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A note on multilinear Muckenhoupt classes
for multiple weights

by

Songqing Chen (Shanghai), Huoxiong Wu (Xiamen) and
Qingying Xue (Beijing)

Abstract. This paper is devoted to investigating the properties of multilinear A~P

conditions and A(~P,q) conditions, which are suitable for the study of multilinear operators
on Lebesgue spaces. Some monotonicity properties of A~P and A(~P,q) classes with respect

to ~P and q are given, although these classes are not in general monotone with respect
to the natural partial order. Equivalent characterizations of multilinear A(~P,q) classes in
terms of the linear Ap classes are established. These results essentially improve and extend
the previous results.

1. Introduction. In the study of the weighted theory of multilinear
Calderón–Zygmund operators, Lerner et al. [LOPTT] introduced multilin-
ear A~P conditions for multiple weights, which are the natural extension to
the multilinear setting of Muckenhoupt’s classes and are the largest classes
of weights for which all m-linear Calderón–Zygmund operators are bounded
on weighted Lebesgue spaces. As the natural generalization of the classi-
cal linear A(p,q) classes, multilinear A(~P ,q) conditions were introduced by

Moen [Mo] and Chen–Xue [CX], in studying the weighted theory of multi-
linear fractional type integral operators. The properties of the multilinear
A~P and A(~P ,q) conditions, and their relations to the classical linear Ap con-

ditions played key roles in establishing multiple weighted norm inequalities
for multilinear Calderón–Zygmund operators, multilinear fractional integral
operators and their commutators (see [LOPTT, Mo, CX, PPTT] etc.).

In this paper, we continue the investigation of the properties of A~P condi-
tions and A(~P ,q) conditions. Unlike linear Ap classes, multilinear A~P classes

are not increasing with respect to the natural partial order. In Section 2, we
will show, however, that A~P classes do have certain monotonicity properties

in terms of ~P . In Section 3, we will establish some equivalent characteriza-
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tions of multilinear A(~P ,q) conditions in terms of classical linear Ap classes,

which improve and extend the corresponding results in [CX, Mo]. As an ap-
plication of these properties, some monotonicity properties of A(~P ,q) classes

are also established.

2. Multilinear A~P conditions. Following the notation in [LOPTT],
for m exponents p1, . . . , pm, we will often write p for the number given by
1/p = 1/p1 + · · ·+ 1/pm, and ~P for the vector ~P = (p1, . . . , pm).

Definition 2.1. Let 1 ≤ p1, . . . , pm <∞, and let p and ~P be as above.
A multiple weight ~w = (w1, . . . , wm) is said to satisfy the multilinear A~P
condition if

(2.1) sup
Q

(
1

|Q|

�

Q

ν~w(x) dx

)1/p m∏
j=1

(
1

|Q|

�

Q

wj(x)1−p
′
j dx

)1/p′j
<∞,

where ν~w =
∏m
j=1w

p/pj
j . When pj = 1, (|Q|−1

	
Qwj(x)1−p

′
j dx)1/p

′
j is under-

stood as (infQwj(x))−1.

Obviously, for m = 1, A~P is the classical Muckenhoupt Ap condition.
For m > 1, Lerner et al. [LOPTT] showed that

(2.2)

m∏
j=1

Apj ( A~P ,

which implies that something more general happens for the A~P classes. In
[LOPTT], the authors also established the following interesting characteri-
zation in term of the classical Ap condition.

Theorem 2.2 (cf. [LOPTT, Theorem 3.6]). Let ~w = (w1, . . . , wm) and
1 ≤ p1, . . . , pm <∞. Then ~w ∈ A~P if and only if

(2.3) ν~w =

m∏
j=1

w
p/pj
j ∈ Amp and w

1−p′j
j ∈ Amp′j , j = 1, . . . ,m,

where the condition w
1−p′j
j ∈ Amp′j in the case pj = 1 is understood as

w
1/m
j ∈ A1.

It should be pointed out that when m = 1, both conditions in (2.3)
represent the same Ap condition, but whenm ≥ 2, none of the two conditions
in (2.3) implies the other (see [LOPTT, Remark 7.1]). This theorem also
shows that as the index m increases, the A~P condition gets weaker.
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On the other hand, it is well-known that the classical Ap classes have
the natural partial order, that is,

(2.4) Aq ( Ap for 1 ≤ q < p ≤ ∞, and Ap =
⋃

1≤q<p
Aq.

The classes A~P are not increasing under the natural partial order (see
[LOPTT, Remark 7.3]), although it is easy to check that A(1,...,1) ⊆ A~P for

each ~P . However, applying the above Theorem 2.2, Lerner et al. [LOPTT]
proved the following result.

Theorem 2.3 (cf. [LOPTT, Lemma 6.1]). Assume that ~w=(w1, . . . , wm)
satisfies the A~P condition. Then there exists a finite constant r > 1 such that
~w ∈ A~P/r.

In this section, we will continue the study of the properties of A~P classes.
We will establish the following results:

Theorem 2.4. Let 1 ≤ p1, . . . , pm < ∞ and p0 = min1≤i≤m pi. Then
the classes Ar ~P are strictly increasing as r increases with r ≥ 1/p0. More
precisely, for 1/p0 ≤ r1 < r2 <∞ we have

(2.5) Ar1 ~P ( Ar2 ~P .

Theorem 2.5. Let 1 < p1, . . . , pm <∞ and p0 = min1≤i≤m pi. Then

(2.6) A~P =
⋃

1/p0≤r<1

Ar ~P .

We will prove only Theorem 2.4, since Theorem 2.5 is an immediate
consequence of Theorems 2.3 and 2.4.

Proof of Theorem 2.4. We consider the following two cases:

Case 1: r1p0 > 1. We first show that Ar1 ~P ⊂ Ar2 ~P . Suppose ~w ∈ Ar1 ~P .
Then(

1

|Q|

�

Q

m∏
j=1

wj(x)r2p/(r2pj) dx

)1/(r2p) m∏
j=1

(
1

|Q|

�

Q

wj(x)1−(r2pj)
′
dx

)1/(r2pj)
′

=

(
1

|Q|

�

Q

m∏
j=1

wj(x)p/pj dx

)1/(r2p) m∏
j=1

(
1

|Q|

�

Q

wj(x)1/(1−r2pj) dx

)(r2pj−1)/(r2pj)

=

[(
1

|Q|

�

Q

m∏
j=1

wj(x)p/pj dx

)1/p m∏
j=1

(
1

|Q|

�

Q

wj(x)1/(1−r2pj) dx

)(r2pj−1)/pj]1/r2
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≤
[(

1

|Q|

�

Q

m∏
j=1

wj(x)p/pj dx

)1/p m∏
j=1

(
1

|Q|

�

Q

wj(x)1/(1−r1pj) dx

)(r1pj−1)/pj]1/r2
≤ [~w]

r1/r2
A

r1
~P
<∞.

Next we prove that Ar1 ~P 6= Ar2 ~P . Set aj = nr1pj − n for j = 1, . . . ,m,

and ~w = (|x|a1 , . . . , |x|am). Then
n(−mr2pj − 1 + r2pj) < 0 < aj < −n+ nr2pj , j = 1, . . . ,m,

−n
p

<

m∑
j=1

aj
pj

< nmr2 −
n

p
.

Hence, 

aj
1− r2pj

∈
(
−n, n

(
mr2pj
r2pj − 1

− 1

))
, j = 1, . . . ,m,

aj
1− r1pj

/∈
(
−n, n

(
mr1pj
r1pj − 1

− 1

))
, j = 1, . . . ,m,

p
m∑
j=1

aj
pj
∈ (−n, n(mr2p− 1)).

Consequently, 

|x|aj/(1−r2pj) ∈ A mr2pj
r2pj−1

, j = 1, . . . ,m,

|x|aj/(1−r1pj) /∈ A mr1pj
r1pj−1

, j = 1, . . . ,m,

m∏
j=1

|x|ajp/pj ∈ Amr2p.

That is, 
|x|aj [1−(r2pj)′] ∈ Am(r2pj)′ , j = 1, . . . ,m,

|x|aj [1−(r1pj)′] /∈ Am(r1pj)′ , j = 1, . . . ,m,
m∏
j=1

|x|ajp/pj ∈ Amr2p.

By Theorem 2.2, we have ~w ∈ Ar2 ~P , but ~w /∈ Ar1 ~P . This implies that
Ar1 ~P ( Ar2 ~P .

Case 2: r1p0 = 1. Set r3 = (r1 + r2)/2; then 1/p0 = r1 < r3 < r2.
We first show that Ar1 ~P ⊂ Ar3 ~P . Suppose that ~w ∈ Ar1 ~P . Since r1p0 = 1,
without loss of generality we may assume that r1p1 = · · · = r1pl = 1 for
1 ≤ l ≤ m, and r1pj > 1 for j = l + 1, . . . ,m. Then
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1

|Q|

�

Q

m∏
j=1

wj(x)r3p/(r3pj)dx

)1/(r3p) m∏
j=1

(
1

|Q|

�

Q

wj(x)1−(r3pj)
′
dx

)1/(r3pj)
′

=

(
1

|Q|

�

Q

m∏
j=1

wj(x)p/pj dx

)1/(r3p) m∏
j=1

(
1

|Q|

�

Q

wj(x)1/(1−r3pj)dx

)(r3pj−1)/(r3pj)

=

[(
1

|Q|

�

Q

m∏
j=1

wj(x)p/pj dx

)1/p m∏
j=1

(
1

|Q|

�

Q

wj(x)1/(1−r3pj)dx

)(r3pj−1)/pj]1/r3

≤
[(

1

|Q|

�

Q

m∏
j=1

wj(x)p/pj dx

)1/p l∏
j=1

(
inf
Q
wj(x)

)−r1
×

m∏
j=l+1

(
1

|Q|

�

Q

wj(x)1/(1−r1pj)dx

)(r1pj−1)/pj]1/r3
≤ [~w]

r1/r3
A

r1
~P
<∞,

where in the last inequality we have used the Hölder inequality and the fact
that r1 = 1/pj for j = 1,...,l.

On the other hand, since r3p0 > 1 and r3 < r2, by the result in Case 1,
we know that Ar3 ~P ( Ar2 ~P . Hence, Ar1 ~P ⊂ Ar3 ~P ( Ar2 ~P . Theorem 2.4 is
proved.

3. Multilinear A(~P ,q) conditions

3.1. Definition and main results

Definition 3.1. Let 1 ≤ p1, . . . , pm < ∞, q > 0, and let p and ~P be
as before. Suppose that ~w = (w1, . . . , wm) and each wi (i = 1, . . . ,m) is a
nonnegative function on Rn. We say that ~w ∈ A(~P ,q) if

sup
Q

(
1

|Q|

�

Q

v~w(x)q dx

)1/q m∏
i=1

(
1

|Q|

�

Q

wi(x)−p
′
i dx

)1/p′i
<∞,

where v~w =
∏m
i=1wi. If pi = 1, (|Q|−1

	
Qw

−p′i
i (x) dx)1/p

′
i is understood as

(infQwi(x))−1.

Clearly, when m = 1, A(~P ,q) is the classical A(p,q) class (see [MW]). For

m arbitrary, Moen [Mo] showed that⋃
q1,...,qm

m∏
i=1

A(pi,qi) ( A(~P ,q),

where the union is over all qi ≥ pi that satisfy 1/q = 1/q1 + · · · + 1/qm.
Furthermore, Moen [Mo] and Chen–Xue [CX] gave the following relations
between A(~P ,q) and the classical Ap weights.
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Theorem 3.2 (cf. [Mo, Theorem 3.4]). Let 1 < p1, . . . , pm <∞, 1/p =
1/p1 + · · ·+ 1/pm, and q with 1/m < p ≤ q <∞. Suppose that ~w ∈ A(~P ,q).

Then

(i) vq~w ∈ Amq;
(ii) w

−p′j
j ∈ Amp′j (i = 1, 2, . . . ,m).

Theorem 3.3 (cf. [CX, Theorem 2.2]). Let 0 < α < mn, 1 ≤ p1, . . . , pm
<∞, 1/p = 1/p1+· · ·+1/pm and 1/q = 1/p−α/n. Suppose that ~w ∈ A(~P ,q).

Then

(i) vq~w ∈ Aq(m−α/n);
(ii) w−pii ∈ Ap′i(m−α/n) (i = 1, . . . ,m) if α/n < (m− 2) + 1/pi + 1/pj for

any 1 ≤ i, j ≤ m.

When pi = 1, w
−p′i
i ∈ Ap′i(m−α/n) is understood as w

n/(mn−α)
i ∈ A1.

As is well-known, for the classical A(p,q) weights and Ap weights we have
the following relations:

w ∈ A(p,q) ⇔ wq ∈ Aq(1−α/n) ⇔ w−p
′ ∈ Ap′(1−α/n) ⇔ wq ∈ As,(3.1)

w ∈ A(p,q) ⇒ wq ∈ Aq and wp ∈ Ap ⇔ wq ∈ Aq and w−p
′ ∈ Ap′ ,(3.2)

where 0 < α < n, 1 ≤ p < n/α, 1/q = 1/p − α/n and s = 1 + q/p′. For
multilinear A(~P ,q) classes, Pradolini [Pr] gave the following equivalence.

Theorem 3.4 (cf. [Pr, Remark 2.11]). Let 0 < α < mn, 1 ≤ p1, . . . , pm
< mn/α, 1/p = 1/p1 + · · ·+ 1/pm and 1/q = 1/p−α/n. Then ~w ∈ A(~P ,q) if

and only if ~w~q ∈ A~S , where ~w~q = (wq11 , . . . , w
qm
m ), 1/qi = 1/pi − α/mn > 0,

si = (1− α/mn)qi ≥ 1 and ~S = (s1, . . . , sm).

Obviously, when m = 1, Theorem 3.4 is the last equivalence in (3.1). In
this paper, we will generalize the other equivalence properties in (3.1) and
(3.2) to the multilinear setting in the next theorems.

Theorem 3.5. Let 1 ≤ p1, . . . , pm <∞, 1/p = 1/p1 + · · ·+ 1/pm and q
with 1/m ≤ p ≤ q <∞. Then ~w ∈ A(~P ,q) if and only if

(3.3) vq~w ∈ Amq and w
−p′j
j ∈ Amp′j , j = 1, . . . ,m,

where the condition w
−p′j
j ∈ Amp′j in the case pj = 1 is understood as

w
1/m
j ∈ A1.

Remark 3.6. Clearly, Theorem 3.5 generalizes Theorem 3.1 in the fol-
lowing two aspects: (i) the ranges of pi are enlarged from (1,∞) to [1,∞);
(ii) the conditions in (3.3) are shown to be sufficient and necessary. Also,
compared with (3.2), the result of Theorem 3.5 is new, even for m = 1.
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Theorem 3.7. Let 0 < α < mn, 1 ≤ p1, . . . , pm < mn/α, 1/p = 1/p1 +
· · ·+ 1/pm and 1/q = 1/p− α/n. Then ~w ∈ A(~P ,q) if and only if

(3.4) vq~w ∈ Aq(m−α/n) and w
−p′i
i ∈ Ap′i(m−α/n), i = 1, . . . ,m.

When pi = 1, the condition w
−p′i
i ∈ Ap′i(m−α/n) is understood as w

n/(mn−α)
i

∈ A1.

Remark 3.8. Compared with Theorem 3.3, Theorem 3.7 not only shows
that the conditions in (3.4) are sufficient and necessary, but also removes
the restrictions of condition (ii) in Theorem 3.3. We also remark that when
m = 1, both conditions in (3.4) are the same A(p,q) condition; however,
when m ≥ 2, none of the two conditions in (3.4) implies the other. For
example, let n = 1, m = 2, p1 = p2 = 2, α = 1/2; then p = 1, q = 2 and
q(m − α/2) = p′i(m − α/n) = 3 (i = 1, 2). Take w1(x) = w2(x) = |x|−3/4.
Then v~w(x)q = |x|−3 /∈ L1

loc(R), so vq~w /∈ A3, but wi(x)−p
′
i = |x|3/2 ∈ A3

(i = 1, 2).

As a consequence of Theorems 3.5 and 3.7, we have the following sur-
prising result.

Theorem 3.9. Let 0 < α < mn, 1 ≤ p1, . . . , pm < mn/α, 1/p = 1/p1 +
· · ·+ 1/pm and 1/q = 1/p− α/n. Then

vq~w ∈ Amq and w
−p′i
i ∈ Amp′i , i = 1, . . . ,m,

where the condition w
−p′i
i ∈ Amp′i in the case pi = 1 is understood as w

1/m
i ∈

A1, if and only if

vq~w ∈ Aq(m−α/n) and w
−p′i
i ∈ Ap′i(m−α/n), i = 1, . . . ,m,

where the condition w
−p′i
i ∈ Ap′i(m−α/n) in the case pi = 1 is understood as

w
n/(mn−α)
i ∈ A1.

In addition, applying Theorem 3.5, we will establish the following results.

Theorem 3.10. Let 1 < p1, . . . , pm <∞, 1/p = 1/p1+ · · ·+1/pm, q ≥ p
and p0 = min1≤i≤m pi. Then

A(~P ,q) =
⋃

1<r<p0

A(~P ,q,r).

More generally, for any 1 ≤ r1 < p0,

A(~P ,q,r1)
=

⋃
r1<r<p0

A(~P ,q,r).

Here and below, we denote

A(~P , q, s) := {~w = (w1, . . . , wm) : ~ws = (ws1, . . . , w
s
m) ∈ A(~P/s, q/s)}, ∀s ≥ 1.
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Theorem 3.11. Let 1 < p1, . . . , pm < ∞, 1/p = 1/p1 + · · · + 1/pm,
1/m < p ≤ q <∞ and p0 = min1≤i≤m pi. Then A(~P ,q,r) is strictly decreasing

as r increases, more precisely,

A(~P ,q,r1)
) A(~P ,q,r2)

, ∀ 1 ≤ r1 < r2 < p0.

In particular,

A(~P ,q) ) A(~P ,q,r), ∀ 1 < r < p0.

3.2. Proofs of main theorems

Proof of Theorem 3.5. Employing some techniques from [LOPTT, Mo],
we first consider the case when there exists at least one pj > 1. Without
loss of generality we may assume that p1 = · · · = pl = 1, 0 ≤ l < m, and
pj > 1 for j = l+ 1, . . . , m. Then we have mq ≥ mp > 1, 0 < q/(mq− 1) ≤
p/(mp− 1) and

∑m
i=l+1 1/p′i = (mp− 1)/p.

(i) The proof that ~w ∈ A(~P ,q) ⇒ (3.3): Suppose that ~w ∈ A(~P ,q). If

l = 0, then (3.3) follows from Theorem 3.3. Now we suppose that l > 0.

We first prove that w
−p′j
j ∈ Amp′j for j ≥ l + 1. Since ~w ∈ A(~P ,q), we

have(
1

|Q|

�

Q

v~w(x)q dx

)1/q l∏
i=1

(
inf
Q
wi(x)

)−1 m∏
i=l+1

(
1

|Q|

�

Q

wi(x)−p
′
i dx

)1/p′i
≤ C.

Then (
1

|Q|

�

Q

m∏
i=l+1

wi(x)q dx

)1/q m∏
i=l+1

(
1

|Q|

�

Q

wi(x)−p
′
i dx

)1/p′i
≤ C.

Since p ≤ q, we get

(3.5)

(
1

|Q|

�

Q

m∏
i=l+1

wi(x)p dx

)p′j/p m∏
i=l+1, i 6=j

(
1

|Q|

�

Q

wi(x)−p
′
i dx

)p′j/p′i
×
(

1

|Q|

�

Q

wj(x)−p
′
j dx

)
≤ C.

Notice that
m∑

i=l+1,i 6=j

p′j
p′i

+
p′j
p

= mp′j − 1, j = l + 1, . . . ,m.

Applying Hölder’s inequality, for j = l + 1, . . . ,m we have
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1

|Q|

�

Q

wj(x)p
′
j/(mp

′
j−1) dx

)mp′j−1
=

[
1

|Q|

�

Q

( m∏
i=l+1

wi(x)

)p′j/(mp′j−1) m∏
i=l+1,i 6=j

wi(x)−p
′
j/(mp

′
j−1) dx

]mp′j−1

≤
(

1

|Q|

�

Q

m∏
i=l+1

wi(x)p dx

)p′j/p m∏
i=l+1,i 6=j

(
1

|Q|

�

Q

wi(x)−p
′
i dx

)p′j/p′i
.

This together with (3.5) implies that w
−p′j
j ∈ Amp′j for j ≥ l + 1.

Next we show that vq~w ∈ Amq. Since 0 < q/(mq − 1) ≤ p/(mp − 1), we
have(

1

|Q|

�

Q

m∏
i=l+1

wi(x)−q/(mq−1) dx

)(mq−1)/q

≤
(

1

|Q|

�

Q

m∏
i=l+1

wi(x)−p/(mp−1) dx

)(mp−1)/p
.

From
∑m

i=l+1 1/p′i = (mp− 1)/p and Hölder’s inequality,(
1

|Q|

�

Q

m∏
i=l+1

wi(x)−p/(mp−1) dx

)(mp−1)/p
≤

m∏
i=l+1

(
1

|Q|

�

Q

wi(x)−p
′
i dx

)1/p′i
.

Hence,

(3.6) (
1

|Q|

�

Q

m∏
i=l+1

wi(x)−q/(mq−1) dx

)mq−1
≤

m∏
i=l+1

(
1

|Q|

�

Q

wi(x)−p
′
i dx

)q/p′i
.

Then,

(3.7)

(
1

|Q|

�

Q

v~w(x)−q/(mq−1) dx

)mq−1
≤

l∏
i=1

(
inf
Q
wi(x)

)−q m∏
i=l+1

(
1

|Q|

�

Q

wi(x)−p
′
i dx

)q/p′i
.

Since ~w ∈ A(~P ,q), we have

(3.8)(
1

|Q|

�

Q

v~w(x)q dx

) l∏
i=1

(
inf
Q
wi(x)

)−q m∏
i=l+1

(
1

|Q|

�

Q

wi(x)−p
′
i dx

)q/p′i
≤ C.

Combining (3.7) with (3.8), we conclude that vq~w ∈ Amq.



10 S. Q. Chen et al.

In what follows, we will show that w
1/m
j ∈ A1, j = 1, . . . , l. By Hölder’s

inequality with qm and (qm)′ = qm/(qm− 1), we have(
1

|Q|

�

Q

wj(x)1/m dx

)
≤
(

1

|Q|

�

Q

m∏
i=l+1

wi(x)−q/(qm−1) dx

)(qm−1)/(qm)

×
(

1

|Q|

�

Q

wj(x)q
m∏

i=l+1

wi(x)q dx

)1/(qm)

.

This together with (3.6) yields(
1

|Q|

�

Q

wj(x)1/m dx

)
≤
(

1

|Q|

�

Q

wj(x)q
m∏

i=l+1

wi(x)q dx

)1/(qm)

(3.9)

×
m∏

i=l+1

(
1

|Q|

�

Q

wi(x)−p
′
i dx

)1/(p′im)

.

On the other hand, since ~w ∈ A(~P ,q), we have(
1

|Q|

�

Q

v~w(x)q dx

)1/q l∏
i=1

(
inf
Q
wi(x)

)−1 m∏
i=l+1

(
1

|Q|

�

Q

wi(x)−p
′
i dx

)1/p′i
≤ C.

Then,(
1

|Q|

�

Q

wj(x)q
m∏

i=l+1

wi(x)q dx

)1/q(
inf
Q
wj(x)

)−1
×

m∏
i=l+1

(
1

|Q|

�

Q

wi(x)−p
′
i dx

)1/p′i
≤ C.

Hence,

(3.10)

(
1

|Q|

�

Q

wj(x)q
m∏

i=l+1

wi(x)q dx

)1/(qm)(
inf
Q
wj(x)1/m

)−1
×

m∏
i=l+1

(
1

|Q|

�

Q

wi(x)−p
′
i dx

)1/(p′im)

≤ C.

Using (3.9) and (3.10), we obtain w
1/m
j ∈ A1 for j = 1, . . . , l. This completes

the proof that ~w ∈ A(~P ,q) ⇒ (3.3).

(ii) The proof that (3.3) is sufficient for ~w ∈ A(~P ,q): Suppose that (3.3)

holds, i.e., vq~w ∈ Amq, w
1/m
i ∈ A1 for i = 1, . . . , l, and w

−p′i
i ∈ Amp′i for



Multilinear Muckenhoupt classes 11

i = l + 1, . . . ,m. Then,

(
1

|Q|

�

Q

wi(x)1/m) dx

)(
inf
Q
wi(x)1/m

)−1
≤ C, i = 1, . . . , l,

(
1

|Q|

�

Q

wi(x)−p
′
i dx

)(
1

|Q|

�

Q

wi(x)p
′
i/(mp

′
i−1) dx

)mp′i−1
≤ C,

i = l + 1, . . . ,m,(
1

|Q|

�

Q

v~w(x)q dx

)(
1

|Q|

�

Q

v~w(x)−q/(mq−1) dx

)mq−1
≤ C.

Hence,

(
1

|Q|

�

Q

wi(x)1/m dx

)m(
inf
Q
wi(x)

)−1
≤ C, i = 1, . . . , l,

(
1

|Q|

�

Q

wi(x)−p
′
i dx

)1/p′i
(

1

|Q|

�

Q

wi(x)p
′
i/(mp

′
i−1) dx

)(mp′i−1)/p′i
≤ C,

i = l + 1, . . . ,m,(
1

|Q|

�

Q

v~w(x)q dx

)1/q( 1

|Q|

�

Q

v~w(x)−q/(mq−1) dx

)(mq−1)/q
≤ C.

Consequently,

(3.11)

(
1

|Q|

�

Q

v~w(x)q dx

)1/q l∏
i=1

(
inf
Q
wi(x)

)−1 m∏
i=l+1

(
1

|Q|

�

Q

wi(x)−p
′
i dx

)1/p′i

×
(

1

|Q|

�

Q

v~w(x)−q/(mq−1) dx

)(mq−1)/q l∏
i=1

(
1

|Q|

�

Q

wi(x)1/m dx

)m

×
m∏

i=l+1

(
1

|Q|

�

Q

wj(x)p
′
i/(mp

′
i−1) dx

)(mp′i−1)/p′i
≤ C.

Notice that (mq−1)/q > 0, m > 0 and (mp′i−1)/p′i > 0 for i = l+1, . . . ,m.
Set

1

t
=
mq − 1

q
+ml +

m∑
i=l+1

mp′i − 1

p′i
.

By Hölder’s inequality,
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1 =

(
1

|Q|

�

Q

(
v~w(x)−1

m∏
i=1

wi(x)

)t
dx

)1/t

≤
(

1

|Q|

�

Q

v~w(x)−q/(mq−1) dx

)(mq−1)/q

×
l∏

i=1

(
1

|Q|

�

Q

wi(x)1/m dx

)m m∏
i=l+1

(
1

|Q|

�

Q

wj(x)p
′
i/(mp

′
i−1) dx

)(mp′i−1)/p′i

This together with (3.11) implies that ~w ∈ A(~P ,q).

It remains to consider the case pj = 1 for all j = 1, . . . ,m. Notice that
q ≥ p = 1/m. Assume that ~w ∈ A((1,...,1),q), i.e.,

(3.12)

(
1

|Q|

�

Q

v~w(x)q dx

)1/q m∏
i=1

(
inf
Q
wi(x)

)−1
≤ C.

We first prove that w
1/m
j ∈ A1, j = 1, . . . ,m. By (3.12), we have(

1

|Q|

�

Q

wj(x)q dx

)1/q(
inf
Q
wj(x)

)−1
≤ C.

Since 1/m ≤ q, by Hölder’s inequality,(
1

|Q|

�

Q

wj(x)1/m dx

)m(
inf
Q
wj(x)

)−1
≤ C.

This implies w
1/m
j ∈ A1.

Next we show that vq~w ∈ Amq. It follows from (3.12) that(
1

|Q|

�

Q

v~w(x)q dx

)1/q

≤ C
m∏
i=1

inf
Q
wi(x) ≤ C inf

Q

( m∏
i=1

wi(x)
)
.

Hence,
1

|Q|

�

Q

v~w(x)q dx ≤ C inf
Q
v~w(x)q.

Then vq~w ∈ A1. Since mq ≥ 1, we have vq~w ∈ Amq.
Now we prove the converse. Suppose that

(3.13) vq~w ∈ Amq and w
1/m
i ∈ A1, i = 1, . . . ,m.

Consider first the case when q > p = 1/m. By (3.13), we have
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(
1

|Q|

�

Q

wi(x)1/m dx

)(
inf
Q
wi(x)1/m

)−1
≤ C, i = 1, . . . ,m,(

1

|Q|

�

Q

v~w(x)q dx

)(
1

|Q|

�

Q

v~w(x)−q/(mq−1) dx

)mq−1
≤ C.

Hence,

(
1

|Q|

�

Q

wi(x)1/m dx

)m(
inf
Q
wi(x)

)−1
≤ C, i = 1, . . . ,m,(

1

|Q|

�

Q

v~w(x)q dx

)1/q( 1

|Q|

�

Q

v~w(x)−q/(mq−1) dx

)(mq−1)/q
≤ C.

Then,

(3.14)

(
1

|Q|

�

Q

v~w(x)q dx

)1/q m∏
i=1

(
1

|Q|

�

Q

v~w(x)−q/(mq−1) dx

)(mq−1)/q

×
(

inf
Q
wi(x)

)−1 m∏
i=1

(
1

|Q|

�

Q

wi(x)1/m dx

)m
≤ C.

On the other hand, notice that q/(mq − 1) > 0, 1/m > 0, and set

1

s
=
mq − 1

q
+m2.

By Hölder’s inequality,

1 =

(
1

|Q|

�

Q

(
v~w(x)−1

m∏
i=1

wi(x)
)s
dx

)1/s

(3.15)

≤
(

1

|Q|

�

Q

v~w(x)−q/(mq−1) dx

)(mq−1)/q m∏
i=1

(
1

|Q|

�

Q

wi(x)1/m dx

)m
Combining (3.14) with (3.15) shows that ~w ∈ A(~P ,q).

Now let us consider the case when q = p = 1/m. It follows from (3.13)
that 

(
1

|Q|

�

Q

wi(x)1/m dx

)(
inf
Q
wi(x)1/m

)−1
≤ C, i = 1, . . . ,m,(

1

|Q|

�

Q

v~w(x)1/m dx

)(
inf
Q
v~w(x)1/m

)−1
≤ C.

Then,
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(
1

|Q|

�

Q

wi(x)1/m dx

)m(
inf
Q
wi(x)

)−1
≤ C, i = 1, . . . ,m,(

1

|Q|

�

Q

v~w(x)1/m dx

)m(
inf
Q
v~w(x)

)−1
≤ C.

Consequently,

(3.16)

(
1

|Q|

�

Q

v~w(x)1/m dx

)m m∏
i=1

(
inf
Q
wi(x)

)−1(
inf
Q
v~w(x)

)−1
×

m∏
i=1

(
1

|Q|

�

Q

wi(x)1/m dx

)m
≤ C.

On the other hand, by Hölder’s inequality,

m∏
i=1

(
1

|Q|

�

Q

wi(x)1/m dx

)m
≥
(

1

|Q|

�

Q

m∏
i=1

wi(x)1/m
2
dx

)m2

≥ inf
Q
v~w(x).

Together with (3.16) this implies that ~w ∈ A(~P ,q) and completes the proof

of Theorem 3.5.

Proof of Theorem 3.7. By Theorem 3.4, ~w ∈ A(~P ,q) if and only if ~w~q ∈
A~S , where ~q and ~S are defined as in Theorem 3.3. By Theorem 2.1, ~w~q ∈ A~S
is equivalent to

(3.17)

m∏
i=1

w
qis/si
i ∈ Ams and w

qi(1−s′i)
i ∈ Ams′i , i = 1, . . . ,m,

where the condition w
qi(1−s′i)
i ∈ Ams′i in the case si = 1 is understood as

w
qi/m
i ∈ A1 (i = 1, . . . ,m). Notice that

qi(1− s′i) = −p′i, ms′i = p′i(m− α/n), qis/si = q, ms = q(m− α/n),

and si = 1 if and only if pi = 1, while
qi
m

=
npi

mn− αpi
=

n

mn− α
if si = pi = 1, i = 1, . . . ,m.

Thus (3.17) is equivalent to vq~w ∈ Aq(m−α/n) and w
−p′i
i ∈ Ap′i(m−α/n) for

i = 1, . . . ,m. When pi = 1, the condition w
−p′i
i ∈ Ap′i(m−α/n) is understood

as w
n/(mn−α)
i ∈ A1. Theorem 3.7 is proved.

Proof of Theorem 3.10. We first prove that A(~P ,q) ⊂
⋃

1<r<p0
A(~P ,q,r).

Suppose that ~w ∈ A(~P ,q), By Theorem 3.2, each w
−p′i
i is in A∞, and hence

there are constants ci, ti > 1 (ti sufficiently close to 1) such that for any
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cube Q, (
1

|Q|

�

Q

wi(x)−p
′
iti dx

)1/ti

≤ ci
|Q|

�

Q

wi(x)−p
′
i dx.

Let ri > 1 be selected so that

ri
pi − ri

=
ti

pi − 1
.

Let r = min{r1, . . . , rm}. Then r sufficiently close to 1, with 1 < r < p0. We
have(

1

|Q|

�

Q

( m∏
i=1

wi(x)r dx
)q/r)r/q m∏

i=1

(
1

|Q|

�

Q

wi(x)−pir/(pi−r) dx

)(pi−r)/pi

=

(
1

|Q|

�

Q

m∏
i=1

wi(x)q dx

)r/q m∏
i=1

(
1

|Q|

�

Q

wi(x)−pir/(pi−r) dx

)(pi−r)r/(pir)

≤
(

1

|Q|

�

Q

m∏
i=1

wi(x)q dx

)r/q m∏
i=1

(
1

|Q|

�

Q

wi(x)−piri/(pi−ri) dx

)(pi−ri)r/(piri)

=

(
1

|Q|

�

Q

v~w(x)q dx

)r/q m∏
i=1

(
1

|Q|

�

Q

wi(x)−p
′
iti dx

)r/(p′iti)

≤ C
(

1

|Q|

�

Q

v~w(x)q dx

)r/q m∏
i=1

(
1

|Q|

�

Q

wi(x)−p
′
i dx

)r/p′i
≤ C[~w]rA

(~P,q)
.

Next we will show that A(~P ,q,r) ⊂ A(~P ,q) for any 1 < r < p0. Let ~w ∈
A(~P ,q,r), i.e., ~wr ∈ A(~P/r,q/r), which implies that(

1

|Q|

�

Q

( m∏
i=1

wi(x)r
)q/r

dx

)r/q m∏
i=1

(
1

|Q|

�

Q

wi(x)−r(pi/r)
′
dx

)1/(pi/r)
′

≤ C.

Then,(
1

|Q|

�

Q

m∏
i=1

wi(x)q dx

)r/q m∏
i=1

(
1

|Q|

�

Q

wi(x)−rpi/(pi−r) dx

)(pi−r)/pi
≤ C.

Hence,(
1

|Q|

�

Q

m∏
i=1

wi(x)q dx

)1/q m∏
i=1

(
1

|Q|

�

Q

wi(x)−rpi/(pi−r) dx

)(pi−r)/(rpi)
≤ C.
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Since p′i ≤ rpi/(pi − r), by Hölder’s inequality,(
1

|Q|

�

Q

m∏
i=1

wi(x)q dx

)1/q m∏
i=1

(
1

|Q|

�

Q

wi(x)−p
′
i dx

)1/p′i
≤ C,

which implies that ~w ∈ A(~P ,q). This completes the proof of the equality

A(~P ,q) =
⋃

1<r<p0
A(~P ,q,r).

It remains to show that for any 1 < r1 < p0,

A(~P ,q,r1)
=

⋃
r1<r<p0

A(~P ,q,r).

Since p0/r1 = min1≤i≤m pi/r1, we have

(3.18) A(~P/r1,q/r1)
=

⋃
1<s<p0/r1

A(~P/r1,q/r1,s)
.

Suppose that ~w ∈ A(~P ,q,r1)
, i.e.,

~wr1 ∈ A(~P/r1,q/r1)
=

⋃
1<s<p0/r1

A(~P/r1,q/r1,s)
.

Then ~wr1 ∈ A(~P/r1,q/r1,s0)
for some 1 < s0 < p0/r1, which implies that

~wr1s0 ∈ A(~P/(r1s0), q/(r1s0))
. Hence,

~w ∈ A(~P , q, r1s0)
.

Since r1 < r1s0 < p0, we get

~w ∈
⋃

r1<r<p0

A(~P , q, r).

Conversely, suppose that ~w ∈ A(~P ,q,r) for some r1 < r < p0, so ~wr ∈
A(~P/r,q/r). Hence,

(~wr1)r/r1 ∈ A((~P/r1)/(r/r1),(q/r1)/(r/r1) )
.

Equivalently, we have ~wr1 ∈ A(~P/r1,q/r1, r/r1)
. Note that 1 < r/r1 < p0/r1,

combining the previous condition with (3.18), we have ~wr1 ∈ A(~P/r1, q/r1)
,

i.e., ~w ∈ A(~P ,q,r1)
. This proves Theorem 3.10.

Proof of Theorem 3.11. By Theorem 3.10, A(~P ,q,r) is decreasing as r

increases, i.e., for 1 ≤ r1 < r2 < p0,

A(~P ,q,r1)
⊇ A(~P ,q,r2)

.

It remains to show that A(~P ,q,r1)
6= A(~P ,q,r2)

for 1 ≤ r1 < r2 < p0. We first
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prove that A(~P ,q) 6= A(~P ,q,r) for 1 < r < p0. Set εi = min{n−n/r, n−n/pi},
ai = n− n/pi − εi and wi = |x|ai , i = 1, . . . ,m. Then

−nm+ n− n/pi < 0 ≤ ai < n− n/pi, i = 1, . . . ,m,

ai ≥ n/r − n/pi, i = 1, . . . ,m,

−n < 0 ≤ q
m∑
i=1

ai < qmn− qn/p ≤ qmn− n.

Hence, 
−aip′i ∈ (−n, n(mp′i − 1)), i = 1, . . . ,m,

−air(pi/r)′ /∈ (−n, n(m(pi/r)
′ − 1)), i = 1, . . . ,m,

q

m∑
i=1

ai ∈ (−n, n(mq − 1)).

This leads to vq~w ∈ Amq, w
−p′i
i ∈ Amp′i and (wri )

−(pi/r)′ /∈ Am(pi/r)′ for i =
1, . . . ,m. By Theorem 3.4, we get ~w ∈ A(~P ,q) and ~w /∈ A(~P ,q,r). This proves

that A(~P ,q) ) A(~P ,q,r) for 1 < r < p0.

Next we show that A(~P ,q,r1)
6= A(~P ,q,r2)

for 1 < r1 < r2 < p0. Since

A(~P ,q) ) A(~P ,q,r) for 1 < r < p0 and 1 < r2/r1 < p0/r1 = minmi=1 pi/r1, we

have A(~P/r1, q/r1)
) A(~P/r1, q/r1, r2/r1)

. Thus there exists a ~w ∈ A(~P/r1, q/r1)

such that ~w /∈ A(~P/r1, q/r1, r2/r1)
. Hence, ~w1/r1 ∈ A(~P , q, r1)

, but ~w1/r1 /∈
A(~P , q, r2)

. This implies that A(~P , q, r1)
6= A(~P , q, r2)

. Theorem 3.11 is proved.
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