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on group von Neumann algebras

by
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Abstract. Let G be a locally compact group. Its dual space, G∗, is the set of all
extreme points of the set of normalized continuous positive definite functions of G. In the
early 1970s, Granirer and Rudin proved independently that if G is amenable as discrete,
then G is discrete if and only if all the translation invariant means on L∞(G) are topo-
logically invariant. In this paper, we define and study G∗-translation operators on VN(G)
via G∗ and investigate the problem of the existence of G∗-translation invariant means
on VN(G) which are not topologically invariant. The general properties of G∗ are also
investigated.

1. Introduction. Let G be a locally compact group, and let A(G),
B(G) and VN(G) be the Fourier algebra, Fourier–Stieltjes algebra and group
von Neumann algebra of G, respectively, as defined by Eymard [11]. If G is
abelian, A(G) can be identified with L1(Ĝ) via the Fourier transform, VN(G)
can be identified with L∞(Ĝ) via the adjoint of the Fourier transform, and
B(G) can be identified with M(Ĝ) via the Fourier–Stieltjes transform, where
Ĝ is the dual group of G.

The dual space of G, G∗, is defined to be the set of all extreme points
in the set of all continuous positive definite functions on G with norm one
(see [6], [5] and [23]). If G is abelian, G∗ is just the set of all Dirac measures
in Ĝ.

Translation operators are fundamental to the classical theory of L1(G)
and L∞(G). Thus, it is natural to search for a non-commutative version
of translation operators in A(G) and VN(G). We find that “generalized”
translation operators on A(G) and VN(G) can be defined by using G∗.
Note that if G is abelian, the generalized translation operators on A(G) and
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VN(G) are precisely the usual translation operators on L1(Ĝ) and L∞(Ĝ)
under the respective identifications.

The notion of amenability of a group was formulated by von Neumann.
Later, Day defined amenability of a locally compact group G by using
translation invariant means on L∞(G) (see [21], [26]). As mentioned above,
VN(G) can be viewed as the dual object of L∞(G). Since we have a non-
commutative analogue of translation invariant means on VN(G), it allows
us to define translation invariant means on VN(G).

Granirer [13] and Rudin [29] proved independently that if G is amenable
as discrete, then G is discrete if and only if all the translation invariant
means on L∞(G) are topologically invariant. However, this is no longer true
in general even when G is a compact group (see [7]). As a direct conse-
quence of Granirer–Rudin’s Theorem, we have the following observation: if
G is abelian, then G is compact if and only if all the translation invari-
ant means on VN(G) are topologically invariant (see [18]). We shall prove
that this result is not true for general locally compact groups. One of the
main purposes of this paper is to generalize this result to non-abelian groups
under certain assumptions.

Let H be a closed subgroup of G, and let π be a unitary representation
of G. It is natural to ask if the restriction of π to H is always a direct sum of
irreducible representations of H. Surprisingly, by making use of a result con-
cerning translation invariant means on VN(G) and Granirer–Rudin’s result
mentioned above, we give a negative answer to this question.

There is a one-to-one correspondence between locally compact abelian
groups and their dual groups. As a result, properties of a locally compact
abelian group G can be recovered from properties of its dual group Ĝ. In
the general setting, although dual spaces lack the group structure in general,
there is still a close relationship between properties of G and those of G∗. In
particular, we may characterize compact groups, abelian groups and discrete
groups using properties of their dual spaces.

This paper is organized as follows: In Section 2, we provide necessary
definitions and notations for the rest of this paper. In Section 3, we study
the relationship between generalized translation invariant means on VN(G)
and on VN(H) where H is a closed subgroup of a locally compact group G.
In particular, we prove the restriction theorem for generalized translation
invariant means on VN(G). In Section 4, we show that Granirer–Rudin’s re-
sult does not hold in general. We then generalize Granirer–Rudin’s Theorem
under various assumptions. In Section 5, we answer a question in represen-
tation theory by applying the restriction theorem. In Section 6, we study the
properties of dual spaces. We provide characterizations of compact groups,
abelian groups and discrete groups using properties of their dual spaces.
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In the last section, we generalize some classical results on translation invari-
ant means to the non-commutative setting.

2. Some preliminaries. Let (X, τ) be a topological space, and let Y
be a subset of X. Denote by Y

τ
and Y o the closure of Y and the interior

of Y , respectively.

Let E be a Banach space. Throughout this paper, E1 and SE will denote
the unit ball and the boundary of the unit ball of E, respectively. Let K be
a subset of E. We denote by E(K) the set of all extreme points of K, and
by co(K) the algebraic convex hull of K. Let E′ be the Banach dual space
of E, which consists of all bounded linear functionals on E.

In this paper, all groups will be assumed to be locally compact, and G
will denote a locally compact group with a fixed Haar measure. Let f be
a function on G and y ∈ G. We define the left and right translates of f
through y by

Lyf(x) = f(y−1x), Ryf(x) = f(xy).

We also write xf and fx for the functions f(x·) and f(·x), respectively.

Let ΣG be the class of unitary representations of G, and let λ2 : G →
B(L2(G)), [λ2(x)(f)](y) := f(x−1y) (x, y ∈ G, f ∈ L2(G)), be the left
regular representation of G. We will also denote by Ĝ the class of equivalence
classes of irreducible unitary representations of G. If G is abelian, Ĝ is just
the dual group of G.

Let G be a locally compact group. For any f ∈ L1(G), define

‖f‖C∗(G) := sup
π∈ΣG

‖π(f)‖.

It is easily seen that ‖ · ‖C∗(G) is a C∗-norm on L1(G). Let C∗(G) be the

completion of L1(G) under ‖ · ‖C∗(G). Then C∗(G) is called the full group
C∗-algebra or simply the group C∗-algebra of G.

Let B(G) := {x 7→ 〈π(x)ξ, η〉 : π ∈ ΣG, ξ, η ∈ Hπ} be the Fourier–
Stieltjes algebra of G. It is a commutative Banach algebra with pointwise
multiplication and norm given by

‖u‖B(G) = inf{‖ξ‖ ‖η‖ : u(x) = 〈π(x)ξ, η〉, π ∈ ΣG, ξ, η ∈ Hπ}.

Let A(G) := {x 7→ 〈λ2(x)ξ, η〉 : ξ, η ∈ L2(G)} be the Fourier algebra
of G. It is well-known that A(G) is a closed ideal of B(G).

Let P (G) be the set of all continuous positive definite functions on G,
i.e.,

P (G) :=
{
φ ∈ B(G) :

�
(f∗ ∗ f)φ ≥ 0 for any f ∈ L1(G)

}
.

It can be shown that P (G) = {〈π(·)ξ, ξ〉 : π ∈ ΣG, ξ ∈ Hπ} and that
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φ(e) = ‖φ‖B(G). Let P1(G) = SB(G) ∩ P (G). In other words,

P1(G) = {〈π(·)ξ, ξ〉 : π ∈ ΣG, ξ ∈ Hπ, ‖ξ‖ = 1}

(see [8]). The dual space G∗ is defined to be the set E(P1(G)) (see [6] and
[5] for more details).

For any f ∈ L1(G), define

‖f‖C∗r := ‖λ2(f)‖.

It is easily seen that ‖ · ‖C∗r (G) is a C∗-norm on L1(G). Let C∗r (G) be the

completion of L1(G) under ‖·‖C∗r (G). It is called the reduced group C∗-algebra
of G. Let Br(G) := {x 7→ 〈π(x)ξ, η〉 : π ∈ ΣG, π is weakly contained in λ2,
ξ, η ∈ Hπ} be the reduced Fourier–Stieltjes algebra of G. It is a closed ideal
of B(G) and can be regarded as the dual space of C∗r (G).

Let VN(G) be the von Neumann algebra generated by the image of λ2 in
B(L2(G)). It is called the group von Neumann algebra of G. It was proved
by Eymard [11] that A(G)′ = VN(G). For u ∈ A(G) and T ∈ VN(G), define
u · T ∈ VN(G) by

〈u · T, v〉 = 〈T, uv〉, v ∈ A(G).

Let UCB(Ĝ) be the closed linear span of A(G) · VN(G) in VN(G). The set
of all T in VN(G) for which the operator from A(G) to VN(G) given by
u 7→ u · T is weakly compact (resp. compact) is denoted by WAP(Ĝ) (resp.
AP(Ĝ)), the weakly almost periodic (resp. almost periodic) functionals in
VN(G).

Let CG be the collection of all complex-valued functions on G, and D(G)
be any subset of CG. If H is a closed subgroup of G, then we set

D(G)|H := {f |H : f ∈ D(G)}.

3. Main result: a restriction theorem for invariant means. We
begin with the definition of G∗-translation operators.

For any g∗ ∈ G∗, the operator Lg∗ : A(G) → A(G), f 7→ g∗f , is called
the G∗-translation operator on A(G) via g∗.

The Banach adjoint of Lg∗ , L
t
g∗ : VN(G) → VN(G), is called the G∗-

translation operator on VN(G) via g∗. In this case, we write g∗ ·T = Ltg∗(T )
for any T ∈ VN(G).

A subset E ⊆ A(G) (resp. F ⊆ VN(G)) is said to be G∗-translation
invariant if g∗E ⊆ E for any g∗ ∈ G∗ (resp. g∗ · F ⊆ F for any g∗ ∈ G∗).

In addition, a subset F ⊆ VN(G) is said to be topologically invariant if
φ · F ⊆ F for any φ ∈ A(G) ∩ P1(G).

A subspace of VN(G) is said to be invariant if it is both topologically
invariant and G∗-translation invariant.
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Note that C∗r (G), AP(Ĝ), WAP(Ĝ) and UCB(Ĝ) are invariant subspaces
of VN(G).

Let a0(G) be the closure of the span of G∗ in B(G), and let AF (G) be
the ‖ · ‖B(G) closure of {x 7→ 〈π(x)ξ, η〉 : π is a finite-dimensional represen-

tation of G, ξ, η ∈ Hπ}. Let ĜF be the set of all finite-dimensional irre-
ducible representations of G, and let πF =

⊕
π∈ĜF π. It is easy to see that

AF (G) = AπF (G) ⊆ a0(G).

Write G∗F = {x 7→ 〈π(x)ξ, ξ〉 : π ∈ ĜF , ξ ∈ Hπ, ‖ξ‖ = 1}.
Let E be an invariant subspace of VN(G) that is closed under involution

and contains λ2(e). Let m be a linear functional on E such that m(λ2(e))
= 1. Then:

(a) m is said to be a topologically invariant mean if m(φ ·T ) = m(T ) for
any φ ∈ A(G) ∩ P1(G) and T ∈ E.

(b) m is said to be a G∗-translation invariant mean if m(g∗ ·T ) = m(T )
for any g∗ ∈ G∗ and T ∈ E.

(c) m is said to be an F-translation invariant mean if m(g∗ ·T ) = m(T )
for any g∗ ∈ G∗F and T ∈ E.

Let IM(Ĝ), FIM(Ĝ) and TIM(Ĝ) be the sets of all G∗-translation invari-
ant means, all F-translation invariant means and all topologically invariant
means on VN(G), respectively. Obviously, FIM(Ĝ) ⊇ IM(Ĝ). Since A(G) is
an ideal of B(G), we have IM(Ĝ) ⊇ TIM(Ĝ).

Remarks 3.1. Assume that G is a locally compact abelian group.

(a) One can show that the operator Lg∗ : A(G)→ A(G) is just (can be

identified with) the translation operator Lξ : L1(Ĝ)→ L1(Ĝ) via the

element ξ = g∗ in the dual group Ĝ = G∗.
(b) It is not hard to see that TIM(Ĝ) is the set of all topological invariant

means on L∞(Ĝ). Since every irreducible representation is finite-
dimensional, IM(Ĝ) = FIM(Ĝ) is the set of all translation invariant
means on L∞(Ĝ).

(c) It can be deduced easily from Granirer and Rudin’s result [13], [29]
that G is compact if and only if FIM(Ĝ) = IM(Ĝ) = TIM(Ĝ).

(d) Clearly, if TIM(Ĝ) = FIM(Ĝ), then TIM(Ĝ) = IM(Ĝ).

Since A(G) is an ideal of B(G), there is a natural B(G)-action on VN(G)
defined via

〈ψ · T, f〉 = 〈T, ψf〉

where f ∈ A(G), T ∈ VN(G) and ψ ∈ B(G).

For any m ∈ FIM(Ĝ), define

Bm(G) = {u ∈ B(G) : m(u · T ) = u(e)m(T ) for any T ∈ VN(G)}.
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The following propositions are crucial to the main result; their proofs
are easy.

Proposition 3.2. Let G be a locally compact group. Then:

(a) Bm(G) is a closed subalgebra of B(G) containing AF (G).
(b) m ∈ IM(Ĝ) if and only if a0(G) ⊆ Bm(G).
(c) m ∈ TIM(Ĝ) if and only if A(G) ⊆ Bm(G).

Put BIM(G) =
⋂
m∈IM(Ĝ)Bm(G) and BFIM(G) =

⋂
m∈FIM(Ĝ)Bm(G).

Proposition 3.3. Let G be a locally compact group. Then:

(a) BIM(G) is a closed subalgebra of B(G) containing a(G).
(b) BFIM(G) is a closed subalgebra of B(G) containing AF (G).
(c) IM(Ĝ) = TIM(Ĝ) if and only if A(G) ⊆ BIM(G).
(d) FIM(Ĝ) = TIM(Ĝ) if and only if A(G) ⊆ BFIM(G).
(e) FIM(Ĝ) = IM(Ĝ) if and only if a0(G) ⊆ BFIM(G).

Let (X,Σ, µ) be a measure space. A Banach space B has the Radon–
Nikodym property (RNP) with respect to µ if, for every countably additive
vector measure γ on (X,Σ) with values in B which has bounded varia-
tion and is absolutely continuous with respect to µ, there is a µ-integrable
function g : X → B such that

γ(E) =
�

E

g dµ

for every E ∈ Σ.

A Banach space B has the Radon–Nikodym property (RNP) if B has
RNP with respect to every finite measure.

A locally compact group is a [Moore]-group if each of its irreducible
unitary representations is finite-dimensional.

A locally compact group G is called an [AR]-group if the left regular
representation of G is completely reducible. It is known that G is an [AR]-
group if and only if A(G) has RNP (see [20], [22] and [31] for more details).

Proposition 3.4. Let G be a locally compact group.

(a) If G ∈ [AR] (i.e. A(G) has RNP), then IM(Ĝ) = TIM(Ĝ).
(b) If G is compact, then FIM(Ĝ) = TIM(Ĝ).
(c) If G ∈ [Moore], then IM(Ĝ) = FIM(Ĝ).

Proof. We only prove (a). By [3, Theorem 3] and Proposition 3.3, we
have A(G) ⊆ a0(G) ⊆ BIM(G). Hence, IM(Ĝ) = TIM(Ĝ).

If H is a closed subgroup of G, then AF (G)|H ⊆ AF (H).

Let G be a locally compact group. Suppose that H is a closed subgroup
of G. Let Ψ : A(G)→ A(H) be the restriction map, that is, u 7→ u|H .
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Lemma 3.5. Let φ ∈ B(H) and T ∈ VN(H), and let ψ ∈ B(G) be such
that ψ|H = φ. Then Ψ∗(φ · T ) = ψ · Ψ∗(T ).

Proof. For each u ∈ A(G), we have

〈Ψ∗(φ · T ), u〉 = 〈φ · T, Ψ(u)〉 = 〈φ · T, u|H〉 = 〈T, φu|H〉 = 〈T, (ψu)|H〉
= 〈T, Ψ(ψu)〉 = 〈Ψ∗(T ), ψu〉 = 〈ψ · Ψ∗(T ), u〉.

Therefore, Ψ∗(φ · T ) = ψ · Ψ∗(T ).

Theorem 3.6. We have

Ψ∗∗(FIM(Ĝ)) ⊇ FIM(Ĥ) and Ψ∗∗(TIM(Ĝ)) = TIM(Ĥ).

Proof. Let m ∈ FIM(Ĥ). Put K = {M ∈ VN(G)∗+ : Ψ∗∗(M) = m}.
Since A(H) ∩ P (H) is weak∗-dense in VN(H)∗+, there is a net (mα) ⊆
A(H) ∩ P (H) such that mα →w∗ m. Also, note that Ψ(A(G) ∩ P (G)) =
A(H) ∩ P (H) (see [17]). For each α, there exists Mα ∈ A(G) ∩ P (G)
such that Ψ(Mα) = mα. By passing to a subnet, we may assume that
Mα →w∗ M where M ∈ VN(G)∗+. Then mα = Ψ(Mα)→w∗ Ψ∗∗(M). There-
fore, Ψ∗∗(M) = m, whence K is non-empty. It is easy to check that K
is a weak∗-compact convex subset of VN(G)∗. For any g∗ ∈ G∗F , define
Tg∗ : K → K by

Tg∗(M) = g∗ ·M where 〈g∗ ·M,T 〉 = 〈M, g∗ · T 〉.
We need to show that Tg∗ is well-defined. In fact, for any T ∈ VN(H), by
using Lemma 3.5, we have

〈Ψ∗∗(g∗ ·M), T 〉 = 〈g∗ ·M,Ψ∗(T )〉 = 〈M, g∗ · Ψ∗(T )〉
= 〈M,Ψ∗(g∗|H · T )〉 = 〈Ψ∗∗(M), g∗|H · T 〉
= g∗(e)〈Ψ∗∗(M), T 〉 = 〈m,T 〉,

where the second last equality follows from the fact that AF (G)|H ⊆ AF (H).
Thus, {Tg∗ : g∗ ∈ G∗F} is a commuting family of weak∗-weak∗-continuous
affine maps from K to K. Therefore, by the Markov–Kakutani fixed point
theorem, there is an element M0 ∈ K such that M0 = g∗ · M0. Hence,
Ψ∗∗(FIM(Ĝ)) ⊇ FIM(Ĥ). The last equality can be proved similarly.

Corollary 3.7. Let G be a locally compact group and H a closed sub-
group of G. Then:

(a) BFIM(G)|H ⊆ BFIM(H).

(b) If FIM(Ĝ) = TIM(Ĝ), then FIM(Ĥ) = TIM(Ĥ).

Proof. (a) Let u ∈ BFIM(G). Then u|H ∈ B(H). For any m ∈ FIM(Ĝ)
and S ∈ VN(H), we have

〈Ψ∗∗(m), u|H · S〉 = 〈m,Ψ∗(u|H · S)〉 = 〈m,u · Ψ∗(S)〉
= u(e)〈m,Ψ∗(S)〉 = u|H(e)〈Ψ∗∗(m), S〉.

Therefore, BFIM(G)|H ⊆ BFIM(H).
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(b) If FIM(Ĝ) = TIM(Ĝ), then A(G) ⊆ BFIM(G), and consequently
A(H) = A(G)|H ⊆ BFIM(G)|H . This implies that A(H) ⊆ BFIM(H) by (a).
Hence, FIM(Ĥ) = TIM(Ĥ).

Theorem 3.8. Let G be a locally compact group. Suppose that H is a
closed subgroup of G.

(a) If a0(H) ⊆ a0(G)|H , then Ψ∗∗(IM(Ĝ)) ⊆ IM(Ĥ).
(b) If a0(G)|H ⊆ a0(H), then Ψ∗∗(IM(Ĝ)) ⊇ IM(Ĥ).

Proof. (a) Let M ∈ IM(Ĝ), φ ∈ a0(H) and T ∈ VN(H). By assumption,
there exists ψ ∈ a0(G) such that ψ|H = φ. Then

〈Ψ∗∗(M), φ · T 〉 = 〈M,Ψ∗(φ · T )〉 = 〈M,ψ · Ψ∗(T )〉
= ψ(e)〈M,Ψ∗(T )〉 = φ(e)〈Ψ∗∗(M), T 〉.

Therefore, Ψ∗∗(M) is G∗-translation invariant. Note that Ψ∗(λH(e))=λG(e).
It follows that 〈Ψ∗∗(M), λH(e)〉 = 〈M,λG(e)〉 = 1. The positivity of Ψ∗∗(M)
is clear. Hence, Ψ∗∗(M) ∈ IM(Ĥ).

(b) Let m ∈ IM(Ĥ). Put K = {M ∈ VN(G)∗+ : Ψ∗∗(M) = m}. Since
A(H)∩P (H) is weak∗-dense in VN(H)∗+, there is a net (mα) ⊆ A(H)∩P (H)
such that mα →w∗ m. Also, note that Ψ(A(G) ∩ P (G)) = A(H) ∩ P (H).
For each α, there exists Mα ∈ A(G) ∩ P (G) such that Ψ(Mα) = mα. By
passing to a subnet, we may assume that Mα →w∗ M where M ∈ VN(G)∗+.
Then mα = Ψ(Mα) →w∗ Ψ∗∗(M). Therefore, Ψ∗∗(M) = m, whence K is
non-empty. It is easy to check that K is a weak∗-compact convex subset of
VN(G)∗. For any g∗ ∈ G∗, define Tg∗ : K → K by

Tg∗(M) = g∗ ·M where 〈g∗ ·M,T 〉 = 〈M, g∗ · T 〉.
We need to show that Tg∗ is well-defined. In fact, for any T ∈ VN(H), by
using Lemma 3.5, we have

〈Ψ∗∗(g∗ ·M), T 〉 = 〈g∗ ·M,Ψ∗(T )〉 = 〈M, g∗ · Ψ∗(T )〉
= 〈M,Ψ∗(g∗|H · T )〉 = 〈Ψ∗∗(M), g∗|H · T 〉 = g∗(e)〈Ψ∗∗(M), T 〉 = 〈m,T 〉

where the second last equality follows from the assumption that a0(G)|H ⊆
a0(H). Thus, {Tg∗ : g∗ ∈ G∗} is a commuting family of weak∗-weak∗-
continuous affine maps from K to K. Therefore, by the Markov–Kakutani
fixed point theorem, there is an element M0 ∈ K such that M0 = g∗ ·M0.
Hence, Ψ∗∗(IM(Ĝ)) ⊇ IM(Ĥ).

Remark 3.9. Note that the proofs of Theorems 3.6 and 3.8(b) are very
similar. While one of the key results used in the proof of Theorem 3.6 is
that AF (G)|H ⊆ AF (H), the inclusion a0(G)|H ⊆ a0(H) does not always
hold (see Section 5). Therefore, this inclusion becomes an assumption of
Theorem 3.8(b).
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Theorem 3.10. Let G be a locally compact group. Suppose that H is a
closed subgroup of G such that a0(G)|H ⊆ a0(H). Then:

(a) BIM(G)|H ⊆ BIM(H).
(b) If IM(Ĝ) = TIM(Ĝ), then IM(Ĥ) = TIM(Ĥ).

Proof. (a) Let u ∈ BIM(G). Then u|H ∈ B(H). For any m ∈ IM(Ĝ) and
S ∈ VN(H), we have

〈Ψ∗∗(m), u|H · S〉 = 〈m,Ψ∗(u|H · S)〉
= 〈m,u · Ψ∗(S)〉 = u(e)〈m,Ψ∗(S)〉 = u|H(e)〈Ψ∗∗(m), S〉.

Therefore, BIM(G)|H ⊆ BIM(H).
(b) If IM(Ĝ) = TIM(Ĝ), then A(G) ⊆ BIM(G), and consequently

A(H) = A(G)|H ⊆ BIM(G)|H . This implies that A(H) ⊆ BIM(H) by (a).
Hence, IM(Ĥ) = TIM(Ĥ).

4. Generalizations of Granirer–Rudin’s Theorem. The fact that
IM(Ĝ) 6= TIM(Ĝ) for any non-compact abelian group G is a direct conse-
quence of Granirer–Rudin’s Theorem [13], [29]. However, it is impossible to
remove the commutativity condition, as shown below.

Example 4.1. If G is a non-compact [AR]-group (say, the “ax + b”
group or Fell’s group), then IM(Ĝ) = TIM(Ĝ) by Proposition 3.4. There-
fore, unlike the abelian case, there is a non-compact group G such that
IM(Ĝ) = TIM(Ĝ).

The major purpose of this section is to provide some sufficient conditions
on G for IM(Ĝ) 6= TIM(Ĝ).

We first recall the definitions of some important classes of locally compact
groups.

Let G be a locally compact group. Then G is called a [SIN]-group if it
has a base for the neighborhood system at the identity consisting of compact
neighborhoods which are invariant under all inner automorphisms of G.

A C∗-algebra A is said to be CCR if π(f) is a compact operator for
every f ∈ A and irreducible ∗-representation π of A. A group G is called a
[CCR]-group if C∗(G) is CCR.

A unitary ∗-representation π of G is primary if the center of C(π) =
{T ∈ B(Hπ) : Tπ(x) = π(x)T for any x ∈ G} consists of scalar multiples
of I. And G is said to be a [Type 1]-group if every primary representation
of G is a direct sum of copies of some irreducible representations.

We say that a locally compact group G is almost abelian if it has an
abelian subgroup of finite index.

A locally compact group G is called a central group if the quotient group
G/Z is compact where Z is the center of G. An almost connected group is
a locally compact group G such that the quotient group G/Ge is compact
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where Ge is the connected component of e in G. For more details, see [25,
Chapter 12].

For more results of [SIN], [CCR] and [Type 1]-groups, we refer the readers
to [25].

The following theorem is the main result in this section.

Theorem 4.2. Let G be a locally compact group. Suppose that one of
the following conditions holds:

(a) G = G1 × G2 where G1 is [Type 1] and G2 is any locally compact
group such that IM(Ĝi) 6= TIM(Ĝi) for some i = 1, 2.

(b) The center of G, Z(G), is non-compact.
(c) G is a [Moore]-group which has a closed subgroup H such that IM(Ĥ)
6= TIM(Ĥ).

(d) G is a [CCR]-group which has an open subgroup H such that IM(Ĥ)
6= TIM(Ĥ).

Then IM(Ĝ) 6= TIM(Ĝ) (i.e. there exists a G∗-translation invariant mean
on VN(G) which is not topologically invariant).

We need the following preparation before proving the main result. In
particular, we will provide different sufficient conditions for the inclusion
a0(G)|H ⊆ a0(H) to hold.

If G has the H-extension property where H is a closed subgroup of G
(i.e. B(G)|H = B(H)), then H∗ ⊆ G∗|H (see [16, Proposition 2, p. 275]).
Therefore, a0(H) ⊆ a0(G)|H .

Lemma 4.3. Let G be a [Moore]-group and H a closed subgroup of G.
Then a0(H) = a0(G)|H .

Proof. Every [Moore]-group is a [SIN]-group, so it has the extension
property. If g∗ ∈ G∗, then g∗(x) = 〈π(x)ε, ε〉 where π ∈ Ĝ and ε ∈ Hπ,
‖ε‖ = 1. Since G is a [Moore]-group, it follows that dim(π|H) = dim(π) <∞.
Therefore, g∗|H ∈ AF (H) ⊆ a0(H).

Lemma 4.4. Let G be a locally compact group and H an open subgroup.
Let π be a unitary representation of G. For any f ∈ L1(H), define ḟ ∈ L1(G)
by ḟ(x) = f(x) if x ∈ H, and ḟ(x) = 0 otherwise. Then π(ḟ) = π|H(f) for
any f ∈ L1(H), and ‖ḟ‖C∗(G) = ‖f‖C∗(H) for any f ∈ L1(H). Hence,

the map L1(H) → L1(G), f 7→ ḟ , extends to a C∗-algebra monomorphism
Φ : C∗(H)→ C∗(G).

Proof. Let ξ, η ∈ Hπ. Then

〈π(ḟ)ξ, η〉 =
�

G

ḟ(x)〈π(x)ξ, η〉 dx =
�

H

f(x)〈π|H(x)ξ, η〉 dx = 〈π|H(f)ξ, η〉.

Therefore, π(ḟ) = π|H(f) for any f ∈ L1(H). For the last statement, note
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that every unitary representation of H induces a unitary representation of G.
Hence,

‖ḟ‖C∗(G) = sup{‖π(ḟ)‖ : π ∈ ΣG}
= sup{‖π|H(f)‖ : π ∈ ΣG} = sup{‖π(f)‖ : π ∈ ΣH} = ‖f‖C∗(H).

Lemma 4.5. Let G be a [CCR]-group and H an open subgroup of G.
Then a0(H) = a0(G)|H .

Proof. Since G ∈ [CCR], we have π(C∗(G)) ⊆ K(Hπ) for any irreducible
representation π. Thus, π|H(C∗(H)) = Φ(C∗(H)) ⊆ K(Hπ) where Φ is de-
fined in Lemma 4.4. By [9, Proposition 5.4.13], π|H is a direct sum of irre-
ducible representations of H. Hence, a0(H) ⊇ a0(G)|H .

Let u : G1 → C and v : G2 → C be functions. Define u⊗v : G1×G2 → C
by u⊗ v(x, y) = u(x)v(y).

Lemma 4.6. Let G1 be a [Type 1]-group and G2 any locally compact
group. Let G = G1 × G2. Identify G1 as G1 × {e2} and G2 as {e1} × G2.
Then a0(G1) = a0(G)|G1 and a0(G2) = a0(G)|G2.

Proof. Note that Ĝ→ Ĝ1 × Ĝ2, π 7→ π1 ⊗ π2, is a bijection. We have

a0(G) = {(x, y) 7→ 〈π1 ⊗ π2(x, y)ξ, η〉 : ξ, η ∈ Hπ1⊗π2 , π1 ∈ Ĝ1, π2 ∈ Ĝ2}.
It follows that

a(G) = span(a0(G1)⊗ a0(G2))
‖·‖B(G)

.

Lemma 4.7. Let G be a locally compact group, and Z be the center of G.
Then a0(G)|Z ⊆ a0(Z).

Proof. If π is an irreducible representation of G, then π|Z is a multiple of
ρ where ρ is an irreducible representation of Z. In particular, ρ is completely
irreducible.

We are now ready to prove the main theorem.

Proof of Theorem 4.2. (a) Suppose that IM(Ĝ1 ×G2) = TIM(Ĝ1 ×G2).
Then IM(Ĝi) = TIM(Ĝi) for all i = 1, 2 by Theorem 3.10 and Lemma 4.6.

(b) Suppose that TIM(Ĝ) = IM(Ĝ). Then by Theorem 3.10 and Lem-
ma 4.7, TIM(Ẑ) = IM(Ẑ) where Z is the center of G. Therefore, by Grani-
rer–Rudin’s Theorem (see [13] and [29]), we conclude that Z is compact.

(c) This follows from Theorem 3.10 and Lemma 4.3.
(d) This follows from Theorem 3.10 and Lemma 4.5.

The following result should be well known. However, we can also prove
it independently by just using the results of the previous section.

Corollary 4.8. Let G be a locally compact group. Suppose that one of
the following conditions holds:
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(a) G = G1 × G2 where G1 is a non-compact locally compact abelian
group and G2 any locally compact group.

(b) G is a [Moore]-group which has a non-compact connected subgroup H.
(c) G is a [Moore]-group which has a non-compact abelian closed sub-

group H.
(d) G is a [CCR]-group which has a non-compact abelian open sub-

group H.
(e) G is a non-compact connected [SIN]-group.
(f) G is a non-compact almost connected [Moore]-group.
(g) G is a non-compact almost abelian group.
(h) G is a non-compact central group.

Then IM(Ĝ) 6= TIM(Ĝ) (i.e. there exists a G∗-translation invariant mean
on VN(G) which is not topologically invariant).

Proof. (a) Follows from Granirer–Rudin’s Theorem and Theorem 3.10(a).
(b) Follows from Granirer–Rudin’s Theorem and Theorem 3.10(b).
(c) Since H is also a connected [Moore]-group, we have H = V × K

where V is a vector group and K is a compact group (see [25, 12.6.6]).
Since H is non-compact, V is not trivial. It follows from Granirer–Rudin’s
Theorem and (a) that IM(Ĥ) 6= TIM(Ĥ). The proof is completed by using
Theorem 3.10(c).

(d) Follows from Granirer–Rudin’s Theorem and Theorem 3.10(d).
(e) Note that a connected [SIN]-group is a [Moore]-group. The proof is

similar to that of (b).
(f) If G is an almost connected [Moore]-group, then G = V ×η K where

K is compact, V is a vector group and η(K) is finite (see [25, 12.6.6]). If
IM(Ĝ) = TIM(Ĝ), then IM(V̂ ) = TIM(V̂ ) by Theorem 3.10, which implies
that V is trivial. Consequently, G is compact.

(g) Note that G is a [Moore]-group. Let H be such an abelian subgroup
of G. If IM(Ĝ) = TIM(Ĝ), then IM(Ĥ) = TIM(Ĥ) by Theorem 3.10. Con-
sequently, H is compact. Therefore, G is compact since H is of finite index.

(h) Assume that G is central (i.e. G/Z(G) is compact). Then Z(G) is
compact by (b). Hence, G is compact.

The following result concerning [AR]-groups is a direct consequence of
the main theorem.

Corollary 4.9. The center of an [AR]-group is always compact. In
particular, if A(G) has RNP, then A(Z) has RNP where Z is the center
of G.

Proof. Let G be an [AR]-group. Then IM(Ĝ) = TIM(Ĝ). The result
follows immediately from Theorem 4.2(b).

For F-translation invariant means, we have a stronger result.
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Theorem 4.10. If G has a non-compact closed abelian subgroup, then

FIM(Ĝ) 6= TIM(Ĝ).

Proof. Follows directly from Granirer–Rudin’s Theorem and Corol-
lary 3.7.

Corollary 4.11. Let G be a [SIN]-group such that FIM(Ĝ) = TIM(Ĝ).
Then every closed connected subgroup of G is compact.

Proof. Similar to the proof of Corollary 4.8(a).

Remarks 4.12. Let G be the “ax+b”-group, H =
{(

a 0
0 1

)
: a > 0

}
and

N =
{(

1 b
0 1

)
: b ∈ R

}
.

Surprisingly, these groups provide a lot of counter-examples in the study
of functorial properties of invariant means on VN(G).

(a) Since G is an [AR]-group, IM(Ĝ) = TIM(Ĝ) by Proposition 3.4.
However, IM(Ĥ) 6= TIM(Ĥ) as H is a non-compact abelian group
by Granirer–Rudin’s Theorem.

(b) By Theorem 4.10, FIM(Ĝ) 6= TIM(Ĝ), but FIM(Ĥ) = TIM(Ĥ) since
H is abelian.

(c) Note that FIM(Ĥ) = TIM(Ĥ) 6= IM(Ĥ) and G/N ∼= H. We have

FIM(Ĝ/N) = TIM(Ĝ/N) 6= IM(Ĝ/N).

We obtain a lot of examples by using the above corollary. Say, if G is
GLn(R) or the Heisenberg group, then TIM(Ĝ) 6= IM(Ĝ).

5. An application in representation theory

Question. Let H be a closed subgroup of G, and let π ∈ Ĝ. Is π|H
completely reducible in general? (i.e. is π|H a sum of irreducible unitary
representations of H?)

We have the following observation:

Let G be a locally compact group such that TIM(Ĝ) = IM(Ĝ). If H is
closed subgroup of G such that TIM(Ĥ) 6= IM(Ĥ), then a0(G)|H is not a
subset of a0(H). Hence, there exists an irreducible representation π of G
such that π|H is not completely reducible.

Recall that the infinite-dimensional representations of the “ax+b”-group
are given by:

[π+(a, b)g](s) = a1/2e2πibsg(as) (a > 0, b ∈ R, g ∈ L2((0,∞), ds));

[π−(a, b)g](s) = a1/2e2πibsg(as) (a > 0, b ∈ R, g ∈ L2((−∞, 0), ds)).
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The following gives a negative answer to our question. In its proof we
will use Theorem 3.10 and Granirer–Rudin’s result.

Proposition 5.1. Let G be the “ax+b”-group, and H be the subgroup of
G defined in Remarks 4.12. Then a0(G)|H is not a subset of a0(H). More-
over, π+|H and π−|H are not completely reducible.

Proof. Since Ĝ consists of all characters, π+ and π−, we conclude that
π+|H and π−|H cannot both be written as direct sums of irreducible repre-
sentations of H. Let U : L2((0,∞), ds)→ L2((−∞, 0), ds) be defined by

Ug = g̃ where g̃(x) = g(−x).

By direct calculation, we can prove that Uπ+(a, b) = π−(a,−b)U for any
a > 0, b ∈ R. Thus Uπ+|H = π−|HU , whence π+|H and π−|H are unitarily
equivalent. Therefore, neither of them can be written as a direct sum of
irreducible representations of H.

6. Some general properties of dual spaces. The purpose of this
section is to discuss how the properties of G are related to those of G∗. In
particular, we give some characterizations of discrete, abelian and compact
groups by using properties of their dual spaces. Some of the results presented
in this section will be used in the next section.

We start by recalling the following definition. Recall that a net (µα) in
M(G) is said to converge strictly to µ if

‖g ∗ (µα − µ)‖+ ‖(µα − µ) ∗ g‖ → 0 for any g ∈ L1(G).

Remark 6.1. Let δG := {δx : x ∈ G} be the set of all Dirac measures
on G. Then its convex hull co(δG) is strictly dense in M(G)+1 , and hence
l1(G) is also strictly dense in M(G).

Inspired by the above classical definition of strict topology for M(G), we
define the strict topology of B(G) analogously:

A net (fα) in B(G) is said to converge strictly to f if

‖(fα − f) · g‖ → 0 for any g ∈ A(G).

The following lemma is an analogue of the remark above, which will be
particularly useful.

Lemma 6.2. The convex hull of the dual space, co(G∗), is strictly dense
in P1(G). Hence, the linear span of the dual space, span(G∗), is strictly
dense in B(G).

Proof. Note that co(G∗) = co(E(P1(G))) is weak∗-dense in P1(G) and
the strict topology coincides with the weak∗-topology in B(G)1 by [15, The-
orem B2]. Therefore, co(G∗) is strictly dense in P1(G). The rest is trivial.
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The proposition below can be proved by applying the previous lemma.
This is an analogue of [12, Proposition 2.43], which also motivated the author
to study G∗.

Proposition 6.3. Let I be a closed subalgebra of A(G). If I is G∗-
translation invariant, then I is an ideal of A(G). Suppose, in addition, that
u ∈ uA(G) for any u ∈ A(G). Then I is G∗-translation invariant if and
only if I is an ideal of A(G).

Proof. Let φ ∈ A(G) ∩ P1(G), f ∈ I, and let (φα) be a net in co(G∗)
such that φα → φ in the strict topology of B(G). Note that φα · f ∈ I for
each α. Since I is norm-closed, it follows that φ · f ∈ I.

Conversely, let f ∈ I and g∗ ∈ G∗. Then g∗f ∈ A(G). By assumption,
there exists a net (eα) ⊆ A(G) such that (g∗f)eα → g∗f . However, (g∗f)eα =
(g∗eα)f ∈ A(G)I ⊆ I. Therefore, g∗f ∈ I.

Now, we are ready to give some characterizations of discrete groups using
properties of G∗.

6.1. Discrete groups. The following lemma should be well-known; we
give the proof for the sake of completeness.

Lemma 6.4. Let X be a locally compact Hausdorff space. If C0(X) has
an n-dimensional ideal, then X has at least n distinct discrete points. More-
over, if such an n-dimensional ideal exists, then it is the linear span of
δx1 , . . . , δxn where x1, . . . , xn ∈ X.

Proof. Let I be an n-dimensional ideal in C0(X). Define

Ω := {x ∈ G : f(x) 6= 0 for some f ∈ I}.
Clearly, |Ω| ≥ n. It remains to show that |Ω| ≤ n. Suppose that x1, . . . ,
xn+1 ∈ Ω are distinct. For each i ∈ {1, . . . , n + 1}, by Urysohn’s Lemma,
there exist fi ∈ I and gi ∈ C0(G) such that

fi(xi) 6= 0 and gi(xj) = δij , 1 ≤ i, j ≤ n+ 1.

Let ci ∈ C be such that
∑n+1

i=1 cigifi = 0. Then for each j ∈ {1, . . . , n+ 1},
n+1∑
i=1

cigifi(xj) = cjfj(xj) = 0, so cj = 0.

Therefore, {gifi}n+1
i=1 is a linearly independent subset of I. This is a contra-

diction.
The proof of the latter part of the lemma is clear.

The following assertion about G∗-translation invariant elements of A(G)
and B(G) will be useful in the next section.

Theorem 6.5. Let G be a locally compact group. Then the following
statements are equivalent:
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(a) G is discrete.
(b) There exists a non-zero f ∈ A(G) which is G∗-translation invariant.
(c) There exists a non-zero f ∈ B(G) which is G∗-translation invariant.

Moreover, if such an f exists, then f = cδe for some c ∈ C.

Proof. (a)⇒(c) is clear. If (c) holds, choose u ∈ A(G) such that uf 6= 0.
Then {uf} is a G∗-translation invariant subset in A(G).

Now, suppose that (b) holds. Let I = Cf ⊆ A(G). Let h ∈ A(G) and let
{
∑
cαg
∗
α} be a net in span(G∗) which converges to h strictly. Then

h · f = lim
α

∑
cα(g∗α · f) =

(
lim
α

∑
cα

)
f,

so I is a one-dimensional ideal in A(G), which implies that G is discrete.
For the last statement, without loss of generality, we may assume that

f ∈ A(G). Now, I is also an ideal in C0(G). So I = 〈δx〉 for some x ∈ G
by Lemma 6.4. It follows that f = cδx for some c ∈ C. Without loss of
generality, assume that c = 1. For any y ∈ G, π ∈ Ĝ and ξ ∈ Hπ, ‖ξ‖ = 1,
we have 〈π(y)ξ, ξ〉δx(y) = δx(y). Suppose that x 6= e. Pick π0 ∈ Ĝ such
that π0(x) 6= π0(e). Thus, we have 〈π0(x)ξ, ξ〉 = 1. By Cauchy–Schwarz’s
inequality, it follows that π0(x)ξ = ξ. Hence, π0(x) is the identity map,
which is a contradiction.

Remark 6.6. By Lemma 6.4, it is not hard to see that the following
statements are equivalent:

(a) G is discrete.
(b) A(G) has a non-zero finite-dimensional ideal.
(c) C0(G) has a non-zero finite-dimensional ideal.

The following lemma gives a characterization of G∗-translation invariant
elements of VN(G). For the definition of the support of an element of VN(G),
the basic reference is [11, Chapter 4].

Theorem 6.7. Let T be a non-zero element in VN(G). Then the fol-
lowing statements are equivalent:

(a) g∗ · T = T for all g∗ ∈ G∗.
(b) φ · T = T for all φ ∈ P1(G).
(c) φ · T = T for all φ ∈ A(G) ∩ P1(G).
(d) T = cλ2(e) for some non-zero constant c ∈ C.

Proof. (a)⇒(b): For any φ ∈ P1(G), there exists a net (eα) in co(G∗)
such that eα → φ strictly. Observe that eα · T = T . So, for any u ∈ A(G),

〈T, u〉 = 〈eα · T, u〉 = 〈T, eα · u〉 → 〈T, φ · u〉.
Thus, T = φ · T .

(b)⇒(c) is clear.
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Suppose that (c) holds. By [11, Proposition 4.4.8], we have supp(T ) =
supp(φ · T ) ⊆ supp(φ) ∩ supp(T ). It follows that supp(T ) ⊆ supp(φ) for
any φ ∈ A(G) ∩ P1(G). However, for any x 6= e ∈ G, there exists f in
A(G) ∩ P1(G) such that x lies outside supp(f). Therefore, supp(T ) = {e}.
Hence (a) follows by [11, Theorem 4.4.9].

The following proposition is a consequence of Theorem 6.5, which gives
another characterization of discrete groups.

Proposition 6.8. Let G be a locally compact group. Then the following
statements are equivalent:

(a) G is discrete.
(b) P1(G) is weak∗-compact.
(c) Br(G) ∩ P1(G) is weak∗-compact.

Hence, if G∗ is weak∗-compact, then G is discrete.

Proof. If G is discrete, then

P1(G) = {φ ∈ B(G) : φ(e) = 〈φ, δe〉 = 1 = ‖φ‖}
is clearly weak∗-compact.

Suppose that (b) holds. For each g∗ ∈ G∗, define

Tg∗ : P1(G)→ P1(G) by Tg∗(φ) = g∗ · φ.
Then {Tg∗ : g∗ ∈ G∗} is a commuting family of continuous affine maps
on P1(G). By the Markov–Kakutani fixed point theorem, there exists φ0 in
P1(G) such that g∗ · φ0 = φ0. Thus, G is discrete by Theorem 6.5.

The proof of the equivalence of (a) and (c) is similar.

This gives another proof of the following theorem which appears in [24].

Corollary 6.9. Let G be a locally compact group. Then the following
statements are equivalent:

(a) G is discrete.
(b) C∗(G) is unital.
(c) C∗r (G) is unital.

Proof. Note that if A is a unital C∗-algebra, its state space is weak∗-
compact. However, the state spaces of C∗(G) and C∗r (G) are P1(G) and
Br(G) ∩ P1(G), respectively. The result therefore follows from Proposi-
tion 6.8.

Note that C∗(G) and C∗r (G) are B(G)-bimodules, and hence they are
G∗-translation invariant.

Corollary 6.10. Let G be a locally compact group. Then the following
statements are equivalent:
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(a) G is discrete.
(b) There exists a non-zero T ∈ C∗(G) which is G∗-translation invariant.
(c) There exists a non-zero T ∈ C∗r (G) which is G∗-translation invariant.

Moreover, if such a T exists, then T = cδe for some c ∈ C.

Proof. This follows from Corollary 6.9 and Theorem 6.7.

Next, we will give some characterizations of abelian groups using prop-
erties of G∗.

6.2. Abelian groups. Let A be a C∗-algebra. Denote by (A∗)1+ the
state space of A.

Lemma 6.11. Let A be a C∗-algebra. Then A is commutative if and only
if, for any a ∈ A, the norm of a is given by

‖a‖ = sup{|〈a, f〉| : f ∈ (A∗)1+}.

Proof. Suppose that A is non-abelian. Then there exists a ∈ A such that
‖a‖ = 1 and a2 = 0 (see [4, II.6.4.14]). Then for any state f on A,

|f(a)|2 ≤
√
f(a∗a)f(aa∗) ≤ f(a∗a+ aa∗)

2
≤ ‖a

∗a+ aa∗‖
2

=
max(‖a∗a‖, ‖aa∗‖)

2
=

1

2

where the second last equality follows from the fact that a∗a and aa∗ are
orthogonal. Thus, |f(a)| ≤ 1/

√
2 for any state f on A.

In fact, G is abelian only when G∗ has the following extraordinary prop-
erties from the non-commutative point of view:

Theorem 6.12. Let G be a locally compact group. The following are
equivalent:

(a) G is abelian.
(b) Given any g∗ ∈ G∗, we have ‖g∗ · φ‖ = ‖φ‖ for all φ ∈ B(G).
(c) Given any g∗ ∈ G∗, we have ‖g∗ · φ‖ = ‖φ‖ for all φ ∈ A(G).
(d) For any g∗ ∈ G∗, we have g∗ · (T1T2) = (g∗ · T1)(g∗ · T2) for any

T1, T2 ∈ VN(G).
(e) For any g∗ ∈ G∗, we have ‖g∗ · T‖ = ‖T‖ for any T ∈ VN(G).
(f) The relative topology of G∗ inherited from the norm topology of B(G)

is discrete.
(g) The set of all extreme points of B(G)1 is TG∗ = {λg∗ : λ ∈ T,

g∗ ∈ G∗}.
(h) The weak∗-closed convex hull of TG∗ is B(G)1.
(i) |〈TT ∗, g∗〉| = |〈T, g∗〉|2 for any T ∈ C∗(G) and g∗ ∈ G∗.
(j) ‖T‖ = sup{|〈T, g∗〉| : g∗ ∈ G∗} for any T ∈ C∗(G).
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Proof. If G is abelian, then the implications (a)⇒(b)⇒(c) are obvious.

If (c) holds, for each g∗ ∈ G∗, let Lg∗ : A(G) → A(G), Lg∗(f) = g∗ · f .
Then Lg∗ is clearly a bounded multiplier on A(G). By using a similar idea
as applied in the proofs of [27, Lemmas 1, 2], one can show that Lg∗ is
an isometric linear isomorphism (onto). Therefore, Lg∗(SA(G)) = SA(G). It
follows that ‖g∗ · T‖ = ‖T‖ for any T ∈ VN(G). Hence, (c)⇒(e).

Now, we show that (a), (b), (c) and (e) are equivalent by proving that
(e)⇒(a).

Suppose that (e) holds. Since g∗ · λ2(x) = g∗(x)λ2(x) for each x ∈ G, we
have

|g∗(x)| = ‖g∗ · λ2(x)‖ = ‖λ2(x)‖ = 1.

It follows that g∗ · ḡ∗ = |(g∗)2| = 1. So, G is abelian by [1].

Next, we show that (a)⇔(d); only the backward implication needs proof.
Suppose that (d) holds. For any f1, f2 ∈ Cc(G), we have

λ2(g
∗(f1 ∗ f2)) = g∗ · λ2(f1 ∗ f2) = g∗ · λ2(f1) ◦ g∗ · λ2(f2) = λ2(g

∗f1 ∗ g∗f2).
However, for any x ∈ G,

g∗(x)f1 ∗ f2(x) =
�

G

g∗(x)f1(y)f2(y
−1x) dy

and
(g∗f1) ∗ (g∗f2)(x) =

�

G

g∗(y)f1(y)g∗(y−1x)f2(y
−1x) dy.

Since λ2 is a faithful representation, it follows that

〈g∗(x), f1Lxf̆2〉 = 〈g∗Lxḡ∗, f1Lxf̆2〉
for each x ∈ G where 〈·, ·〉 denotes the dual pairing of L∞(G) and L1(G).
Since g∗ is continuous, g∗(x) = g∗(y)g∗(y−1x) for any x, y ∈ G. In particular,
g∗ · ḡ∗ = 1. Hence, G is abelian (see [1]).

Next, we have to show that (a) and (f) are equivalent. If G is abelian,
then G∗ = δĜ and B(G) = M(Ĝ). Since ‖δx − δy‖ = 2 whenever x, y ∈ Ĝ
and x 6= y, the forward direction follows. Conversely, suppose that G is not
abelian. Then there exists π ∈ Ĝ such that dimHπ > 1. Let η1, η2 ∈ Hπ
with ‖η1‖ = ‖η2‖ = 1 be such that η1, η2 are linearly independent. Put
εn = (η1 + η2/n)/‖η1 + η2/n‖. Then εn and η1 are linearly independent and
εn → η1. Hence, 〈π(x)η1, η1〉 6= 〈π(x)εn, εn〉 for each n ∈ N and x ∈ G.
However, for each f ∈ C∗(G),

‖〈π(f)η1, η1〉 − 〈π(f)εn, εn〉‖ ≤ ‖〈π(f)(η1 − εn), η1〉+ 〈π(f)(εn − η1), εn〉‖
≤ 2‖f‖C∗(G)‖η1 − εn‖ → 0.

Consequently, the relative topology of G∗ inherited from the norm topology
of B(G) is non-discrete.
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By the Krein–Milman Theorem, it is easy to see that (a)⇒(g)⇒(h)⇒(j);
and (a)⇒(i) is also clear. Note that ‖T‖ = sup{|〈T, g∗〉| : g∗ ∈ G∗} for any
T ∈ C∗(G)sa (see Lemma 6.2 and [30, 1.5.4]). If (i) holds, then

‖T‖ = ‖TT ∗‖1/2 = sup{|〈TT ∗, g∗〉|1/2 : g∗ ∈ G∗} = sup{|〈T, g∗〉| : g∗ ∈ G∗}.
Therefore, it remains to show (j)⇒(a). Note ‖T‖=sup{|〈T, h〉| : h∈co(G∗)}
for any T ∈ C∗(G) and co(G∗) = co(E(P1(G))) is weak∗-dense in P1(G). It
follows that ‖T‖ = sup{|〈T, h〉| : h ∈ P1(G)} for any T ∈ C∗(G). Conse-
quently, C∗(G) is commutative (by Lemma 6.11), hence G is abelian.

Finally, we give a characterization of compact groups using properties
of G∗.

6.3. Compact groups. Note that δG ⊆M(G) is discrete in the relative
norm topology since ‖δx − δy‖ = 2 whenever x 6= y. In particular, G and
(δG, ‖ · ‖M(G)) are homeomorphic if G is discrete. We are going to prove the
non-commutative analogue of this phenomenon.

For any π ∈ Ĝ, write G∗π = {〈π(·)ξ, ξ〉 : ξ ∈ Hπ, ‖ξ‖ = 1}. If G is abelian,
then G∗π is always a singleton for any π ∈ Ĝ.

The following proposition gives a characterization of compact groups by
using properties of G∗:

Proposition 6.13. Let G be a separable group. The following state-
ments are equivalent:

(a) G is compact.
(b) The identity map id : (G∗, w∗)→ (G∗, ‖ · ‖) is continuous (a homeo-

morphism).
(c) The interior of G∗π is non-empty for each π ∈ Ĝ.

Proof. (a)⇒(b): If G is compact, then the weak∗-topology and the norm
topology coincides on SB(G) ([15, Corollary 2, p. 463]).

(b)⇒(c): Let g∗0 ∈ G∗π. By assumption, there exists a weak∗-open set U
containing g∗0 such that

U ⊆ {g∗ ∈ G∗ : ‖g∗ − g∗0‖ < 2}.
However, {g∗ ∈ G∗ : ‖g∗−g∗0‖ < 2} ⊆ G∗π (see [10, 2.12.1]). Therefore, (G∗π)o

is non-empty.
(c)⇒(a): Note the natural map q : G∗ → Ĝ is open [10, Theorem 3.4.11],

and {π} = q((G∗π)o) by the definition of q and the assumption that (G∗π)o is
non-empty. It follows that the hull-kernel topology on Ĝ is discrete, hence
G is compact (see [2]).

7. General properties of G∗-translation invariant means
in VN(G). In this section we will study the non-commutative analogues of
classical results about translation invariant means on L∞(G). We will discuss
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the general properties of G∗-translation invariant means and F-translation
invariant means. These notions were defined at the beginning of Section 3.

Remark 7.1. In fact, VN(G) always has a topological invariant mean
(see [24, Theorem 4]). We also notice that the set of all G∗-translation
invariant means on VN(G) is a weak∗-compact convex subset in VN(G)∗,
and A(G)∩P1(G) is weak∗-dense in the set of all means in VN(G) (see [14]).

Recall that in Section 4, we have the following definition: a subspace
of VN(G) is said to be invariant if it is topologically invariant and G∗-
translation invariant.

Proposition 7.2. Let E be an invariant closed subspace of VN(G)
which is closed under involution and contains λ2(e). Then every topolog-
ically invariant mean on E is G∗-translation invariant. Hence, for any lo-
cally compact group, E has a mean which is F-translation invariant and
G∗-translation invariant. Furthermore, if G is non-discrete, then VN(G)
has uncountably many G∗ (hence F)-translation invariant means.

Proof. Let m be a topological invariant mean on E. For any g∗ ∈ G∗,
T ∈ E and φ ∈ A(G) ∩ P1(G), we have

m(g∗ · T ) = m(φ · (g∗ · T )) = m((φ · g∗) · T ) = m(T ).

Therefore, m is G∗-translation invariant. Note that G∗F ⊆ G∗. The rest
follows from the remark above.

Lemma 7.3. The following statements are equivalent:

(a) G is discrete.
(b) There is a bounded linear functional on C∗r (G) which is G∗-transla-

tion invariant.
(c) There is a bounded linear functional on C∗r (G) which is topologically

invariant.

Proof. (a)⇒(c)⇒(b) is clear. Let φ ∈ Br(G) be such that 〈φ, T 〉 =
〈φ, g∗ · T 〉 = 〈g∗ · φ, TT 〉 for any g∗ ∈ G∗ and T ∈ C∗r (G). Then g∗ · φ = φ.
Note that φ ∈ Br(G) ⊆ B(G). So, G is discrete by Theorem 6.5.

Proposition 7.4. Let G be a non-discrete locally compact group, and
let M be a G∗-translation invariant mean on VN(G). Then the restriction
of M on C∗r (G) is always zero.

Proof. Let m = M |C∗r (G). Assume that m 6= 0. Clearly, m is positive
and G∗-translation invariant on C∗r (G). Therefore, n = m/‖m‖ is a G∗-
translation invariant mean on C∗r (G), which contradicts Lemma 7.3.

Since all topological means are G∗-translation invariant (Proposi-
tion 7.2), we thus provide another proof of [24, Theorem 12].
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Corollary 7.5. Let G be a locally compact group. Then G is discrete
if and only if there is a G∗-translation invariant mean on VN(G) belonging
to A(G) ∩ P1(G) (or A(G)).

Proof. If G is discrete, then δe ∈ A(G) ∩ P1(G). Hence, m(T ) := 〈δe, T 〉
defines a G∗-translation invariant mean on VN(G). Conversely, if there is
f ∈ A(G) ∩ P1(G) such that 〈f, T 〉 = 〈f, g∗ · T 〉 for any g∗ ∈ G∗ and
T ∈ VN(G), then f = g∗ · f . So, G is discrete.

Theorem 7.6. If A(G) has an approximate identity, then every G∗-
translation invariant mean on UCB(Ĝ) is topologically invariant.

Proof. Let m be a G∗-translation invariant mean on UCB(Ĝ), and let
S = u · T ∈ UCB(Ĝ) where T ∈ VN(G) and u ∈ A(G). As the functional
A(G)→ C, f 7→ m(f · S), is continuous, there exists T0 ∈ VN(G) such that
m(f · S) = 〈T0, f〉. Since m is G∗-translation invariant, for any g∗ ∈ G∗ we
have

〈g∗ · T0, f〉 = 〈T0, g∗ · f〉 = m(g∗ · (f · S)) = m(f · S) = 〈T, f〉.
That is, g∗ · T0 = T0. By Theorem 6.7, T0 = cλ2(e) for some constant c 6= 0.
It follows that m(f ·S) = c for any f ∈ A(G)∩P1(G) and S ∈ A(G) ·VN(G).
By assumption, A(G) has an approximate identity {eα}. So, we have

m(f · S) = lim
α
m((f · eα) · S) = lim

α
m(eα · S) = m(S).

However, A(G) · VN(G) is a norm-dense subset of UCB(Ĝ). Hence we con-
clude that m is topologically invariant.

Corollary 7.7. If G is a compact group, then every G∗(F)-translation
invariant mean on VN(G) is topologically invariant.

Proof. Note that G is amenable, G∗F = G∗ and VN(G) = UCB(Ĝ) under
the assumption.

Recall that WAP(Ĝ), the weakly almost periodic functionals in VN(G)
is the set of all T in VN(G) for which the operator from A(G) to VN(G)
given by u 7→ u · T is weakly compact. It is proved by Granrier [14] that
WAP(Ĝ) has a unique topologically invariant mean.

Proposition 7.8. WAP(Ĝ) has a unique G∗-translation invariant
mean.

Proof. The proof is the same as that of [14, Theorem 1].

Lemma 7.9. Let φ ∈ A(G) ∩ P1(G). If m is a topologically invariant
mean on UCB(Ĝ), then m′ is a topologically invariant mean on VN(G),
where m′ is given by m′(T ) = m(φ · T ). Furthermore, m′ is independent of
the choice of φ.
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Proof. Let T0 ∈ VN(G). Define F ∈ A(G)∗ by F (ψ) = m(ψ · T0). Now,
for any ψ ∈ A(G) and ϕ ∈ A(G) ∩ P1(G), we have

(ϕ · F )(ψ) = F (ϕ · ψ) = m(ϕ · ψ · T0) = m(ψ · T0) = F (ψ).

So, by Theorem 6.7,

F (ψ) = m(ψ · T0) = 〈cλ2(e), ψ〉 = cψ(e).

In particular, m(ϕ · T0) = c for any ϕ ∈ A(G) ∩ P1(G). Thus, m′ is inde-
pendent of the choice of φ. It is routine to check that m′ is a topologically
invariant mean on VN(G).

Proposition 7.10. There is a bijection between the set of topologically
invariant mean on UCB(Ĝ) and the set of topologically invariant means on
VN(G).

Proof. If m is a topologically invariant mean on UCB(Ĝ), then for any
T ∈ UCB(Ĝ), we have

m′|UCB(Ĝ)(T ) = m(φ · T ) = m(T ) for all φ ∈ A(G) ∩ P1(G).

On the other hand, if m is a topologically invariant mean on VN(G), then
for any T ∈ VN(G), we have

(M |UCB(Ĝ))
′(T ) = M |UCB(Ĝ)(φ · T ) = M(T ) for all φ ∈ A(G) ∩ P1(G).

Corollary 7.11. Suppose that A(G) has an approximate identity. Then
G is discrete if and only if there exists a unique G∗-translation (topologically)
invariant mean on UCB(Ĝ).

Proof. Note that G is discrete if and only if VN(G) has a unique topo-
logically invariant mean (see [19, Theorem 11] and [28, Corollary 4.11]). The
result thus follows from the last proposition and Theorem 7.6.
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