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A lower bound in the law of the iterated logarithm
for general lacunary series

by

Charles N. Moore and Xiaojing Zhang (Manhattan, KS)

Abstract. We prove a lower bound in a law of the iterated logarithm for sums of
the form

∑N
k=1 akf(nkx + ck) where f satisfies certain conditions and the nk satisfy the

Hadamard gap condition nk+1/nk ≥ q > 1.

1. Introduction. One of the most remarkable achievements of prob-
ability theory is the classical law of the iterated logarithm (LIL) due to
Kolmogorov [Ko]:

Theorem 1.1. Let Sm =
∑m

k=1Xk where {Xk} is a sequence of real-
valued independent random variables. Let s2m be the variance of Sm. Sup-
pose sm → ∞ and |Xm|2 ≤ Kms

2
m/log log(ee + s2m) for some sequence of

constants Km → 0. Then, almost surely,

lim sup
m→∞

Sm√
2s2m log log s2m

= 1.

This was first proved for Bernoulli random variables by Khintchine [K]
and grew out of the efforts of several authors to determine the exact rate of
convergence in Borel’s theorem on normal numbers. Although the terms in
a lacunary trigonometric series are not independent random variables, it is
evidenced by many results in analysis which give central limit theorem type
behavior or LILs for lacunary trigonometric series, that they exhibit many
of the same properties. For example, Salem and Zygmund [SZ] consider
the situation when the Xk in Kolmogorov’s theorem are replaced by the
functions ak cos(nkθ) on [−π, π], where the ak are real and the nk are integers
satisfying the lacunarity condition: there exists a number q so that

(1.1) nk+1/nk ≥ q > 1

for every k = 1, 2, . . . , and obtain an upper bound (≤ 1). This was extended

to an upper and lower bound for partial sums of the form
∑N

k=1 exp(2πinkθ)
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by Erdős and Gál [EG], and later extended to general lacunary trigonometric
series by Weiss [W].

Takahashi [T1] extends the result of Salem and Zygmund beyond trigono-
metric functions: Suppose nk is a lacunary sequence of integers and f is in
Lipα, 0 < α ≤ 1, f(x+ 1) = f(x) for all x, and

	1
0 f(x) dx = 0. Then there

exists a constant C depending only on α and q such that

lim sup
N→∞

∑N
k=1 f(nkt)√
N log logN

≤ C a.e.

Several authors—Dhompongsa [D], Takahashi [T2], and Peter [P]—have
considered versions of this with a gap condition weaker than (1.1).

To state the results of this paper, we need to introduce some notation
and terminology. Throughout, a cube Q ⊆ Rn will be called dyadic if it has
the form

Q = [k12
l, (k1 + 1)2l)× · · · × [kn2l, (kn + 1)2l)

for some l, k1, . . . , kn ∈ Z; for such a cube we say that Q has sidelength 2l.
Throughout we will use the notation |E| to denote the Lebesgue measure of
a measurable set E.

For m ∈ Z we let Fm denote the set of all dyadic cubes in Rn of sidelength
2−m and we will let F denote the set of all dyadic cubes in Rn of sidelength
≤ 1. By a slight abuse of notation, we will also use Fm to denote the σ-field
generated by the set of all dyadic cubes in Rn of sidelength 2−m. (The usage
will be clear from the context.)

Definition 1.2. If f is a function on Rn, the modulus of continuity ω of
f is ω(f, δ) = sup{|f(x)−f(y)| : |x−y| < δ}. When f is clear from context,
we will write ω(f, δ) = ω(δ). Recall that f is said to be Dini continuous if

(1.2)

1�

0

ω(δ)

δ
dδ <∞.

In [MZ] the authors gave a generalization of the LIL of Takahashi in
which the gap condition (1.1) is retained, but the class of functions f is
widened:

Theorem 1.3. Suppose f is a Dini continuous function on Rn with
the property that f(x) = 0 whenever any coordinate of x is an integer,
and

	
Q f(x) dx = 0 whenever Q ∈ F0. Let {nk} be a sequence of positive

numbers satisfying the lacunarity condition nk+1/nk ≥ q > 1 and let {ck}
be a sequence in Rn. Then there exists a constant C, depending only on n, q,
and the quantity

	1
0(ω(δ)/δ) dδ, such that for any sequence of real numbers



LIL for general lacunary series 209

{ak} with Am =
√∑m

k=1 a
2
k →∞ as m→∞, we have

lim sup
m→∞

∣∣∑m
k=1 akf(nkx+ ck)

∣∣√
A2
m log logA2

m

≤ C a.e.

The purpose of this paper is to provide a lower bound in the above result.

Theorem 1.4. Assume that f, nk, ak, Am, and ck are as in the previous
theorem, again with Am → ∞ as m → ∞. Suppose also f has the property
that there exists a number c0 > 0 such that |Q|−1

	
Q |f(u)|2 du > c0 for all

cubes of sidelength at least 1. Set Mn = max1≤k≤n |ak| and suppose that
M2
n ≤ K2

nA
2
n/log logA2

n for some sequence of numbers Kn → 0 as n → ∞.
Then, if q is sufficiently large, there exists a constant c, depending only on
n, q, c0, and the quantity

	1
0(ω(δ)/δ) dδ, such that

lim sup
m→∞

∑m
k=1 akf(nkx+ ck)√
A2
m log logA2

m

≥ c a.e.

Notice that in both of these theorems we do not assume the nk are inte-
gers, nor do we assume any periodicity of f . We do not know the best possible
values of C and c in these inequalities. In the classical LILs, C = c = 1,
but it seems difficult to obtain such precision here. It may be possible that
these theorems remain true with the L2 modulus of continuity ω2(δ) re-
placing ω(δ) in (1.2), but the modifications required do not seem to be
straightforward. In the lower bound the so called “Kolmogorov condition”
M2
n ≤ KnA

2
n/log logA2

n is an essential hypothesis, even in the trigonometric
case (see [BM, p. 81]). The well-known example f(x) = sin 2πx − sin 4πx,
nk = 2k, for which the lower bound fails, shows that the choice of q depends
on ω(δ). The property that |Q|−1

	
Q |f(u)|2 du > c0 is also necessary and

keeps f from becoming too “sparse” at infinity. For example, consider a func-
tion f on R given by f(x) = εn sin(2πx) for x ∈ (−n−1,−n]∪[n, n+1), where
εn → 0, say montonically. By Theorem 1.3 (or Salem and Zygmund [SZ]),

lim sup
m→∞

∣∣∑m
k=1 sin 2π(2kx)

∣∣
√
m log logm

≤ C a.e.

and thus,

lim sup
m→∞

∣∣∑m
k=1 f(2kx)

∣∣
√
m log logm

= 0 a.e.

The latter can be seen by breaking the numerator as
∑2N

k=1 +
∑m

k=2N+1,

which gives that the limsup is bounded by Cε2N+1 on (−∞,−1/2N ] ∪
[1/2N ,∞).

Other authors have explored the behavior of sequences f(nkx) beyond
the trigonometric case. Gaposhkin [G] shows that if the nk are lacunary

and satisfy a Diophantine condition, and if
	1
0 |
∑N

k=1 f(nkx)|2 dx ≥ cN, then
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the central limit theorem holds for the f(nkx). Aistleitner and Berkes [AB]
improve on Gaposhkin’s result. Berkes [B] gives an LIL with a more precise
lower bound, although with stronger hypotheses on f.

The proof of the theorem will involve a mix of ideas and techniques from
Moore and Zhang [MZ], the study of dyadic martingales, and classical prob-
ability theory. In particular we make use of a martingale approximation. The
idea of using a martingale approximation was used extensively by Philipp
and Stout [PS], but the martingale approximation we use here is not quite
the same as theirs. In Section 2 we will collect some definitions and lemmas
which will be used in the course of the proof. Throughout we will use the
convention that C and c represent absolute constants, depending only on q,
n, and the quantity (1.2), whose value may change from line to line. Some-
times we will need to temporarily track constants and these will be labeled
as C1, C2, etc.

2. Preliminaries. We record some lemmas. The first can be found in
Erdős and Gál [EG], but the proof is short so we include it for completeness.
The second can essentially be found in Gaposhkin [G]; for completeness we
include the details of the proof.

Lemma 2.1. Let n1 < n2 < · · · be an infinite sequence of positive num-
bers satisfying the lacunarity condition nk+1/nk ≥ q > 1, k = 1, 2, . . . . If
0 < α < β then

(2.1)
∑

α≤nk≤β
1 ≤ log(βq/α)

log q
.

Proof. Let k0 be defined by the inequality nk0 < α ≤ nk0+1 (put n0 = 0)
and i ≥ 0 be defined by nk0+i ≤ β < nk0+i+1. If i = 0 then (2.1) is true. If
i ≥ 1 then we have β ≥ nk0+i ≥ qi−1nk0+1 ≥ qi−1α. Hence βq/α ≥ qi, and
(2.1) follows immediately.

Lemma 2.2. Suppose k is a positive integer, c > 0. Then

(1)

∞∑
j=k+1

ω

(
nk
nj
c

)
≤ max

{
1

log 2
,

1

log q

} 2c/q�

0

ω(δ)

δ
dδ,

(2)

j−1∑
k=1

ω

(
nk
nj
c

)
≤ max

{
1

log 2
,

1

log q

} 2c/q�

0

ω(δ)

δ
dδ,

(3)

∞∑
j=k+1

1

nj
≤ 1

nk

1

q − 1
,

(4)

j−1∑
k=1

1

nk
≤ 1

n1

q

q − 1
.
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Proof. We have

2c/q�

0

ω(δ)

δ
dδ =

2/q�

0

ω(cs)

s
ds =

2/q�

1/q

ω(cs)

s
ds+

∞∑
k=1

1/qk�

1/qk+1

ω(cs)

s
ds

≥ log 2ω

(
1

q
c

)
+
∞∑
k=1

log q ω

(
1

qk+1
c

)

≥ min{log 2, log q}
∞∑
k=1

ω

(
1

qk
c

)
.

Then

∞∑
j=k+1

ω

(
nk
nj
c

)
≤
∞∑
k=1

ω

(
1

qk
c

)
≤ max

{
1

log 2
,

1

log q

} 2c/q�

0

ω(δ)

δ
dδ

and
j−1∑
k=1

ω

(
nk
nj
c

)
≤

j−1∑
k=1

ω

(
1

qk
c

)
≤ max

{
1

log 2
,

1

log q

} 2c/q�

0

ω(δ)

δ
dδ,

which gives (1) and (2). For (3) we have
∞∑

j=k+1

1

nj
=

1

nk

∞∑
j=k+1

nk
nj
≤ 1

nk

∞∑
j=1

1

qj
=

1

nk

1

q − 1
.

The proof of (4) is similar.

We will need a lower bound for ‖
∑N

k=1 akf(nkx+ck)‖2 on [0, 1]n. This will
be done by squaring and estimating the terms akaj

	
[0,1]n f(nkx+ ck)f(njx

+ cj) dx. We will use the well-established principle that if say nj is much
larger than nk, then f(nkx + ck) is roughly constant on cubes where
f(njx+cj) has mean value zero, which leads to a small value for the integral.

Lemma 2.3. If j > k, then∣∣∣ �

[0,1]n

f(njx+ cj)f(nkx+ ck) dx
∣∣∣

≤
( �

[0,1]n

|f(njx+ cj)|2 dx
)1/2(

ω

(√
nnk
2nj

)
+

√
2n ‖f‖∞√

nj

)
.

Proof. Recall that F0 denotes the set of all dyadic cubes in Rn of side-
length 1. Consider the family of cubes of the form Qj,m = (1/nj)Qm −
(1/nj)cj , where Qm ∈ F0. Note that

	
Qj,m

f(njx+ cj) dx = 0. We say Qj,m

is of type I if Qj,m ⊂ [0, 1]n, and is of type II if Qj,m ∩ [0, 1]n 6= ∅ and
Qj,m ∩ ([0, 1]n)c 6= ∅. Let R = (

⋃
Qj,m) ∩ [0, 1]n, where the union is taken
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over all type II cubes. Then |R| ≤ 1− (1− 2/nj)
n ≤ 2n/nj . For each type I

Qj,m, let aj,m denote its center. Then∣∣∣ �

[0,1]n

f(nkx+ ck)f(njx+ cj) dx
∣∣∣

≤
∣∣∣ ∑
type IQj,m

�

Qj,m

f(nkx+ ck)f(njx+ cj) dx
∣∣∣+ �

R

|f(nkx+ ck)f(njx+ cj)| dx

≤
∣∣∣ ∑
type IQj,m

�

Qj,m

(
f(nkx+ ck)− f(nkaj,m + ck)

)
f(njx+ cj) dx

∣∣∣
+
( �
R

|f(nkx+ ck)|2 dx
)1/2( �

R

|f(njx+ cj)|2 dx
)1/2

≤
∑

type IQj,m

ω

(√
nnk

2nj

) �

Qj,m

|f(njx+ cj)| dx

+

√
2n ‖f‖∞√

nj

( �

[0,1]n

|f(njx+ cj)|2 dx
)1/2

≤ ω
(√

nnk
2nj

)( �

[0,1]n

|f(njx+ cj)|2 dx
)1/2

+

√
2n ‖f‖∞√

nj

( �

[0,1]n

|f(njx+ cj |2 dx
)1/2

.

Lemma 2.4. We have |
	
[0,1]n f(njx + cj) dx| ≤ 2n‖f‖∞/nj . More gen-

erally, if Q is a dyadic cube of sidelength 2L then

1

|Q|

∣∣∣ �
Q

f(njx+ cj) dx
∣∣∣ ≤ 2n

2L‖f‖∞
nj

.

Proof. Using the notation of the previous proof we have∣∣∣ �

[0,1]n

f(njx+ cj) dx
∣∣∣ ≤ ∣∣∣ ∑

type IQj,m

�

Qj,m

f(njx+ cj) dx
∣∣∣+

�

R

|f(njx+ cj | dx

= 0 +
�

R

|f(njx+ cj)| dx ≤ |R| ‖f‖∞ ≤ 2n
‖f‖∞
nj

.

The second statement follows from this by a change of variables.

Lemma 2.5. If q is sufficiently large then

�

[0,1]n

∣∣∣ N∑
k=1

akf(nkx+ ck)
∣∣∣2 dx ≥ cA2

N

for some constant c > 0 depending only on n, q, and the quantity in (1.2).
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Proof. We have

�

[0,1]n

( N∑
k=1

akf(nkx+ ck)
)2
dx

=
N∑
k=1

a2k

�

[0,1]n

|f(nkx+ ck)|2 dx

+ 2

N∑
k=1

N∑
j=k+1

akaj
�

[0,1]n

f(nkx+ ck)f(njx+ cj) dx.

For typographical convenience in what follows, set

mq = max

{
1

log 2
,

1

log q

}
.

We estimate the second term, using Lemma 2.3 and all parts of Lemma 2.2:∣∣∣ N∑
k=1

N∑
j=k+1

akaj
�

[0,1]n

f(nkx+ ck)f(njx+ cj) dx
∣∣∣

≤
N∑
k=1

N∑
j=k+1

|akaj |
( �

[0,1]n

|f(njx+ cj)|2 dx
)1/2(

ω

(√
nnk
2nj

)
+

√
2n ‖f‖∞√

nj

)

≤
N∑
k=1

|ak|
( N∑
j=k+1

a2jω

(√
nnk
2nj

) �

[0,1]n

|f(njx+ cj)|2 dx
)1/2( N∑

j=k+1

ω

(√
nnk
2nj

))1/2

+
√

2n ‖f‖∞
N∑
k=1

|ak|
( N∑
j=k+1

a2j

�

[0,1]n

|f(njx+ cj)|2 dx
)1/2( N∑

j=k+1

1

nj

)1/2

≤
(
mq

√
n/q�

0

ω(δ)

δ
dδ

)1/2 N∑
k=1

|ak|
( N∑
j=k+1

a2jω

(√
nnk
2nj

) �

[0,1]n

|f(njx+ cj)|2 dx
)1/2

+

(√
2n ‖f‖∞

1√
q − 1

) N∑
k=1

|ak|
( N∑
j=k+1

a2j
nk

�

[0,1]n

|f(njx+ cj)|2 dx
)1/2

≤
(
mq

√
n/q�

0

ω(δ)

δ
dδ

)1/2
AN

( N∑
k=1

N∑
j=k+1

a2jω

(√
nnk
2nj

) �

[0,1]n

|f(njx+ cj)|2 dx
)1/2

+

(√
2n ‖f‖∞

1√
q − 1

)
AN

( N∑
k=1

N∑
j=k+1

a2j
nk

�

[0,1]n

|f(njx+ cj)|2 dx
)1/2
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=

(
mq

√
n/q�

0

ω(δ)

δ
dδ

)1/2

AN

( N∑
j=1

a2j

�

[0,1]n

|f(njx+ cj)|2 dx
j−1∑
k=1

ω

(√
nnk
2nj

))1/2

+

(√
2n ‖f‖∞

1√
q − 1

)
AN

( N∑
j=1

a2j

�

[0,1]n

|f(njx+ cj)|2 dx
j−1∑
k=1

1

nk

)1/2

≤ AN
( N∑
j=1

a2j

�

[0,1]n

|f(njx+ cj)|2 dx
)1/2(

mq

√
n/q�

0

ω(δ)

δ
dδ +

√
2nq ‖f‖∞√
n1(q − 1)

)
.

Therefore,

�

[0,1]n

∣∣∣ N∑
k=1

akf(nkx+ ck)
∣∣∣2 dx

≥
N∑
k=1

a2k

�

[0,1]n

|f(nkx+ ck)|2 dx− cqAN
( N∑
k=1

a2k

�

[0,1]n

|f(nkx+ ck)|2 dx
)1/2

where cq = mq

	√n/q
0

ω(δ)
δ dδ+

√
2nq ‖f‖∞√
n1(q−1) . By hypothesis, we have the estimate	

[0,1]n |f(nkx+ ck)|2 dx > c0 for every k, and the lemma follows by taking q

sufficiently large (and hence cq sufficiently small).

Definition 2.6. Suppose that Q ∈ F0. A dyadic martingale on Q is
a sequence of integrable functions {gm}∞m=0 on Q such that each gm is
Fm-measurable and gm = E(gm+1 | Fm) for every m. Here E(gm+1 | Fm)
denotes the conditional expectation: E(gm+1 | Fm)(x) = |Q|−1

	
Q gm+1 dy,

if x ∈ Q ∈ Fm. For k ≥ 1, set dk = gk − gk−1, and we also define the square
function Sfm = (

∑m
k=1E(d2k | Fk−1))1/2.

We will need the following subgaussian estimate for dyadic martingales
(see Chang, Wilson, and Wolff [CWW]).

Lemma 2.7. If gm is a dyadic martingale on Q then for each m and
every λ > 0, we have

|{x ∈ Q : |gm(x)| ≥ λ}| ≤ exp

(
− λ2

2‖Sgm‖2∞

)
.

We would like a similar estimate for sums of the form
∑m

k=1 akf(nkx+ck).

Lemma 2.8. Put fm(x) =
∑m

k=1 akf(nkx + ck) where f is as in the
hypotheses of Theorem 1.4. Then there exist constants C and c depending
only on q, n, and the quantity (1.2) such that

|{x ∈ [0, 1]n : |fm(x)| ≥ λ}| ≤ C exp

(
−c λ

2

A2
m

)
.



LIL for general lacunary series 215

Proof. By Lemma 2.1 we can break up the sequence nk into a finite
number of sequences each of which has the property that for each k ≥ 1
there exists exactly one nk with 2k−1 ≤ nk < 2k. That is, we may write
fm = fm1 + · · · + fmK for some positive integer K so that each fmj has
at most one nk in each dyadic block [2k, 2k+1). Then since |{x ∈ [0, 1]n :

fm(x) > λ}| ≤
∑K

j=1 |{x ∈ [0, 1]n : fmj > λ/K}|, the desired estimate
follows if we can get such an estimate for each fmj . In other words, we may
assume, without loss of generality, that fm has only one nk in each dyadic
block [2k, 2k+1).

We first also assume that a1 = a2 = 0. For m ≥ 1, let fm(x) :=∑m+2
k=3 akf(nkx+ ck). Under these conditions, it is shown in [MZ], following

the techniques of [CWW], that there exists a family of dyadic martingales

{g(j)m }, j = 1, . . . , N, and an absolute constant C1 such that

∣∣∣fm+2(x)−
N∑
j=1

g(j)m (x)
∣∣∣ ≤ C1Am+2

and for each j,

(Sg(j)m (x))2 ≤ C1A
2
m+2.

Here C1 and N depend only on the dimension n. Thus, for λ > C1Am+2,∣∣{x ∈ [0, 1]n : |fm+2(x)| ≥ λ}
∣∣

≤
∣∣∣{x ∈ [0, 1] :

∣∣∣ N∑
j=1

g(j)m (x)
∣∣∣ ≥ λ− C1Am+2

}∣∣∣
≤

N∑
j=1

∣∣∣∣{x ∈ [0, 1] : |g(j)m (x)| ≥ λ− C1Am+2

N

}∣∣∣∣
≤

N∑
j=1

exp

(
−c(λ− C1Am+2)

2

(Sg
(j)
m (x))2

)
≤ N exp

(
−c(λ− C1Am+2)

2

C2
1A

2
m+2

)

≤ C exp

(
−c λ2

A2
m+2

)
.

By taking C large enough so that C exp(−cC2
1 ) ≥ 1, this remains valid for

λ ≤ C1Am+2.

Finally, to remove the assumption that a1 = a2 = 0, set f̃m(x) = fm(x)−
a1f(n1x+c1)−a2f(n2x+c2), so that f̃m satisfies the above inequality. Noting
that ‖f‖∞ ≤ C, where C depends on the quantity in (1.2), and using the
inequality exp(−c(α − β)2) ≤ exp(−3cα2/4 + 3cβ2), valid for α, β > 0, we
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have

|{x ∈ [0, 1]n : |fm(x)| > λ}|
≤
∣∣{x ∈ [0, 1]n : f̃m(x) > λ− (|a1|+ |a2|)‖f‖∞}

∣∣
≤ C exp

(
−c(λ− (|a1|+ |a2|)‖f‖∞)2

A2
m

)
≤ C exp

(
−c λ

2

A2
m

)
.

The following is adapted from part of the proof of Proposition 5 in
Bañuelos, Klemeš, and Moore [BKM], which itself is based on Zygmund’s [Z,
Lemma 8.26, Chapter 5, Vol. 1].

Lemma 2.9. Suppose that g(x) is a real valued function defined on a set
E with |E| > 0, and that∣∣∣∣ 1

|E|

�

E

g(x) dx

∣∣∣∣ ≤ εA and
1

|E|

�

E

g(x)2 dx ≥ c0A2

for some constants A > 0, 0 < ε < 1, c0 > 0. Suppose also that

|{x ∈ E : |g(x)| > λ}| ≤ Ce−cλ2/A2 |E| for all λ > 0,

where C, c are constants. Then if ε is sufficiently small, there exists a δ > 0
depending only on ε, c0, C, and c such that

|{x ∈ E : g(x) ≥ δA}| ≥ δ|E|.

Proof. Let 0 < δ < L to be chosen momentarily. Then

c0A
2 ≤ 1

|E|

�

E

|g(x)|2 dx

=
1

|E|

�

{x∈E : |g(x)|>LA}

|g(x)|2 dx+
1

|E|

�

{x∈E : |g(x)|≤LA}

|g(x)|2 dx

≤ C(LA)2e−cL
2

+ 2

∞�

LA

λe−cλ
2/A2

dλ+
LA

|E|

�

E

|g(x)| dx

≤ CA2(L2 + 1)e−cL
2

+
LA

|E|

�

E

|g(x)| dx.

By choosing L sufficiently large, depending on c, C, and c0, we have

C ′A ≤ 1

|E|

�

E

|g(x)| dx.

But then

1

|E|

�

E

g+(x) dx =
1

2|E|

�

E

(|g(x)|+ g(x)) dx ≥ C ′

2
A− ε

2
A = CA.
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Thus,

CA ≤ 1

|E|

�

{x∈E : g+≤δA}

g+(x) dx+
1

|E|

�

{x∈E : δA<g+≤L′A}

g+ dx

+
1

|E|

�

{x∈E : g+≥L′A}

g+ dx

≤ δA+
L′A

|E|
|{x ∈ E : g+(x) ≥ δA}|+ CAL′e−c(L

′)2 .

By choosing δ sufficiently small, and L′ sufficiently large, the conclusion
follows.

As to be expected, we will need a Borel–Cantelli type lemma for inde-
pendent, or at least weakly dependent, random variables. This is provided
by the following, whose proof can be found in Bañuelos and Moore [BM,
p. 79]:

Lemma 2.10. For k = 1, 2, . . . , suppose Fk is a collection of dyadic cubes
whose union is [0, 1]n such that Fk+1 is a refinement of Fk. Suppose that the
maximum length of the elements of Fk tends to zero. Suppose Ek ⊂ Fk has
the property ∣∣∣Q ∩ ⋃

J∈Ek+1

J
∣∣∣ > |Q|C/k, ∀Q ∈ Fk.

Set Ek =
⋃
J∈Ek J. Then for a.e. x, x ∈ Ek infinitely often.

3. The proof of Theorem 1.4. LetM be a fixed large positive number.
Define N1 ≤ N2 ≤ · · · by

Nl = min
{
N :

N∑
k=1

a2k > M l
}
.

Let ε > 0 and assume ε� 1.

Consider a large positive integer l. Using the definition of Nl and the
fact that |aNl |2 < εA2

Nl
, for Nl sufficiently large, we can assume that A2

Nl
=

A2
Nl−1 + a2Nl < M l + εA2

Nl
, and hence

(3.1) M l < A2
Nl
<

M l

1− ε
.

Consequently,

(3.2) (1− ε)M <
A2
Nl+1

A2
Nl

<
M

1− ε
.
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Then by Lemma 2.8 and (3.2) we obtain∣∣∣∣{x ∈ [0, 1]n :
∣∣∣ Nl∑
k=1

akf(nkx+ ck)
∣∣∣ ≥√ 1 + ε

cM(1− ε)

√
A2
Nl+1

log logA2
Nl+1

}∣∣∣∣
≤ C exp

(
−c 1 + ε

cM(1− ε)
A2
Nl+1

log logA2
Nl+1

A2
Nl

)
≤ C exp

(
− 1 + ε

M(1− ε)
(1− ε)M log logA2

Nl+1

)
≤ C exp(−(1 + ε) log logM l+1)

= C((l + 1) logM)−(1+ε).

So by the Borel–Cantelli lemma, for almost every x ∈ [0, 1]n,

(3.3)
∣∣∣ Nl∑
k=1

akf(nkx+ ck)
∣∣∣ <√ 1 + ε

cM(1− ε)

√
A2
Nl+1

log logA2
Nl+1

for all sufficiently large l (depending on x).

The definition of Nl and (3.1) yield

Nl+1∑
k=Nl+1

a2k = A2
Nl+1
−A2

Nl
> M l+1 − M l

1− ε
= M l+1

[
1− 1

M(1− ε)

]
(3.4)

≥ A2
Nl+1

(
1− ε− 1

M

)
.

By hypotheses, for all sufficiently large l, we have

max
1≤k≤Nl+1

a2k ≤ K2
Nl+1

A2
Nl+1

log logA2
Nl+1

≤ ε

2

A2
Nl+1

log logA2
Nl+1

,

which by (3.4) and the definition of ANl+1
implies that

max
1≤k≤Nl+1

a2k ≤
K2
Nl+1

1− ε− 1/M

∑Nl+1

k=Nl+1 a
2
k

log logA2
Nl+1

<
ε/2

1− ε− 1/M

1

log l

Nl+1∑
k=Nl+1

a2k.

We may assume that ε is small enough and M large enough so that 1 − ε
− 1/M > 1/2. Thus,

(3.5) max
1≤k≤Nl+1

|ak|√∑Nl+1

k=Nl+1 a
2
k

≤
√

ε

log l
.

Let 0 < µ < 1. Suppose l is large so that µ log l � 1. We define a sequence
of positive integers l1, l2, . . . , lb c, where for simplicity we write b c =

⌊µ log l
1+ε

⌋
(b c represents the greatest integer function) as follows:
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Let l1 be the first time such that

Nl+l1∑
k=Nl+1

a2k ≥
1

µ log l

Nl+1∑
k=Nl+1

a2k,

so that

(3.6)

Nl+l1−1∑
k=Nl+1

a2k <
1

µ log l

Nl+1∑
k=Nl+1

a2k.

Likewise, let l2 be the first time such that

Nl+l2∑
k=Nl+l1+1

a2k ≥
1

µ log l

Nl+1∑
k=Nl+1

a2k,

so that

(3.7)

Nl+l2−1∑
k=Nl+l1+1

a2k <
1

µ log l

Nl+1∑
k=Nl+1

a2k.

Similarly we define l3, . . . , lb c.
Because of (3.6), Nl + l1 ≤ Nl+1, and hence by (3.6) and (3.5),

Nl+l1∑
k=Nl+1

a2k =

Nl+l1−1∑
k=Nl+1

a2k + a2Nl+l1 ≤
1 + ε

µ log l

Nl+l∑
k=Nl+1

a2k.

Combining this and (3.7) yields

(3.8)

Nl+l2−1∑
k=Nl+1

a2k ≤
(

1 + ε

µ log l
+

1

µ log l

) Nl+l∑
k=Nl+1

a2k <

Nl+1∑
k=Nl+1

a2k,

the last inequality being a consequence of the fact that

(3.9)

r

(
1 + ε

µ log l

)
+

1

µ log l
< 1 for positive integers r with r ≤

⌊
µ log l

1 + ε

⌋
− 1.

Thus, Nl + l2 ≤ Nl+1, so by (3.8) and again using (3.5), we have

Nl+l2∑
k=Nl+1

a2k =

Nl+l2−1∑
k=Nl+1

a2k + a2Nl+l2(3.10)

≤
(

1 + ε

µ log l
+

1

µ log l
+

ε

µ log l

) Nl+l∑
k=Nl+1

a2k

= 2
1 + ε

µ log l

Nl+l∑
k=Nl+1

a2k.
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Continuing in the same fashion, using (3.5) and (3.9) we have

(3.11)

Nl+l3−1∑
k=Nl+1

a2k ≤
(

2
1 + ε

µ log l
+

1

µ log l

) Nl+1∑
k=Nl+1

a2k <

Nl+1∑
k=Nl+1

a2k,

which implies that Nl + l3 ≤ Nl+1. We continue this process, repeatedly
using (3.5) and (3.9), to conclude that Nl + lb c ≤ Nl+1.

Consider a dyadic cube Q with sidelength 2−L where L is chosen so that
2L ≤ nNl < 2L+1. By rescaling to Q, Lemma 2.5 implies

�

Q

∣∣∣ Nl+l1∑
k=Nl+1

akf(nkx+ ck)
∣∣∣2 dx ≥ c|Q| Nl+l1∑

k=Nl+1

a2k.

Similarly, again by rescaling to Q, Lemma 2.8 implies∣∣∣{x ∈ Q :
∣∣∣ Nl+l1∑
k=Nl+1

akf(nkx+ ck)
∣∣∣ ≥ λ}∣∣∣ ≤ C exp

(
−c λ2∑Nl+l1

k=Nl+1 a
2
k

)
|Q|.

Finally, notice that for k with Nl + 1 ≤ k ≤ Nl + l1, (3.5) yields

|ak| ≤
√

ε

log l

√√√√√ Nl+l∑
k=Nl+1

a2k ≤
√

ε

log l

√
µ log l

√√√√ Nl+l1∑
k=Nl+1

a2k =
√
µε

√√√√ Nl+l1∑
k=Nl+1

a2k.

Consequently by Lemmas 2.4 and 2.2(3),∣∣∣∣ 1

|Q|

�

Q

Nl+l1∑
k=Nl+1

akf(nkx+ ck) dx

∣∣∣∣ ≤ Nl+l1∑
k=Nl+1

|ak|
2n2L‖f‖∞

nk

≤ ‖f‖∞
√
µε

√√√√ Nl+l1∑
k=Nl+1

a2k

Nl+l1∑
k=Nl+1

2n2L

nk
≤ C
√
ε

√√√√ Nl+l1∑
k=Nl+1

a2k.

Then Lemma 2.9 applies to give δ > 0 (which depends only on ε and
constants that themselves depend only on q and n) so that

(3.12)

∣∣∣∣{x ∈ Q :

Nl+l1∑
k=Nl+1

akf(nkx+ ck) >
δ√
µ log l

√√√√√ Nl+1∑
k=Nl+1

a2k

}∣∣∣∣
≥
∣∣∣∣{x ∈ Q :

Nl+l1∑
k=Nl+1

akf(nkx+ ck) > δ

√√√√ Nl+l1∑
k=Nl+1

a2k

}∣∣∣∣ ≥ δ|Q|.
Set h(x) =

∑Nl+l1
k=Nl+1 akf(nkx+ ck). Choose L1 so that 2L1 ≤ nNl+l1 <

2L1+1. Fix x, y, and suppose |x− y| <
√
n/2L1 . Then using the hypotheses
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of the theorem, the definition of ANl+1
, Lemma 2.2(2) and (3.4), and again

assuming that 1− ε− 1/M > 1/2, we have

(3.13) |h(x)− h(y)| ≤
Nl+l1∑
k=Nl+1

|ak| |f(nkx+ ck)− f(nky + ck)|

≤
Nl+l1∑
k=Nl+1

|ak|ω
(√

nnk
2L1

)
≤

KNl+1
ANl+1√

log logA2
Nl+1

Nl+l1∑
k=Nl+1

ω

(√
nnk

nNl+l1
2

)

≤ CKNl+1

√
2
∑Nl+1

k=Nl+1 a
2
k√

log l
.

Thus, if

h(x) >
δ√
µ log l

√√√√√ Nl+1∑
k=Nl+1

a2k,

then

|h(y)| ≥ |h(x)| − C
KNl+1√

log l

√√√√√ Nl+l∑
k=Nl+1

a2k

≥
δ − C√µKNl+1√

µ log l

√√√√√ Nl+1∑
k=Nl+1

a2k.

From (3.12) we conclude that there exists a collection of dyadic subcubes
{Q′} of Q with sidelength 2−L1 such that for all x ∈ Q′,

Nl+l1∑
k=Nl+1

akf(nkx+ ck) ≥
δ − C√µKNl+1√

µ log l

√√√√√ Nl+1∑
k=Nl+1

a2k,

and with |
⋃
Q′⊂QQ

′| > δ|Q|.
Consider such a Q′. Arguing as above we have

∣∣∣∣{x ∈ Q′ : Nl+l2∑
k=Nl+l1+1

akf(nk + ck) >
δ√
µ log l

√√√√√ Nl+1∑
k=Nl+1

a2k

}∣∣∣∣
≥
∣∣∣∣{x ∈ Q′ : Nl+l2∑

k=Nl+l1+1

akf(nk + ck) > δ

√√√√ Nl+l2∑
k=Nl+l1+1

a2k

}∣∣∣∣ ≥ δ|Q′|.
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As previously, this leads us to a collection of dyadic subcubes {Q′′} of Q′

with sidelength 2−L2 , where L2 satisfies 2L2 ≤ nNl+l2 < 2L2+1, such that for
all x ∈ Q′′,

Nl+l2∑
k=Nl+l1+1

akf(nkx+ ck) ≥
δ − C√µKNl+1√

µ log l

√√√√√ Nl+1∑
k=Nl+1

a2k

and with |
⋃
Q′′⊂Q′ Q

′′| > δ|Q′|. We continue this process. Eventually we

come to a subcollection of cubes {I} with sidelength 2−Lb c , where b c =⌊µ log l
1+ε

⌋
, and Lb c is the number satisfying 2Lb c ≤ nNl+lb c < 2Lb c+1, such

that for all x ∈ I,

Nl+lb c∑
k=Nl+lb c−1+1

akf(nkx+ ck) ≥
δ − C√µKNl+1√

µ log l

√√√√√ Nl+1∑
k=Nl+1

a2k.

Moreover, |
⋃
I⊂Q̃ I| > δ|Q̃| where Q̃ is the previous generation cube. On

each I, we need to estimate the remaining terms
∑Nl+1

k=Nl+lb c+1 akf(nkx+ ck).

Using (3.5) and Lemma 2.4, we have∣∣∣∣ 1

|I|

�

I

Nl+1∑
k=Nl+lb c+1

akf(nkx+ ck) dx

∣∣∣∣ ≤ Nl+1∑
k=Nl+lb c+1

|ak|
∣∣∣∣ 1

|I|

�

I

f(nkx+ ck) dx

∣∣∣∣
≤ C

√
ε

log l

√√√√√ Nl+1∑
k=Nl+1

a2k

Nl+1∑
k=Nl+lb c+1

2Lb c‖f‖∞
nk

≤ C1

√
ε

log l

√√√√√ Nl+1∑
k=Nl+1

a2k.

By Chebyshev,∣∣∣∣{x ∈ I :
∣∣∣ Nl+1∑
k=Nl+lb c+1

akf(nkx+ ck)
∣∣∣ > 2C1

√
ε

log l

√√√√√ Nl+1∑
k=Nl+1

a2k

}∣∣∣∣ ≤ 1

2
|I|,

so that in particular,

(3.14)

Nl+1∑
k=Nl+lb c+1

akf(nkx+ ck) > −2C1

√
ε

log l

√√√√√ Nl+1∑
k=Nl+1

a2k

on at least 1/2 of the measure of I. Choose L̃ so that 2L̃ ≤ nNl+1
< 2L̃+1.

Let h(x) =
∑Nl+1

k=Nl+lb c+1 akf(nkx+ ck).
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Let x be a point at which (3.14) holds, and suppose |x − y| ≤
√
n 2−L̃.

Estimating as before (as in (3.13)), we have

|h(x)− h(y)| ≤ CKNl+1

√
2
∑Nl+1

k=Nl+1 a
2
k√

log l
.

Thus, if

h(x) > −2C1

√
ε

log l

√√√√√ Nl+1∑
k=Nl+1

a2k

then

h(y) >

(
−2C1

√
ε

log l
−
CKNl+1√

log l

)√√√√√ Nl+1∑
k=Nl+1

a2k

= −C
√
ε+KNl+1√

log l

√√√√√ Nl+1∑
k=Nl+1

a2k.

Consequently, there exists a collection of dyadic subcubes {J} of I with

sidelength 2−L̃ such that for every x ∈ J,

Nl+1∑
k=Nl+lb c+1

akf(nkx+ ck) > −C
√
ε+KNl+1√

log l

√√√√√ Nl+1∑
k=Nl+1

a2k,

and with |
⋃
J⊂I J | ≥

1
2 |I|.

Finally, adding the estimates from all of the above generations, we have

Nl+l1∑
k=Nl+1

akf(nkx+ ck)+ · · ·+
Nl+lb c∑

k=Nl+lb c−1
akf(nkx+ ck)+

Nl+1∑
k=Nl+lb c+1

akf(nkx+ ck)

>

[⌊
µ log l

1 + ε

⌋
δ − C√µKNl+1√

µ log l
− C
√
ε+KNl+1√

log l

]√√√√√ Nl+1∑
k=Nl+1

a2k

on a subcollection {J} of dyadic subcubes of Q with∣∣∣Q ∩⋃ J
∣∣∣ > |Q|

2
δb

µ log l
1+ε

c ≥ |Q|
2
δ
µ log l
1+ε =

|Q|
2
e(log δ)

µ log l
1+ε =

|Q|
2
l
µ log δ
1+ε ≥ |Q|

2l
,

where the latter inequality holds if µ is chosen sufficiently small. We remark
that neither δ nor ε depend on µ, so this is possible.

We may also assume that l is large enough so that

(3.15)

⌊
µ log l

1 + ε

⌋/(µ log l

1 + ε

)
>

1

1 + ε
.
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Thus, on the subcubes J, if l is sufficiently large, we can estimate

Nl+1∑
k=Nl+1

akf(nkx+ ck)

>

[⌊
µ log l

1 + ε

⌋
δ − C√µKNl+1√

µ log l
− C
√
ε+KNl+1√

log l

]√√√√√ Nl+1∑
k=Nl+1

a2k

≥
[

1

1 + ε

µ log l

1 + ε

δ − C√µKNl+1√
µ log l

− C
√
ε+KNl+1√

log l

]√√√√√ Nl+1∑
k=Nl+1

a2k

> η
√

log l

√√√√√ Nl+1∑
k=Nl+1

a2k,

where η depends only on µ, ε, and δ, but can be taken as a fixed positive
number for all l sufficiently large. Thus, if we let Fl denote the family of
dyadic cubes Q in [0, 1] of sidelength 2−L (recall 2L ≤ nNl < 2L+1) and let

El+1 denote the union of those cubes J of sidelength 2−L̃ (recall 2L̃ ≤ nNl+1

< 2L̃) found in all of theQ using the above argument, then, for large enough l
(depending only on ε and M), the hypotheses of Lemma 2.10 are satisfied
so that there exists η > 0 such that for a.e. x there exists a subsequence of
{Nl}∞l=1 (depending on x) such that for each l in this subsequence we have∑Nl+1

k=Nl+1 akf(nkx+ ck)√
(log l)

∑Nl+1

k=Nl+1 a
2
k

> η.

For such an x, by (3.4), and again assuming that 1− ε− 1/M > 1/2, for an
infinite subsequence of the Nl we have∑Nl+1

k=Nl+1 akf(nkx+ ck)√
(log l)

∑Nl+1

k=1 a2k

>
η√
2
.

By (3.1),

log logA2
Nl+1

≤ log
(
(l + 1) logM − log(1− ε)

)
≤ 2 log l,

the latter inequality holding for l sufficiently large. Consequently,∑Nl+1

k=1 akf(nkx+ ck)−
∑Nl

k=1 akf(nkx+ ck)√∑Nl+1

k=1 a2k log log
∑Nl+1

k=1 a2k

≥ η

2
.
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But from (3.3) for a.e. x we have∑Nl+1

k=1 akf(nkx+ ck)√∑Nl+1
k=1 a2k log log

∑Nl+1
k=1 a2k

≤

√
1 + ε

cM(1− ε)

for all sufficiently large l (depending on x).

Hence for a.e. x there is an infinite subsequence of sufficiently large l so
that, ∑Nl+1

k=1 akf(nkx+ ck)√∑Nl+1

k=1 a2k log log
∑Nl+1

k=1 a2k

≥ η

2
−

√
1 + ε

cM(1− ε)
.

Thus, for a.e. x we have

lim sup
n→∞

∑n
k=1 akf(nkx+ ck)√∑n
k=1 a

2
k log log

∑n
k=1 a

2
k

≥ η

2
−

√
1 + ε

cM(1− ε)
.

We can let M ↗∞, and obtain the desired result.

4. Recurrence for partial sums. For x ∈ [0, 1]n, consider the par-

tial sums sN (x) =
∑N

k=1 akf(nk + ck). As a corollary, we show that with
an additional hypothesis, for a.e. x, the seqeunce {sN (x)} is dense in R;
in other words, this sequence visits every neighborhood of every real num-
ber infinitely often. This is a generalization of the same result for lacunary
trigonometric series due to Grubb and Moore [GM].

Corollary 4.1. Set sN (x) =
∑N

k=1 akf(nk + ck) where f, ak, nk, and
ck are as in the statement of Theorem 1.4. Suppose also that there exists
a constant M such that |ak| ≤ M for every k. Then for a.e. x ∈ [0, 1]n,
{sN (x)} is dense in R.

The proof follows that of [GM] although with enough differences to jus-
tify including it here. We first need a variation of a lemma from [GM].

Lemma 4.2. Suppose that two sequences of sets EN and FN contained
in [0, 1]n have the following property: There exists a constant c > 0 and a
sequence δN > 0 converging to 0 such that for every x ∈ EN there is a cube
QN of sidelength δN containing x with |QN ∩FN | > c|QN |. Suppose that for
a.e. x ∈ [0, 1]n, x ∈ EN infinitely often. Then for a.e. x ∈ [0, 1]n, x ∈ FN
infinitely often.

Proof. If we assume the contrary, then there exists a set A ⊂ [0, 1]n with
|A| > 0 and a K such that A ∩

⋃∞
N=K FN is empty. Almost all points of A

are points of density of A, so we can pick a point x which is both a point
of density of A and in infinitely many EN . But then, for each such N ≥ K
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and QN that contains x, we have |QN ∩A| ≤ |QN ∩F cN | so that as δN → 0,
|QN ∩ F cN |/|QN | ≥ |QN ∩A|/|QN | → 1, which contradicts the hypothesis.

Proof of Corollary 4.1. Let a ∈ R and let ε > 0. As an immediate
consequence of the theorem, sup sN (x) = ∞ and inf sN (x) = −∞. Thus,
a.e. x ∈ [0, 1]n is in an infinite number of the sets

EN = {x ∈ [0, 1]n : sN (x) ≥ a and sN+1(x) < a}.
We will establish the conditions of the lemma with the sets

FN = {x ∈ [0, 1]n : |sN (x)− a| < ε or |sN+1(x)− a| < ε}.
Let x ∈ EN . Let QN be the cube containing x of the form QN = QN+1,m =

1
nN+1

Qm − 1
nN+1

cN+1, where Qm ∈ F0 (as in the proof of Lemma 2.3). We

first note that if z, y ∈ QN with |z − y| ≤ c/nN+1 then by Lemma 2.2(2),

(4.1) |sN (z)− sN (y)| ≤
N∑
k=1

|ak| |f(nkz + ck)− f(nky + ck)|

≤M
N∑
k=1

ω

(
cnk
nN+1

)
≤M max

{
1

log 2
,

1

log q

} 2c/q�

0

ω(δ)

δ
dδ < ε,

where the last inequality holds if c is sufficiently small. Also

(4.2) |sN+1(z)− sN+1(y)| ≤
N+1∑
k=1

|ak| |f(nkz + ck)− f(nky + ck)|

≤M
N+1∑
k=1

ω

(
cnk
nN+1

)
≤M max

{
1

log 2
,

1

log q

} 2c/q�

0

ω(δ)

δ
dδ +Mω(c) < ε,

where again, the last inequality holds if c is chosen sufficiently small. Fix
c > 0 so that (4.1) and (4.2) hold. Since sN (x) > a, there are two cases.

Case I: sN (x0) = a for some x0 in QN . Then by (4.1) there exists a ball
B of radius c/nN+1 centered at x0 such that B ⊂ FN . At least 1/2n of this
ball is in QN . Therefore, |FN ∩QN | > (1/2n)|B| = c|QN |.

Case II: sN (x) > a on QN . Since x ∈ EN , we have sN+1(x) < a. But
sN+1(x) = sN (x)+aN+1f(nN+1x+cN+1), and

	
QN

f(nN+1x+cN+1) dx = 0,

so there exists an x1 ∈ QN such that f(nN+1x1 + cN+1) = 0. Consequently,
sN+1(x1) = sN (x1) > a, so there exists an x0 ∈ QN such that sN+1(x0) = a.
By (4.2) there exists a ball B of radius c/nN+1 centered at x0 such that
B ⊂ FN . At least 1/2n of this ball is in QN . Again, we have |FN ∩ QN | >
(1/2n)|B| = c|QN |.

Applying the lemma, we see that for a.e. x ∈ [0, 1]n, |sN (x) − a| < ε
infinitely often. By considering all a rational and a countable sequence of
ε→ 0, the corollary follows.
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[K] A. Khintchine, Über einen Satz der Wahrscheinlichkeitsrechnung, Fund. Math.
6 (1924), 9–20.
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