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Optimal embeddings of
critical Sobolev–Lorentz–Zygmund spaces

by

Hidemitsu Wadade (Kanazawa)

Abstract. We establish the embedding of the critical Sobolev–Lorentz–Zygmund
space H

n/p
p,q,λ1,...,λm

(Rn) into the generalized Morrey space MΦ,r(Rn) with an optimal
Young function Φ. As an application, we obtain the almost Lipschitz continuity for func-
tions in H

n/p+1
p,q,λ1,...,λm

(Rn). O’Neil’s inequality and its reverse play an essential role in the
proofs of the main theorems.

1. Introduction and main theorems. In this paper, we consider
optimal embeddings of the critical Sobolev–Lorentz–Zygmund space

H
n/p
p,q,λ1,...,λm

(Rn) into generalized Morrey spaces MΦ,r(Rn), where n ∈ N,
1 < p < ∞, 1 < q ≤ ∞, 1 ≤ r < ∞ and λ1, . . . , λm are non-negative
numbers with m ∈ N, and Φ is a Young function. One of our main purposes
is to investigate the optimal Young function Φ for which the embedding

H
n/p
p,q,λ1,...,λm

(Rn) ↪→MΦ,r(Rn) holds.

The Sobolev–Lorentz–Zygmund space Hs
p,q,λ1,...,λm

(Rn), s ∈ R, is defined
in terms of the Lorentz–Zygmund space Lp,q,λ1,...,λm(Rn) as a Bessel po-

tential space, Hs
p,q,λ1,...,λm

(Rn) := (1 − ∆)−s/2Lp,q,λ1,...,λm(Rn). The spaces
Hs
p,q,λ1,...,λm

(Rn) extend Sobolev–Lorentz spaces and Sobolev spaces since
Lp,q,0,...,0(Rn) =Lp,q(Rn) and Lp,p(Rn) =Lp(Rn), where Lp(Rn) and Lp,q(Rn)
denote the Lebesgue space and the Lorentz space, respectively. We give the
definitions of those function spaces and related properties in Section 2.

We consider the optimal vanishing and growth orders of the local inte-

grals
	
E |u(x)|r dx as |E| → 0 or |E| → ∞ for functions u in H

n/p
p,q,λ1,...,λm

(Rn).

In Suzuki–Wadade [SW], the authors gave the optimal growth order of the

local integrals for functions in H
n/p
p,q (Rn):
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Theorem A ([SW]). Let n ∈ N, 1 < p <∞, 1 < q ≤ ∞ and 1 ≤ r <∞.
Then there exists a positive constant C such that the inequality( �

E

|u(x)|r dx
)1/r

≤ C|E|1/r−1/p‖u‖
H
n/p
p,q

(1.1)

holds for all u ∈ Hn/p
p,q (Rn) and all measurable sets E if and only if p > r or

p = r ≥ q.

In Theorem A, the necessity of the condition p > r or p = r ≥ q comes
from the part |E| → ∞ in (1.1). In fact, the vanishing order |E|1/r−1/p as
|E| → 0 turns out not to be optimal, and in [SW], the authors also proved
the following:

Theorem B ([SW]). Let n ∈ N, 1 < p <∞, 1 < q ≤ ∞ and 1 ≤ r <∞.

Then there exist positive constants δ and C such that for all u ∈ Hn/p
p,q (Rn)

and all measurable sets E satisfying |E| < δ,( �

E

|u(x)|r dx
)1/r

≤ C|E|1/r log(1/|E|)1/q′‖u‖
H
n/p
p,q

where q′ := q/(q − 1).

Theorem B was originally obtained by Brézis–Wainger [BW] when p = q,

which corresponds to the critical Sobolev space H
n/p
p (Rn). Ozawa [Oz] gave

an alternative proof of Theorem B when p = q. We also refer to Sawano–
Wadade [SaWa], where the authors proved similar embeddings for the crit-
ical Sobolev–Morrey space.

Our first goal in this paper is to extend both Theorem A and Theorem B

to functions in H
n/p
p,q,λ1,...,λm

(Rn). Concerning an extension of Theorem A, one

can show that the inequality (1.1) with ‖u‖
H
n/p
p,q

replaced by ‖u‖
H
n/p
p,q,λ1,...,λm

holds if and only if p > r or p = r ≥ q without any modification of the
proof of Theorem A in [SW]. Therefore, we omit its proof in this paper.

However, when we consider an extension of Theorem B to H
n/p
p,q,λ1,...,λm

(Rn),

the vanishing order as |E| → 0 depends on the exponents λ1, . . . , λm.

To state our main theorems, we define multiple logarithmic functions by

`l(t) := `1 ◦ · · · ◦ `1︸ ︷︷ ︸
l

(t) for t ≥ cl with `1(t) := log t,

where the constants cl > 0 are determined by `l(cl) = 1. Our first result is:

Theorem 1.1. Let n ∈ N, 1 < p < ∞, 1 < q ≤ ∞, 1 ≤ r < ∞ and
let λ1, . . . , λm be non-negative numbers with m ∈ N. Assume one of the
following conditions holds:



Embeddings of Sobolev–Lorentz–Zygmund spaces 79

(A) there exists 0 ≤ j ≤ m− 1 such that

λ1 = · · · = λj =
1

q′
and λj+1 >

1

q′
,

(B) there exists 0 ≤ j ≤ m− 1 such that

λ1 = · · · = λj =
1

q′
and λj+1 <

1

q′
,

(C) λ1 = · · · = λm = 1/q′,

where (A) and (B) are understood as λ1 > 1/q′ and λ1 < 1/q′ respectively
when j = 0. Then there exist positive constants C and δ such that for all

u ∈ Hn/p
p,q,λ1,...,λm

(Rn) and all measurable sets E satisfying |E| < δ,

(1.2)
( �

E

|u(x)|r dx
)1/r

≤



C|E|1/r ‖u‖
H
n/p
p,q,λ1,...,λm

if (A) holds,

C|E|1/r `j+1(1/|E|)1/q
′−λj+1

×
∏m
l=j+2 `l(1/|E|)−λl‖u‖Hn/p

p,q,λ1,...,λm

if (B) holds,

C|E|1/r`m+1(1/|E|)1/q
′‖u‖

H
n/p
p,q,λ1,...,λm

if (C) holds,

where in the middle inequality, the right-hand side is understood as
C|E|1/r`m(1/|E|)1/q′−λm‖u‖

H
n/p
p,q,λ1,...,λm

when j = m− 1.

As a special casem = 1 of Theorem 1.1, we obtain the following corollary:

Corollary 1.2. Let n ∈ N, 1 < p < ∞, 1 < q ≤ ∞, 1 ≤ r < ∞
and λ ≥ 0. Then there exist positive constants C and δ such that for all

u ∈ Hn/p
p,q,λ(Rn) and all measurable sets E satisfying |E| < δ,

(1.3)
( �

E

|u(x)|r dx
)1/r
≤


C|E|1/r ‖u‖

H
n/p
p,q,λ

if λ > 1
q′ ,

C|E|1/r log(1/|E|)1/q′−λ‖u‖
H
n/p
p,q,λ

if λ < 1
q′ ,

C|E|1/r log
(
log(1/|E|)

)1/q′‖u‖
H
n/p
p,q,λ

if λ = 1
q′ ,

where the constants C and δ are independent of E.

Note that Theorem B corresponds to the middle inequality in (1.3) with
λ = 0. Furthermore, Corollary 1.2 tells us that the exponent λ = 1/q′ is a
threshold so that the logarithmic vanishing order as |E| → 0 appears for the

local integrals of functions in H
n/p
p,q,λ(Rn).

Theorem 1.1 can be regarded as giving the embedding ofH
n/p
p,q,λ1,...,λm

(Rn)
into a generalized Morrey space. Generalized Morrey spaces have been ex-
tensively studied: see for instance Kurata–Nishigaki–Sugano [KNS], Nakai
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[N1, N2] and Sawano–Sugano–Tanaka [SST1, SST2]. Let Φ be a Young func-
tion, that is, Φ : [0,∞)→ [0,∞) is a continuous function satisfying Φ(0) = 0
and limt→∞ Φ(t) = ∞. Then for a locally integrable function u on Rn, the
norm of the generalized Morrey space MΦ,r(Rn) is given by

‖u‖MΦ,r
:= sup

Q∈D(Rn)
Φ(|Q|)

(
1

|Q|

�

Q

|u(x)|r dx
)1/r

,

where D(Rn) denotes the set of dyadic cubes in Rn. The spaces MΦ,r(Rn)
extend Morrey spaces and in particular Lebesgue spaces. As an immedi-
ate consequence of Theorem 1.1 and Theorem A with ‖u‖

H
n/p
p,q

replaced by
‖u‖

H
n/p
p,q,λ1,...,λm

, we obtain the following embeddings:

Corollary 1.3. Let n ∈ N, 1 < p < ∞, 1 < q ≤ ∞, 1 ≤ r < ∞ and
let λ1, . . . , λm be non-negative numbers with m ∈ N. Define Young func-
tions Φ by

(1.4) Φ(t)

:=


(1 + t)1/p if (A) holds,

(1 + t)1/p `j+1(cj+1 + 1/t)λj+1−1/q′∏m
l=j+2 `l(cl+1/t)λl if (B) holds,

(1 + t)1/p `m+1(cm+1 + 1/t)−1/q
′

if (C) holds.

Then the continuous embedding H
n/p
p,q,λ1,...,λm

(Rn) ↪→MΦ,r(Rn) holds if and
only if p > r or p = r ≥ q.

As another application of Theorem 1.1, we investigate the Lipschitz type

continuity for functions in H
n/p+1
p,q,λ1,...,λm

(Rn). It is well-known that

Hn/p+α
p (Rn) ↪→ Cα(Rn) for 0 < α < 1 but Hn/p+1

p (Rn) X↪→ Lip(Rn),

where Cα(Rn) and Lip(Rn) denote the Hölder space and the Lipschitz space,

respectively. Instead, functions in H
n/p+1
p (Rn) exhibit almost Lipschitz con-

tinuity (see Brézis–Wainger [BW]). Based on this fact, we next clarify how
the exponents λ1, . . . , λm influence the Lipschitz type continuity for func-

tions in H
n/p
p,q,λ1,...,λm

(Rn). Our second theorem reads as follows:

Theorem 1.4. Let n ∈ N, 1 < p <∞, 1 < q ≤ ∞, and let λ1, . . . , λm be
non-negative numbers with m ∈ N. Assume one of the conditions (A)–(C)
of Theorem 1.1 holds. Then there exist positive constants C and δ such that
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for all u ∈ Hn/p+1
p,q,λ1,...,λm

(Rn) and all x and y satisfying |x− y| < δ,

|u(x)−u(y)| ≤



C|x− y| ‖u‖
H
n/p+1
p,q,λ1,...,λm

if (A) holds,

C|x− y|`j+1

(
1

|x− y|

)1/q′−λj+1

×
∏m
l=j+2 `l

(
1

|x− y|

)−λl
‖u‖

H
n/p+1
p,q,λ1,...,λm

if (B) holds,

C|x− y|`m+1

(
1

|x− y|

)1/q′

‖u‖
H
n/p+1
p,q,λ1,...,λm

if (C) holds.

The case m = 1 in Theorem 1.4 yields the following corollary:

Corollary 1.5. Let n ∈ N, 1 < p < ∞, 1 < q ≤ ∞ and λ ≥ 0. Then

there exist positive constants C and δ such that for all u ∈ Hn/p+1
p,q,λ (Rn) and

all x and y satisfying |x− y| < δ,

(1.5) |u(x)− u(y)|

≤



C|x− y| ‖u‖
H
n/p+1
p,q,λ

if λ > 1/q′,

C|x− y| log

(
1

|x− y|

)1/q′−λ
‖u‖

H
n/p+1
p,q,λ

if λ < 1/q′,

C|x− y| log

(
log

(
1

|x− y|

))1/q′

‖u‖
H
n/p+1
p,q,λ

if λ = 1/q′.

In [BW], the middle inequality in (1.5) with p = q and λ = 0 was proved.
Moreover, Corollary 1.5 tells us that the exponent λ = 1/q′ is a threshold

so that H
n/p
p,q,λ(Rn) embeds into Lip(Rn).

Finally, we consider the optimality of the inequalities (1.2) in Theo-
rem 1.1 with respect to the vanishing orders as |E| → 0, which also implies
the optimality of the Young functions (1.4) in Corollary 1.3. We will find that
the vanishing orders as |E| → 0 are optimal in terms of multiple logarithmic
functions. Our final theorem is stated as follows:

Theorem 1.6. Let n ∈ N, 1 < p < ∞, 1 < q ≤ ∞, 1 < r < ∞, and let
λ1, . . . , λm be non-negative numbers with m ∈ N. Take k ≥ m with k ∈ N
and ε > 0. Assume one of the conditions (A)–(C) of Theorem 1.1 holds.

(i) If q <∞, then there exist u ∈ Hn/p
p,q,λ1,...,λm

(Rn) and positive constants

C and δ such that for all measurable sets E satisfying |E| < δ,
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(1.6)
( �

E

|u(x)|r dx
)1/r

≥



C|E|1/r if (A) holds,

C|E|1/r`j+1(1/|E|)
m∏

l=j+1

`l(1/|E|)−λl

×
k−1∏
l=j+1

`l(1/|E|)−1/q`k(1/|E|)−1/q−ε if (B) holds,

C|E|1/r`m+1(1/|E|)
k∏

l=m+1

`l(1/|E|)−1/q`k+1(1/|E|)−1/q−ε if (C) holds.

(ii) If q = ∞, then there exist u ∈ Hn/p
p,∞,λ1,...,λm(Rn) and positive con-

stants C and δ such that for all measurable sets E satisfying |E| < δ,

( �

E

|u(x)|r dx
)1/r

≥


C|E|1/r if (A) holds,

C|E|1/r`j+1(1/|E|)
m∏

l=j+1

`l(1/|E|)−λl if (B) holds,

C|E|1/r`m+1(1/|E|) if (C) holds.

Theorem 1.6 implies that the vanishing orders as |E| → 0 for the in-
equalities (1.2) in Theorem 1.1 are best possible when q =∞ and they are
also sharp even when q <∞ in terms of multiple logarithmic functions. It is
worth noting that the last two inequalities in (1.6) become sharper as k ∈ N
gets larger.

Inequalities characterizing critical function spaces (in terms of Sobolev
embedding) such as Sobolev–Lorentz spaces, Sobolev-Morrey spaces, Besov
spaces, Triebel–Lizorkin spaces and functions of bounded mean oscillation
have been extensively studied: see for instance Brézis–Wainger [BW], Chen–
Zhu [ChZ], Edmunds–Triebel [ET], Machihara–Ozawa–Wadade [MOW],
Nagayasu–Wadade [NW], Ogawa [Og], Ogawa–Ozawa [OgOz], Ozawa [Oz],
Sawano–Wadade [SaWa] and Wadade [W1, W2, W3]. In those papers, the
authors established critical embeddings by proving Trudinger–Moser type
inequalities, Gagliardo–Nirenberg type inequalities, Brézis–Gallouët–
Wainger type inequalities and logarithmic Hardy inequalities.

Our main subject is the optimal embedding of the critical Sobolev–
Lorentz–Zygmund space into generalized Morrey spaces, which is regarded
as one of the characterizations for the critical Sobolev–Lorentz–Zygmund
space. As far as we know, this kind of embedding is poorly known compared
to embeddings related to Trudinger–Moser type inequalities etc. We will
discuss relations between those critical embeddings in a forthcoming paper.
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This paper is organized as follows. In Section 2 we give the definition of
Sobolev–Lorentz–Zygmund spaces and collect the elementary properties of
rearrangements of functions. We prove the main theorems in Section 3.

2. Preliminaries. In this section,we first recall the definition of Lorentz–
Zygmund spaces. To this end, we define the rearrangement of a measurable
function. For a measurable function f on Rn, let f∗ : [0,∞)→ [0,∞] be the
distribution function of f defined by

f∗(λ) := |{x ∈ Rn; |f(x)| > λ}| for λ ≥ 0,

where |E| denotes the Lebesgue measure of a measurable set E ⊂ Rn; then
the rearrangement f∗ : [0,∞)→ [0,∞] of f is defined by

f∗(t) := inf{λ > 0; f∗(λ) ≤ t} for t ≥ 0.

Moreover, f∗∗ : (0,∞) → [0,∞] denotes the average function of f∗ defined
by

f∗∗(t) :=
1

t

t�

0

f∗(τ) dτ for t > 0.

In what follows, we assume f∗(t) < ∞ for all t > 0. Then f∗ is right-
continuous and non-increasing on (0,∞), and hence f∗∗ is continuous and
non-increasing on (0,∞) with f∗(t) ≤ f∗∗(t) for all t > 0.

We now introduce Lorentz–Zygmund spaces by using rearrangements.
Let 1≤ p, q ≤∞, and let λ1, . . . , λm be non-negative numbers with m∈N.
Then the Lorentz–Zygmund space Lp,q,λ1,...,λm(Rn) is a function space equip-
ped with the norm

‖f‖Lp,q,λ1,...,λm :=

(∞�
0

(
t1/p

m∏
l=1

`l(cl + 1/t)λlf∗(t)
)q dt

t

)1/q

,

where `l(t) := `1 ◦ · · · ◦ `1(t) (l-fold composition) for t ≥ cl with `1(t) :=
log t, and the constants cl > 0 are determined by `l(cl) = 1. When q =∞,
the norm ‖f‖Lp,∞,λ1,...,λm

can be defined by the usual modification. Note that
Lorentz–Zygmund spaces generalizeLorentz spacesLp,q(Rn)since‖f‖Lp,q,0,...,0
= ‖f‖Lp,q .

Replacing f∗ by f∗∗ in ‖f‖Lp,q we obtain another equivalent norm on
Lp,q(Rn) if p 6= 1. Indeed, the following Hardy inequality guarantees the
equivalence:

(2.1)

(∞�
0

(
t1/p

t

t�

0

f(s) ds

)q dt
t

)1/q

≤ p′
(∞�

0

(t1/pf(t))q
dt

t

)1/q

for non-negative measurable functions f , where p′ := p/(p− 1). For the
proof of (2.1), see O’Neil [O, Lemma 2.3] and references therein. Further-
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more, since f∗ and f∗∗ are non-increasing functions in (0,∞), we get the
following decay estimates: for any t > 0,

(2.2) f∗(t) ≤
(
q

p

)1/q

t−1/p ‖f‖Lp,q ,

and hence if p > 1, together with (2.1), we obtain, for any t > 0,

f∗∗(t) ≤ p′
(
q

p

)1/q

t−1/p ‖f‖Lp,q .

Next, we recall the pointwise rearrangement inequality for the convolu-
tion of functions proved by O’Neil [O, Theorem 1.7]: for measurable func-
tions f and g on Rn,

(2.3) (f ∗ g)∗∗(t) ≤ t f∗∗(t)g∗∗(t) +

∞�

t

f∗(s)g∗(s) ds for t > 0.

Moreover, we will make use of the reverse O’Neil inequality established in
Kozono–Sato–Wadade [KSW, Lemma 2.2]: there exists a positive constant C
such that

(2.4) (f ∗ g)∗∗(t) ≥ C
(
t f∗∗(t)g∗∗(t) +

∞�

t

f∗(s)g∗(s) ds
)

for all t > 0 and all measurable functions f and g on Rn which are both
non-negative, radially symmetric and non-increasing in the radial direction.

In this paper, we frequently use the Bessel potential Gs∗f :=(1−∆)−s/2f
and the Riesz potential Is ∗ f := (−∆)−s/2f for 0 < s < n. More precisely,
the kernel functions Is and Gs are defined respectively by

Is(x) :=
Γ ((n− s)/2)

2sπn/2Γ (s/2)
|x|−(n−s),

Gs(x) :=
1

(4π)s/2Γ (s/2)

∞�

0

e−π|x|
2/t−t/(4π) t−(n−s)/2

dt

t
,

for x ∈ Rn \ {0}, where Γ denotes the Gamma function. Based on the
Lorentz–Zygmund space, we define the Sobolev–Lorentz–Zygmund space
Hs
p,q,λ1,...,λm

(Rn) by

Hs
p,q,λ1,...,λm(Rn) := (I −∆)−s/2Lp,q,λ1,...,λm(Rn) = Gs ∗ Lp,q,λ1,...,λm(Rn),

equipped with the norm ‖u‖Hs
p,q,λ1,...,λm

:= ‖(I − ∆)s/2u‖Lp,q,λ1,...,λm . The

spaces Hs
p,q,λ1,...,λm

(Rn) extend Sobolev–Lorentz spaces Hs
p,q(Rn) and in par-

ticular Sobolev spaces Hs
p(Rn) since Lp,q,0,...,0(Rn) = Lp,q(Rn) and

Lp,p(Rn) = Lp(Rn).
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We now collect the elementary properties of Is and Gs in the following
lemma.

Lemma 2.1. Let n ∈ N and 0 < s < n.

(i) Is and Gs are non-negative, radially symmetric and non-increasing
in the radial direction, so that I∗s (t) = Is(x) and G∗s(t) = Gs(x) if

|x| = (t/ωn)1/n > 0, where ωn := 2ππ/2

nΓ (n/2) denotes the volume of the

unit ball in Rn.
(ii) Gs(x) ≤ Is(x) for all x ∈ Rn \ {0}, which implies G∗s(t) ≤ I∗s (t),

G∗∗s (t) ≤ I∗∗s (t) for all t > 0, and

lim
|x|↓0

Gs(x)

Is(x)
= lim

t↓0

G∗s(t)

I∗s (t)
= 1.

(iii) ‖Gs‖L1(Rn) = 1 and there exists a positive constant C such that

Gs(x) ≤
{
C|x|−(n−s) for x ∈ Rn \ {0},
Ce−|x| for x ∈ Rn with |x| ≥ 1.

Since the facts in Lemma 2.1 are well-known, we omit the detailed proof
(see Stein [St] for instance). Furthermore, we refer to Almgren–Lieb [AL],
Bennett–Sharpley [BS] and Kokilashvili–Krbec [KK] for further information
about rearrangements.

3. Proof of main theorems

Proof of Theorem 1.1. First, letting (1 − ∆)n/(2p)u = f , we have u =
Gn/p ∗ f , where Gn/p denotes the Bessel kernel. Thus the inequality (1.2)
can be written equivalently as( �

E

|Gn/p ∗ f(x)|r dx
)1/r

≤



C|E|1/r‖f‖Lp,q,λ1,...,λm if (A) holds,

C|E|1/r`j+1(1/|E|)1/q
′−λj+1

m∏
l=j+2

`l(1/|E|)−λl‖f‖Lp,q,λ1,...,λm

if (B) holds,

C|E|1/r`m+1(1/|E|)1/q
′‖f‖Lp,q,λ1,...,λm if (C) holds,

for all f ∈ Lp,q,λ1,...,λm(Rn) and all measurable sets E of small measure.
By O’Neil’s inequality (2.3), we obtain( �

E

|Gn/p ∗ f(x)|r dx
)1/r

=
( |E|�

0

(Gn/p ∗ f)∗(t)r dt
)1/r

≤
( |E|�

0

(
tG∗∗n/p(t)f

∗∗(t)
)r
dt
)1/r

+
( |E|�

0

(∞�
t

G∗n/p(s)f
∗(s) ds

)r
dt
)1/r
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≤
( |E|�

0

(
tG∗∗n/p(t)f

∗∗(t)
)r
dt
)1/r

+
( |E|�

0

( |E|�
t

G∗n/p(s)f
∗(s) ds

)r
dt
)1/r

+
( |E|�

0

( ∞�
|E|

G∗n/p(s)f
∗(s) ds

)r
dt
)1/r

=: I1 + I2 + I3.

We first estimate I1. For small t > 0, by the decay estimate (2.2) and
Lemma 2.1,

tG∗∗n/p(t)f
∗∗(t) =

1

t

t�

0

G∗n/p(s) ds

t�

0

f∗(s) ds

≤ C

t

t�

0

s−1/p
′
ds

t�

0

s−1/p ds ‖f‖Lp,q

= C‖f‖Lp,q ≤ C‖f‖Lp,q,λ1,...,λm ,

and so I1 ≤ C|E|1/r‖f‖Lp,q,λ1,...,λm .

For I2, by using (2.2) and Lemma 2.1, we have

I2 ≤ C
(|E|�

0

(|E|�
t

s−1/p
′−1/p ds

)r
dt
)1/r
‖f‖Lp,q

≤ C
(|E|�

0

(
log
|E|
t

)r
dt

)1/r

‖f‖Lp,q,λ1,...,λm

= C

(1�

0

(
log

1

s

)r
ds

)1/r

|E|1/r‖f‖Lp,q,λ1,...,λm = C|E|1/r‖f‖Lp,q,λ1,...,λm .

Finally, we estimate I3. For small δ > 0, we have

I3 = |E|1/r
∞�

|E|

G∗n/p(s)f
∗(s) ds

= |E|1/r
δ�

|E|

G∗n/p(s)f
∗(s) ds+ |E|1/r

∞�

δ

G∗n/p(s)f
∗(s) ds =: I31 + I32.

By using (2.2) and Lemma 2.1 again, we see that for any α > 1/p′,

I32 ≤ C|E|1/r
∞�

δ

s−α−1/p ds ‖f‖Lp,q ≤ C|E|1/r‖f‖Lp,q,λ1,...,λm .
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Furthermore, by Lemma 2.1 and Hölder’s inequality,

I31 ≤ C|E|1/r
δ�

|E|

s−1/p
′−1/p

m∏
l=1

`l(1/s)
−λls1/p

m∏
l=1

`l(1/s)
λlf∗(s) ds(3.1)

≤ C|E|1/r
( δ�

|E|

m∏
l=1

`l(1/s)
−λlq′ ds

s

)1/q′

︸ ︷︷ ︸
J

‖f‖Lp,q,λ1,...,λm .

By applying L’Hôpital’s rule, we can investigate the growth orders as |E|→ 0
of J under conditions (A)–(C). We obtain

J ≤


C if (A) holds,

C`j+1(1/|E|)1/q
′−λj+1

m∏
l=j+2

`l(1/|E|)−λl if (B) holds,

C`m+1(1/|E|)1/q
′

if (C) holds,

and hence

I31 ≤
C|E|1/r‖f‖Lp,q,λ1,...,λm if (A) holds,

C|E|1/r`j+1(1/|E|)1/q
′−λj+1

m∏
l=j+2

`l(1/|E|)−λl‖f‖Lp,q,λ1,...,λm if (B) holds,

C|E|1/r`m+1(1/|E|)1/q
′‖f‖Lp,q,λ1,...,λm if (C) holds.

Summing up all the estimates above, we obtain the desired conclusions.

Corollary 1.3 is an immediate consequence of Theorem 1.1 and Theo-
rem A with ‖u‖

H
n/p
p,q

replaced by ‖u‖
H
n/p
p,q,λ1,...,λm

:

Proof of Corollary 1.3. First, assume p > r or p = r ≥ q. Then by apply-
ing Theorem 1.1 and Theorem A with ‖u‖

H
n/p
p,q

replaced by ‖u‖
H
n/p
p,q,λ1,...,λm

,

we see that for any measurable set E,

(3.2)
( �

E

|u(x)|r dx
)1/r

≤



C|E|1/r(1 + |E|)−1/p‖u‖
H
n/p
p,q,λ1,...,λm

if (A) holds,

C|E|1/r(1 + |E|)−1/p`j+1(cj+1 + 1/|E|)1/q′−λj+1

×
m∏

l=j+2

`l(cl + 1/|E|)−λl‖u‖
H
n/p
p,q,λ1,...,λm

if (B) holds,

C|E|1/r(1+|E|)−1/p`m+1(cm+1+1/|E|)1/q′‖u‖
H
n/p
p,q,λ1,...,λm

if (C) holds,
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which implies continuous embeddings H
n/p
p,q,λ1,...,λm

(Rn) ↪→ MΦ,r(Rn) with

Young functions (1.4). Conversely, since the conditions p > r or p = r ≥ q
are necessary for Theorem A with ‖u‖

H
n/p
p,q

replaced by ‖u‖
H
n/p
p,q,λ1,...,λm

, they

are also necessary for the inequalities (3.2) to hold. This finishes the proof
of Corollary 1.3.

Theorem 1.4 will be proved by utilizing Theorem 1.1:

Proof of Theorem 1.4. We only consider the case of condition (C) since
the other cases can be treated in quite the same way. Let x and y be distinct
points in Rn, and let Q be a closed cube in Rn with vertices x and y with
edge length ρ = |x− y|. For any z ∈ Q, we have

u(z)− u(x) =

1�

0

∇u (tz + (1− t)x) · (z − x) dt,

and so

|u(z)− u(x)| ≤
√
nρ

1�

0

|∇u(tz + (1− t)x)| dt.(3.3)

Defining uQ := |Q|−1
	
Q u(z) dz and integrating (3.3) with respect to z

over Q, we obtain

|uQ − u(x)| ≤ 1

|Q|

�

Q

|u(z)− u(x)| dz(3.4)

≤
√
nρ1−n

1�

0

�

Q

|∇u (tz + (1− t)x)| dz dt

=
√
nρ1−n

1�

0

t−n
�

tQ+(1−t)x

|∇u(ζ)| dζ dt.

Here, applying Theorem 1.1 with r = 1 we obtain, for any small |Q|,�

tQ+(1−t)x

|∇u(ζ)| dζ ≤ C|tQ|`m+1(1/|tQ|)1/q
′‖∇u‖

H
n/p
p,q,λ1,...,λm

(3.5)

≤ Ctnρn`m+1

(
1

tnρn

)1/q′

‖u‖
H
n/p+1
p,q,λ1,...,λm

.

Combining (3.4) with (3.5) yields, for any small |Q|,

|uQ − u(x)| ≤ Cρ
1�

0

`m+1

(
1

tnρn

)1/q′

dt ‖u‖
H
n/p+1
p,q,λ1,...,λm

(3.6)

≤ Cρ`m+1(1/ρ)1/q
′‖u‖

H
n/p+1
p,q,λ1,...,λm

.

Interchanging the roles of x and y, we obtain (3.6) with x replaced by y,
which gives the desired conclusion.
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Finally, we prove Theorem 1.6. The reverse O’Neil inequality (2.4) is an
essential tool to estimate local integrals from below.

Proof of Theorem 1.6. First, we consider the case q < ∞. Assume con-
dition (A) holds, and define f0(x) := |x|αnχ{x∈Rn; |x|<δ}(x), where α is any
number satisfying −1/p < α < 0, and δ > 0 will be chosen small enough
such that

f∗0 (t) = f̃0((t/ωn)1/n) ' g0(t) := tαχ(0,δ)(t)

for all t > 0, where f̃0(|x|) = f0(x), and ωn is the volume of the unit ball
in Rn. That is, there exist positive constants C and C̃ such that

(3.7) C̃g0(t) ≤ f∗0 (t) ≤ Cg0(t)

for all t > 0. By the definition of the Lorentz–Zygmund norm and the right
estimate in (3.7), since 1/p+ α > 0 we obtain

‖f0‖Lp,q,λ1,...,λm ≤ C
(∞�

0

(
t1/p

m∏
l=1

`l(cl + 1/t)λlg0(t)
)q dt

t

)1/q

≤ C
(δ�

0

(
t1/p+α

m∏
l=1

`l(1/t)
λl
)q dt

t

)1/q

≤ C
( δ�

0

t
q
2
(1/p+α)−1 dt

)1/q
<∞,

which implies f0 ∈ Lp,q,λ1,...,λm(Rn), or equivalently u0 := Gn/p ∗ f0 ∈
H
n/p
p,q,λ1,...,λm

(Rn). On the other hand, for any measurable set E satisfying

|E| < δ/2, by the left estimate in (3.7), the Hardy inequality (2.1), the
reverse O’Neil inequality (2.4) and Lemma 2.1, we see that

(3.8)
�

E

|Gn/p ∗ f0(x)|r dx

=

|E|�

0

(Gn/p ∗ f0)∗(t)r dt ≥ C
|E|�

0

(Gn/p ∗ f0)∗∗(t)r dt

≥ C
|E|�

0

(
tG∗∗n/p(t)f

∗∗
0 (t) +

∞�

t

G∗n/p(s)f
∗
0 (s) ds

)r
dt

≥ C
|E|�

0

(δ�
t

G∗n/p(s)f
∗
0 (s) ds

)r
dt ≥ C

|E|�

0

(δ�
t

G∗n/p(s)g0(s) ds
)r
dt

≥ C
|E|�

0

(δ�
t

s−1/p
′
g0(s) ds

)r
dt ≥ C

|E|�

0

( δ�

δ/2

sα−1/p
′
ds
)r
dt = C|E|,

as desired.
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Next, assume (B) holds, and define

fε,k(x) :=

j∏
l=1

`l(1/|x|)−1
m∏

l=j+1

`l(1/|x|)−λl

×
k−1∏
l=j+1

`l(1/|x|)−1/q`k(1/|x|)−1/q−ε|x|−n/pχ{x∈Rn; |x|<δ}(x),

where δ > 0 will be taken small enough. It is easy to see that fε,k are
non-negative, radially symmetric and non-increasing in the radial direction.
Thus there exists δ > 0 such that

f∗ε,k(t) = f̃ε,k((t/ωn)1/n)(3.9)

' gε,k(t) :=

j∏
l=1

`l(1/t)
−1

m∏
l=j+1

`l(1/t)
−λl

×
k−1∏
l=j+1

`l(1/t)
−1/q `k(1/t)

−1/q−εt−1/pχ(0,δ)(t)

for all t > 0. Then by (3.9), we have

‖fε,k‖Lp,q,λ1,...,λm ≤ C
(∞�

0

(
t1/p

m∏
l=1

`l(cl + 1/t)λlgε,k(t)
)q dt

t

)1/q

≤ C
(δ�

0

k−1∏
l=1

`l(1/t)
−1`k(1/t)

−1−qε dt

t

)1/q

<∞,

which implies fε,k ∈ Lp,q,λ1,...,λm(Rn), or equivalently uε,k := Gn/p ∗ fε,k ∈
H
n/p
p,q,λ1,...,λm

(Rn). By using L’Hôpital’s rule, we see that there exists a small

positive constant δ̃ < δ such that

(3.10)

δ�

t

s−1/p
′
gε,k(s) ds

' `j+1(1/t)
m∏

l=j+1

`l(1/t)
−λl

k−1∏
l=j+1

`l(1/t)
−1/q `k(1/t)

−1/q−ε

for all 0 < t < δ̃. Thus by carrying out the same estimates as in (3.8) and
using (3.9) and (3.10), for any measurable set E with |E| < δ̃ we have
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�

E

|Gn/p ∗ fε,k(x)|r dx ≥ C
|E|�

0

(δ�
t

s−1/p
′
gε,k(s) ds

)r
dt

≥ C
|E|�

0

(
`j+1(1/t)

m∏
l=j+1

`l(1/t)
−λl

k−1∏
l=j+1

`l(1/t)
−1/q `k(1/t)

−1/q−ε
)r
dt

≥ C|E|
(
`j+1(1/|E|)

m∏
l=j+1

`l(1/|E|)−λl
k−1∏
l=j+1

`l(1/|E|)−1/q `k(1/|E|)−1/q−ε
)r
,

where the last inequality can be derived by noticing that the function

`j+1(1/t)
m∏

l=j+1

`l(1/t)
−λl

k−1∏
l=j+1

`l(1/t)
−1/q `k(1/t)

−1/q−ε

is decreasing for small t > 0.

Next, assume (C) holds, and define

fε,k(x) :=
m∏
l=1

`l(1/|x|)−1

×
k∏

l=m+1

`l(1/|x|)−1/q `k+1(1/|x|)−1/q−ε|x|−n/pχ{x∈Rn; |x|<δ}(x).

We have, for some small δ > 0,

f∗ε,k(t) = f̃ε,k((t/ωn)1/n)(3.11)

' gε,k(t) :=

m∏
l=1

`l(1/t)
−1

×
k∏

l=m+1

`l(1/t)
−1/q `k+1(1/t)

−1/q−εt−1/pχ(0,δ)(t)

for all t > 0. Then by (3.11), we obtain

‖fε,k‖Lp,q,λ1,...,λm ≤ C
(∞�

0

(
t1/p

m∏
l=1

`l(cl + 1/t)λlgε,k(t)
)q dt

t

)1/q

≤ C
(δ�

0

k∏
l=1

`l(1/t)
−1`k+1(1/t)

−1−qε dt

t

)1/q

<∞,

which implies fε,k ∈ Lp,q,λ1,...,λm(Rn), or equivalently uε,k := Gn/p ∗ fε,k ∈
H
n/p
p,q,λ1,...,λm

(Rn). Moreover there exists a small positive constant δ̃ < δ such
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that
δ�

t

s−1/p
′
gε,k(s) ds ' `m+1(1/t)

k∏
l=m+1

`l(1/t)
−1/q `k+1(1/t)

−1/q−ε(3.12)

for all 0 < t < δ̃. Thus by carrying out the same estimates as in (3.8) and
using (3.11) and (3.12), for any measurable set E with |E| < δ̃ we have�

E

|Gn/p ∗ fε,k(x)|r dx

≥ C
|E|�

0

(δ�
t

s−1/p
′
gε,k(s) ds

)r
dt

≥ C
|E|�

0

(
`m+1(1/t)

k∏
l=m+1

`l(1/t)
−1/q `k+1(1/t)

−1/q−ε
)r
dt

≥ C|E|
(
`m+1(1/|E|)

k∏
l=m+1

`l(1/|E|)−1/q `k+1(1/|E|)−1/q−ε
)r
,

where the last inequality can be derived by noticing that the function

`m+1(1/t)
k∏

l=m+1

`l(1/t)
−1/q `k+1(1/t)

−1/q−ε

is decreasing for small t > 0.
We proceed to the case q = ∞. If (A) holds, we can argue in the same

way as for q <∞, so we omit this subcase.
Next, assume (B) holds, and define

f0(x) :=

j∏
l=1

`l(1/|x|)−1
m∏

l=j+1

`l(1/|x|)−λl |x|−n/pχ{x∈Rn; |x|<δ}(x),

where δ > 0 will be taken small enough such that

f∗0 (t) = f̃0((t/ωn)1/n)(3.13)

' g0(t) :=

j∏
l=1

`l(1/t)
−1

m∏
l=j+1

`l(1/t)
−λl t−1/pχ(0,δ)(t)

for all t > 0. By (3.13), we obtain f0 ∈ Lp,∞,λ1,...,λm(Rn), or equivalently

u0 := Gn/p ∗ f0 ∈ H
n/p
p,∞,λ1,...,λm(Rn). Moreover, there exists a small positive

constant δ̃ < δ such that
δ�

t

s−1/p
′
g0(s) ds ' `j+1(1/t)

m∏
l=j+1

`l(1/t)
−λl
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for all 0 < t < δ̃. Thus by carrying out the same estimates as in (3.8), for
any measurable set E with |E| < δ̃ we have

�

E

|Gn/p ∗ f0(x)|r dx ≥ C
|E|�

0

(δ�
t

s−1/p
′
g0(s) ds

)r
dt

≥ C
|E|�

0

(
`j+1(1/t)

m∏
l=j+1

`l(1/t)
−λl
)r
dt

≥ C|E|
(
`j+1(1/|E|)

m∏
l=j+1

`l(1/|E|)−λl
)r
.

Finally, assume (C) holds and define

f0(x) :=
m∏
l=1

`l(1/|x|)−1|x|−n/pχ{x∈Rn; |x|<δ}(x),

where δ > 0 will be taken small enough such that

f∗0 (t) = f̃0((t/ωn)1/n) ' g0(t) :=

m∏
l=1

`l(1/t)
−1t−1/pχ(0,δ)(t)(3.14)

for all t > 0. By (3.14), we obtain f0 ∈ Lp,∞,λ1,...,λm(Rn), or equivalently

u0 := Gn/p ∗ f0 ∈ H
n/p
p,∞,λ1,...,λm(Rn). Moreover, there exists a small positive

constant δ̃ < δ such that
	δ
t s
−1/p′g0(s) ds ' `m+1(1/t) for all 0 < t < δ̃.

Therefore, by carrying out the same estimates as in (3.8), for any measurable
set E with |E| < δ̃ we have

�

E

|Gn/p ∗ f0(x)|r dx ≥ C
|E|�

0

(δ�
t

s−1/p
′
g0(s) ds

)r
dt

≥ C
|E|�

0

`m+1(1/t)
r dt ≥ C|E| `m+1(1/|E|)r.

This completes the proof of Theorem 1.6.

Acknowledgements. The author thanks the referee for his/her valu-
able comments.
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