G(g),
(ii) ‖G(g)‖Lp/(p−r)(w) ≤ 2‖g‖Lp/(p−r)(w),
(iii) [G(g)w]Ar ≤ C1.

(b) Let 1 < p < r < ∞ and w ∈ Lp. Then there exists a constant C2 =
C2(n, r, p, [w]Ap) such that for every nonnegative function h in Lp/(r−p)(w),
there is a function H(h) such that

(i) h ≤ H(h),
(ii) ‖H(h)‖Lp/(r−p)(w) ≤ 2r−1‖h‖Lp/(r−p)(w),
(iii) [H(h)−1w]Ar ≤ C2.

Moreover, both constants C1(n, r, p,B) and C2(n, r, p,B) increase as B in-
creases.

Lemma 3.3. Suppose that the assumptions of Lemma 3.1 hold. Then for
b ∈ BMO(Rn), we have
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(i)
∥∥∥(∑

j∈Z

(∑
k∈Z
|[b, Sk]fj |2

)q/2)1/q∥∥∥
Lp
≤ C‖b‖BMO

∥∥∥(∑
j∈Z
|fj |q

)1/q∥∥∥
Lp
,

where C is independent of {fj};

(ii)
∥∥∥(∑

j∈Z

(∣∣∣∑
k∈Z

[b, Sk]fj,k

∣∣∣2)q/2)1/q∥∥∥
Lp

≤ C‖b‖BMO

∥∥∥(∑
j∈Z

(∑
k∈Z
|fj,k|2

)q/2)1/q∥∥∥
Lp
,

where C is independent of {fj,k};

(iii)
∥∥∥(∑

j∈Z

(∑
k∈Z
|[b, S2

k ]fj |2
)q/2)1/q∥∥∥

Lp
≤ C‖b‖BMO

∥∥∥(∑
j∈Z
|fj |q

)1/q∥∥∥
Lp
,

where C is independent of {fj};

(iv)
∥∥∥(∑

j∈Z

(∣∣∣∑
k∈Z

[b, S2
k ]fj,k

∣∣∣2)q/2)1/q∥∥∥
Lp

≤ C‖b‖BMO

∥∥∥(∑
j∈Z

(∑
k∈Z
|fj,k|2

)q/2)1/q∥∥∥
Lp
,

where C is independent of {fj,k}.
Proof. We only need to prove (i). Without loss of generality, we may

take the dual of [b, Sj ] as [b, Sj ]. In fact, if (i) holds, then there exists a

sequence {gj} ∈ Lp
′
(`q
′
) with ‖(

∑
j∈Z |gj |q

′
)1/q

′‖Lp′ ≤ 1 such that∥∥∥(∑
j∈Z

(∣∣∣∑
k∈Z

[b, Sk]fj,k

∣∣∣2)q/2)1/q∥∥∥
Lp

=
∣∣∣ �

Rn

∑
j∈Z

∑
k∈Z

[b, Sk]fj,k(x)gj(x) dx
∣∣∣

=
∣∣∣ �
Rn

∑
j∈Z

∑
k∈Z

fj,k(x)[b, Sk]gj(x) dx
∣∣∣.

Then by the Hölder inequality and (i), we get∥∥∥(∑
j∈Z

(∣∣∣∑
k∈Z

[b, Sk]fj,k

∣∣∣2)q/2)1/q∥∥∥
Lp

≤
∥∥∥(∑

j∈Z

(∑
k∈Z
|fj,k|2

)q/2)1/q∥∥∥
Lp

∥∥∥(∑
j∈Z

(∑
k∈Z
|[b, Sk]gj |2

)q′/2)1/q′∥∥∥
Lp′

≤
∥∥∥(∑

j∈Z

(∑
k∈Z
|fj,k|2

)q/2)1/q∥∥∥
Lp

∥∥∥(∑
j∈Z
|gj |q

′
)1/q′∥∥∥

Lp′

≤
∥∥∥(∑

j∈Z

(∑
k∈Z
|fj,k|2

)q/2)1/q∥∥∥
Lp
.

This is (ii).
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Now, we prove (i). If we get

(3.1)
∥∥∥(∑

j∈Z

(∑
k∈Z
|Skfj |2

)q/2)1/q∥∥∥
Lp(w)

≤
∥∥∥(∑

j∈Z
|fj |q

)1/q∥∥∥
Lp(w)

,

then since {Skfj}j,k is a linear operator, Theorem 2.13 in [ABKP] yields (i).
So it suffices to prove (3.1).

The proof is divided into three cases. We first consider the case of 1 <
q < p <∞. It is well known (see [K]) that

(3.2)
∥∥∥(∑

j∈Z
|Sjf |2

)1/2∥∥∥
Lp(w)

≤ C‖f‖Lp(w).

For g ∈ L(p/q)′(w), we let G(|g|) be as in Lemma 3.2(a). By Lemma 3.2(a),
(3.2), and Hölder’s inequality, we have

(3.3)
∥∥∥(∑

j∈Z

(∑
k∈Z
|Skfj |2

)q/2)1/q∥∥∥
Lp(w)

=
∥∥∥∑
j∈Z

(∑
k∈Z
|Skfj |2

)q/2∥∥∥1/q
Lp/q(w)

= sup
‖g‖

L(p/q)′ (w)
≤1

∣∣∣ �

Rn

∑
j∈Z

(∑
k∈Z
|Skfj(x)|2

)q/2
|g|(x)w(x) dx

∣∣∣1/q
≤ sup
‖g‖

L(p/q)′ (w)
≤1

∣∣∣ �

Rn

∑
j∈Z

(∑
k∈Z
|Skfj(x)|2

)q/2
G(|g|)(x)w(x) dx

∣∣∣1/q
≤ C sup

‖g‖
L(p/q)′ (w)

≤1

∣∣∣ �

Rn

∑
j∈Z
|fj(x)|qG(|g|)(x)w(x) dx

∣∣∣1/q
≤ C sup

‖g‖
L(p/q)′ (w)

≤1

∥∥∥∑
j∈Z
|fj |q

∥∥∥1/q
Lp/q(w)

∥∥G(|g|)
∥∥1/q
L(p/q)′ (w)

≤ C sup
‖g‖

L(p/q)′ (w)
≤1

∥∥∥(∑
j∈Z
|fj |q

)1/q∥∥∥
Lp(w)

∥∥|g|∥∥1/q
L(p/q)′ (w)

≤ C
∥∥∥(∑

j∈Z
|fj |q

)1/q∥∥∥
Lp(w)

.

The argument for 1 < p < q < ∞ is similar. Given w ∈ Ap and
(
∑

j∈Z |fj |q)1/q ∈ Lp(Rn), we observe that(∑
j∈Z
|fj |q

) q−p
q ∈ L

p
q−p (w).

Applying Lemma 3.2(b), we have

H
((∑

j∈Z
|fj |q

) q−p
q
)
≥
(∑
j∈Z
|fj |q

) q−p
q
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and [
H
((∑

j∈Z
|fj |q

) q−p
q
)−1

w
]
Ar
≤ C2 = C2(n, p, q, [w]Ap).

Then applying (3.2) and Hölder’s inequality, we have, with Σ :=
∑

i∈Z |fi|q,

(3.4)
∥∥∥((∑

j∈Z

∑
k∈Z
|Skfj |2

)q/2)1/q∥∥∥
Lp(w)

=
∥∥∥∑
j∈Z

(∑
k∈Z
|Skfj |2

)q/2∥∥∥1/q
Lp/q(w)

=
∥∥∥∑
j∈Z

(∑
k∈Z
|Skfj |2

)q/2
H(Σ1−p/q)−1H(Σ1−p/q)

∥∥∥1/q
Lp/q(w)

≤
∥∥∥∑
j∈Z

(∑
k∈Z
|Skfj |2

)q/2
H(Σ1−p/q)−1

∥∥∥1/q
L1(w)

‖H(Σ1−p/q)‖1/q
Lp/(q−p)(w)

≤
( �

Rn

∑
j∈Z

(∑
k∈Z
|Skfj |2

)q/2
H(Σ1−p/q)−1w(x) dx

)1/q
‖H(Σ1−p/q)‖1/q

Lp/(q−p)(w)

≤ C
(∑
j∈Z

�

Rn
|fj |qH(Σ1−p/q)−1w(x) dx

)1/q
‖Σ1−p/q‖1/q

Lp/(q−p)(w)

≤ C
( �

Rn

∑
j∈Z
|fj |qΣp/q−1w(x) dx

)1/q
‖Σ1/q‖1−p/qLp(w)

≤ C
( �

Rn
Σp/qw(x) dx

)1/q
‖Σ1/q‖1−p/qLp(w)

= C
∥∥∥(∑

j∈Z
|fj |q

)1/q∥∥∥
Lp(w)

.

For p = q, we get

(3.5)
∥∥∥(∑

j∈Z

(∑
k∈Z
|Skfj |2

)p/2)1/p∥∥∥p
Lp(w)

=
�

Rn

∑
j∈Z

(∑
k∈Z
|Skfj(x)|2

)p/2
w(x) dx

≤ C
�

Rn

(∑
j∈Z
|fj(x)|2

)p/2
w(x) dx = C

∥∥∥(∑
j∈Z
|fj |2

)p/2)1/p∥∥∥p
Lp(w)

.

Combining (3.3)–(3.5), we get (3.1).

Obviously, (iii) and (iv) also hold by a similar proof to that for (i)
and (ii).
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Lemma 3.4. Let 1 < p, q, r <∞, {fj}∈Lp(`q), and Ω∈Ln/(n−α)(Sn−1).
Then for 1/r = 1/p− α/n,

(3.6)
∥∥∥(∑

j∈Z
(MΩ,αfj)

q
)1/q∥∥∥

Lr
≤ C‖Ω‖

L
n

n−α

∥∥∥(∑
j∈Z
|fj |q

)1/q∥∥∥
Lp
,

where C is independent of {fj}.
Proof. Since supj∈ZMΩ,αfj ≤ CMΩ,α(supj∈Z |fj |), for 1/r = 1/p− α/n

we get ∥∥∥ sup
j∈Z

MΩ,αfj

∥∥∥
Lr
≤ C‖Ω‖

L
n

n−α

∥∥∥ sup
j∈Z
|fj |
∥∥∥
Lp
.(3.7)

By duality, ∥∥∥∑
j∈Z

MΩ,αfj

∥∥∥
Lr
≤ C‖Ω‖

L
n

n−α

∥∥∥∑
j∈Z
|fj |
∥∥∥
Lp
.(3.8)

Interpolating between (3.7) and (3.8), we get (3.6).

Similarly to the proof of Lemma 2.4 in [CD1], applying Lemma 3.4, we
get the following result.

Lemma 3.5. Let 0<α< n, 1< p, q, r <∞, {(
∑

k |gk,j |2)1/2}j ∈ Lp(`q),
and Ω ∈ Ln/(n−α)(Sn−1). Denote σk,α(x) = |x|α−n|Ω(x′)|χ{2k<|x|≤2k+1}(x).
Then for 1/r = 1/p− α/n,∥∥∥(∑

j∈Z

(∑
k∈Z
|σk,α ∗ gk,j |2

)q/2)1/q∥∥∥
Lr

≤ C‖Ω‖
L

n
n−α

∥∥∥(∑
j∈Z

(∑
k∈Z
|gk,j |2

)q/2)1/q∥∥∥
Lp
,

where C is independent of {gk,j}.
Similarly to the proof of the lemma in [H], we get

Lemma 3.6. For 0 < α < 1 and 0 < δ < ∞, take mα,δ ∈ C∞0 (Rn)
such that supp(mα,δ) ⊂ {δ/2 ≤ |ξ| ≤ δ}. Let Tα,δ be the multiplier operator
defined by

T̂α,δf(ξ) = mα,δ(ξ)f̂(ξ).

Moreover, for b ∈ BMO and k ∈ N, denote by

Tα,δ;b,kf(x) = Tα,δ
(
(b(x)− b(·))kf

)
(x)

the kth order commutator of Tα,δ. If for some constants 0 < β, θ < 1, and
−1 < λ < 1, mα,δ satisfies

|mα,δ(ξ)| ≤ C(2−ωδ)−α min{δθ, δ−β},(3.9)

|∇mα,δ(ξ)| ≤ C(2−ωδ)−αδλ,(3.10)
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then for any fixed 0 < v < 1 there exists a constant C=C(n, k, v, α, λ, β) > 0
such that

‖Tα,δ; b,kf‖L2 ≤ C(2−ωδ)−α min{δθv, δ−βv}‖b‖kBMO‖f‖L2 .

Lemma 3.7 ([CD3]). For the multiplier Gk (k ∈ Z) defined in Section 2
and b ∈ BMO(Rn),

|Gkb(x)−Gkb(y)| ≤ C |x− y|
δ2kδ

δ
‖b‖BMO(3.11)

for any 0 < δ < 1, where C is independent of k and δ.

Lemma 3.8 ([Da]). For any u ∈ S ′(Rn), the following properties hold:

(i) ∆j∆iu ≡ 0 if |j − i| ≥ 2,
(ii) ∆j(Gi−3∆iu) ≡ 0 if |j − i| ≥ 4.

If we replace ∆j with Sj, the above equalities also hold.

4. Proof of Theorem 1.9. The main idea of the proof of Theorem 1.9
is taken from [H]. Without loss of generality, we may assume that b is real-
valued and ‖b‖BMO = C1. Define

H(b, f)(x) = sup
r>0

r−n+α
�

|x−y|<r

eb(x)−b(y)|f(y)| dy.

By the John–Nirenberg inequality, there exist positive constants A and B
such that for any cube Q,

1

|Q|

�

Q

exp

(
|b(x)− bQ|
A‖b‖BMO

)
dx ≤ B,

where bQ is the mean value of b on the cube Q. Let C1 = Amax{p′, r}.
Straightforward computation shows that for real-valued b ∈ BMO with
‖b‖BMO = C1,

1

|Q|

�

Q

er(b(x)−bQ) dx ≤ B, 1

|Q|

�

Q

e−p
′(b(x)−bQ) dx ≤ B,

and so eb(x) ∈ A(p, r) (1 < p, r < ∞) (the Muckenhoupt weight class) with
the A(p, r) constant no more than B. By the weighted inequality for Mα

(see [MW2]), where

Mαf(x) = sup
r>0

r−n+α
�

|x−y|<r

|f(y)| dy,

we have

‖H(b, f)‖Lr ≤ C‖f‖Lp .(4.1)
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Hu [H, p. 15] proved that for 0 < t1, t2 <∞,
t1t2 ≤ C(t1 log(1 + t1) + et2) ≤ C(t1(1 + log+ t1) + et2).(4.2)

Let Φ(t) = t(1 + log+ t) for t > 0. Then

‖Φ(Ω)‖
L

n
n−α (Sn−1)

≤ 1.(4.3)

By (4.2), we have

MΩ,α;bf(x) ≤ C sup
r>0

r−n+α
�

|x−y|<r

Φ(Ω(x− y))|f(y)| dy

+ C sup
r>0

r−n+α
�

|x−y|<r

e|b(x)−b(y)||f(y)| dy

≤ C sup
r>0

r−n+α
�

|x−y|<r

Φ(Ω(x− y))|f(y)| dy

+ C sup
r>0

r−n+α
�

|x−y|<r

eb(x)−b(y)|f(y)| dy

+ C sup
r>0

r−n+α
�

|x−y|<r

eb(y)−b(x)|f(y)| dy

=: I(f)(x) + II(f)(x) + III(f)(x).

(4.1) shows that

‖II(f)‖Lr ≤ C‖f‖Lp , ‖III(f)‖Lr ≤ C‖f‖Lp .
On the other hand, by Theorem 1.4(i), we get

‖I(f)‖Lr ≤ C‖f‖Lp‖Φ(Ω)‖Ln/(n−α)(Sn−1) ≤ C‖f‖Lp .
Therefore,

‖MΩ,α;bf‖Lr ≤ C‖f‖Lp .
This completes the proof of Theorem 1.9.

5. Proof of Theorem 1.14. Recall that 0 < α < 1 and

[b, TΩ,α]f(x) =
�

Rn

Ω(x− y)

|x− y|n−α
(b(x)− b(y))f(y) dy.

Let φ ∈ C∞0 (Rn) be a radial function such that 0 ≤ φ ≤ 1, supp(φ) ⊂
{1/2 ≤ |ξ| ≤ 2} and

∑
l∈Z φ

4(2−lξ) = 1 for |ξ| 6= 0. Define the multiplier

Sl by Ŝlf(ξ) = φ(2−lξ)f̂(ξ). Let E0 = {x′ ∈ Sn−1 : |Ω(x′)| < 2} and
Ed = {x′ ∈ Sn−1 : 2d ≤ |Ω(x′)| < 2d+1} for positive integers d. For d ≥ 0,
let

Ωd(y
′) = Ω(y′)χEd(y

′).
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Then Ω(y′) =
∑

d≥0Ωd(y
′). Set

σα,j,d(x) =
Ωd(x

′)

|x|n−α
χ{2j≤|x|<2j+1}(x)

for j ∈ Z. Set

mα,j,d(ξ) = σ̂α,j,d(ξ), ml
α,j,d(ξ) = mα,j,d(ξ)φ(2j−lξ).

Define the operators Tα,j,d and T lα,j,d by

T̂α,j,df(ξ) = mα,j,d(ξ)f̂(ξ), T̂ lα,j,df(ξ) = ml
α,j,d(ξ)f̂(ξ).

Denote by [b, Tα,j,d] and [b, T lα,j,d] the respective commutators. Define the
operator Vα,l,d by

Vα,l,dh(x) =
∑
j∈Z

[b, Sl−jT
l
α,j,dS

2
l−j ]h(x).

Then

[b, TΩ,α]h(x) =
∑
d≥0

∑
l∈Z

Vα,l,dh(x).

By the Minkowski inequality,∥∥∥(∑
s∈Z
|[b, TΩ,α]fs|q

)1/q∥∥∥
Lr
≤
∑
d≥0

∑
l∈Z

∥∥∥(∑
s∈Z
|Vα,l,dfs|q

)1/q∥∥∥
Lr
.(5.1)

If we can prove that for some 0 < β < 1,

∥∥∥(∑
s∈Z
|Vα,l,dfs|2

)1/2∥∥∥
L2
≤ C‖Ωd‖L∞2−β|l|‖b‖BMO

∥∥∥(∑
s∈Z
|fs|2

)1/2∥∥∥
L

2n
n+2α

,

(5.2)

and for 1 < p, r, q <∞, 1/r = 1/p− α/n,∥∥∥(∑
s∈Z
|Vα,l,dfs|q

)1/q∥∥∥
Lr
≤ C|l| ‖Ωd‖L n

n−α ‖b‖BMO

∥∥∥(∑
s∈Z
|fs|q

)1/q∥∥∥
Lp
,(5.3)

where C is independent of l and f , then we get Theorem 1.14. Indeed, taking
q = 2 in (5.3), then interpolating between (5.2) and (5.3), for 1 < p, r <∞,
1/r = 1/p− α/n, and 0 < θ1 < 1 we get

(5.4)
∥∥∥(∑

s∈Z
|Vα,l,dfs|2

)1/2∥∥∥
Lr

≤ C|l|1−θ12−θ1β|l|‖Ωd‖L∞‖b‖BMO

∥∥∥(∑
s∈Z
|fs|2

)1/2∥∥∥
Lp
.

Next, interpolating between (5.3) and (5.4) again, for 1 < p, q, r < ∞,
1/r = 1/p− α/n, and 0 < θ2 < 1 we get
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(5.5)
∥∥∥(∑

s∈Z
|Vα,l,dfs|q

)1/q∥∥∥
Lr

≤ C|l|1−θ1θ22−θ1θ2β|l|‖Ωd‖L∞‖b‖BMO

∥∥∥(∑
s∈Z
|fs|2

)1/2∥∥∥
Lp
.

Take a large positive integer N such that N > 2(βθ1θ2)
−1. Then∑

d≥0

∑
l∈Z

∥∥∥(∑
s∈Z
|Vα,l,dfs|q

)1/q∥∥∥
Lr

≤
∑
d≥0

∑
Nd<|l|

∥∥∥(∑
s∈Z
|Vα,l,dfs|q

)1/q∥∥∥
Lr

+
∑
d≥0

∑
0≤|l|≤Nd

∥∥∥(∑
s∈Z
|Vα,l,dfs|q

)1/q∥∥∥
Lr

=: J1 + J2.

For J1, using (5.5), we get

J1 ≤ C‖b‖BMO

∑
d≥0

2d
∑
|l|>Nd

2−βθ1θ2|l|
∥∥∥(∑

s∈Z
|fs|q

)1/q∥∥∥
Lp

≤ C‖b‖BMO

∥∥∥(∑
s∈Z
|fs|q

)1/q∥∥∥
Lp
.

Finally, by (5.3),

J2 ≤ C‖b‖BMO

∑
d≥0

∑
0<|l|<Nd

|l|2d(σ(Ed))
n−α
n

∥∥∥(∑
s∈Z
|fs|q

)1/q∥∥∥
Lp

≤ C‖b‖BMO

∑
d≥0

Nd22d(σ(Ed))
n−α
n

∥∥∥(∑
s∈Z
|fs|q

)1/q∥∥∥
Lp

≤ C‖Ω‖
L

n
n−α (log+L)2

‖b‖BMO

∥∥∥(∑
s∈Z
|fs|q

)1/q∥∥∥
Lp
.

Combining the estimates of J1 and J2, we get

(5.6)
∑
d≥0

∑
l∈Z

∥∥∥(∑
s∈Z
|Vα,l,dfs|q

)1/q∥∥∥
Lr

≤ C(1 + ‖Ω‖
L

n
n−α (log+L)2

)‖b‖BMO

∥∥∥(∑
s∈Z
|fs|q

)1/q∥∥∥
Lp
.

From (5.1) and (5.6) it follows that∥∥∥(∑
s∈Z
|[b, TΩ,α]fs|q

)1/q∥∥∥
Lr

≤ C(1 + ‖Ω‖
L

n
n−α (log+L)2

)‖b‖BMO

∥∥∥(∑
s∈Z
|fs|q

)1/q∥∥∥
Lp
,

as desired.
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It remains to prove (5.2) and (5.3).

The proof of (5.2). Write

[b, S2
l−jT

l
α,j,dSl−j ]fs

= [b, S2
l−j ]T

l
α,j,dSl−jfs + S2

l−j [b, T
l
α,j,d]Sl−jfs + S2

l−jT
l
α,j,d[b, Sl−j ]fs.

Then∥∥∥(∑
s∈Z
|Vα,l,dfs|2

)1/2∥∥∥2
L2

=
∥∥∥(∑

s∈Z

∣∣∣∑
j∈Z

[b, S2
l−j ]T

l
α,j,dSl−jfs

∣∣∣2)1/2∥∥∥2
L2

+
∥∥∥(∑

s∈Z

∣∣∣∑
j∈Z

S2
l−j [b, T

l
α,j,d]Sl−jfs

∣∣∣2)1/2∥∥∥2
L2

+
∥∥∥(∑

s∈Z

∣∣∣∑
j∈Z

S2
l−jT

l
α,j,d[b, Sl−j ]fs

∣∣∣2)1/2∥∥∥2
L2

:= I1 + I2 + I3.

To estimate I1, I2 and I3, we claim that for any fixed 0 < θ < 1, there exists
0 < v < 1 such that

‖T lα,j,dh‖L2 ≤ C2−(l−j)α‖Ωd‖L∞ min{2αvl, 2−θvl}‖h‖L2 ,(5.7)

‖[b, T lα,j,dh]‖L2 ≤ C2−(l−j)α‖Ωd‖L∞ min{2αvl, 2−θvl}‖b‖BMO‖h‖L2 .(5.8)

The proofs of (5.7) and (5.8) will be given later.

From Plancherel’s theorem, it is easy to see that for 1 < p <∞,

‖f‖Lp−α = ‖(| · |−αf̂)∨‖Lp = ‖Iαf‖Lp ,

and for 1 < p < n/α and 1/r = 1/p− α/n,∥∥∥(∑
s∈Z
|Iαgs|2

)1/2∥∥∥
Lr
≤ C

∥∥∥(∑
s∈Z
|gs|2

)1/2∥∥∥
Lp
.(5.9)

Now we estimate I1, I2 and I3 separately. By Lemma 3.3(iv) with q = 2,
(5.7) and (5.9), we have

(5.10) I1 = C‖b‖2BMO

∑
s∈Z

∑
j∈Z
‖T lα,j,dS2

l−jfs‖2L2

≤ C‖b‖2BMO‖Ωd‖2L∞ min{22αvl, 2−2θv}
∑
s∈Z

∑
j∈Z

2−2(l−j)α‖Sl−jfs‖2L2

= C‖b‖2BMO‖Ωd‖2L∞ min{22αvl, 2−2θvl}
∑
s∈Z

∥∥∥(∑
j∈Z
|2−jαSjfs|2

)1/2∥∥∥2
L2
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≤ C‖b‖2BMO‖Ωd‖2L∞ min{22αvl, 2−2θvl}
∑
s∈Z
‖fs‖2L2

−α

= C‖b‖2BMO‖Ωd‖2L∞ min{22αvl, 2−2θvl}
∑
s∈Z
‖Iαfs‖2L2

= C‖b‖2BMO‖Ωd‖2L∞ min{22αvl, 2−2θvl}
∥∥∥(∑

s∈Z
|Iαfs|2

)1/2∥∥∥2
L2

≤ C‖b‖2BMO‖Ωd‖2L∞ min{22αvl, 2−2θvl}
∥∥∥(∑

s∈Z
|fs|2

)1/2∥∥∥2
L

2n
n+2α

.

Similarly, applying Lemma 3.1(iv) with q = 2, (5.8) and (5.9), we get

I2 ≤ C‖b‖2BMO‖Ωd‖2L∞ min{22αvl, 2−2θvl}
∥∥∥(∑

s∈Z
|fs|2

)1/2∥∥∥2
L

2n
n+2α

.(5.11)

Finally, we estimate I3. By (5.7),

I3 ≤ C‖Ωd‖2L∞ min{22αvl, 2−2θvl}
∑
s∈Z

∑
j∈Z

2−2(l−j)α
�

Rn
|Sl−j [b, Sl−j ]fs(x)|2 dx

= C‖Ωd‖2L∞ min{22αvl, 2−2θvl}
∥∥∥(∑

s∈Z

∑
j∈Z
|2−jαSj [b, Sj ]fs|2

)1/2∥∥∥2
L2

=: C‖Ωd‖2L∞ min{22αvl, 2−2θvl}P 2.

If we can prove

P ≤ C‖b‖BMO

∥∥∥(∑
s∈Z
|fs|2

)1/2∥∥∥
L

2n
n+2α

,(5.12)

then we get

I3 ≤ C‖Ωd‖2L∞ min{22αvl, 2−2θvl}‖b‖2BMO

∥∥∥(∑
s∈Z
|fs|2

)1/2∥∥∥2
L

2n
n+2α

.(5.13)

Now we prove (5.12). There exists a sequence {gj,s} ∈ L2(`2(`2)) with
‖(
∑

s∈Z
∑

j∈Z |gj,s|2)1/2‖L2 ≤ 1 such that

P =
∣∣∣∑
s∈Z

∑
j∈Z

2−jα
�

Rn
Sj [b, Sj ]fs(x)gj,s(x) dx

∣∣∣
=
∣∣∣∑
s∈Z

∑
j∈Z

�

Rn
[b, Sj ]fs(x)2−jαSjgj,s(x) dx

∣∣∣.
Then by Hölder’s inequality and Lemma 3.3(i) with q = 2, we get

P ≤ C
∥∥∥(∑

s∈Z

∑
j∈Z
|[b, Sj ]fs|2

)1/2∥∥∥
L

2n
n+2α

∥∥∥(∑
s∈Z

∑
j∈Z
|2−jαSjgj,s|

)1/2∥∥∥
L

2n
n−2α

≤ C‖b‖BMO

∥∥∥(∑
s∈Z
|fs|2

)1/2∥∥∥
L

2n
n+2α

∥∥∥(∑
s∈Z

∑
j∈Z
|2−jαSjgj,s|

)1/2∥∥∥
L

2n
n−2α

.
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Let θ(ξ) = |ξ|φ(ξ), and let Sθj be the Littlewood–Paley operator associ-

ated with the bump θ(2−jξ); then 2−jαŜjgj,s(ξ) = θ(2−jξ)|ξ|−αĝj,s(ξ) =

θ(2−jξ)Îαgj,s(ξ). Hence (5.9) implies that

P ≤ C‖b‖BMO

∥∥∥(∑
s∈Z
|fs|2

)1/2∥∥∥
L

2n
n+2α

∥∥∥(∑
s∈Z

∑
j∈Z
|IαSθj gj,s|2

)1/2∥∥∥
L

2n
n−2α

≤ C‖b‖BMO

∥∥∥(∑
s∈Z
|fs|2

)1/2∥∥∥
L

2n
n+2α

∥∥∥(∑
s∈Z

∑
j∈Z
|Sθj gj,s|2

)1/2∥∥∥
L2

≤ C‖b‖BMO

∥∥∥(∑
s∈Z
|fs|2

)1/2∥∥∥
L

2n
n+2α

∥∥∥(∑
s∈Z

∑
j∈Z
|gj,s|2

)1/2∥∥∥
L2

≤ C‖b‖BMO

∥∥∥(∑
s∈Z
|fs|2

)1/2∥∥∥
L

2n
n+2α

,

which is (5.12). Combining (5.10)–(5.13), we get (5.2).

Now we return to the proof of (5.7) and (5.8). Recall that

T̂α,j,df(ξ) = mα,j,d(ξ)f̂(ξ), T̂ lα,j,df(ξ) = ml
α,j,d(ξ)f̂(ξ),

where

mα,j,d(ξ) = σ̂α,j,d(ξ), ml
α,j,d(ξ) = mα,j,d(ξ)φ(2j−lξ).

We define
̂̃
T lα,j,dh(ξ) = ml

α,j,d(2
−jξ)ĥ(ξ) and denote by [b, T̃ lα,j,d] the relevant

commutator.

Since

mα,j,d(ξ) =
�

Sn−1

Ωd(x
′)

2j+1�

2j

e−2πirx
′·ξ dr

r1−α
dσ(x′),

it is easy to get

|mα,j,d(ξ)| ≤ C‖Ωd‖L∞2αj ,(5.14)

|∇mα,j,d(ξ)| ≤ C2(α+1)j‖Ωd‖L∞ .(5.15)

On the other hand, there exists 0 < α < η < 1 such that∣∣∣∣2
j+1�

2j

e−2πirx
′·ξ dr

r1−α

∣∣∣∣ ≤ C2αj |x′ · ξ′|−η|2jξ|−η.(5.16)

Then by (5.16) we get

|mα,j,d(ξ)| ≤ C2αj |2jξ|−η‖Ωd‖L∞
�

Sn−1

|x′ · ξ′|−η dσ(x′)(5.17)

≤ C|ξ|−α|2jξ|−(η−α)‖Ωd‖L∞ .
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Since

supp(ml
α,j,d(2

−j ·)) ⊂ {2l−1 ≤ |ξ| ≤ 2l+1},(5.18)

by (5.17) and (5.18) we get

‖ml
α,j,d(2

−j ·)‖L∞ ≤ C2α(j−l) min{2αl, 2−θl}‖Ωd‖L∞(Sn−1),(5.19)

where θ = η − α. Since

∇ml
α,j,d(2

−jξ) = ψ(2−lξ)∇mα,j,d(2
−jξ) +mα,j,d(2

−jξ)∇ψ(2−lξ),

by (5.14) and (5.15) we get

‖∇ml
α,j,d(2

−j ·)‖L∞ ≤ C2α(j−l)2|l|‖Ωd‖L∞(Sn−1).(5.20)

From (5.18)–(5.20), using Lemma 3.6 with δ = 2l, we find that for any fixed
0 < v < 1,

‖T̃ lα,j,dh‖L2 ≤ C‖Ωd‖L∞2−(l−j)α min{2αvl, 2−θvl}‖h‖L2 ,

‖[b, T̃ lα,j,d]h‖L2 ≤ C‖Ωd‖L∞2−(l−j)α min{2αvl, 2−θvl}‖b‖BMO‖h‖L2 ,

where C is independent of j and l. Let β = min{αv, θv}; then by dilation
invariance, we get (5.7) and (5.8).

The proof of (5.3). Since T lα,j,dSl−j = Tα,j,dS
2
l−j for any j, l ∈ Z, we may

write

[b, S2
l−jT

l
α,j,dSl−j ]f

= [b, S2
l−j ](Tα,j,dS

2
l−jf) + S2

l−j [b, Tα,j,d](S
2
l−jf) + S2

l−jTα,j,d([b, S
2
l−j ]f).

Thus,

∥∥∥(∑
s∈Z
|Vα,l,dfs|q

)1/q∥∥∥
Lr
≤
∥∥∥(∑

s∈Z

∣∣∣∑
j∈Z

[b, S2
l−j ](Tα,j,dS

2
l−jfs)

∣∣∣q)1/q∥∥∥
Lr

(5.21)

+
∥∥∥(∑

s∈Z

∣∣∣∑
j∈Z

S2
l−jTα,j,d([b, S

2
l−j ]fs)

∣∣∣q)1/q∥∥∥
Lr

+
∥∥∥(∑

s∈Z

∣∣∣∑
j∈Z

S2
l−j [b, Tα,j,d](S

2
l−jfs)

∣∣∣q)1/q∥∥∥
Lr

=: L1 + L2 + L3.

Below we estimate Li for i = 1, 2, 3 separately. By Lemmas 3.3(iv), 3.5 and
3.1(iii), for 1 < p < n/α and 1/r = 1/p− α/n we have
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L1 ≤ C
∥∥∥(∑

s∈Z

(∑
j∈Z
|Tα,j,dS2

l−jfs|2
)q/2)1/q∥∥∥

Lr

≤ C‖b‖BMO‖Ωd‖L n
n−α

∥∥∥(∑
s∈Z

(∑
j∈Z
|S2
l−jfs|2

)q/2)1/q∥∥∥
Lp

≤ C‖b‖BMO‖Ωd‖L n
n−α

∥∥∥(∑
s∈Z
|fs|q

)1/q∥∥∥
Lp
.

Similarly,

L2 ≤ C‖b‖BMO‖Ωd‖L n
n−α

∥∥∥(∑
s∈Z
|fs|q

)1/q∥∥∥
Lp
.

Hence, by (5.21), to show (5.3) it remains to estimate L3. We will apply
Bony’s paraproducts. Since

fg = πf (g) + πg(f) +R(f, g),

we have

b(x)(Tα,j,dS
2
l−jfs)(x)

= π(Tα,j,dS2
l−jfs)

(b)(x) +R(b, Tα,j,dS
2
l−jfs)(x) + πb(Tα,j,dS

2
l−jfs)(x)

and

bS2
l−jfs(x) = π(S2

l−jfs)
(b)(x) +R(b, S2

l−jfs)(x) + πb(S
2
l−jfs)(x).

Hence

[b, Tα,j,d]S
2
l−jfs(x) = b(x)(Tα,j,dS

2
l−jfs)(x)− Tα,j,d(bS2

l−jfs)(x)

= [π(Tα,j,dS2
l−jfs)

(b)(x)− Tα,j,d(π(S2
l−jfs)

(b))(x)]

+ [R(b, Tα,j,dS
2
l−jfs)(x)− Tα,j,d(R(b, S2

l−jfs))(x)]

+ [πb(Tα,j,dS
2
l−jfs)(x)− Tα,j,d(πb(S2

l−jfs))(x)].

Thus,

L3 ≤
∥∥∥(∑

s∈Z

∣∣∣∑
j∈Z

S2
l−j
[
π(Tα,j,dS2

l−jfs)
(b)− Tα,j,d(π(S2

l−jfs)
(b))

]∣∣∣q)1/q∥∥∥
Lr

(5.22)

+
∥∥∥(∑

s∈Z

∣∣∣∑
j∈Z

S2
l−j
[
R(b, Tα,j,dS

2
l−jfs)− Tα,j,d(R(b, S2

l−jfs))
]∣∣∣q)1/q∥∥∥

Lr

+
∥∥∥(∑

s∈Z

∣∣∣∑
j∈Z

S2
l−j
[
πb(Tα,j,dS

2
l−jfs)− Tα,j,d(πb(S2

l−jfs))
]∣∣∣q)1/q∥∥∥

Lr

=: M1 +M2 +M3.
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The estimate of M1. Recall that πg(f) =
∑

j∈Z(∆jf)(Gj−3g). By Lem-

ma 3.8(i), we know that ∆iSkg = 0 for g ∈ S ′(Rn) when |i− k| ≥ 3. Then

(5.23) π(Tα,j,dS2
l−jfs)

(b)(x)− Tα,j,d(π(S2
l−jfs)

(b))(x)

=
∑

|i−(l−j)|≤2

{
∆i(Tα,j,dS

2
l−jfs)(x)(Gi−3b)(x)− Tα,j,d[(∆iS

2
l−jfs)(Gi−3b)](x)

}
=

∑
|i−(l−j)|≤2

[Gi−3b, Tα,j,d](∆iS
2
l−jfs)(x).

Thus,

(5.24)

M1 ≤
∑
|k|≤2

∥∥∥(∑
s∈Z

∣∣∣∑
j∈Z

S2
l−j
(
[Gl−j+k−3b, Tα,j,d](∆l−j+kS

2
l−jfs)

)∣∣∣q)1/q∥∥∥
Lr
.

Without loss of generality, we may assume k = 0. By Lemma 3.1(iv),

(5.25) M1 ≤ C
∥∥∥(∑

s∈Z

(∑
j∈Z
|[Gl−j−3b, Tα,j,d](∆l−jS

2
l−jfs)|2

)q/2)1/q∥∥∥
Lr
.

Note that

|[Gl−j−3b, Tα,j,d](∆l−jS
2
l−jfs)(x)|

=
∣∣∣ �

2j≤|x−y|<2j+1

Ωd(x− y)

|x− y|n−α
(Gl−j−3b(x)−Gl−j−3b(y))∆l−jS

2
l−jfs(y) dy

∣∣∣
≤ C

�

2j≤|x−y|<2j+1

|Ωd(x− y)|
|x− y|n−α

|Gl−j−3b(x)−Gl−j−3b(y)| |∆l−jS
2
l−jfs(y)| dy.

By Lemma 3.7, for any 0 < δ < 1 we have

(5.26) |[Gl−j−3b, Tα,j,d]∆l−jS
2
l−jfs(x)|

≤ C2(l−j−3)δ
|x− y|δ

δ
‖b‖BMO

�

2j≤|x−y|<2j+1

|Ωd(x− y)|
|x− y|n−α

|∆l−jS
2
l−jfs(y)| dy

≤ C 2lδ

δ
‖b‖BMO

�

2j≤|x−y|<2j+1

|Ωd(x− y)|
|x− y|n−α

|∆l−jS
2
l−jfs(y)| dy

= C
2lδ

δ
‖b‖BMOT|Ω|,α,j,d(|∆l−jS

2
l−jfs|)(x),

where

T|Ω|,α,j,dfs(x) =
�

2j≤|x−y|<2j+1

|Ωd(x− y)|
|x− y|n−α

fs(y) dy

and C is independent of δ and l. Then, by (5.25), (5.26), and Lemmas 3.5
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and 3.1(iii), for 1 < p < n/α and 1/r = 1/p− α/n we have

(5.27) M1 ≤ C
2lδ

δ
‖b‖BMO

∥∥∥(∑
s∈Z

(∑
j∈Z
|T|Ω|,α,j,d(|∆l−jS

2
l−jfs|)|2

)q/2)1/q∥∥∥
Lr

≤ C‖Ωd‖L n
n−α

2lδ

δ
‖b‖BMO

∥∥∥(∑
s∈Z

(∑
j∈Z
|∆l−jS

2
l−jfs|2

)q/2)1/q∥∥∥
Lp

≤ C‖Ωd‖L n
n−α

2lδ

δ
‖b‖BMO

∥∥∥(∑
s∈Z

(∑
j∈Z
|S2
l−jfs|2

)q/2)1/q∥∥∥
Lp

≤ C‖Ωd‖L n
n−α

2lδ

δ
‖b‖BMO

∥∥∥(∑
s∈Z
|fs|q

)1/q∥∥∥
Lp
,

where C is independent of l and δ.

The estimate of M2. By Lemma 3.8(i), we know that for |k| ≤ 2,
∆i+kSl−jg = 0 for g ∈ S ′(Rn) when |i− (l − j)| ≥ 5. Thus

R(b, Tα,j,dS
2
l−jfs)− Tα,j,d(R(b, S2

l−jfs))(x)

=
∑
i∈Z

∑
|k|≤2

(∆ib)(x)(Tα,j,d∆i+kS
2
l−jfs)(x)

− Tα,j,d
(∑
i∈Z

∑
|k|≤2

(∆ib)(∆i+kS
2
l−jfs)

)
(x)

=
2∑

k=−2

∑
|i−(l−j)|≤4

(
(∆ib)(x)(Tα,j,d∆i+kS

2
l−jfs)(x)

− Tα,j,d
(
(∆ib)(∆i+kS

2
l−jfs)

)
(x)
)

=
2∑

k=−2

∑
|i−(l−j)|≤4

[∆ib, Tα,j,d](∆i+kS
2
l−jfs)(x).

Hence

M2 ≤
∑
|k|≤6

∥∥∥(∑
s∈Z

∣∣∣∑
j∈Z

S2
l−j [∆l−j+kb, Tα,j,d](∆l−j+kS

2
l−jfs)

∣∣∣q)1/q∥∥∥
Lr
.

Without loss of generality, we may assume that k = 0. By the equality above
and using Lemma 3.1(iv), the inequality supi∈Z ‖∆i(b)‖L∞ ≤ C‖b‖BMO

(see [G]), and Lemmas 3.5 and 3.1(iii), for 1 < p < n/α and 1/r = 1/p−α/n
we have

(5.28)

M2 ≤ C sup
i∈Z
‖∆i(b)‖L∞

∥∥∥(∑
s∈Z

(∑
j∈Z
|T|Ω|,α,j,d(|∆l−jS

2
l−jfs|)|2

)q/2)1/q∥∥∥
Lr
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≤ C‖b‖BMO‖Ωd‖L n
n−α

∥∥∥(∑
s∈Z

(∑
j∈Z
|∆l−jS

2
l−jfs|2

)q/2)1/r∥∥∥
Lp

≤ C‖b‖BMO‖Ωd‖L n
n−α

∥∥∥(∑
s∈Z

(∑
j∈Z
|S2
l−jfs|2

)q/2)1/q∥∥∥
Lp

≤ C‖b‖BMO‖Ωd‖L n
n−α

∥∥∥(∑
s∈Z
|fs|q

)1/q∥∥∥
Lp
.

The estimate of M3. By Lemma 3.8(ii), we know Sj
(
∆igGi−3h

)
= 0 for

g, h ∈ S ′(Rn) if |j − i| ≥ 5. We get

S2
l−j
(
πb(Tα,j,dS

2
l−jfs)− Tα,j,d(πb(S2

l−jfs))
)

= S2
l−j

(∑
i∈Z

(∆ib)(Gi−3Tα,j,dS
2
l−jfs)− Tα,j,d

(∑
i∈Z

(∆ib)(Gi−3S
2
l−jfs)

))
(x)

=
∑

|i−(l−j)|≤4

{
S2
l−j
(
(∆ib)(Gi−3Tα,j,dS

2
l−jfs)

)
(x)

− S2
l−jTα,j,d

(
(∆ib)(Gi−3S

2
l−jfs)

)
(x)
}
.

Thus, from Lemma 3.1(iv), supi∈Z ‖∆i(b)‖L∞ ≤ C‖b‖BMO, and Lemmas 3.5
and 3.1(iii), for 1 < p < n/α and 1/r = 1/p− α/n we get

M3 ≤ C sup
i∈Z
‖∆i(b)‖L∞

∥∥∥(∑
s∈Z

(∑
j∈Z
|T|Ω|,α,j,d(|Gl−jS2

l−jfs|)|2
)q/2)1/q∥∥∥

Lr

(5.29)

≤ C‖b‖BMO‖Ωd‖L n
n−α

∥∥∥(∑
s∈Z

(∑
j∈Z
|Gl−jS2

l−jfs|2
)q/2)1/q∥∥∥

Lp

≤ C‖b‖BMO‖Ωd‖L n
n−α

∥∥∥(∑
s∈Z

(∑
j∈Z
|S2
l−jfs|2

)q/2)1/q∥∥∥
Lp

≤ C‖b‖BMO‖Ωd‖L n
n−α

∥∥∥(∑
s∈Z
|fs|q

)1/q∥∥∥
Lp
.

By (5.22) and (5.27)–(5.29), we get

L3 ≤ C max{2, 2δl/δ}‖b‖BMO‖Ωd‖L n
n−α

∥∥∥(∑
s∈Z
|fs|q

)1/q∥∥∥
Lp

for l ∈ Z, where C is independent of δ and l. If l > 0, we take δ = 1/l; then

L3 ≤ C|l| ‖b‖BMO‖Ωd‖L n
n−α

∥∥∥(∑
s∈Z
|fs|q

)1/q∥∥∥
Lp

for l ∈ Z, where C is independent of l. This gives (5.3).
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[R] M. Riesz, L’intégrale de Riemann–Liouville et le problème de Cauchy, Acta
Math. 81 (1949), 1–223.

[ST] C. Segovia and J. Torrea, Higher order commutators for vector-valued Calderón–
Zygmund operators, Trans. Amer. Math. Soc. 336 (1993), 537–556.

[So] S. L. Sobolev, On a theorem in functional analysis, Mat. Sb. 46 (1938), 471–497
(in Russian).

[SW] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces,
Princeton Univ. Press, Princeton, NJ, 1971.

[Wa] G. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ.
Press, 1966.

[W] H. Weyl, Bemerkungen zum Begriff der Differentialquotienten gebrochener Ord-
nung, Vierteljschr. Naturforsch. Ges. Zürich 62 (1917), 296–302.
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