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Spectral and homological properties
of Hilbert modules over the disc algebra

by

Raphaël Clouâtre (Waterloo)

Abstract. We study general Hilbert modules over the disc algebra and exhibit nec-
essary spectral conditions for the vanishing of certain associated extension groups. In
particular, this sheds some light on the problem of identifying the projective Hilbert mod-
ules. Part of our work also addresses the classical derivation problem.

1. Introduction. This paper is concerned with polynomially bounded
operators and some of their spectral properties. Recall that a bounded linear
operator T acting on some Hilbert spaceH is said to be polynomially bounded
if there exists a constant C > 0 such that for every polynomial p, we have

‖p(T )‖ ≤ C‖p‖∞ where ‖p‖∞ = sup
|z|<1
|p(z)|.

This inequality allows one to extend continuously the polynomial functional
calculus p 7→ p(T ) to all functions f in the disc algebra A(D), which consists
of the holomorphic functions on D that are continuous on D (throughout
the paper D denotes the open unit disc and T denotes the unit circle). The
point of view we adopt is that of Douglas and Paulsen (see [13]) where these
operators are studied as modules over the disc algebra: the map

A(D)×H → H, (f, h) 7→ f(T )h,

gives rise to a module structure on H, and we say that (H, T ) is a Hilbert
module. We only deal with modules over A(D) in this paper, so no confu-
sion may arise regarding the underlying function algebra, and we usually
do not mention it explicitly. Moreover, when the underlying Hilbert space
is understood, we slightly abuse terminology and say that T is a Hilbert
module. Using these notions, the authors of [13] reformulated several inter-
esting operator-theoretic questions in the language of module theory, and
in doing so suggested the use of cohomological methods. Accordingly, we
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phrase most of our results using extension groups of Hilbert modules, and
thus we start by briefly reviewing the definition of these groups.

Given two Hilbert modules (H1, T1) and (H2, T2), the extension group

Ext1A(D)(T2, T1)

consists of equivalence classes of exact sequences

0→ H1 → K → H2 → 0

where K is another Hilbert module and each map is a module morphism.
Rather than formally defining the equivalence relation and the group oper-
ation, we simply use the following characterization from [5].

Theorem 1.1. Let (H1, T1) and (H2, T2) be Hilbert modules. Then the
group Ext1A(D)(T2, T1) is isomorphic to A/J , where A is the space of oper-
ators X : H2 → H1 for which the operator(

T1 X

0 T2

)
is polynomially bounded, and J is the space of operators of the form T1L−
LT2 for some bounded operator L : H2 → H1.

If the operator X : H2 → H1 belongs to the space A, we denote by [X]
its equivalence class in

A/J = Ext1A(D)(T2, T1).

It is well-known that given [X] ∈ Ext1A(D)(T2, T1), we have [X] = 0 if and
only if the operator (

T1 X

0 T2

)
is similar to T1 ⊕ T2. Moreover, extension groups are invariant under sim-
ilarity, so if (H′1, T ′1) and (H′2, T ′2) are Hilbert modules which are similar
to (H1, T1) and (H2, T2) respectively, then the groups Ext1A(D)(T2, T1) and

Ext1A(D)(T
′
2, T

′
1) are isomorphic. A Hilbert module (H2, T2) is said to be pro-

jective if

Ext1A(D)(T2, T1) = 0

for every Hilbert module (H1, T1). It is easy to verify using Theorem 1.1
that the map [X] 7→ [X∗] establishes an isomorphism between the groups
Ext1A(D)(T2, T1) and Ext1A(D)(T

∗
1 , T

∗
2 ), so T2 is projective if and only if

Ext1A(D)(T1, T
∗
2 ) = 0

for every Hilbert module (H1, T1).
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Because of their connection with commutant lifting properties, those
Hilbert modules which are projective are of special interest from the point
of view of operator theory. In fact, an important question is whether or
not the projectivity of a module can be detected from its basic operator-
theoretic properties. This problem attracted a lot of interest (see [5]–[10],
[12], [14]–[16] for partial results), but to this day the complete picture is still
unclear and the full answer unknown.

Most of the main results about projective modules over the disc algebra
focus on the case where the said modules are assumed to be similar to a
contraction. The only known instance of a projective Hilbert module is when
the underlying operator is (similar to) a unitary (see [7]). On the other hand,
Ferguson showed in [15] that any module which is projective and similar to
a contraction must in fact be similar to an isometry. Of course, this does not
tell the whole story, as it is known that there exist polynomially bounded
operators that are not similar to a contraction (see [18]) and thus Hilbert
modules that are not similar to a contractive module.

Our aim is to exhibit necessary conditions for a general Hilbert module
(H, T ) to be projective. Our main results in this direction say that for such
a module, the left spectrum σl(T ) must be contained in the unit circle.
This fact can be recovered from Ferguson’s result for contractive Hilbert
modules, but again the point here is that we do not assume that the module
T is similar to a contraction. Furthermore, we obtain those restrictions on
the spectrum of the operator T under a variety of assumptions which are
formally weaker than projectivity. More precisely, we prove the following in
Section 2.

Theorem 1.2. Let λ ∈ D, let (H, T ) be a Hilbert module and let P be
the orthogonal projection of H onto ker(T − λ). If ker(T − λ) 6= 0, then

Ext1A(D)(T, (I − P )T ∗(I − P )) 6= 0.

Theorem 1.3. Let λ ∈ D and let (H, T ) be a Hilbert module. Then

Ext1A(D)(T, λ) = 0 if and only if λ /∈ σl(T ).

A notion related to the study of extension groups is that of a derivation
of the disc algebra. Recall that given a Hilbert module (H, T ), a bounded
linear map

δ : A(D)→ B(H)

is called a derivation if it satisfies

δ(fg) = f(T )δ(g) + δ(f)g(T )

for all f, g ∈ A(D). A derivation is inner if there exists ∆ ∈ B(H) such that

δ(f) = f(T )∆−∆f(T )
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for every f ∈ A(D). The connection between derivations and extension
groups is realized as follows. Let X ∈ B(H) and set

R =

(
T X

0 T

)
.

For every polynomial p, we have

p(R) =

(
p(T ) δX(p)

0 p(T )

)
for some operator δX(p). Then, the operator R is polynomially bounded if
and only if the map p 7→ δX(p) extends to a derivation on A(D). Moreover,
[X] = 0 in Ext1A(D)(T, T ) if and only if δX is an inner derivation.

It is an interesting and non-trivial issue to determine the modules T
for which every derivation is inner, or equivalently for which the group
Ext1A(D)(T, T ) is trivial. In relation to this problem, in Section 3 we investi-

gate the condition Ext1A(D)(T, T ) = 0 and its consequences on the operator T ,
and establish the following theorem.

Theorem 1.4. Let (H, T ) be a Hilbert module such that H is infinite-
dimensional and

Ext1A(D)(T, T ) = 0.

Then the subspaces kerT and kerT ∗ are orthogonal, and the subspaces

{h ∈ H	 kerT : Th ∈ H	 kerT}
and

{h ∈ H	 kerT ∗ : T ∗h ∈ H	 kerT ∗}
are infinite-dimensional.

A natural strengthening of this result would read as follows: if

Ext1A(D)(T, T ) = 0

then T has no eigenvalues inside the unit disc. We verify this in the special
cases of normal operators in Section 3 (Theorem 3.3), and of matrices and
C0 contractions in Section 4 (Lemma 4.3 and Theorem 4.6 respectively).

2. Spectral properties and the vanishing of extension groups. Let
(H, T ) be a Hilbert module. Since the powers of T are uniformly bounded,
it is a trivial consequence of the spectral radius formula that σ(T ) ⊂ D. The
aim of this section is to investigate the relation between the spectrum of T
and the vanishing of the group Ext1A(D)(T,X) where X is some fixed module.

Recall now that the left (respectively right) spectrum of an element a in
a unital Banach algebra is the set of complex numbers λ with the property
that a−λ is not left (respectively right) invertible. These sets are denoted by
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σl(a) and σr(a) respectively. If we are dealing with a bounded operator T on
some Banach space, then it is well-known that σl(T ) coincides with the set
of complex numbers λ such that T − λI is not bounded below, while σr(T )
coincides with the set of complex numbers λ with T − λI not surjective.

We first reformulate a result of [11] which yields a sufficient spectral
condition for the vanishing of an extension group.

Theorem 2.1. Let (H1, T1) and (H2, T2) be Hilbert modules. If the sets
σl(T2) and σr(T1) are disjoint, then

Ext1A(D)(T2, T1) = 0.

Proof. It follows at once from Theorem 5 of [11] that the map

B(H2,H1)→ B(H2,H1), L 7→ T1L− LT2,
is surjective under our assumption. The conclusion is then an immediate
consequence of Theorem 1.1.

Before giving an easy consequence of Theorem 2.1, we need some nota-
tion. Let E be a separable Hilbert space and let H2(E) be the Hardy space
of (weakly) holomorphic E-valued functions on the unit disc with square
summable Taylor coefficients at the origin. Let S = SE be the unilateral
shift on H2(E) which acts by multiplication by the variable.

Corollary 2.2. Let (H, T ) be a Hilbert module such that σ(T ) ⊂ D.
Then Ext1A(D)(SE , T ) = 0.

Proof. This follows immediately from Theorem 2.1 and from the classical
fact that the left spectrum of the unitaleral shift is the unit circle T.

This result contrasts nicely with a result of Carlson and Clark [7, Corol-
lary 3.4] which says that if σ(T ) ⊂ D, then the group Ext1A(D)(T, S) is
isomorphic to H, where S denotes the shift of multiplicity one.

The remainder of the section is devoted to finding conditions on the spec-
trum of a module that are necessary for the vanishing of certain extension
groups. We first need an auxiliary result which will simplify some proofs.
For λ ∈ D, we set

ϕλ(z) =
z − λ
1− λz

.

If (H, T ) is a Hilbert module, then the operator ϕλ(T ) is bounded since
σ(T ) ⊂ D, as was observed at the beginning of the section.

Lemma 2.3. Let (H1, T1) and (H2, T2) be Hilbert modules such that

Ext1A(D)(T2, T1) = 0.

Then

Ext1A(D)(ϕλ(T2), ϕλ(T1)) = 0 for every λ ∈ D.
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Proof. Assume that the operator

R =

(
ϕλ(T1) X

0 ϕλ(T2)

)
is polynomially bounded, so that there exists a constant C > 0 such that

‖f(R)‖ ≤ C‖f‖∞
for every f ∈ A(D). Using the fact that ϕ−λ ◦ϕλ(z) = z for every z ∈ D, we
find

ϕ−λ(R) =

(
T1 Y

0 T2

)
for some operator Y . But since ϕ−λ is an automorphism of the unit disc, we
see that ϕ−λ(R) is also polynomially bounded. Indeed, if f ∈ A(D) then

‖f(ϕ−λ(R))‖ = ‖(f ◦ ϕ−λ)(R)‖ ≤ C‖f ◦ ϕ−λ‖∞ = C‖f‖∞.

Now, Ext1A(D)(T2, T1) is assumed to be trivial, so there exists an invertible
operator W with the property that

Wϕ−λ(R)W−1 = T1 ⊕ T2,
whence

WRW−1 = ϕλ(T1)⊕ ϕλ(T2)

and the element [X] is trivial in Ext1A(D)(ϕλ(T2), ϕλ(T1)).

Another preliminary lemma is required. Its proof can be found in [10].

Lemma 2.4. Let (H1, T1) and (H2, T2) be Hilbert modules. Let X :
H2 → H1 be a bounded operator such that TN1 XT

N
2 = 0 for some inte-

ger N ≥ 0. Then the operator R : H1⊕H2 → H1⊕H2 defined as

R =

(
T1 X

0 T2

)
is polynomially bounded.

We now come to the first main result of this section.

Theorem 2.5. Let λ ∈ D, let (H, T ) be a Hilbert module and let P be
the orthogonal projection of H onto ker(T − λ). If ker(T − λ) 6= 0, then

Ext1A(D)(T, (I − P )T ∗(I − P )) 6= 0.

Proof. Let

Tλ = (I − P )ϕλ(T )(I − P ).

Since kerϕλ(T ) is clearly invariant for T we have

(1) Tλ = ϕλ((I − P )T (I − P )).
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Moreover,
f(Tλ) = (I − P )(f ◦ ϕλ)(T )(I − P )

for every f ∈ A(D) and thus Tλ is polynomially bounded. The operator

R =

(
ϕλ(T ∗) P

0 Tλ

)
acting on H⊕H is also seen to be polynomially bounded in view of Lemma
2.4 and of the fact that PTλ = 0.

We now proceed to show that [P ] gives rise to a non-trivial element of
Ext1A(D)(Tλ, ϕλ(T ∗)). Assume on the contrary that there exists L ∈ B(H)
such that

P = ϕλ(T ∗)L− LTλ.
Note that TλP = 0 and

Pϕλ(T ∗) = ((ϕλ(T ∗))∗P )∗ = (ϕλ(T )P )∗ = 0,

hence

P = P 3 = P (ϕλ(T ∗)L− LTλ)P = 0,

which is equivalent to ker(T − λ) being trivial, contrary to assumption.
Therefore,

Ext1A(D)(Tλ, ϕλ(T ∗)) 6= 0.

Note now that equation (1) implies that

Ext1A(D)(ϕλ((I − P )T (I − P )), ϕλ(T ∗)) = Ext1A(D)(Tλ, ϕλ(T ∗)) 6= 0.

Lemma 2.3 therefore guarantees that

Ext1A(D)((I − P )T (I − P ), T ∗) 6= 0,

which is equivalent to

Ext1A(D)(T, (I − P )T ∗(I − P )) 6= 0

and the proof is complete.

Notice that this theorem offers a simple necessary condition for a Hilbert
module (H, T ) to be projective, namely that the point spectrum σp(T ) (the
set of eigenvalues of T ) be contained in the unit circle T. The following is
the second main result of this section.

Theorem 2.6. Let λ ∈ D and let (H, T ) be a Hilbert module. Then

Ext1A(D)(T, λ) = 0 if and only if λ 6∈ σl(T ).

Proof. Assume that Ext1A(D)(T, λ) = 0. The operator

R =

(
0 I

0 ϕλ(T )

)
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acting on H⊕H is easily seen to be polynomially bounded by virtue of
Lemma 2.4. Now, Lemma 2.3 implies that

Ext1A(D)(ϕλ(T ), 0) = 0

and thus we can find L ∈ B(H) such that I = −Lϕλ(T ). Consequently,

T − λ = ϕλ(T )(1− λT )

is left invertible and λ /∈ σl(T ). The converse statement follows immediately
from Theorem 2.1.

This theorem shows in particular that in order for a Hilbert module
(H, T ) to be projective, it must satisfy σp(T ) ⊂ σl(T ) ⊂ T. Now, the reader
might wonder about the relevance of Theorem 2.5 in view of the correspond-
ing statement in Theorem 2.6: the latter is much simpler to prove and has
a more satisfactory conclusion than the former, while the assumption might
not look stronger. However, the assumption that

Ext1A(D)(T, λ) = 0

is indeed quite strong, and we proceed to illustrate why. The following propo-
sition will be needed later as well.

Proposition 2.7. Let T1 ∈ B(H1) and T2 ∈ B(H2) be Hilbert modules
and assume that ‖T1‖ < 1. Then the operator

R =

(
T1 X

0 T2

)
is polynomially bounded for every bounded operator X : H2 → H1.

Proof. Let p(z) =
∑d

k=0 akz
k. Then a quick calculation shows that

p(R) =

(
p(T1) δX(p)

0 p(T2)

)
where

δX(p) =
d∑

k=1

ak

k−1∑
j=0

T j1XT
k−1−j
2 .

Since T1 and T2 are polynomially bounded by assumption, to establish that
R is also polynomially bounded we need to show that that there exists a
constant C > 0 independent of p such that ‖δX(p)‖ ≤ C‖p‖∞. We see that

δX(p) =

d∑
k=1

ak

k−1∑
j=0

T j1XT
k−1−j
2 =

d−1∑
j=0

T j1X
( d∑
k=j+1

akT
k−1−j
2

)
=

d−1∑
j=0

T j1XΠj(T2)



Hilbert modules over the disc algebra 271

where

Πj(z) =

d∑
k=j+1

akz
k−1−j for every 0 ≤ j ≤ d− 1.

We denote by D : A(D)→ A(D) the difference quotient operator defined
as

Df(z) =
f(z)− f(0)

z
for every f ∈ A(D).

It is well-known that there exists a constant M > 0 such that

‖Dn‖ ≤M(1 + log n) for every n ≥ 1,

but we sketch the argument for the convenience of the reader.

Given f ∈ A(D), one verifies inductively that

Dnf =
1

zn

(
f(z)−

n−1∑
k=0

f (k)(0)

k!
zk
)

for every n ≥ 1,

whence

‖Dnf‖∞ =

∥∥∥∥f(z)−
n−1∑
k=0

f (k)(0)

k!
zk
∥∥∥∥
∞
.

On the other hand, for every θ ∈ R we see that

n−1∑
k=0

f (k)(0)

k!
eikθ =

1

2π

2π�

0

f(eit)
( n−1∑
k=−(n−1)

e−ikteikθ
)
dt

=
1

2π

2π�

0

f(eit)Dn−1(θ − t) dt

where

Dn(t) =

n∑
k=−n

eikt

is the Dirichlet kernel. Therefore,

‖Dnf‖∞ ≤ (1 + ‖Dn−1‖1)‖f‖∞
for every n ≥ 1. It is a classical fact that ‖Dn‖1 is comparable to log n as
n→∞, so there exists a constant M > 0 such that

‖Dn‖ ≤M(1 + log n) for every n ≥ 1.

Back to the problem at hand, we know that there exists a constant
C2 > 0 such that

‖f(T2)‖ ≤ C2‖f‖∞ for every f ∈ A(D).
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Using Πj = Dj+1p for every 0 ≤ j ≤ d− 1, we find

‖δX(p)‖ ≤
d−1∑
j=0

‖T1‖j‖X‖ ‖Πj(T2)‖ ≤ C2

d−1∑
j=0

‖T1‖j‖X‖ ‖Dj+1p‖∞

≤
(d−1∑
j=0

(1 + log(j + 1))‖T1‖j
)
C2M‖X‖ ‖p‖∞

≤
( ∞∑
j=0

(1 + log(j + 1))‖T1‖j
)
C2M‖X‖ ‖p‖∞

and we are done since the series
∑∞

j=0(1 + log(j+ 1))‖T1‖j is convergent by
assumption.

We wish to mention that the general philosophy behind the calculations
above can be extracted from the proof of Lemma 2.3 in [17].

Going back to the discussion started before the proposition, let (H, T )
be a Hilbert module and λ ∈ D. If we write

Ext1A(D)(T, λ) = A/J

as in Theorem 1.1, then we see that A is very large. Indeed, it is as large as
possible since by Proposition 2.7 it coincides with B(H). Thus, the vanishing
of the quotient A/J is a rather strong condition. Moreover, the correspond-
ing space A for

Ext1A(D)(T, (I − P )T ∗(I − P ))

(see Theorem 2.5) is not as large a priori and thus the vanishing of that
extension group appears to be a weaker condition. We feel this provides
some intuition as to why the assumption of Theorem 2.6 may indeed be
stronger than that of Theorem 2.5, and that it explains in part the difference
in strength of their conclusions.

3. The derivation problem: a structure theorem. The rest of
the paper is devoted to the study of Hilbert modules (H, T ) for which
Ext1A(D)(T, T ) = 0. As was mentioned in the introduction, this is directly
related to the derivation problem, and in fact this is one of the motivations
for our investigation. First, we prove a structure theorem for such Hilbert
modules. We focus here on the case where H is infinite-dimensional. The
easier finite-dimensional case is fully solved later on in Lemma 4.3.

Theorem 3.1. Let (H, T ) be a Hilbert module such that H is infinite-
dimensional and

Ext1A(D)(T, T ) = 0.
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Then the subspaces kerT and kerT ∗ are orthogonal, and the subspaces

{h ∈ H	 kerT : Th ∈ H	 kerT}
and

{h ∈ H	 kerT ∗ : T ∗h ∈ H	 kerT ∗}
are infinite-dimensional.

Proof. Throughout the proof, we may assume without loss of generality
that both kerT and kerT ∗ are non-trivial. We write H = kerT⊕(H	 kerT )
and with respect to this decomposition of the space we have

T =

(
0 X

0 Y

)
.

Let

P = PkerT =

(
I 0

0 0

)
be the orthogonal projection of H onto kerT and consider the operator

R =

(
T P

0 T

)
which acts on H⊕H. Using Lemma 2.4 and the fact that TP = 0, we see
that R is polynomially bounded. By assumption, there exists L ∈ B(H)
such that P = TL− LT . If we write

L =

(
L11 L12

L21 L22

)
,

then we find

(2)

(
I 0

0 0

)
=

(
XL21 XL22 − L11X − L12Y

Y L21 Y L22 − L22Y − L21X

)
.

In particular, there must exist a bounded linear operator

L21 : kerT → H	 kerT

satisfying

XL21 = I,(3)

Y L21 = 0.(4)

A consequence of (3) is that X is surjective, or X∗ is bounded below. Taking
adjoints in (3) and (4) we find that

L∗21X
∗ = I,(5)

L∗21Y
∗ = 0.(6)
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Choose h ∈ X∗ kerT ∩ Y ∗(H	 kerT ). Then

h = lim
n→∞

X∗vn = lim
n→∞

Y ∗wn

for some sequences {vn}n ⊂ kerT and {wn}n ⊂ H	 kerT . From (5) and (6)
we get

L∗21h = lim
n→∞

vn = 0,

so that h = 0. This shows that

X∗ kerT ∩ Y ∗(H	 kerT ) = {0}.
Now, a vector h = h1 ⊕ h2 ∈ kerT ⊕ (H	 kerT ) lies in kerT ∗ if and only if

X∗h1 = −Y ∗h2 ∈ X∗ kerT ∩ Y ∗(H	 kerT ).

Since this intersection was already found to be zero, we see that h1 ∈ kerX∗

and h2 ∈ kerY ∗. But X∗ is bounded below, whence h1 = 0 and therefore

kerT ∗ = 0⊕ kerY ∗ ⊂ H	 kerT,

which establishes the first statement.

We now turn to the proof of the second statement. Notice that in view
of (3) the operator

L21X : H	 kerT → H	 kerT

is a non-zero idempotent, which we denote henceforth by E. With respect
to the decomposition

H	 kerT = ranE ⊕ (ranE)⊥,

where ranE denotes the range of E, we can write

E =

(
I F

0 0

)
.

If we consider the invertible operator

W =

(
I F

0 I

)
then we have

WEW−1 =

(
I 0

0 0

)
.

Now, using (2) we see that

Y L22 − L22Y = E.

Since H is infinite-dimensional, by a classical theorem of Wintner [23] we
know that E cannot be written as the sum of a non-zero scalar multiple
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of the identity and a compact operator. The same is necessarily true for
WEW−1, whence the orthogonal projection onto

ker(WEW−1) = W kerE = W kerX

cannot be compact. In other words,

kerX = {h ∈ H	 kerT : Th ∈ H	 kerT}
is infinite-dimensional. We can apply the same argument to T ∗ to conclude
that

{h ∈ H	 kerT ∗ : T ∗h ∈ H	 kerT ∗}
is also infinite-dimensional, which finishes the proof.

We make a few comments about this result. By Lemma 2.3, we may
replace T by ϕλ(T ) everywhere in the statement of Theorem 3.1 and thus
obtain information about ker(T − λ) and ker(T ∗ − λ) for each λ ∈ D. In-
terestingly, the theorem provides evidence that the spaces ker(T − λ) and
ker(T ∗−λ) cannot be too large under the condition Ext1A(D)(T, T ) = 0. While
we do not know at the moment whether or not these spaces must be trivial
in general, the following conjecture seems natural: if Ext1A(D)(T, T ) = 0, then
T has no eigenvalues inside the unit disc.

Next, we consider a special class of operators and prove a weaker
version of this conjecture for them. We restrict our attention to the so-
called D-symmetric operators which were introduced and studied in [1], [19]
and [21]. Recall that an operator T ∈B(H) is said to be D-symmetric if

{TL− LT : L ∈ B(H)} = {T ∗L− LT ∗ : L ∈ B(H)}.
It was proved in [1] that the class of D-symmetric operators includes all
normal operators and isometries.

Theorem 3.2. Let (H, T ) be a Hilbert module satisfying Ext1A(D)(T, T )
= 0. If T is D-symmetric, then one of the spaces kerT and kerT ∗ is trivial.

Proof. Assume that we can find unit vectors f ∈ kerT and g ∈ kerT ∗,
and define V ∈ B(H) as V x = 〈x, g〉f for every x ∈ H. Consider the operator

R =

(
T V

0 T

)
,

which is polynomially bounded by virtue of Lemma 2.4 since TV = 0. Notice
now that for every L ∈ B(H) we have

〈(T ∗L− LT ∗)g, f〉 = 0

by choice of f and g, while 〈V g, f〉 = 1. Thus, V lies outside the set

{T ∗L− LT ∗ : L ∈ B(H)}.
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Since T is assumed to be D-symmetric, this set coincides with

{TL− LT : L ∈ B(H)},

and therefore V cannot be written as TL−LT for some L ∈ B(H), whence
[V ] is a non-trivial element in Ext1A(D)(T, T ).

Note that the trick used in the proof above to construct the operator V
lying outside the set

{T ∗L− LT ∗ : L ∈ B(H)}

is due to Stampfli [20]. We close this section by specializing even further and
verifying the full conjecture for normal operators.

Theorem 3.3. Let (H, T ) be a Hilbert module such that T is normal.
Then T is unitary if and only if Ext1A(D)(T, T ) = 0.

Proof. If T is unitary then the module (H, T ) is projective by Theorem
4.1 of [7], so in particular Ext1A(D)(T, T ) = 0.

Conversely, assume that this extension group vanishes. If λ ∈ σ(T ) ∩ D,
then via the spectral theorem for normal operators we can find a non-zero
reducing subspace M ⊂ H for T such that ‖T |M‖ < 1. With respect to the
decomposition H = M ⊕M⊥, we have T = T |M ⊕ T |M⊥. Consider the
operator X = I ⊕ 0. It is easy to verify that the operator

R =

(
T X

0 T

)
is unitarily equivalent to(

T |M I

0 T |M

)
⊕
(
T |M⊥ 0

0 T |M⊥

)
.

Using Proposition 2.7, we see that R is polynomially bounded and thus

[X] ∈ Ext1A(D)(T, T ).

Since we assume that this extension group is zero, we can write

I ⊕ 0 = X = TL− LT

for some L ∈ B(H). A straightforward calculation shows that this implies

I = (T |M)L′ − L′(T |M)

for some operator L′ : M → M , which is impossible since the identity is
well-known not to be a commutator (see [23]). This contradiction shows that
σ(T ) ⊂ T, and thus the normal operator T is actually unitary.
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4. Contractions of class C0. In this final section, we verify the con-
jecture made in Section 3 for another special class of operators: the C0

contractions. We start with some background (see [2] or [22] for greater
detail).

Let H∞ be the algebra of bounded holomorphic functions on the open
unit disc. A completely non-unitary contraction T ∈ B(H) is said to be
of class C0 if the associated Sz.-Nagy–Foiaş H∞ functional calculus has
non-trivial kernel. It is known in that case that

{u ∈ H∞ : u(T ) = 0} = θH∞

for some inner function θ, called the minimal function of T , which is uniquely
determined up to a scalar factor of absolute value one. Moreover, we have

σp(T ) = σ(T ) ∩ D,
and this set coincides with the set of zeros of θ on D.

For any inner function θ ∈ H∞, the space H(θ) = H2 	 θH2 is closed
and invariant for S∗, the adjoint of the shift operator S on H2. The operator
S(θ) defined by S(θ)∗ = S∗|(H2	θH2) is called a Jordan block ; it is of class
C0 with minimal function θ. We record a well-known elementary property
of these operators.

Lemma 4.1. Let θ1, θ2 ∈ H∞ be inner functions such that θ1H
∞ +

θ2H
∞ = H∞. Then S(θ1θ2) is similar to S(θ1)⊕ S(θ2).

A more general family of operators consists of the so-called Jordan op-
erators. Start with a collection Θ = {θα}α of inner functions indexed by the
ordinal numbers such that θα = 1 for α large enough, and θβ divides θα
whenever card(β) ≥ card(α) (recall that a function u ∈ H∞ divides another
function v ∈ H∞ if v = uf for some f ∈ H∞). Let γ be the first ordinal
such that θγ = 1. Then the associated Jordan operator is JΘ =

⊕
α<γ S(θα).

Jordan operators are of fundamental importance in the study of opera-
tors of class C0, as the following theorem from [3] illustrates. Recall here that
an injective bounded linear operator with dense range is called a quasiaffin-
ity. Two operators T ∈ B(H) and T ′ ∈ B(H′) are said to be quasisimilar if
there exist quasiaffinities X : H → H′ and Y : H′ → H such that XT = T ′X
and TY = Y T ′.

Theorem 4.2. For any operator T of class C0 there exists a unique
Jordan operator J which is quasisimilar to T .

With these preliminaries out of the way, we return to the problem at
hand. We start with the simple case where the space H is finite-dimensional,
thus complementing Theorem 3.1.

Lemma 4.3. Let (Cn, T ) be a Hilbert module. Then Ext1A(D)(T, T ) = 0 if
and only if T is similar to a unitary.



278 R. Clouâtre

Proof. As before, if T is similar to a unitary then by Theorem 4.1 of [7]
we know that the module (Cn, T ) is projective and thus Ext1A(D)(T, T ) = 0.

Assume conversely that this extension group vanishes. This condition is
invariant under similarity, so we may assume in addition that

T = Jλ1,m1 ⊕ · · · ⊕ Jλd,md

where Jλ,m is the usual m × m Jordan cell with eigenvalue λ. Suppose
that one of the eigenvalues lies inside D. In other words, T = J ⊕ T ′ where
J = Jλ,m for some λ ∈ D and 1 ≤ m ≤ n. Correspondingly, define X = I⊕0.
It is easy to verify that the operator

R =

(
T X

0 T

)
is unitarily equivalent to (

J I

0 J

)
⊕
(
T ′ 0

0 T ′

)
.

Applying a polynomial p to the operator(
J I

0 J

)
yields (

p(J) p′(J)

0 p(J)

)
.

On the other hand, an easy computation shows that

f(J) =



f(λ) f ′(λ) f ′′(λ)/2 . . . f (m−1)(λ)/(m− 1)!

0 f(λ) f ′(λ) . . . f (m−2)(λ)/(m− 2)!

0 0 f(λ) . . . f (m−3)(λ)/(m− 3)!
...

...
. . .

...

0 0 0 · · · f(λ)


for every f ∈ A(D). Since |λ| < 1, the classical Cauchy estimates for deriva-
tives of holomorphic functions imply that the operator(

J I

0 J

)
is polynomially bounded, and thus so is R.

Now, X has non-zero trace and thus cannot be written as TL − LT
for some L ∈ B(Cn). Equivalently, X gives rise to a non-trivial element of
Ext1A(D)(T, T ), which is a contradiction. Thus, σ(T ) ⊂ T. Since a Jordan cell
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Jλ,m is power-bounded only when |λ| < 1 or m = 1, we conclude that every
Jordan cell of T has size one, whence T is diagonalizable and hence similar
to a unitary.

We now tackle the general case where T ∈ B(H) is of class C0. We begin
with an elementary fact.

Lemma 4.4. Let M1,M2 ⊂ H be two closed subspaces with trivial inter-
section such that M1 has finite dimension. Then the operator R : M1⊕M2 →
M1 +M2 defined by R(m1 ⊕m2) = m1 +m2 is bounded and invertible.

Proof. It is clear R is surjective, and it is injective as well since M1∩M2

= {0}. A straightforward estimate shows that R is bounded. Since M1 is
finite-dimensional and M2 is closed, the algebraic sum M1 + M2 is closed
and thus R is invertible.

We need one more preliminary tool. The result is well-known but we
provide a proof for the reader’s convenience.

Lemma 4.5. Let T ∈ B(H) be an operator of class C0 such that λ ∈
σ(T )∩D. Then T is similar to Jλ,n⊕T ′ for some n≥1 and some operator T ′.

Proof. If we denote by θ the minimal function of T and we set as before

ϕλ(z) =
z − λ
1− λz

,

then we can write θ = ϕnλψ where ψ(λ) 6= 0. It is clear that

inf
z∈D
{|ψ(z)|+ |ϕnλ(z)|} > 0,

so by Carleson’s corona theorem (see [4]) we conclude that

ϕnλH
∞ + ψH∞ = H∞.

By Lemma 4.1, S(θ) is similar to S(ϕnλ)⊕S(ψ). Now, if J denotes the Jordan
model of T , then this discussion shows that J is similar to S(ϕnλ) ⊕ J ′ for
some operator J ′, and by Theorem 4.2 we find that T is quasisimilar to
S(ϕnλ)⊕ J ′. If we denote by K = H(ϕnλ)⊕K′ the space on which S(ϕnλ)⊕ J ′
acts, then we can find a quasiaffinity Y : K → H such that

Y (S(ϕnλ)⊕ J ′) = TY.

Let

M1 = Y (H(ϕnλ)⊕ 0) and M2 = Y (0⊕K′).
By Lemma 4.4, the operator R : M1⊕M2 →M1+M2 defined by R(m1⊕m2)
= m1 + m2 is bounded and invertible, and it obviously intertwines T with
T |M1 ⊕ T |M2. Hence, T is similar to T |M1 ⊕ T |M2. But M1 is finite-
dimensional and the minimal polynomial of T |M1 is clearly (z − λ)n, so
we find that T is similar to Jλ,n ⊕ T ′.
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Finally, we come to the main result of this section. Although weaker, it
is reminiscent of both Lemma 4.3 and Theorem 3.3.

Theorem 4.6. Let T ∈ B(H) be an operator of class C0 such that
Ext1A(D)(T, T ) = 0. Then the spectrum of T lies on the unit circle.

Proof. Assume that λ ∈ σ(T ) ∩ D. The condition Ext1A(D)(T, T ) = 0
is invariant under similarity, so by Lemma 4.5 we may assume that T =
Jλ,n ⊕ T ′ for some n ≥ 1 and some operator T ′. By Lemma 4.3, we have

Ext1A(D)(Jλ,n, Jλ,n) 6= 0,

so that there exists an operator X such that(
Jλ,n X

0 Jλ,n

)
is polynomially bounded but

X 6= Jλ,nL− LJλ,n for every L.

Consider now Y = X ⊕ 0 and

R =

(
T Y

0 T

)
.

The operator R is unitarily equivalent to(
Jλ,n X

0 Jλ,n

)
⊕
(
T ′ 0

0 T ′

)
and thus it is polynomially bounded. Suppose now that there exists an
operator A such that

Y = TA−AT.
A straightforward calculation shows that this relation implies

X = Jλ,nA
′ −A′Jλ,n

for some operator A′, which is absurd. Hence, [Y ] yields a non-trivial element
of Ext1A(D)(T, T ).

In conclusion, we remark that the main results obtained in this paper
extend what was already known about the spectrum of contractive projective
modules. Indeed, we mentioned in the introduction that every such module
is (similar to) an isometry, and isometries do not have point spectrum in the
unit disc. This is exactly the type of behavior described in Theorems 2.5,
2.6, 3.1, 3.3 and 4.6. Moreover, we reiterate that our results were obtained
for modules which are not necessarily similar to a contractive one, and under
conditions that are formally weaker than projectivity.
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