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Representations of Polish groups and continuity

by

M. Cianfarani, J.-M. Paoli, P. Simonnet and J.-C. Tomasi (Corte)

Abstract. In the first part of the paper, some criteria of continuity of representations
of a Polish group in a Banach algebra are given. The second part uses the result of the
first part to deduce automatic continuity results of Baire morphisms from Polish groups
to locally compact groups or unitary groups. In the final part, the spectrum of an element
in the range of a strongly but not norm continuous representation is described.

1. Introduction. In [8], [7], [3], [24], [19] various sufficient conditions of
continuity for representations of locally compact groups on Banach spaces,
or more generally in Banach algebras, are given. In [8], [7], [3] these con-
ditions are of spectral nature. To be more precise, in [8], it is proved that
if G is a locally compact abelian group, A a unital Banach algebra and
θ : G → A a locally bounded (norm bounded on compact subsets of G)
representation, then the continuity of θ is equivalent to the a priori weaker
condition ρ(θ(g)− I) → 0 as g → e where ρ denotes the spectral radius in
A and e is the unit of G. (This condition is often called spectral continuity
for θ.) In [7] this result is generalized to some representations of nonabelian
or non-locally compact groups.

In [3], [4] and [24], the results above are used to obtain continuity criteria
of the form:

• If for any ω ∈ Ω, where Ω is a subset of the topological dual A′ of A,
ω ◦ θ is continuous then θ is continuous.

In the locally compact abelian case [3], [4], we can take Ω to be the
Gelfand spectrum Â of the (abelian) algebra A. In the case G = R, such
theorems can already be found in [26] and in the classical treatise [14].

If G is nonabelian (but again locally compact) and θ is a unitary rep-
resentation of G in a unital C∗-algebra A, one can take Ω to be the set of
states of A [24].
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In [19], J. Kuznetsova gave another type of theorem, namely:

• Let G be a locally compact group and θ : G → L(H) a unitary rep-
resentation of G on a Hilbert space. Moreover, suppose that θ is Haar
measurable when L(H) is endowed with the weak operator topology.
Then θ is strongly continuous.

Here, we have a criterion of strong continuity and not of norm continuity as
in the other cases.

Except for some results in [7], all the theorems in the cited works need
actually the local compactness of the group. In this work, we wish to ex-
tend them, whenever possible, to Polish and not necessarily locally compact
groups. The aim of Section 2 is to generalize to any Polish group the conti-
nuity criteria of [3] and [24].

In Section 3, the most important part is a rewriting of [19] where lo-
cally compact groups and Haar measurability are replaced by Polish groups
and the Baire property. We use the theorem obtained in this way to prove
automatic continuity of Baire morphisms from a Polish group to a locally
compact group. In the final part, the aim is to generalize and unify the de-
scription of spectra of elements in the range of a strongly continuous but
not norm continuous representation, given in [3], [24] and [28], thus showing
interesting applications of the continuity criteria provided in Section 2.

2. Continuity through linear forms

2.1. Preliminaries. In this subsection, we collect some facts used in the
proofs of Theorems 2.7 and 2.8. The first one concerns sequences of positive
definite functions (see [13] for definitions and classical properties of positive
definite functions).

Proposition 2.1 (Banaszczyk, [1, Prop. 3.4]). Let G be a Baire group
and (χn)n∈N a pointwise convergent sequence of positive definite continu-
ous functions such that the limit function is continuous. Then (χn)n∈N is
equicontinuous.

We will also need a result on compactness and sequential compactness
in some nonmetrizable spaces. Recall that a topological Hausdorff space X
is called angelic if:

• Every relatively countably compact subset of X is relatively compact
in X.
• The closure of a relatively countably compact subset of X is the se-

quential closure of A.

We have the following property:
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Proposition 2.2. Let X be an angelic space and A a subset of X. The
following assertions are equivalent:

(1) A is compact.
(2) Every sequence in A admits a subsequence converging in A.

The following theorem (see [9]) gives a large class of angelic spaces.

Theorem 2.3. Let X be a topological space such that there is a sequence
(Xn)n∈N of relatively countably compact subspaces with X =

⋃
n∈NXn, and

let Z be a metric space. Then the space (C(X,Z))p of continuous func-
tions from X to Z is angelic when endowed with the pointwise convergence
topology.

As a consequence, the space (C(X))p of continuous complex functions on
a separable space X, with its pointwise convergence topology, is angelic.

We will now give a result linking spectral continuity and continuity for
group representations (one of the few where local compactness is not needed).

Theorem 2.4 ([7, Th. 3]). Let G be a topological group and θ : G→ A a
locally bounded representation of G on a unital algebra A. If θ is spectrally
continuous (i.e. limg→e ρ(θ(g)− I) = 0) and if there exists a neighborhood V
of the unit e in G such that

sup
g∈V
‖(θ(g)− I)n‖ ≤ 2n

for some positive integer n, then θ is continuous (i.e. limg→e ‖θ(g)−I‖ = 0).

From this, one can show

Corollary 2.5. Let G be a topological group and θ : G → A a norm
bounded representation of G in a unital Banach algebra A. If θ is spectrally
continuous, then it is continuous.

Proof. First, we consider the particular case where ‖θ(g)‖ = 1 for every
g in G. Clearly,

∀g ∈ G, ∀n ∈ N, ‖(θ(g)− I)n‖ ≤
n∑
k=0

(
n

k

)
= 2n,

and so Theorem 2.4 applies to θ. If θ is a norm bounded representation, one
can renorm A so as to be in the case above. Indeed, set |||a|||= supg∈G ‖θ(g)a‖
for a in A. Clearly ||| · ||| is a Banach algebra norm on A equivalent to ‖ · ‖
and

∀a ∈ A, ∀g ∈ G, |||θ(g)a||| = |||a|||.
Set now ‖a‖G = sup|‖a′|‖≤1 |||aa′|||; then ‖ · ‖G is also a Banach algebra norm
equivalent to ||| · ||| and ‖ · ‖, satisfying ‖θ(g)‖G = 1 for any g in G, so the
result can be reduced to the particular case above.
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2.2. Continuity through characters in the abelian case. We will
prove that if θ : G→ A is a norm bounded representation of a Polish abelian
group G in a unital abelian Banach algebra A, then the continuity of θ is
equivalent to the continuity of χ ◦ θ for all characters χ of A.

We will begin with a lemma allowing us to introduce positive definite
functions in our setting:

Lemma 2.6. If θ : G→ A is a locally bounded (bounded on some neigh-
borhood of the unit e in G) representation of a topological group G on a
Banach algebra A, then, for each positive ε, there is a neighborhood Vε of e
such that for all g ∈ Vε,

σ(θ(g)) ⊂ {z ∈ C | 1− ε ≤ |z| ≤ 1 + ε}.

Proof. By the local boundedness of θ, there are M > 1 and a neighbor-
hood V of e such that ‖θ(g)‖ ≤M for all g ∈ V . By continuity of the group
operation, for each positive integer n, there exists a neighborhood Vn of e
such that for all g ∈ Vn, ‖θ(gn)‖ ≤M and ‖θ(g−n)‖ ≤M . Since σ(θ(g−n)) =
{1/λ | λ ∈ σ(θ(g−n))}, we have σ(gn) ⊂ {z ∈ C | 1/M ≤ |z| ≤ M} and
since σ(θ(gn)) = (σ(θ(g)))n, we have

[∀g ∈ Vn, z ∈ σ(θ(g))] ⇒
1

M1/n
≤ |z| ≤M1/n.

Hence, we conclude that, for each ε > 0, there is a neighborhood Vε of e such
that

g ∈ Vε ⇒ σ(θ(g)) ⊂ {1− ε ≤ |z| ≤ 1 + ε}.

Theorem 2.7. Let G be an abelian Polish group, A an abelian unital
Banach algebra and θ : G → A a locally bounded representation. Then the
following conditions are equivalent:

(i) For any character χ of A, χ ◦ θ is continuous.
(ii) θ is spectrally continuous.

If, moreover, θ is norm bounded, then any of these conditions is equivalent
to the continuity of θ.

Proof. Clearly (ii)⇒(i) since limg→e ρ(θ(g) − I) = 0 implies that for all
χ in the Gelfand spectrum Â of A, we have limg→e((χ◦θ)(g)−1) = 0, which
expresses the continuity of χ ◦ θ at e and hence, by the fact that χ ◦ θ is
a morphism from G to the multiplicative group of complex numbers, the
continuity of χ ◦ θ.

The point is to prove (i)⇒(ii). Suppose that χ ◦ θ is continuous for all χ
in Â but θ is not spectrally continuous. Then we can find a strictly positive
number ε and a sequence (gn)n∈N in G converging to e such that

∀n ∈ N, ρ(θ(gn)− I) > ε.
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So, there is a complex sequence (λn) with λn ∈ σ(θ(gn)) and |λn − 1| > ε,
for all n ∈ N. As λn is in the spectrum of θ(gn), one can find, for every n,
a character χn of A such that λn = χn(θ(gn)).

The spectrum Â being compact (in the restricted w∗-topology of A′), the
set {χ ◦ θ | χ ∈ Â} is compact in (C(G))p (the continuity of χ 7→ χ ◦ θ from
the w∗-topology of A′ to the pointwise convergence topology is immediate).
But, since G is Polish, (C(G))p is angelic (Th. 2.3) and so {χ ◦ θ | χ ∈ Â}
is sequentially compact. By extracting a subsequence if necessary, we can
suppose that (χn ◦ θ)n∈N is pointwise convergent to χ ◦ θ for some χ ∈ Â.
Lemma 2.6 implies that limn→∞ |λn| = 1. So we can assume without loss of
generality that, for n ≥ 1, ∣∣∣∣ λn|λn| − 1

∣∣∣∣ > ε

2
.

Setting

ϕn(g) =
(χn ◦ θ)(g)
|χn ◦ θ(g)|

, ϕ(g) =
(χ ◦ θ)(g)
|χ ◦ θ(g)|

, µn =
λn
|λn|

,

one finds that ϕn(gn) = µn for all n ∈ N; and ϕ and ϕn are morphisms from
G to the torus T = {z ∈ C | |z| = 1}, and hence positive definite. The maps
ϕ and ϕn are, by hypothesis, continuous and (ϕn)n∈N converges pointwise
to ϕ. By Proposition 2.1, {ϕn | n ∈ N} is equicontinuous. Hence there is a
neighborhood W of e such that

∀n ∈ N, ∀g ∈W, |ϕn(g)− 1| ≤ ε/2
and for n so large that gn ∈W ,

|ϕn(gn)− 1| = |µn − 1| ≤ ε/2,
which is a contradiction.

For a norm bounded representation, spectral continuity is equivalent to
continuity (Cor. 2.5), so (i) and (ii) are equivalent to the continuity of θ.

2.3. Continuity through states in the unitary case. In this section,
G is a Polish group (perhaps nonabelian) and A a unital C∗-algebra. We
recall that u in A is called unitary if u∗u = uu∗ = 1 (see e.g. [5], [23] for the
properties of C∗-algebras and unitary, self-adjoint and positive elements).
A unitary representation of G in A is a representation θ : G→ A such that
θ(g) is unitary for all g ∈ G.

We recall that a state on A is an element ω of A′ such that ω is positive
on positive elements of A and ‖ω‖ = 1 (equivalently, ‖ω‖ = ω(1) = 1). The
set of states of A (denoted S(A)) is a convex, w∗-compact subset of A′. Its
extremal points are called pure states; we denote by PS (A) the set of pure
states of A. Note that for every ω in S(A) and every unitary representation
of a group G in A, ω ◦ θ is positive definite (clear from definitions).
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For unitary representations of Polish groups in C∗-algebras, we have the
following conditions of continuity:

Theorem 2.8. Let G be a Polish group, A a unital C∗-algebra and θ :
G→A a unitary representation. Then the following assertions are equivalent:

(i) θ is continuous.
(ii) ω ◦ θ is continuous for all ω ∈ S(A).
(iii) ω ◦ θ is continuous for all ω ∈ PS (A).

Proof. (i)⇒(ii)⇒(iii) is clear.
(iii)⇒(ii) is proved, as in [24] for locally compact Polish groups, using

the Choquet–Bishop–De Leeuw integral representation theorem (see [25]).
Let µω be a probability Baire measure on PS (A) representing ω (i.e. for any
w∗-continuous linear functional u on A′, we have u(ω) =

	
PS(A) u(η) dµω(η)).

For g ∈ G, the linear functional θ̂(g) on A′ defined by θ̂(g)(ω) = ω(θ(g)) is
w∗-continuous, and so for all ω ∈ S(A),

ω(θ(g)) = θ̂(g)(ω) =
�

PS(A)

θ̂(g)(η) dµω =
�

PS(A)

(η ◦ θ)(g) dµω(η).

Assuming (iii), we have to show that ω ◦ θ is also continuous. If g is in G
and (gn) is a sequence in G converging to g, then for all η ∈ PS (A),

(η ◦ θ)(gn) = θ̂(gn)(η)→ (η ◦ θ)(g) = θ̂(g)(η),

i.e. θ̂(gn) converges pointwise to θ̂(g) on PS (A). Moreover, |θ̂(h)(η)| ≤ 1 for
all η ∈ PS (A) and h ∈ G, so by dominated convergence,

(ω ◦ θ)(gn) =
�

PS(A)

θ̂(gn)(η) dµω →
�

PS(A)

θ̂(g)(η) dµω = (ω ◦ θ)(g).

As G is metrizable, this proves the continuity of ω ◦ θ.
We have now to prove that (ii)⇒(i). For a in A, set

ρS(a) = sup
ω∈S(A)

|ω(a)|

(the numerical radius of a). If a is normal (i.e. a∗a = aa∗) in A, we have
ρS(a) = ‖a‖. If θ is unitary, then, for any g ∈ G, θ(g)− I is normal and

‖θ(g)− I‖ = ρS(θ(g)− I).
We assume (ii) (ω ◦ θ continuous for all ω ∈ S(A)) and we have to show
that limg→e ρS(θ(g)−I) = 0. We proceed exactly as in the abelian case with
states instead of characters. If ρS(θ(g) − I) 9 0 as g → e, one can find a
positive ε, a sequence (gn) in G converging to e and a sequence (ωn) in the
w∗-compact set S(A) such that

∀n ∈ N, |ωn(θ(gn))− 1| ≥ ε
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(recall that ω(1) = 1 for any state). As in the proof of Theorem 2.7, {ω ◦ θ |
ω ∈ S(A)} is compact in the angelic space (C(G))p, and thus sequentially
compact. So we can suppose that the sequence (ωn◦θ) converges pointwise to
ω ◦ θ for some state ω. The conclusion follows as in the proof of Theorem 2.7
by using Proposition 2.1 and equicontinuity in e.

We can also give a corollary of the theorem above where the continu-
ity of unitary representations can be seen, not through continuity of com-
position with linear functionals but through the strong continuity of the
composition with the hilbertian representations associated to states via the
Gelfand–Naimark–Segal construction. This corollary will be used to prove
an automatic continuity result for group morphisms later (for G.N.S. repre-
sentations, see e.g. [5] or [23]).

Corollary 2.9. Let G be a Polish group, A a unital C∗-algebra and
θ : G→ A a unitary representation. The following are equivalent:

(i) θ is continuous.
(ii) For each ω in S(A), πω ◦ θ is strongly continuous, where πω is the

hilbertian unitary representation of A associated to ω by the G.N.S.
construction.

Proof. Since πω is continuous, clearly (i)⇒(ii). Conversely, assume that
πω ◦ θ is strongly continuous for all ω in S(A). If xω is a cyclic vector of Hω

(the representation space of πω) such that

∀a ∈ A, ω(a) = 〈πω(a)xω, xω〉

(the existence of xω is an essential fact from the G.N.S. construction), then

∀g ∈ G, (ω ◦ θ)(g) = 〈πω(θ(g))xω, xω〉,

so ω ◦ θ is continuous (for all ω in S(A)) and by Theorem 2.8, θ is continu-
ous.

2.4. Remarks. Theorem 2.7 for locally bounded representations and
Theorem 2.8 have been proved for Polish locally compact groups in [3], [24].
The proofs used classical arguments of abstract harmonic analysis (dual
groups and Fourier transforms in the abelian case, Raikov’s theorem and
functions of positive type in the unitary case) that are not available with-
out Haar measure. In [4], we obtain generalizations in the case of locally
compact, but perhaps non-Polish groups, by applying Glicksberg–De Leeuw
decomposition (used here in Section 3) and some facts on weak topology on
spaces of continuous functions. Here, the crucial fact which enables us to
bypass local compactness is the equicontinuity result 2.1 of Banaszczyk and
the angelicity of (C(G))p when G is separable.



34 M. Cianfarani et al.

3. Continuity and Baire property. J. Kuznetsova [19] has proved
that, for a unitary representation θ : G→ L(H) of a locally compact group G
on a Hilbert space H, Haar measurability of θ (when L(H) is endowed with
the weak operator topology) implies continuity (a result already known when
H is separable). We wish to prove an analogous result if G is assumed to be
Polish and Haar measurability is replaced by the Baire property.

Let X be a Polish topological space. We define a map of X into a topo-
logical space to be Baire-measurable (or to have the Baire property) if the
inverse image of every open set in the range has the Baire property (see [15]
for properties of sets having the Baire property, and of Baire (measurable)
maps).

We will use the Glicksberg–De Leeuw decomposition of representations
but the essential Theorem 3.6 is essentially a rewriting of the analog in [19]
using the Baire property instead of Haar measurability. We have, neverthe-
less, chosen to give a detailed proof because it is used in the final part of the
section to give an automatic continuity result.

We begin by recalling the Glicksberg–De Leeuw decomposition theorem.
We state it only for unitary representations and not in its more general form
irrelevant for our purpose.

Theorem 3.1 ([6]). Let G be a topological group, H a Hilbert space and
θ a unitary representation of G on H. There is a hilbertian decomposition
H = Hc ⊕H0 which reduces θ (Hc and H0 are θ(G)-invariant) such that:

• Hc = {x ∈ H | g 7→ θ(g)x is continuous from G to H}.
• H0 is the subspace of all vectors x ∈ H such that, for every neigh-
borhood V of e in G, 0 is in the closed convex hull of θ(V )x in H
(a representation such that each vector has this property is called av-
eraging to zero).

Remarks 3.2. In the cited theorem of [6], we only have the weak con-
tinuity of the restriction of θ to Hc, but in its general form, this theorem
deals with Banach spaces which are not necessarily Hilbert spaces. In the
case of a Hilbert space, the strong and weak operator topology are the same
when restricted to the subset of unitary operators [10], so, for our unitary
representation, this distinction is irrelevant.

In the same vein, [6] shows that the sum Hc ⊕H0 is a topological direct
sum (which is sufficient for us). Nevertheless, for unitary representations,
it is actually hilbertian. (This requires looking a little more at the proofs
in [6].)

It follows from Theorem 3.1 that, in order to show that a unitary repre-
sentation on a Hilbert space H is strongly continuous, it is sufficient to show
that the component H0 of the decomposition of H given by the theorem
reduces to {0}.
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Let x be a vector in H0. If we set ϕx(g) = 〈θ(g)x, x〉, then ϕx is a positive
definite function and one can prove that:

• For every neighborhood V of e in G and any ε > 0, there are an integer
n, positive numbers α1, . . . , αn with

∑n
i=1 αi = 1 and g1, . . . , gn in V

such that ∣∣∣ n∑
i=1

αiϕx(ggi)
∣∣∣ < ε for any g ∈ G.

It suffices to write that the vector 0 is in the convex hull of θ(V )x and apply
Cauchy–Schwarz. (Such a positive definite function is also called averaging
to zero).

Before proving the main result of this section, we need some facts on
positive definite functions averaging to zero.

Lemma 3.3 ([12]). Let G be a topological group and B a nonmeager
subset of G having the Baire property. There is a neighborhood W of the
unit e of G such that, for any sequence (gn)n∈N in W , B ∩

⋂
n∈NBgn is not

a meager set.

Proof. By assumption, we can find a nonempty open set U and a meager
set M such that B is the symmetric difference U 4M . Pick g0 in U ; there
exists an open neighborhood V of g0 and a symmetric neighborhood W (i.e.
W = W−1) of e in G such that VW ⊂ U . Let (gn)n∈N be a sequence in W
and set M(gn) = M ∪

⋃
n∈NMgn. Then M(gn) is a meager set. For g in

V \M(gn), we have g ∈ U \M and for all n ∈ N we have gg−1n ∈ U \M , so
V \M(gn) ⊂ B ∩

⋂
n∈NBgn, which is not a meager set.

Proposition 3.4. Let G be a Polish group and ϕ a positive definite
function on G averaging to zero.

(i) If B is a nonmeager subset of G having the Baire property and P
an open half-plane in the complex plane C such that 0 ∈ P , then
ϕ−1(P ) ∩B 6= ∅ (and is not, actually, a meager set).

(ii) If ϕ has the Baire property, then ϕ = 0 on a comeager subset of G.

Proof. (i) Set ε = d(0,C\P ). Using Lemma 3.3, we can find a symmetric
neighborhood W of e such that, for any sequence (gk) in W , B ∩

⋂
k∈NBgk

is nonmeager. Because ϕ averages to zero, we can also find g1, . . . , gn in W
and positive numbers α1, . . . , αn with α1+ · · ·+αn = 1 such that, for g in G,∣∣∣ n∑

k=1

αkϕ(ggk)
∣∣∣ < ε.

So, B ∩
⋂n
k=1Bg

−1
k is not meager. If g ∈ G is such that ggk 6∈ ϕ−1(P )

(i.e. ϕ(ggk) ∈ C \ P ) for all k ∈ {1, . . . , n}, then, C \ P being convex,
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k=1 αkϕ(ggk) ∈ C \ P and |

∑n
k=1 αkϕ(ggk)| ≥ ε (= d(0,C \ P )), which

contradicts the definitions of ε, (gk)1≤k≤n and (αk)1≤k≤n.
Thus, for all g ∈ G, there exists kg ∈ {1, . . . , n} such that ggkg ∈ ϕ−1(P ).

Moreover, if g ∈ B ∩
⋂n
k=1Bg

−1
k , we have ggkg ∈ B. Therefore

B ∩
n⋂
k=1

Bg−1k ⊂
n⋃
k=1

(ϕ−1(P ) ∩B)g−1k ,

which is nonmeager and hence so is ϕ−1(P ) ∩B (and a fortiori ϕ−1(P ) ∩B
6= ∅).

(ii) If ϕ has the Baire property, then for every open half-plane P in C
such that 0 ∈ P , ϕ−1(P ) has the Baire property and is comeager by (i) (if
not, ϕ−1(P ) ∩ (G \ ϕ−1(P )) 6= ∅).

To conclude, it is sufficient to remark that one can find a sequence
(Pn)n∈N of open half-planes in C such that {0} =

⋂
n∈N Pn, and so ϕ−1({0})

is comeager in G.

Before proving the “Baire” analog of the “Haar” result of Kuznetsova, we
need the following theorem from set-theoretic topology.

Theorem 3.5 ([16, pp. 225–226]). Let X be a Polish space and A a point
finite family (i.e. for each x in X, {A ∈ A | x ∈ A} is finite) of meager sets
with

⋃
A∈AA = X. Then there exists a subfamily B of A such that

⋃
A∈B A

does not have the Baire property.

From this, one can deduce that if A is a point finite family of meager
subsets of X such that

⋃
A∈AA is not meager, then one can find a subfamily

B of A such that
⋃
A∈B A does not have the Baire property.

If
⋃
A∈AA does not have the Baire property, one can choose B = A. If⋃

A∈AA does have the Baire property, there is an open subset U (nonempty)
such that

⋃
A∈AA is comeager in U , i.e. U \

⋃
A∈AA = A′ where A′ is meager

(in X and in U).
The set U with its induced topology is Polish [15] and each A ∈ A is

meager in U . We can thus apply the preceding theorem to the point finite
family A∪{A′} in U . Thus, there is B ⊂ A such that (

⋃
A∈B A)∪A′ does not

have the Baire property. But A′ being a meager set disjoint from
⋃
A∈B A,⋃

A∈B A does not have the Baire property.
We are now ready to prove:

Theorem 3.6. Let G be a Polish group and θ a unitary representation of
G on a Hilbert space H. If θ has the Baire property when L(H) is endowed
with the weak operator topology, then θ is strongly continuous.

Proof. By Theorem 3.1, we have a decomposition H = H0⊕Hc reducing
H and such that the part of θ on Hc is strongly continuous. So, it suffices
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to show that if θ has the Baire property then H0 = {0}. Towards a con-
tradiction, pick x in H0 \ {0}. Then g 7→ 〈θ(g)x, x〉 is, by assumption, a
positive definite function with the Baire property and averaging to zero. By
Proposition 3.4, S = {g ∈ G | 〈θ(g)x, x〉 6= 0} is a meager set with e ∈ S
since 〈θ(e)x, x〉 = ‖x‖2 6= 0.

By an application of the Baire theorem, a countable Polish group is dis-
crete, and an uncountable Polish group has cardinality c (the continuum)
[15]. So we can assume that G has cardinality c. We can choose a well-
ordering {gα | α < c} on G with g0 = e. We define an increasing function ψ
(for the chosen order) from an initial segment {gα | α < m} of G to G by
induction. Set ψ(e) = e and suppose that ψ(gβ) has been chosen for β < α.
If Xα = {ψ(gβ) | β < α} is such that Xα.S is not meager, we stop the pro-
cedure. If Xα.S is a meager subset of G, it is different from G and we take
ψ(gα) = inf(G \Xα.S). Set for convenience hα = ψ(gα). Then ψ is strictly
increasing by construction and since h0 = ψ(e) = e = g0, we have hα ≥ gα
for α < m. We now consider the family Xα = {hβ | β < α} for α < m. If
m < c, then Xm.S is not meager. If m = c, then for α < c the initial segment
of G associated to hα satisfies {g < hα} ⊂ Xα.S since hα = inf(G \Xα.S).
We have (c being a limit ordinal)

G = {gα | α < c} =
⋃
α<c

{gβ | β < α}

⊂
⋃
α<c

{g | g < hα} ⊂ Xc.S.

So, Xc.S = G and it is not meager.
We have thus constructed an ordered family {Xα | α < m} for an m ≤ c

such that Xm.S is not a meager set (and all the Xα.S for α < m are).
Moreover α > β ⇒ h−1β .hα 6∈ S, because otherwise hα ∈ hβ.S ⊂ Xα.S,
which contradicts the definition of hα.

So, 〈θ(h−1β )θ(hα)x, x〉 = 〈θ(hα)x, θ(hβ)x〉 = 0 for α 6= β (α, β < m)
using the definition of S, and so (θ(hα)x)α<m forms an orthogonal system.
Set now, for all α < m and n ∈ N∗,

Aα,n = {g ∈ G | |〈θ(g)x, θ(hα)x〉| > 1/n}.
We have ⋃

n∈N∗
Aα,n = {g ∈ G | 〈θ(g)x, θ(hα)x〉 6= 0}

= {g ∈ G | 〈θ(h−1α g)x, x〉 6= 0} = hα.S,

and thus
⋃
n∈N∗ Aα,n and each Aα,n are meager sets. Since⋃

n∈N∗

( ⋃
α<m

Aα,n

)
=
⋃
α<m

hα.S = Xm.S

is not a meager set, one can find N ∈ N∗ such that
⋃
α<mAα,N is not meager.
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We will now show that the family (Aα,N )α<m is point finite. We have

g ∈ Aα,N ⇔ ∃α < m such that |〈θ(g)x, θ(hα)x〉| > 1/N.

Since (θ(gα)x)α<m is an orthogonal system, we have

‖x‖2 = ‖θ(g)x‖2 ≥
∑

{α | g∈Aα,N}

|〈θ(g)x, θ(hα)x〉|2 ≥
∑

{α | g∈Aα,N}

1

N2
,

and so, for any g ∈ G, the set {α < m | g ∈ Aα,N} is finite. By Theorem 3.5,
there is a subfamily B of {α | α < m} such that

⋃
α∈B Aα,N fails the Baire

property in G. But⋃
α∈B

Aα,N = θ−1
(⋃
α∈B
{T ∈ L(T ) | |〈Tx, θ(hα)x〉| > 1/N}

)
,

which, by assumption, does have the Baire property in G.

Remarks 3.7. (1) As already said (and as one can see), this proof owes
much of its idea and structure to that of [19] (the latter being, moreover,
more difficult because the Polish locally compact case is only the first step
and other arguments are needed to treat general locally compact groups).
We have, nevertheless, detailed it for the sake of completeness.

(2) Theorem 3.5 is actually a particular case ([16, Example, p. 226]) from
which one can also deduce the analogous fact with a point finite family of
Haar negligible sets, used in [19].

From Theorem 3.6, one can deduce an automatic continuity theorem for
morphisms between topological groups.

Proposition 3.8. Let G be a Polish group, H a Hilbert space and U(H)
the unitary group of H. Suppose that ϕ : G → U(H) is a group morphism
having the Baire property (when U(H) is endowed with its usual topology
induced by the norm topology of L(H)). Then ϕ is continuous.

Proof. By assumption, ϕ induces a representation of G on H having the
Baire property for the norm topology on L(H). For any state ω of L(H),
let πω : L(H) → L(Hω) be the G.N.S. representation of L(H) associated
to ω. Then πω ◦ ϕ has the Baire property (since πω is norm continuous) for
the norm and a fortiori for the weak operator topology on L(Hω). By the
previous theorem, πω ◦ ϕ is strongly continuous for each ω in S(L(H)), and
by Corollary 2.9, ϕ is continuous.

From Theorem 3.6, we can also deduce the following:

Theorem 3.9. Let G andK be topological groups, G Polish andK locally
compact. If ϕ : G → K is a morphism with the Baire property, then ϕ is
continuous.

First, we must recall the following known lemma (see [17]):
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Lemma 3.10. If K is a locally compact group and ρK : K → L(L2(K))
is the left regular representation of K, then ρK is a homeomorphism onto
its range endowed with the topology induced by the strong operator topology
on L(L2(K)).

Proof of Theorem 3.9. The composition ρK ◦ϕ : G→ L(L2(K)) is a uni-
tary representation with the Baire property when L(L2(K)) has the strong
(and a fortiori weak) operator topology. Thus, by Theorem 3.6, ρK ◦ ϕ is
strongly continuous. If V is an open subset of K, we have

ϕ−1(V ) = (ρK ◦ ϕ)−1(ρK(V )).

By Lemma 3.10, ρK(V ) is open in ρK(K), so there is a strongly open set U
in L(L2(K)) such that U ∩ ρK(K) = ρK(V ). Hence

ϕ−1(V ) = (ρK ◦ ϕ)−1(ρK(V )) = (ρK ◦ ϕ)−1(U ∩ ρK(K)) = (ρK ◦ ϕ)−1(U)

is an open set in G.

Remarks 3.11. (1) When G and K are both Polish groups, Theorem
3.9 is a well known result of Pettis.

When G is locally compact andK is Polish, a Haar measurable morphism
is continuous (Steinhaus, Weil); the same is true when G and K are both
locally compact (Kleppner [17], [18]).

(2) When one has the Baire property or Haar measurability, these auto-
matic continuity theorems have an ambiguous status.

In [19], J. Kuznetsova has proved that a Haar measurable morphism
from a locally compact group to any topological group is continuous assum-
ing Martin’s axiom. So, a much more general continuity theorem for Haar
measurable morphisms than those above is consistent with ZFC. The con-
sequence of Martin’s axiom used in [19] is that, in a Polish locally compact
group, the union of less than continuum many Haar negligible sets is negli-
gible. Another consequence of Martin’s axiom is the same in Polish spaces
for meager sets.

So one can prove, exactly as in [19], that if S is a nonempty meager
set in a Polish group G, then there is a set A ⊂ G such that both A.S and
G\A.S intersect every perfect nonmeager set in G and so A.S fails the Baire
property, and, from this, that every Baire morphism from a Polish group into
any topological group is continuous (assuming Martin’s axiom). We do not
develop this since the modifications needed in [19, proof of Lemma 6 and
Theorem 8] are very minor.

4. Spectral properties of abelian group representations. In Sec-
tion 5, combining the continuity criterion through characters (Th. 2.7), the
regularity of the map associating the spectrum to an operator relative to the
strong topology (see [20] or [29]) and the properties of discontinuous group
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morphisms with values in the torus, we are going to prove that, for “almost
all” elements in a Polish group, the spectra in the range of the representation
have particular geometric properties in the complex plane.

4.1. Preliminaries. We begin by recalling some definitions related to
topological groups.

Let G be a topological group, T a translation invariant σ-algebra of
subsets of G and I a σ-ideal in T . Then I is said to have the strong Steinhaus
property relative to T if for any set A in T \ I, {g ∈ A | gA ∩ A 6∈ I} is a
neighborhood of the unit e in G.

In locally compact groups, the sets of Haar measure zero form a σ-ideal
with the strong Steinhaus property in the σ-algebra of Haar measurable
subsets. The same is true for the σ-ideal of meager sets in the σ-algebra of
subsets having the Baire property in Polish groups.

In abelian Polish groups, there is perhaps a less well known example of
the Steinhaus property. Recall that a subset of a topological spaceX is called
universally measurable if it is measurable for every complete Borel measure
on X. If G is an abelian Polish group, a universally measurable subset A of G
is called Haar null (in Christensen’s sense) if one can find a Borel probability
measure µ on G such that µ(gA) = 0 for all g ∈ G.

One can show (see [2]) that, in abelian Polish groups, the Haar null sets
form a σ-ideal with the Steinhaus property in the σ-algebra of universally
measurable subsets.

4.2. Morphisms from an abelian Polish group to the torus. To
study the spectra of elements in the range of a group representation, one can
first study some properties of morphisms (in particular, discontinuous ones)
from the group G under study to the multiplicative complex group C∗ or to
the torus T.

Let G be a topological group and ϕ a morphism from G to C∗. We set
Γϕ =

⋂
V ∈V(e) ϕ(V ) where V(e) is the set of all neighborhoods of e in G. One

can see that Γϕ consists of all complex numbers λ such that one can find a
net (gi) in G with gi → e and ϕ(gi)→ λ.

Since we are only interested in Polish groups, we can use sequences in
place of nets, but most of the results in Proposition 4.1 can be extended
to more general topological groups. A great part of the properties of locally
bounded morphisms and of their associated sets Γϕ are more or less explicitly
stated in [14]. We collect them in the following proposition.

Proposition 4.1. Let G be a Polish group and ϕ : G → C∗ a locally
bounded morphism from G to C∗. Then:

(i) Γϕ is a compact subgroup of the torus T.
(ii) ϕ is continuous if and only if Γϕ = {1}.
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(iii) |ϕ| (defined by |ϕ|(g) = |ϕ(g)|) is a continuous morphism from G to
the multiplicative group R∗+ of positive real numbers.

(iv) If for each positive integer n, G admits local division by n (i.e. there
are a neighborhood Vn of e and a continuous map ψn : Vn → G with
ψn(e) = e such that (ψn(g))n = g for all g ∈ Vn), then Γϕ = {1}
or T.

(v) Suppose that ϕ takes values in T and let K(T) be the Polish space of
compact subsets of T endowed with the Vietoris topology. Then the
map G→ K(T) defined by g 7→ ϕ(g)Γϕ is continuous.

Proof. (i) Clear from the definition of Γϕ with sequences converging to e.
(ii) Clearly Γϕ = {1} if ϕ is continuous. Conversely, if (gn)n∈N is a se-

quence in G converging to e, then since ϕ is locally bounded, one can suppose
that (ϕ(gn))n∈N is bounded and, actually, converges. The limit of (ϕ(gn))n∈N
is in Γϕ, so it is 1, and hence ϕ is continuous since it is continuous at e.

(iii) The local boundedness of ϕ (and |ϕ|) implies that Γ|ϕ| is a compact
subgroup of R∗+, hence Γ|ϕ| = {1} and |ϕ| is continuous by (ii).

(iv) Let ψn witness local division by n in G, and choose λ in Γϕ. If (gk) is
a sequence converging to e such that ϕ(gk) converges to λ, by local bound-
edness, since ψ(gk) → e, ϕ(ψ(gk)) is bounded, and hence can be supposed
to converge to some λn in Γϕ.

Since (ϕ(ψn(gk)))
n = ϕ(gk) → λ, we have λnn = λ, and thus Γϕ is a

closed divisible subgroup of T, that is, Γϕ = {1} or Γϕ = T.
(v) We begin with the case of a morphism ϕ with values in T. For g ∈ G

and a sequence gn→ g, setting Aε= {z∈T | d(z,A)< ε} for A⊂T, we have

∀ε > 0, ∃N ∈ N, n ≥ N ⇒ ϕ(gng
−1) ∈ Γ εϕ.

Indeed, suppose Γ εϕ 6= T. If the assertion above is not true, one can extract a
sequence gnk such that for all k ∈ N, ϕ(gnkg−1) is in the compact set T\Γ εϕ,
and such a sequence can be chosen so that ϕ(gnkg

−1) converges to some λ
in T \ Γ εϕ. Since gnkg−1 → e, λ must be in Γϕ, a contradiction.

Thus
∀ε > 0, ∃N ∈ N, n ≥ N ⇒ ϕ(gn) ∈ ϕ(g)Γ εϕ.

Since Γϕ is a subgroup of T and, for λ ∈ T, z 7→ λz is an isometry, it follows
that λϕ(gn) ∈ ϕ(g)Γ εϕ for all λ ∈ Γϕ and n ≥ N , and thus ϕ(gn)Γϕ ⊂
ϕ(g)Γ εϕ. Moreover, ϕ(gng−1) ∈ Γ εϕ ⇒ ϕ(g−1n g) ∈ Γ εϕ (the metric on the
torus is translation invariant and z 7→ z−1 is an isometry). So, n ≥ N ⇒
ϕ(g) ∈ ϕ(gn)Γ

ε
ϕ, and, as above, ϕ(g)Γϕ ⊂ ϕ(gn)Γ

ε
ϕ, which, by definition

of the Hausdorff metric on K(T) defining the Vietoris topology (see [15]),
proves the desired continuity.

Remark 4.2. (1) In the case where Γϕ = T, the map g 7→ ϕ(g)Γϕ, being
constant, is trivially continuous and (v) is irrelevant.
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(2) By (iii), the continuity of a morphism ϕ from a Polish group G to C∗ is
equivalent to the continuity of the morphism ϕ̃ defined by ϕ̃(g) = ϕ(g)/|ϕ(g)|
with values in T. In view of this remark, we only need to study morphisms
(in particular discontinuous morphisms) into T.

In the case G = R, it is proved in [14] that if ϕ is a discontinuous
morphism with values in the torus, then the inverse image ϕ−1(V ) of any
nonempty open subset V of T is dense in R. This result is made more precise
in [20] where it is proved that ϕ−1(V ) meets every nonmeager subset of R
having the Baire property. In this form, the result does not generalize to all
abelian Polish groups in place of R.

Consider the following example (see [8]). Set G = UN
3 (where U3 =

{z ∈ C | z3 = 1}). Define ϕ
(
(zn)n∈N

)
by taking the limit along a nontriv-

ial ultrafilter on N (or a Banach limit) of the sequence (zn). One can see
that ϕ is a discontinuous morphism from G to T and (ϕ(g))3 = 1 for g in G.
So, if V is an open subset in T containing no cubic root of unity, ϕ−1(V ) is
empty. Nevertheless, if we restrict the classes of the open subsets of T and
subsets of G considered (in a manner which depends on the morphism ϕ
or, more precisely, on Γϕ), we can obtain a satisfactory generalization of the
result, valid when G = R. Such theorems are proved in [3] and [28]. The
approach below unifies the previous results and provides some details and
generalizations.

We will first give a local version of the statement that an element of a
σ-algebra is in an ideal.

Let X be a topological space, T a σ-algebra containing the Borel algebra
of X, and I a σ-ideal in T . For g in X we set

Ig = {A ∈ T | ∃V ∈ V(g) open, V ∩A ∈ I}.

Clearly I ⊂ Ig for all g ∈ X. If moreover X is a second countable topological
space, one can show easily using the Lindelöf property that A ∈ I ⇔ ∀g ∈ A,
A ∈ Ig.

Now, we consider a σ-algebra T of subsets of G which contains the Borel
σ-algebra, and a σ-ideal I in T with the strong Steinhaus property relative
to T .

Lemma 4.3. Let V be an open subset of T such that V ∩ Γϕ 6= ∅. Then
ϕ−1(V ) ∩A 6= ∅ for each subset A of G with A ∈ T \ Ie.

Proof. Let V1 be an open subset of T such that V1 ∩ Γϕ 6= ∅, and V0 an
open symmetric neighborhood of 1 such that V0V1 ⊂ V .

If Γϕ = T, then T = ΓϕV1 =
⋃
µ∈Γϕ µV1, and, by compactness, there

exist an integer N and µ1, . . . , µn in T such that T =
⋃N
i=1 µiV1, and so

G =
⋃N
i=1 ϕ

−1(µiV1) and A ∩
⋃N
i=1 ϕ

−1(µiV1) = A ∈ T \ I.
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If Γϕ = {µ1, . . . , µN} is a finite subgroup of T, then Γϕ(
⋃N
i=1 µiV1) =⋃N

i=1 µiV1 and so

ϕ(g) ∈
N⋃
i=1

µiV1 ⇔ ϕ(g)Γϕ ⊂
N⋃
i=1

µiV1.

Hence

ϕ−1
( N⋃
i=1

µiV1

)
=
{
g ∈ G

∣∣∣ ϕ(g)Γϕ ⊂ N⋃
i=1

µiV1

}
is an open neighborhood of e in G (by Prop. 4.1(v)) and A∩

⋃N
i=1 ϕ

−1(µiV1)
is in T \ I since A /∈ Ie.

So, in any case, it suffices to show that if A is a subset of G such that
A ∈ T \ I and A ⊂

⋃N
i=1 ϕ

−1(µiV1), then ϕ−1(V ) ∩ A 6= ∅ (in the case
Γϕ 6= T, one can consider A ∩

⋃N
i=1 ϕ

−1(µiV1) instead of A).
Let J ⊂ {1, . . . , N}. We will say that J has property (P) if for each

subset A of G such that A ⊂
⋃
i∈J ϕ

−1(µiV1) and A ∈ T \ I, we have
ϕ−1(V ) ∩A 6= ∅.

If {1, . . . , N} has property (P), our proposition is proved.
We proceed by induction on the cardinality |J | of J . For each subset

A ∈ T \ I, UA := {g ∈ G | A ∩ gA /∈ I} is a neighborhood of e in G
and Γϕ ⊂ ϕ(UA), thus for each i ∈ {1, . . . , N}, there exists gi,A ∈ UA such
that µi(ϕ(gi,A))−1 ∈ V0, hence µi ∈ ϕ(gi,A)V0 and µiV1 ⊂ ϕ(gi,A)V0V1 ⊂
ϕ(gi,A)V , so

ϕ−1(µiV1) ⊂ ϕ−1(ϕ(gi,A)V ) = gi,Aϕ
−1(V ).

If for some i in {1, . . . , N}, we have A ∩ gi,AA ∩ ϕ−1(µiV1) 6= ∅, then
ϕ−1(V ) ∩ A 6= ∅. Indeed, if g ∈ A ∩ gi,AA ∩ ϕ−1(µiV1), then g−1i,Ag ∈ A and
g−1i,Ag ∈ g

−1
i,A(gi,Aϕ

−1(V )) = ϕ−1(V ).
Consider now J ⊂ {1, . . . , N}. If |J | = 1, then J = {i0} with 1 ≤ i0 ≤ N ,

and if A ∈ T \ I and A ⊂
⋃
i∈J ϕ

−1(µiV1) = ϕ−1(µi0V1), we have

A ∩ gi0,AA ∩ ϕ−1(µi0V1) = A ∩ gi0,AA ∈ T \ I,

so A ∩ gi0,AA ∩ ϕ−1(µi0V1) 6= ∅ and by the preceding argument we have
ϕ−1(V ) ∩A 6= ∅. Hence J has property (P).

Now, suppose that |J | ∈ {2, . . . , N} and that every subset of {1, . . . , N}
of cardinality strictly less than |J | has (P), for each A ∈ T \ I such that
A ⊂

⋃
i∈J ϕ

−1(µiV1). There are two cases:
(i) There is some i ∈ J such that A∩ gi,AA∩ϕ−1(µiV1) 6= ∅. Then, as in

the case of |J | = 1, we can conclude that ϕ−1(V ) ∩A 6= ∅.
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(ii) A ∩ gi,AA ∩ ϕ−1(µiV1) = ∅ for all i ∈ J . Choosing i0 ∈ J , we have
A ∩ gi0,AA ∩ ϕ−1(µi0V1) = ∅ and so

A ∩ gi0,AA ⊂
⋃

i∈J\{i0}

ϕ−1(µiV1)).

But A∩gi0,AA∈T \I and, by induction hypothesis, (A∩gi0,AA)∩ϕ−1(V ) 6= ∅,
hence ϕ−1(V ) ∩A 6= ∅.

Theorem 4.4. If g∈G, V is an open subset of T such that ϕ(g)Γϕ∩V 6= ∅
and A is a subset of G with A ∈ T \ Ig, then ϕ−1(V ) ∩A 6= ∅.

Proof. ϕ(g−1)V is an open subset of T such that ϕ(g−1)V ∩ Γϕ 6= ∅,
g−1A /∈ Ie since A /∈ Ig, and thus by the previous lemma, we have
ϕ−1(ϕ(g−1)V ) ∩ g−1A 6= ∅, so g−1(ϕ−1(V ) ∩A) 6= ∅ and ϕ−1(V ) ∩A 6= ∅.

Remark 4.5. (1) It is possible, for proper subsets J of {1, . . . , N}, that⋃
i∈J ϕ

−1(µiV1) contains no set in T \ I. In that case (P) would be trivially
true for J 6= {1, . . . , N}.

(2) If ϕ is continuous (Γϕ = {1}), the result is a trivial consequence of
the continuity.

(3) If ΓϕV = T, then zΓϕ ∩ V 6= ∅ for all z ∈ T, so ϕ(g)Γϕ ∩ V 6= ∅ for
each g in G, and if A ∈ T satisfies ϕ−1(V ) ∩ A = ∅, then A ∈ Ig for all
g ∈ G, so A ∈ I. Hence: if ΓϕV = T, then ϕ−1(V )∩A 6= ∅ for all A ∈ T \I.
In particular, if Γϕ = T, then, for each nonempty open subset V of T and
each A ∈ T \ I, we have ϕ−1(V ) ∩A 6= ∅.

Corollary 4.6. Let G be an abelian Polish group, T a σ-algebra of G
containing the Borel algebra, and I a σ-ideal in T having the strong Stein-
haus property relative to T . If ω : G→ K(T) (where K(T) is the Polish space
of compact subsets of T endowed with the Vietoris topology) is T -measurable
and if ϕ : G→ T is a group morphism such that ϕ(g) ∈ ω(g) for all g ∈ G,
then, setting Ωϕ := {g ∈ G | ϕ(g)Γϕ 6⊂ ω(g)}, we have Ωϕ ∈ I.

Proof. We have
Ωϕ =

⋃
n∈N
{g ∈ G | Vn ∩ ϕ(g)Γϕ 6= ∅ and Vn ∩ ω(g) = ∅},

where (Vn)n∈N is a basis for the topology of T.
IfΩϕ 6∈ I, there exists n0 in N such that An0 := {g ∈ G | Vn0∩ϕ(g)Γϕ 6= ∅

and Vn0∩ω(g) = ∅} is not in I. By the definition of the Vietoris topology [15],
{K ∈ K(T) | K∩Vn0 6= ∅} is an open set in K(T), and by Proposition 4.1(v),
{g ∈ G | ϕ(g)Γϕ ∩ Vn0 6= ∅} is an open subset of G. Analogously, the set
{K ∈ K(T) | K∩Vn0 = ∅} is a closed subset of K(T), and by T -measurability
of ω, we have {g ∈ G | ω(g) ∩ Vn0 = ∅} ∈ T , so

An0 = {g ∈ G | Vn0 ∩ ϕ(g)Γϕ 6= ∅} ∩ {g ∈ G | Vn0 ∩ ω(g) = ∅}
is in T \ I.
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If g ∈An0 , then ϕ(g)∈ω(g) and so ϕ(g) /∈ Vn0 , hence ϕ−1(Vn0) ∩An0 = ∅.
Let g0 ∈ An0 be such that An0 /∈ Ig0 (such a g0 exists since An0 /∈ I).

Then we have ϕ(g0)Γϕ ∩ Vn0 6= ∅, and so “ϕ−1(Vn0) ∩ An0 = ∅” contradicts
Theorem 4.4.

Corollary 4.7. Let G, T , I and ω : G→ K(T) be as in the preceding
corollary, and (ϕi)i∈I be a family of morphisms from G to T such that ϕi(g)
is in ω(g) for all i ∈ I and g ∈ G. Setting AI =

⋃
i∈I Γϕi , we have:

(1) If AI is not finite, then

{g ∈ G | ω(g) 6= T} =
{
g ∈ G

∣∣∣ ⋃
i∈I

ϕi(g)Γϕi 6⊂ ω(g)
}
∈ I.

(2) If AI is a finite set, then there exist N ∈ N∗ and {i1, . . . , iN} ⊂ I
such that

AI =
N⋃
k=1

Γϕik and
{
g ∈ G

∣∣∣ N⋃
k=1

ϕik(g)Γϕik 6⊂ ω(g)
}
∈ I.

Proof. We begin with the second case. Since AI is finite, only a finite
number of ϕi’s have Γϕi distinct, and all these sets Γϕi are finite. Hence,
AI =

⋃N
k=1 Γϕik for some integer N and i1, . . . , iN in I. By Corollary 4.6, we

have {g ∈ G | ϕik(g)Γϕik 6⊂ ω(g)} ∈ I for all k ∈ {1, . . . , N} and thus{
g ∈ G

∣∣∣ N⋃
k=1

ϕik(g)Γϕik 6⊂ ω(g)
}
∈ I.

Now, we consider the first case where
⋃
i∈I Γϕi is an infinite subset of T.

There is i ∈ I such that Γϕi = T or, for each n ∈ N, Γϕi is a group of
roots of unit of order more than n for a certain i ∈ I. Hence, if U is a
nonempty open subset of T, there is i ∈ I such that λΓϕi ∩ U 6= ∅ for all
λ ∈ T (i depends on U if there is no i ∈ I such that Γϕi = T). Let (Vn)n∈N
be a basis of the topology in T. Then {g ∈ G | ω(g) 6= T} =

⋃
n∈NAn

with An := {g ∈ G | ω(g) ∩ Vn = ∅}. We have An ∈ T for all n ∈ N,
by the T -measurability of ω, and {g ∈ G | ω(g) 6= T} is also in T . Since
{g ∈ G | ω(g) 6= T} 6∈ I, there exists n0 ∈ N such that An0 /∈ I, and so
there exists g0 ∈ An0 such that An0 /∈ Ig0 . Since

⋃
i∈I Γϕi is infinite, we see

as above that there exists i0 ∈ I such that λVn0 ∩ Γϕi0 6= ∅ for all λ ∈ T;
in particular, ϕi0(g0)Γϕi0 ∩ Vn0 6= ∅. But, for g ∈ An0 , ϕi0(g) ∈ ω(g), so
ϕi0(g) 6∈ Vn0 and ϕ−1i0 (Vn0)∩An0 = ∅, which contradicts Theorem 4.4; hence
{g ∈ G | ω(g) 6= T} ∈ I.

Remark 4.8. The heuristic meaning of Theorem 4.4 and its corollaries is
that discontinuous morphisms from an abelian Polish group G to the torus
have an extremely “oscillating” behavior. The inverse image of each open
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subset of T, or, in some cases, of each well-distributed open subset of T, is
not only dense in G but it meets any “regular” and “big” subset of G (e.g.
Haar measurable sets of positive measure if G is locally compact, nonmeager
sets having the Baire property, or universally measurable and not Haar null
sets in Christensen’s sense in Polish groups).

If the morphism is constrained to take values in a compact subset of T
varying in a somewhat regular manner (e.g. Baire or Haar measurability
when K(T) is endowed with the Vietoris topology), then the regular varia-
tion of subsets cannot absorb the oscillation except if, at least on the com-
plement of some “small” subset of G, the values of the set map are, in a sense
depending on ϕ (or on Γϕ), “big” subsets of T.

5. Angular distribution of spectra in the ranges of strongly con-
tinuous representations. We will study the arguments of the elements of
the spectrum σ(θ(g)) when g 7→ θ(g) is a strongly continuous representation
of an abelian Polish group G on a Banach space. For that, we will fix some
notation. Let U be a subset of C∗; we set U1 = {z/|z| | z ∈ U} and, if T is an
invertible linear operator on a Banach space, or more generally an invertible
element of a Banach algebra, σ1(T ) = (σ(T ))1.

We denote by G an abelian Polish group, by X a Banach space, by
L(X) the Banach algebra of bounded linear operators on X and by θ a
representation of G on X.

If A is a closed subalgebra containing the range θ(G), we have σ1A(θ(g)) =
σ1(θ(g)), where σA is the spectrum relative to the algebra A. Indeed, for
g ∈ G, θ(g) is invertible in A, thus 0 6∈ σA(θ(g)). Clearly, σ(θ(g)) ⊂ σA(θ(g))
and it is known that ∂σA(θ(g)) ⊂ σ(θ(g)), so σ1(θ(g)) ⊂ σ1A(θ(g)) and
(∂σA(θ(g)))

1 ⊂ σ1(θ(g)). By a classical connectedness argument, each ray
from 0 meeting σA(θ(g)) meets ∂σA(θ(g)), and σ1A(θ(g)) = (∂σA(θ(g)))

1.
Since G is commutative, the remark above applies to the Banach sub-

algebra of L(X) generated by θ(G), which is commutative, or to any com-
mutative subalgebra containing θ(G).

Let Â be the character space of A, and let A∗ be the group of invertible
elements of A. For χ ∈ Â, define χ1 : A∗ → T by χ1(a) = χ(a)/|χ(a)|.
Clearly, σ1A(a) = {χ1(a) | χ ∈ Â} for all a ∈ A∗, and χ1 ◦ θ : G → T is a
group morphism for all χ ∈ Â.

Now, we need the following regularity result on the variation of spectrum
relative to the strong operator topology.

Theorem 5.1 (see [20], [29]). Let X be a separable Banach space. The
map T 7→ σ(T ), from L(X) (endowed with the strong operator topology) to
the topological space K(C) of compact subsets of C, is a Borel map.
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From this, one can deduce easily that, if θ : G → L(X) is a strongly
continuous representation of a Polish group G on a Banach space, then the
map g 7→ σ1(θ(g)) is Borel from G to K(T). As an application of this fact
and our results on morphisms from G to T, one can show:

Lemma 5.2. Let θ : G → L(X) be a strongly continuous representa-
tion of an abelian Polish group G on a separable Banach space, and A be
a commutative Banach subalgebra containing θ(G). Then{

g ∈ G
∣∣∣ σ1(θ(g)) 6= ⋃

χ∈Â

(χ1 ◦ θ)(g)Γχ1◦θ

}
is a meager and Haar null subset of G.

Proof. Since σ1(θ(g)) = {(χ1 ◦ θ)(g) | χ ∈ Â}, we have, without any
hypothesis,

σ1(θ(g)) ⊂
⋃
χ∈Â

(χ1 ◦ θ)(g)Γχ1◦θ for all g ∈ G.

Then it suffices to apply Corollary 4.7 to the family of morphisms {χ1 ◦ θ |
χ ∈ Â} and to the Borel map g 7→ σ1(θ(g)) from G to K(T) where the
σ-ideal considered is the set of meager sets or of Haar null sets in G.

Remark 5.3. If θ is norm continuous, then, for each χ ∈ Â, χ1 ◦ θ is
continuous and (χ1 ◦ θ)(g)Γχ1◦θ = (χ1 ◦ θ)(g). Hence, the above lemma says
nothing more than σ1(θ(g)) = {(χ1 ◦θ)(g) | χ ∈ Â}. The result is interesting
only in the strongly but not norm continuous case.

We define a regular polygon to be the image under any rotation around 0
of a closed subgroup of T (hence T or any {z}, z ∈ T, are polygons in our
terminology); a polygon with more than one element is called nontrivial.
We can now prove the main result of this section which gives some “angular
scattering” properties of the spectra of “almost all” elements in the range of
a strongly continuous but not norm continuous representation.

Theorem 5.4. Let G be an abelian Polish group and let θ : G → L(X)
be a strongly continuous representation of G on a Banach space X. Then we
have the following dichotomies:

(1) If G is locally compact, then either θ is norm continuous, or the set
of elements g in G such that σ1(θ(g)) does not contain any nontrivial
polygon is meager and has Haar measure zero.

(2) If G is not assumed to be locally compact, but θ is norm bounded,
then the first assertion remains true if we replace “has Haar measure
zero” by “is Haar null (in Christensen’s sense)”.

Proof. We first assume that X is separable. If θ is not norm continuous,
by [28, Proposition 2.2] in case (1), and by Theorem 2.7 if G is not locally
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compact but θ is norm bounded (with A a commutative subalgebra of L(X)
containing θ(G)), there is a χ ∈ Â such that χ ◦ θ and clearly also χ1 ◦ θ
is discontinuous, and so Γχ1◦θ 6= {1}. By the preceding lemma, we have
(χ1 ◦ θ)(g)Γχ1◦θ ⊂ σ1(θ(g)) for g in the complement of a meager and Haar
null subset of G (and thus σ1(θ(g)) contains a nontrivial polygon).

If X is not assumed to be separable and θ is not norm continuous, we
will show that one can find a separable θ(G)-invariant subspace such that
the restricted representation is already norm discontinuous.

Indeed, if θ is norm discontinuous, then there is δ > 0 and a sequence
(gn)n∈N in G such that gn → e and ‖θ(gn)−I‖ > δ; thus, there is a sequence
(xn) of unit vectors in X such that ‖θ(gn)xn − xn‖ > δ for all n ∈ N.
We denote by Y the closed subspace of X generated by the θ(G)-orbits
of the xn’s. As the group G is separable, Y is separable too and clearly
θ(G)-invariant. Writing θ|Y : G→ L(Y ) for the restricted representation, we
have ‖θ|Y (gn)xn − xn‖ > δ for all n ∈ N, and so ‖θ|Y (g)− I‖9 0 as g → e,
and thus θ|Y is norm discontinuous.

Hence, on the complement of a meager and Haar null subset of G,
σ1(θ|Y (g)) = σ1(θ(g)|Y ) contains a nontrivial polygon. It is known that
if T ∈ L(X) and Y is a bounded T -invariant subspace, we have the inclu-
sion σapp(T|Y ) ⊂ σapp(T ) of approximate spectra, and for each operator T ,
∂σ(T ) ⊂ σapp(T ).

By the remark at the beginning of the section, σ1(θ(g)) = (∂σ(θ(g)))1.
Hence, for all g ∈ G,

σ1(θ(g)) = (∂σ(θ(g)))1 ⊂ (σapp(θ(g)))
1 ⊂ σ1(θ(g)),

and σ1(θ(g)) = (σapp(θ(g)))
1. In the same way, σ1(θ|Y (g)) = (σapp(θ|Y (g)))

1.
Thus, σ1(θ|Y (g)) ⊂ σ1(θ(g)) and σ1(θ(g)) contains a nontrivial polygon on
the complement of a meager and Haar null set.

Conversely, if θ is norm continuous, the upper semicontinuity of the map
T 7→ σ(T ) relative to the norm topology shows that, on a neighborhood of e,
the spectra σ(θ(g)) are all contained in the right half-plane, and thus cannot
contain nontrivial polygons.

Example 5.5. For the regular representation of R, the exceptional set
reduces to {0}. If R acts by translations on L2(T), one can see that it is Qπ.

Now consider the representation of UN
3 on `2 defined by θ((zn))(un) =

(znun). Then θ is a strongly continuous representation which is norm dis-
continuous, and the spectrum of θ((zn)) is the set of cubic roots of 1 that
appear in the sequence (zn). Thus, if (zn) contains all the elements of U3,
then σ(θ((zn))) = σ1(θ((zn))) = U3 and the exceptional set is the set of
sequences (zn) in UN

3 where there is a missing cubic root; in particular, we
can see that it cannot be countable.
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Corollary 5.6. If for every positive integer n, G admits local division
by n, we have the following properties:

(1) If G is locally compact, then σ1(θ(g)) = T except on a meager and
Haar measure zero subset of G.

(2) If θ is norm bounded and G is not assumed to be locally compact, we
have the same as in (1) with “Haar measure zero” replaced by “Haar
null”.

Proof. It is sufficient to recall that, in this case, for all χ ∈ Â, Γχ1◦θ = T
(Proposition 4.1), and to apply the preceding theorem.

6. Applications. The preceding theorem enables us to prove the non-
existence of strongly but not norm continuous representations on some par-
ticular Banach spaces. We need to recall some definitions and properties.

Definition 6.1.

(1) An infinite-dimensional Banach space X is called indecomposable if
there is no topological direct decomposition X = X1 ⊕X2 with X1

and X2 both infinite-dimensional.
(2) X is called hereditarily indecomposable (H.I.) if all its closed infinite-

dimensional subspaces are indecomposable. These spaces are intro-
duced in [11].

Definition 6.2. Let X and Y be Banach spaces. A bounded operator
T : X → Y is said to be strictly singular if there is no closed infinite-
dimensional subspace X0 of X such that T is an isomorphism from X0 onto
T (X0).

Strictly singular operators have the same spectral theory as compact
operators.

Proposition 6.3. The spectrum of a strictly singular operator is at most
countable with 0 as the only possible cluster point. Nonzero elements of the
spectrum are eigenvalues of finite algebraic multiplicity.

We have the following property of H.I. spaces:

Theorem 6.4 (see [22]). Let X be a H.I. space and T ∈ L(X). Then
T = λI + S, where λ ∈ C, I is the identity map on X, and S is a strictly
singular operator.

We will need the following definitions concerning Banach spaces.

Definition 6.5. Let X be a Banach space.

(1) X has the Dunford–Pettis (D.P.) property if for any couple of se-
quences (xn) in X and (x∗n) in the dual space X ′ such that (xn) tends
weakly to x and (x∗n) tends weakly to x∗, we have 〈x∗n, xn〉 → 〈x∗, x〉.
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(This is equivalent to the statement that every weakly compact op-
erator from X to a Banach space Y maps weakly compact subsets
of X onto norm compact subsets of Y .)

(2) X has the Grothendieck property (G) if each sequence (x∗n) in X ′

converging in the weak∗ topology converges also in the weak topology
of X ′.

A reference for these properties is e.g. [27].

Example 6.6. L∞(Ω) (Ω a measure space) has both (D.P.) and (G).

We have the following result:

Theorem 6.7 (see [21, p. 211]). Let X be a Banach space having (D.P.)
and (Tn) a sequence of bounded operators on X such that:

(1) For all x∗ ∈ X ′, we have ‖Tnx∗‖ → 0.
(2) For every norm bounded sequence (x∗n) in X ′, (T ∗nx∗n) tends weakly

to 0.

Then limn→∞ ‖T 2
n‖ = 0.

We can now state the following result.

Theorem 6.8.

(1) Let X be a H.I. space, let G be a locally compact abelian Polish group
having local division by n for each integer n (e.g. a group of Lie
type), and let θ : G→ L(X) be a representation. Then the following
assertions are equivalent:

(i) θ is strongly continuous.
(ii) θ is norm continuous.

(2) The same is true if X is a space with (D.P.) and (G) (e.g. L∞(Ω))
and G a locally compact Polish group.

Proof. (1) By Theorem 6.4 and Proposition 6.3, σ(θ(g)) is countable for
each g, which contradicts Corollary 5.6(1).

(2) Assume that θ is strongly continuous and (gn) is a sequence converg-
ing to e in G. Then θ(gn)x→ x for all x ∈ X, and thus for all x∗ ∈ X ′ and
x ∈ X, we have

〈(θ(gn))∗x∗, x〉 = 〈x∗, θ(gn)x〉 → 〈x∗, x〉,

so (θ(gn))
∗x∗

w∗→ x∗ in X ′; thus, the representation g 7→ (θ(g))∗ from G on
X ′ is weakly continuous. It is known (see e.g. [6]) that for a locally compact
group, a weakly continuous representation is also strongly continuous (this
fact is much more classical for unitary representations but, nevertheless,
remains true in the general case). The representation g 7→ (θ(g))∗ on X ′ is
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thus strongly continuous and for all x∗ ∈ X ′, (θ(g))∗x∗ → x∗ in X ′ (endowed
with its norm topology).

Moreover, if (x∗n) is a bounded sequence in X ′, for all x ∈ X we have

|〈(θ(gn)− I)∗x∗n, x〉| = |〈x∗n, (θ(gn)− I)x〉| ≤ sup
n∈N
‖x∗n‖ · ‖(θ(gn)− I)x‖ → 0,

and thus (θ(gn) − I)∗x∗n
w∗→ 0, and by property (G), (θ(gn) − I)∗x∗n

w→ 0; so
by Theorem 6.7, ‖(θ(gn)− I)2‖ → 0 and ρ((θ(gn)− I)2)→ 0. Thus, for any
strongly continuous representation θ : G→L(X), we have ρ((θ(gn)−I)2)→0.
By the spectral mapping theorem, ρ(θ(gn)−I)→ 0 and, by [8, Theorem 3.3],
θ is norm continuous.

Remarks 6.9. (1) The first assertion of the theorem remains true if
G is not assumed to be locally compact but if θ is norm bounded (see
Corollary 5.6(2)).

(2) If G is compact (so that θ is clearly norm bounded), then the second
assertion of the theorem remains true if G is not assumed to be abelian
(using Corollary 2.5 instead of [8, Theorem 3.3]).

(3) The second part in the particular case of strongly continuous one-
parameter groups (and, actually, also one-parameter semigroups) is proved
in [21] and also in the Ph.D thesis of T. Coulhon. It applies, in particular,
to spaces such as L∞(Ω).
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