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On the structure of the set
of higher order spreading models

by

Bünyamin Sarı (Denton, TX) and Konstantinos Tyros (Coventry)

Abstract. We generalize some results concerning the classical notion of a spreading
model to spreading models of order ξ. Among other results, we prove that the set SMw

ξ (X)
of ξ-order spreading models of a Banach space X generated by subordinated weakly null
F-sequences endowed with the pre-partial order of domination is a semilattice. Moreover,
if SMw

ξ (X) contains an increasing sequence of length ω then it contains an increasing
sequence of length ω1. Finally, if SMw

ξ (X) is uncountable, then it contains an antichain
of size continuum.

1. Introduction. In 1974, A. Brunel and L. Sucheston [BS] introduced
the notion of a spreading model, which plays quite a central role in the
asymptotic Banach space theory (see for example [AK, Kr, OS]). A higher
order extension of this notion has been introduced and studied in [AKT2]
and [AKT1]. In particular, for every countable ordinal ξ, the ξ-order spread-
ing models of a Banach space X are defined. The order one spreading models
coincide with the classical ones. In this note, we extend some of the results
concerning the structure of the set of classical spreading models to the set-
ting of ξ-order ones. Consider the set SMw(X) of (equivalence classes of)
spreading models of a Banach space X generated by weakly null sequences
endowed with the partial order given by domination of bases. This partially
ordered set is proven to have interesting features:

(i) Every countable subset of SMw(X) admits an upper bound in this
set, in particular, SMw(X) is an upper semilattice [AOST].

(ii) Existence of an increasing sequence (of length ω) in SMw(X) yields
the existence of an increasing sequence of length ω1 [Sa].

(iii) Suppose X is separable. If SMw(X) is uncountable, then it contains
an antichain of size continuum. If SMw(X) contains a decreasing
sequence of length ω1 then it contains an increasing sequence of
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length ω1. If SMw(X) does not contain any infinite increasing se-
quence then there exists ζ < ω1 such that SMw(X) contains no
decreasing sequence of length ζ [Do].

We show that for every ξ < ω1, these results extend to the set SMw
ξ (X)

of ξ-order spreading models of X generated by subordinated weakly null
F-sequences. Subordinated F-sequences are a higher order analogue of or-
dinary weakly convergent sequences.

A brief introduction to higher order spreading models and some new facts
regarding subordinated F-sequences are given in Sections 2 and 3. Sections
4, 5 and 6 are devoted to the proof of the generalization of the above results
(i), (ii), and (iii), respectively. In particular, the main results of the paper
are Corollary 5.2 and Theorems 4.10, 4.11, 6.2 and 6.4.

It is worth mentioning that in general SMw
ξ (X) does not coincide with

SMw
1 (X), and therefore the transfinite hierarchy (SMw

ξ (X))ξ<ω1 is not triv-
ial. In fact, for every k there exists a Banach space X such that SMw

k (X) is
a proper subset of SMw

k+1(X) [AKT1]. Moreover, there are reflexive Banach
spaces X and Y which have, up to equivalence, the same set of spreading
models of the first order but not of the second order. In Section 3 we also
recall these known examples.

2. ξ-order spreading models of a Banach space. We will use cap-
ital letters L,M,N, . . . to denote infinite subsets and lower case letters
s, t, u, . . . to denote finite subsets of N = {1, 2, . . .}. For every infinite sub-
set L of N, [L]<∞ (resp. [L]∞) stands for the set of all finite (resp. infi-
nite) subsets of L. For an infinite subset L = {l1 < l2 < · · · } of N and
a positive integer k ∈ N, we set L(k) = lk. Similarly, for a finite sub-
set s = {n1 < · · · < nm} of N and for 1 ≤ k ≤ m we set s(k) = nk.
For an infinite subset L = {l1 < l2 < · · · } of N and a finite subset s =
{n1 < · · · < nm} (resp. for an infinite subset N = {n1 < n2 < · · · }
of N), we set L(s) = {ln1 , . . . , lnm} = {L(s(1)), . . . , L(s(m))} (resp. L(N) =
{ln1 , ln2 , . . .} = {L(N(1)), L(N(2)), . . .}).
F-spreading models are generated by sequences indexed by the elements

of a regular thin family, which we are about to define. Let R be a family
of finite subsets of N. The family R is called compact if the set of all char-
acteristic functions of the elements of R is a compact subset of the set of
all functions from N into {0, 1} endowed with the product topology. The
family R is called hereditary if it contains every subset of its elements, and
spreading if for every s ∈ R and t ∈ [N]<∞ of the same cardinality, say n,
such that s(i) ≤ t(i) for all 1 ≤ i ≤ n, the set t also belongs to R.

A family of finite subsets of N is called regular if it is compact, hereditary
and spreading. A family of finite subsets of N is called regular thin if it
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consists of the maximal elements, under inclusion, of some regular family.
A family H of finite subsets of N is called thin if there are no s and t in H
such that s is a proper initial segment of t. Clearly every regular thin family
is also thin. A brief presentation of regular and regular thin families as well
as relations between them can be found in Section 2 of [AKT2].

Finally, given a regular thin family F , an F-sequence in a Banach space
is a sequence of the form (xs)s∈F indexed by F , while an F-subsequence is
a sequence of the form (xs)s∈F�L indexed by F�L, where L is an infinite
subset of N and the restriction F�L of F to L is defined by

(2.1) F�L = {s ∈ F : s ⊆ L}.

The connection between F-spreading models and F-sequences generating
them is described by the notion of plegma families.

Definition 2.1. Let l be a positive integer and s1, . . . , sl nonempty finite
subsets of N. The l-tuple (sj)

l
j=1 is called a plegma family if:

(i) For every i, j in {1, . . . , l} and k in N with i<j and k≤min(|si|, |sj |),
we have si(k) < sj(k).

(ii) For every i, j in {1, . . . , l} and k in N with k ≤ min(|si|, |sj | − 1), we
have si(k) < sj(k + 1).

For instance, a pair ({n1,m1}, {n2,m2}) of doubletons is plegma if and
only if n1 < n2 < m1 < m2. More generally for two nonempty s, t ∈ [N]<∞
with |s| ≤ |t| the pair (s, t) is a plegma pair if and only if s(1) < t(1) <
s(2) < t(2) < · · · < s(|s|) < t(|s|).

The properties of plegma families are explored in Section 3 of [AKT2].
Moreover, for every regular thin family F , every infinite subset L of N and
every positive integer k we set

(2.2) Plmk(F�L) = {(si)ki=1 : s1, . . . , sk ∈ F�L with (si)
k
i=1 plegma}.

Now we are ready to state the definition of F-spreading models.

Definition 2.2. Let X be a Banach space, F a regular thin family and
(xs)s∈F an F-sequence in X. Also let (E, ‖ · ‖∗) be an infinite-dimensional
seminormed linear space with Hamel basis (en)n. Finally, let M in [N]∞ and
(δn)n be a null sequence of positive real numbers.

We say that the F-subsequence (xs)s∈F�M generates (en)n as an F-
spreading model (with respect to (δn)n) if for all l, k in N with 1 ≤ k ≤ l,
every finite sequence (ai)ki=1 in [−1, 1] and every (sj)

k
j=1 in Plmk(F�M) with

s1(1) ≥M(l), we have

(2.3)
∣∣∣∣∥∥∥ k∑
j=1

ajxsj

∥∥∥− ∥∥∥ k∑
j=1

ajej

∥∥∥
∗

∣∣∣∣ ≤ δl.
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We also say that (xs)s∈F admits (en)n as an F-spreading model if there
exists M in [N]∞ such that (xs)s∈F�M generates (en)n as an F-spreading
model.

Finally, for a subset A of X, (en)n is an F-spreading model of A if there
exists an F-sequence (xs)s∈F in A which admits (en)n as an F-spreading
model.

The existence of F-spreading models is established in [AKT2, Theo-
rem 4.5]. For every regular family R its order o(R) is defined to be the
rank of the set R partially ordered by reverse inclusion. By the compactness
of R, its order is well defined and it is a countable ordinal number (see also
[AKT2, Section 2]). The order o(F) of a regular thin family F is defined to
be the order of the regular family for which F is the set of maximal elements
under inclusion. It turns out that the order of the regular thin family F
involved in the definition of F-spreading models is an important feature in
the following sense. By Corollary 4.7 of [AKT2], for every subset A of a Ba-
nach space and every pair F ,G of regular thin families of the same order, a
sequence (en)n is an F-spreading model of A if and only if it is a G-spreading
model of A. This fact gives rise to the following definition.

Definition 2.3. Let A be a subset of a Banach space X and ξ ≥ 1 be
a countable ordinal. We say that (en)n is a ξ-order spreading model of A if
there exists a regular thin family F with o(F) = ξ such that (en)n is an
F-spreading model of A.

An F-subsequence (xs)s∈F�L in a Banach space X is defined to be weakly
null if for every x∗ in the dual of X and every ε > 0 there exists some n0
such that for every s ∈ F�L with min s ≥ n0, we have |x∗(xs)| < ε. For a
regular thin family F its closure is defined by

(2.4) F̂ = {s ∈ [N]<∞ : there exists t ∈ F such that s ⊆ t}.
If we identify each subset of N with its characteristic map and endow {0, 1}N
with the product topology, then F (resp. F�L) becomes a discrete subset of
{0, 1}N and F̂ (resp. F̂�L) is its topological closure.

Definition 2.4. Let F be a regular thin family andM an infinite subset
of N. Let (xs)s∈F be an F-sequence in a Banach space X. We say that the
F-subsequence (xs)s∈F�L is subordinated (with respect to the weak topology)
if there exists a continuous map ϕ̂ : F̂�L→ X, where X is considered with
the weak topology, such that xs = ϕ̂(s) for all s ∈ F�L.

It is easy to see that a subordinated F-subsequence (xs)s∈F�L is weakly
convergent to ϕ̂(∅), where ϕ̂ is the map witnessing the fact that (xs)s∈F�L
is subordinated. Thus a subordinated F-sequence (xs)s∈F�L is weakly null if
and only if ϕ̂(∅) = 0.
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Definition 2.5. Let X be a Banach space and ξ a countable ordinal.
We denote by SMw

ξ (X) the set of all ξ-order spreading models generated by
subordinated weakly null F-subsequences in X for some regular thin family
F of order ξ.

3. On subordinated weakly null F-sequences. Our first goal is the
following strengthening of Theorem 3.17 from [AKT2].

Theorem 3.1. Let F and G be regular thin families with o(F) ≤ o(G).
Then for all infinite subsets M and N of N there exist M ′ in [M ]∞, N ′

in [N ]∞ and a continuous map ϕ̂ : Ĝ�N ′ → F̂�M ′ satisfying the following.
Let ϕ be the restriction of ϕ̂ to G�N ′. Then ϕ is a plegma preserving map
onto F�M ′ such that minϕ(t) ≥ M ′(l) for every l ∈ N and t ∈ G�N ′ with
min t ≥ N ′(l).

For the proof of the above theorem we will need Corollary 2.17 from
[AKT2]. To state it we recall some notation. For two families H1 and H2 of
finite subsets of N, write H1 v H2 if every element in H1 has an extension
in H2 and every element in H2 has an initial segment in H1. Moreover, for
every infinite subset L of N and every family H of finite subsets of N, let

(3.1) L(H) = {L(s) : s ∈ H}.

Proposition 3.2 ([AKT2, Corollary 2.17]). Let F and G be regular thin
families with o(F) ≤ o(G). Then there exists L0 in [N]∞ such that for every
M in [N]∞ there exists L in [L0(M)]∞ satisfying L0(F)�L v G�L.

Proof of Theorem 3.1. Let M and N be two infinite subsets of N. For
every finite subset t of N, there exists a unique finite subset s of N such that
N(s) = t. Set N−1(t) = s and G′ = {N−1(t) ∈ [N]<∞ : t ∈ G}. It follows
that G′ is a regular thin family with o(G′) = o(G). Moreover,

(3.2) N(G′) = G�N.
By Proposition 3.2, there exist infinite subsets L0 of N and L of L0(M) such
that

(3.3) L0(F)�L v G′�L.
We essentially need to prove the following.

Claim. There exists a continuous map ϕ̂1 : Ĝ′�L → L0(F̂)�L whose
restriction ϕ̂1 to G′�L is a plegma preserving map onto L0(F)�L such that
for every t ∈ G′�L, ϕ1(t) is an initial segment of t and so min t = minϕ1(t).

Proof of Claim. Since F is a thin family, so is L0(F). Hence, by (3.3),
for every t ∈ G′�L there exists a unique st ∈ L0(F) such that st is an initial
segment of t. Let A = (Ĝ′�L) \ (L0(F̂)�L). Also observe that for every t̂ ∈ A
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and any t, t′ in G′�L that both end-extend t̂ we have st = st′ and both st, st′
are initial segments of t̂. For every t̂ ∈ A we set st̂ = st where t is any element
from G′�L that end-extends t̂. Finally, for every t̂ ∈ L0(F̂)�L we set st̂ = t̂.
Setting ϕ̂1(t̂ ) = st̂ for all t̂ ∈ G′�L, we find that ϕ̂1 is as desired in the claim.

Since L ∈ [L0(M)]∞, there exists M ′ in [M ]∞ such that L0(M
′) = L.

Then L0(F̂�M ′) = L0(F̂)�L. Moreover, let N ′ = N(L). It is easy to check
that Ĝ�N ′ = N(Ĝ′�L). Define ϕ̂ : Ĝ�N ′ → F̂�M ′ by setting ϕ̂(t̂ ) =

L−10 (ϕ̂1(N
−1(t̂ ))) for every t̂ ∈ Ĝ�N ′, where L−10 (s) is defined similarly to

N−1(s) for every s ∈ [L0]
<∞. It follows readily that ϕ̂ is as desired.

Theorem 3.1 has the following immediate corollary.

Corollary 3.3. Let X be a Banach space, ξ a countable ordinal and
(en)n ∈ SMw

ξ (X). Then for every regular thin family F of order at least ξ
and every infinite subset M of N there exist a further infinite subset L of M
and an F-sequence (xs)s∈F in X such that the F-subsequence (xs)s∈F�L is
subordinated, weakly null and generates (en)n as an F-spreading model.

Proof. Since (en)n belongs to SMw
ξ (X), there exist a regular thin family

G of order ξ, an infinite subset N of N and a G-sequence (ys)s∈G such that the
G-subsequence (ys)s∈G�N is subordinated, weakly null and generates (en)n as
a G-spreading model. Let ϕ̂1 : Ĝ�N → X be the continuous map witnessing
that (ys)s∈G�N is subordinated. Fix a regular thin family F of order at least ξ
and an infinite subset M of N. By Theorem 3.1 there exist an infinite subset
L of M , an infinite subset N ′ of N and a continuous map ϕ̂ : F̂�L→ Ĝ�N ′
whose restriction ϕ to F�L is a plegma preserving map onto G�N ′ such that
for every l ∈ N and t ∈ F�L ,

(3.4) if min t ≥ L(l) then minϕ(t) ≥ N ′(l).
Set ϕ̂2 = ϕ̂1 ◦ ϕ̂ and xs = yϕ̂2(s) for all s ∈ F̂�L. Then ϕ̂2 is continuous
and therefore (xs)s∈F�L is subordinated. Since (ys)s∈G�N generates (en)n as a
G-spreading model, it follows that so does (ys)s∈G�N ′ , and therefore, invoking
(3.4), we find that (xs)s∈F�L generates (en)n as an F-spreading model too.
The continuity of ϕ̂ and (3.4) yield ϕ̂(∅) = ∅. Thus, since (ys)s∈G�N is weakly
null, so is (xs)s∈F�L.

Corollary 3.3 implies that the transfinite hierarchy (SMw
ξ (X))ξ<ω1 is in-

creasing. In general, this hierarchy is nontrivial and the class SMw
ξ (X) for

ξ > 1 is richer than SMw
1 (X). In fact, for every positive integer k there exists

a reflexive space Xk+1 with an unconditional basis such that Xk+1 has no
k-order spreading model equivalent to the standard basis of `1, while Xk+1

admits a k + 1-order spreading model equivalent to that basis [AKT1, Sec-
tion 12]. Since Xk+1 is reflexive, it follows that SMw

k (Xk+1) is a proper subset
of SMw

k+1(Xk+1). This is due to the fact that for a reflexive Banach space X
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the set of (Schauder basic) spreading models of order ξ coincides with the set
of spreading models generated by subordinated weakly null F-sequences of
the same order. Indeed, if (en) is a spreading model of order ξ and F a regu-
lar thin family of order ξ, then by the reflexivity of X and Proposition 6.16
of [AKT2], (en) is generated by a subordinated F-subsequence (xs)s∈F�M .
If (en) is not equivalent to the `1 basis, then by Theorem 6.14 of [AKT2],
(xs)s∈F�M is weakly null. If (en) is equivalent to the `1 basis, then, again by
Theorem 6.14 of [AKT2], (en) belongs to SMw

ξ (X).
It is important to point out that the higher order spreading models gen-

erated by subordinated weakly null F-sequences do induce a new isomorphic
invariance for Banach spaces. In particular, there exist two Banach spaces X
and Y such that SMw

1 (X) = SMw
1 (Y ) and SMw

2 (X) 6= SMw
2 (Y ). This was

known to the authors of [AKT3], though it was not explicitly stated. Indeed,
let X be the space X2

T,2,3 given in [AKT3, Theorem 12.11] and Y the direct
sum of the Tsirelson space and `2. Both spaces are reflexive and therefore
for every countable ordinal ξ and every Schauder basic ξ-order spreading
model (en)n of X (resp. Y ), (en)n belongs to SMw

ξ (X) (resp. SMw
ξ (Y )). By

Theorems 7.3 and 9.18 in [AKT3], it is easy to see that every Schauder basic
spreading model of Y of any order ξ is equivalent to either the standard
basis of `1 or the standard basis of `2, and, of course, both cases occur for
every ξ. On the other hand, it is shown there that while every (en)n in
SMw

1 (X) is equivalent to either the standard basis of `1 or the standard
basis of `2, SMw

2 (X) contains a sequence equivalent to the standard basis
of `3.

4. The semilattice structure of SMw
ξ (X). Let X be a Banach space

and ξ a countable ordinal. By Theorem 6.11 of [AKT2], every sequence (en)n
in SMw

ξ (X) is either 1-suppression unconditional or ‖
∑n

i=1 aiei‖ = 0 for all
n ∈ N and (ai)

n
1 ∈ R. We endow SMw

ξ (X) with the pre-partial order 4
of domination. That is, for two sequences (e1n)n and (e2n)n in SMw

ξ (X) and
C > 0 we say that (e2n)n C-dominates (e1n)n if

(4.1)
∥∥∥ n∑
i=1

aie
1
i

∥∥∥ ≤ C∥∥∥ n∑
i=1

aie
2
i

∥∥∥
for all n ∈ N and (ai)

n
i=1 ∈ R. Write (e1n)n 4 (e2n)n if (e2n)n C-dominates (e1n)n

for some C > 0. (e1n)n and (e2n)n are equivalent, denoted (e1n)n ∼ (e2n)n, if
(e1n)n 4 (e2n)n and (e2n)n 4 (e1n)n. We write (e1n)n ≺ (e2n)n, if (e1n)n 4 (e2n)n
and (e1n)n � (e2n)n. It is easy to see that ∼ is an equivalence relation on
SMw

ξ (X). Let SMw
ξ (X) = SMw

ξ (X)/∼ be endowed with the partial order
induced by 4, still denoted by 4.
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In this section we will generalize some results from [AOST]. The argu-
ments are similar to the original ones. In particular, we will show that SMw

ξ

is a semilattice and that every countable subset of SMw
ξ admits an upper

bound in SMw
ξ . Towards achieving that we introduce a further generalization

of F-spreading models which we call joint F-models.
First, we need some additional notation. For every k in N, define a map

ik : N→ N by setting, for every j ∈ N,
(4.2) ik(j) = ((j − 1) mod k) + 1.

Definition 4.1. Let X be a Banach space, F a regular thin family,
k ∈ N and ((xis)s∈F )

k
i=1 a k-tuple of F-sequences in X. Let (E, ‖ · ‖∗) be an

infinite-dimensional seminormed linear space with Hamel basis (en)n. Let
M ∈ [N]∞ and δn ↘ 0.

We say that the k-tuple ((xis)s∈F�M )ki=1 generates (en)n as a joint F-
model

(
with respect to (δn)n

)
if for allm,n in N with 1 ≤ m ≤ n, every finite

sequence (ai)
m
i=1 in [−1, 1] and every (sj)

m
j=1 in Plmm(F�M) with s1(1) ≥

M(n), we have

(4.3)
∣∣∣∣∥∥∥ m∑
j=1

ajx
ik(j)
sj

∥∥∥− ∥∥∥ m∑
j=1

ajej

∥∥∥
∗

∣∣∣∣ ≤ δn.
A k-tuple ((xis)s∈F )

k
i=1 is said to admit (en)n as a joint F-model if there

exists M ∈ [N]∞ such that the k-tuple ((xis)s∈F�M )ki=1 generates (en)n as a
joint F-model.

Note that a joint F-model is not necessarily spreading. The arguments
establishing the existence of joint F-models (see Theorem 4.4 below) are
similar to the ones concerning F-spreading models. We will need the follow-
ing result (see [AKT2, Theorem 3.6]) which establishes the Ramsey property
for plegma families.

Theorem 4.2. Let F be a regular thin family, M an infinite subset of N
and l ∈ N. Then for every finite partition Plml(F�M) =

⋃p
i=1 Pi, there exist

L ∈ [M ]∞ and 1 ≤ i0 ≤ p such that Plml(F�L) ⊆ Pi0.
Lemma 4.3. Let X be a Banach space and F a regular thin family. Also

let k ∈ N and (x1s)s∈F , . . . , (x
k
s)s∈F bounded F-sequences in X. Then for

every infinite subset M of N, every ε > 0 and every l ∈ N, there exists an
infinite subset L of M such that for all (sj)lj=1, (tj)

l
j=1 in Plml(F�L) and

every choice of reals (aj)
l
j=1 from [−1, 1] we have

(4.4)
∣∣∣∣∥∥∥ l∑
j=1

ajx
ik(j)
sj

∥∥∥− ∥∥∥ l∑
j=1

ajx
ik(j)
tj

∥∥∥∣∣∣∣ < ε,

where ik is as defined in (4.2).



Higher order spreading models 157

Proof. Fix an infinite subsetM of N, a positive real ε and l ∈ N. Assume
‖xis‖ ≤ C for all s ∈ F and i = 1, . . . , k. Let Λ be a finite ε

3lC -net of [−1, 1]
and ((aqj)

l
j=1)

n
q=1 an enumeration of all the l-tuples consisting of elements

from Λ, where n = |Λ|l.
Setting L0 =M , we inductively construct a decreasing sequence (Lq)nq=0

of infinite subsets of N such that for every q = 1, . . . , n and all (sj)lj=1 and
(tj)

l
j=1 from Plml(F�Lq), we have

(4.5)
∣∣∣∣∥∥∥ l∑
j=1

aqjx
ik(j)
sj

∥∥∥− ∥∥∥ l∑
j=1

aqjx
ik(j)
tj

∥∥∥∣∣∣∣ < ε

3
.

The inductive step is an application of Theorem 4.2. Indeed, assume that for
some 1 ≤ q ≤ n the set Lq−1 has been chosen. Let (Ar)

p
r=1 be a partition of

[0, lC] such that Ar is of diameter at most ε/3 for all r = 1, . . . , p. Observe
that for every (sj)

l
j=1 in Plml(F�Lq) the vector

∑l
j=1 a

q
jx
ik(j)
sj is of norm at

most lC. Thus if, for every r = 1, . . . , p, Pr is the set of all (sj)lj=1 from

Plml(F�Lq−1) such that the norm of the vector
∑l

j=1 a
q
jx
ik(j)
sj belongs to Ar,

then (Pr)pr=1 forms a partition of Plml(F�Lq−1). An application of Theorem
4.2 yields the desired Lq and the proof of the inductive step is complete.

We set L = Ln. Clearly, for every q = 1, . . . , n and all (sj)lj=1, (tj)
l
j=1

from Plml(F�L), we have

(4.6)
∣∣∣∣∥∥∥ l∑
j=1

aqjx
ik(j)
sj

∥∥∥− ∥∥∥ l∑
j=1

aqjx
ik(j)
tj

∥∥∥∣∣∣∣ < ε

3
.

It remains to show that L is as desired. Indeed, choose (sj)
l
j=1, (tj)

l
j=1

from Plmkl(F�L) and (aj)
l
j=0 from [−1, 1]. Pick q0 ∈ {1, . . . , n} such that

|aj − aq0j | ≤ ε/(lC) for all j = 1, . . . , l. By the triangle inequality and the
choice of C, ∣∣∣∣∥∥∥ l∑

j=1

ajx
ik(j)
sj

∥∥∥− ∥∥∥ l∑
j=1

aq0j x
ik(j)
sj

∥∥∥∣∣∣∣ < ε

3
,(4.7)

∣∣∣∣∥∥∥ l∑
j=1

ajx
ik(j)
tj

∥∥∥− ∥∥∥ l∑
j=1

aq0j x
ik(j)
tj

∥∥∥∣∣∣∣ < ε

3
.(4.8)

Inequalities (4.6)–(4.8) yield

(4.9)
∣∣∣∣∥∥∥ l∑
j=1

ajx
ik(j)
sj

∥∥∥− ∥∥∥ l∑
j=1

ajx
ik(j)
tj

∥∥∥∣∣∣∣ < ε,

and the proof is complete.
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By iterating the above lemma and diagonalizing, we obtain the following.
Theorem 4.4. Let X be a Banach space and F a regular thin family.

Also let k ∈ N and (x1s)s∈F , . . . , (x
k
s)s∈F be bounded F-sequences in X. Then

for every infinite subset M of N there exists a further infinite subset L of M
such that the k-tuple ((xis)s∈F�L)

k
i=1 generates a joint F-model.

We proceed to the following analogue of Theorem 6.11 from [AKT2] for
joint models.

Theorem 4.5. Let X be a Banach space, F a regular thin family and
k ∈ N. Also let M be an infinite subset of N and (x1s)s∈F , . . . , (x

k
s)s∈F semi-

normalized F-sequences in X such that the F-subsequences (x1s)s∈F�M , . . . ,
(xks)s∈F�M are subordinated and weakly null. Also assume that the k-tuple
((xis)s∈F�M )ki=1 generates a joint F-model (en)n. Then (en)n is (suppression)
1-unconditional.

The proof of Theorem 4.5 follows along similar lines to the proof of
Theorem 6.11 from [AKT2]. Let l ∈ N and F1, . . . , Fl be subsets of [N]<∞.
Recall that (Fj)lj=1 is completely plegma connected if for every choice sj ∈ Fj
for all 1 ≤ j ≤ l, the l-tuple (sj)lj=1 is a plegma family. Moreover, the convex
hull of a subset A of a Banach space is denoted by convA. For the proof of
Theorem 4.5 we need to recall Lemma 6.10 from [AKT2].

Lemma 4.6. Let X be a Banach space, l a positive integer, F1, . . . ,Fl
regular thin families and L an infinite subset of N. Assume that for ev-
ery i = 1, . . . , l, there exists a continuous map ϕ̂i : F̂i�L → X, where X
is considered with the weak topology. Then for every ε > 0 there exists a
completely plegma connected family (Fi)

l
i=1 such that Fi ⊆ [Fi�L]<∞ and

dist(ϕ̂i(∅), conv ϕ̂i(Fi)) < ε for every i = 1, . . . , l.

Proof of Theorem 4.5. Fix l ∈ N, 1 ≤ p ≤ l and a1, . . . , al in [−1, 1]. It
suffices to show that for every ε > 0 we have

(4.10)
∥∥∥ l∑
j=1
j 6=p

ajej

∥∥∥
∗
<
∥∥∥ l∑
j=1

ajej

∥∥∥
∗
+ ε.

Fix ε > 0. Since ((xis)s∈F�M )ki=1 generates (en)n as a joint F-model, by
passing to a tail of M if necessary, we may assume that
(4.11)∣∣∣∣∥∥∥ l∑

j=1
j 6=p

ajx
ik(j)
sj

∥∥∥− ∥∥∥ l∑
j=1
j 6=p

ajej

∥∥∥
∗

∣∣∣∣ < ε

3
,

∣∣∣∣∥∥∥ l∑
j=1

ajx
ik(j)
sj

∥∥∥− ∥∥∥ l∑
j=1

ajej

∥∥∥
∗

∣∣∣∣ < ε

3
,

for every plegma l-tuple (sj)
l
j=1 in F�M , where ik is as defined in (4.2).

The first inequality in (4.11) is obtained by setting ap to be 0. Since for
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every 1 ≤ i ≤ k the F-subsequence (xis)s∈F�M is subordinated, there exists
a continuous map ϕ̂i : F̂�M → X such that ϕ̂i(s) = xis for every s ∈ F�M .
Moreover, for every 1 ≤ i ≤ k, since (xis)s∈F�M is weakly convergent to ϕ̂i(∅)
and by assumption weakly null, we have ϕ̂i(∅) = 0. Therefore by Lemma
4.6 (for “Fj = F ” and “ϕ̂j = ϕ̂ik(j)”, for all j = 1, . . . , l), there exist a
completely plegma connected family (Fj)

l
j=1 and a sequence (xj)

l
j=1 in X

such that Fj ⊂ [F�M ]<∞, xj ∈ conv ϕ̂ik(j)(Fj) and ‖xj‖ < ε/3, for all
1 ≤ j ≤ l. Let (µs)s∈Fp be a sequence in [0, 1] such that

∑
s∈Fp µs = 1

and xp =
∑

s∈Fp µsϕ̂ik(p)(s) and for each j 6= p choose sj ∈ Fj . Clearly
‖xp‖ = ‖

∑
s∈Fp µsxs‖ < ε/3. Since (Fj)lj=1 is completely plegma connected,

for every s in Fp the l-tuple (s1, . . . , sp−1, s, sp+1, . . . , sl) is a plegma family.
Therefore by (4.11) we have∥∥∥ l∑

j=1
j 6=p

ajej

∥∥∥
∗
≤
∥∥∥ l∑
j=1
j 6=p

ajx
ik(j)
sj

∥∥∥+ ε

3
≤
∥∥∥ l∑
j=1
j 6=p

ajx
ik(j)
sj + apxp

∥∥∥+ |ap|ε
3
+
ε

3

≤
∥∥∥ l∑
j=1
j 6=p

ajx
ik(j)
sj + ap

∑
s∈Fp

µsx
ik(p)
s

∥∥∥+ 2ε

3

≤
∑
s∈Fp

µs

∥∥∥ l∑
j=1
j 6=p

ajx
ik(j)
sj + apx

ik(p)
s

∥∥∥+ 2ε

3

≤
∑
s∈Fp

µs

(∥∥∥ l∑
j=1

ajej

∥∥∥
∗
+
ε

3

)
+

2ε

3
=
∥∥∥ l∑
j=1

ajej

∥∥∥
∗
+ ε.

The proof is complete.

The following lemma allows us to establish the semilattice structure of
SMw

ξ (X).

Lemma 4.7. Let X be a Banach space and ξ a countable ordinal. Also
let (e1n)n, . . . , (e

k
n)n be elements of SMw

ξ (X). Then there exists (en)n in
SMw

ξ (X) such that

(4.12)

max
1≤i≤k

∥∥∥ l∑
j=1

aje
i
j

∥∥∥ ≤ ∥∥∥ l∑
j=1

ajej

∥∥∥ ≤ k∑
i=1

∥∥∥ l∑
j=1

aje
i
j

∥∥∥ (
≤ k max

1≤i≤k

∥∥∥ l∑
j=1

aje
i
j

∥∥∥)
for every choice of l ∈ N and a1, . . . , al ∈ R.

Before we proceed to the proof of Lemma 4.7 let us recall some notation.
A familyH of finite subsets of N is called large (resp. very large) in an infinite
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subset M of N if every further infinite subset L of N contains an element
(resp. has an initial segment) in H. It is immediate that both the notions
of large and very large are hereditary, i.e. if H is large (resp. very large) in
some M then H is large (resp. very large) in any infinite subset L of M . We
will need the following well known result due to F. Galvin and K. Prikry
[GP] (it is actually a reformulation provided in [Go]).

Theorem 4.8. Let H be a family of finite subsets of N andM an infinite
subset of N. If H is large in M then there exists an infinite subset L of M
such that H is very large in L.

It is easy to see that every regular thin family F is large in N. Thus by
the above theorem we have the following.

Corollary 4.9. Let F be a regular thin family and M an infinite subset
of N. Then there exists an infinite subset L of M such that F is very large
in L.

Proof of Lemma 4.7. Let F be a regular thin family of order ξ. Apply-
ing Corollary 3.3, we obtain an infinite subset M0 of N and F-sequences
(x1s)s∈F , . . . , (x

k
s)s∈F in X such that for every 1 ≤ i ≤ k the F-subsequence

(xis)s∈F�M0 is subordinated, weakly null and generates (ein)n as an F-sprea-
ding model. By Corollary 4.9, we may assume that F is very large in M0.
Using Theorem 4.4, we pass to an infinite subset M of M0 such that the
k-tuple ((xis)s∈F�M )ki=1 generates a joint F-model (vn)n. Theorem 4.5 shows
that (vn)n is (suppression) 1-unconditional.

We pick a sequence (Fn)n of finite subsets of M such that maxFn <
minFn+1 and Fn is of cardinality k for all n ∈ N. We set N = {maxFn :
n ∈ N}. Clearly N is an infinite subset of M . For every s ∈ F�N and every
1 ≤ i ≤ k we set tis to be the unique element in F being an initial segment
of {Fs(q)(i) : 1 ≤ q ≤ |s|}. Observe that the existence of tis is guaranteed
by the spreading property of F̂ and the fact that F is very large, while its
uniqueness is a consequence of the fact that F is thin. Also observe that
for every l ∈ N and every plegma family s = (sj)

l
j=1 in F�N of length l,

the family (tsq)
kl
q=1 = (t1s1 , t

2
s1 , . . . , t

k
s1 , . . . , t

1
sl
, t2sl , . . . , t

k
sl
) is a plegma family

in F�M . For every s ∈ F�N we set zs =
∑k

i=1 x
i
tis
. Pass to an infinite

subset L of N such that (zs)s∈F�L generates an F-spreading model (en)n.
The following claim holds.

Claim. Let l ∈ N, a1, . . . , al in [−1, 1] and ε > 0. Then

(4.13) max
1≤i≤k

∥∥∥ l∑
j=1

aje
i
j

∥∥∥− ε ≤ ∥∥∥ l∑
j=1

ajej

∥∥∥ ≤ k∑
i=1

∥∥∥ l∑
j=1

aje
i
j

∥∥∥+ ε

2
.
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Proof of Claim. Let (bq)klq=1 be defined by b(j−1)k+i = aj for all 1 ≤ j ≤ l
and 1 ≤ i ≤ k. We pass to a final segment L′ of L such that for every plegma
family s = (sj)

l
j=1 in F�L′ we have∣∣∣∣∥∥∥ l∑

j=1

ajej

∥∥∥− ∥∥∥ l∑
j=1

ajzsj

∥∥∥∣∣∣∣ < ε/4,(4.14)

∣∣∣∣∥∥∥ l∑
j=1

aje
i
j

∥∥∥− ∥∥∥ l∑
j=1

ajx
i
tisj

∥∥∥∣∣∣∣ < ε/(4k) for all 1 ≤ i ≤ k,(4.15) ∣∣∣∣∥∥∥∑
q∈F

bqvq

∥∥∥− ∥∥∥∑
q∈F

bqx
ik(q)
tsq

∥∥∥∣∣∣∣ < ε/4 for all F ⊆ {1, . . . , kl}.(4.16)

We set Fi = {(j − 1)k + i : j = 1, . . . , l} for all 1 ≤ i ≤ k. Let us also fix
some plegma family s = (sj)

l
j=1 in F�L′. Recall that by Theorem 4.5, (vn)n

is (suppression) 1-unconditional. Hence for every 1 ≤ i ≤ k, we have

∥∥∥ l∑
j=1

aje
i
j

∥∥∥− ε (4.15)
≤

∥∥∥ l∑
j=1

ajx
i
tisj

∥∥∥− 3ε

4
=
∥∥∥∑
q∈Fi

bqx
ik(q)
tsq

∥∥∥− 3ε

4

(4.16)
≤

∥∥∥∑
q∈Fi

bqvq

∥∥∥− ε

2
≤
∥∥∥ kl∑
q=1

bqvq

∥∥∥− ε

2

(4.16)
≤

∥∥∥ kl∑
q=1

bqx
ik(q)
tsq

∥∥∥− ε

4
=
∥∥∥ l∑
j=1

ajzsj

∥∥∥− ε

4

(4.14)
≤

∥∥∥ l∑
j=1

ajej

∥∥∥.

(4.17)

Since (4.17) holds for all 1 ≤ i ≤ k we get

(4.18) max
1≤i≤k

∥∥∥ l∑
j=1

aje
i
j

∥∥∥− ε ≤ ∥∥∥ l∑
j=1

ajej

∥∥∥.
Making use of the triangle inequality we have∥∥∥ l∑

j=1

ajej

∥∥∥ (4.14)
≤

∥∥∥ l∑
j=1

ajzsj

∥∥∥+ ε

4
=
∥∥∥ kl∑
q=1

bqx
ik(q)
tsq

∥∥∥+ ε

4
(4.19)

≤
k∑
i=1

∥∥∥∑
q∈Fi

bqx
ik(q)
tsq

∥∥∥+ ε

4
=

k∑
i=1

∥∥∥ l∑
j=1

ajx
ik(Fi(j))
ts
Fi(j)

∥∥∥+ ε

4

=
k∑
i=1

∥∥∥ l∑
j=1

ajx
i
ts
Fi(j)

∥∥∥+ ε

4

(4.15)
≤

k∑
i=1

∥∥∥ l∑
j=1

aje
i
j

∥∥∥+ ε

2
.

Clearly (4.13) follows from (4.18) and (4.19).
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By the Claim above the conclusion of Lemma 4.7 is immediate.

The above lemma has the following immediate consequence.

Theorem 4.10. Let X be a Banach space and ξ a countable ordinal.
Then SMw

ξ (X) is an upper semilattice.

Theorem 4.11. Let X be a Banach space and ξ a countable ordinal.
Let (ck)k be a sequence of positive reals satisfying

∑∞
k=1 c

−1
k < ∞ and for

every k ∈ N let (ekn)n be a normalized sequence that belongs to SMw
ξ (X).

Then there exist (en)n in SMw
ξ (X) and a real K with maxk∈N c

−1
k ≤ K ≤∑∞

k=1 c
−1
k such that:

(i) The sequence (en)n is normalized.
(ii) The sequence (en)n (ckK)-dominates (ekn)n for all k ∈ N.
(iii) For every l ∈ N and every choice of reals a1, . . . , al in [−1, 1] we

have ‖
∑l

j=1 ajej‖ ≤ K−1
∑∞

k=1 c
−1
k ‖

∑l
j=1 aje

k
j ‖.

Proof. Let F be a regular thin family of order ξ. Applying Corollary 4.9
we obtain an infinite subset M0 of N such that F is very large in M0. Using
Corollary 3.3, we inductively obtain a decreasing sequence (M ′k)k of infinite
subsets of M0 and for every k ∈ N a seminormalized F-sequence (xks)s∈F
such that for every k ∈ N the F-subsequence (xks)s∈F�M ′

k
is subordinated,

weakly null and generates (ekn)n as an F-spreading model. Moreover, setting
Bk = sup{‖xks‖ : s ∈ F�M ′k}, we may assume that Bk ≤ 2 for all k ∈ N.
Hence

∑∞
k=1 c

−1
k Bk < ∞. For every k ∈ N and s ∈ F we set yks = c−1k xks .

Clearly for every k ∈ N the F-sequence (yks )s∈F is seminormalized, while
(yks )s∈F�M ′

k
is subordinated, weakly null and generates (c−1k ekn)n as an F-

spreading model.
Let M ′ be an infinite subset of M0 such that M ′(k) ∈M ′k for all k ∈ N.

Using Theorem 4.4 we obtain a decreasing sequence (Mk)k of infinite subsets
of M ′ such that for every k ∈ N the k-tuple ((yis)s∈F�Mk

)ki=1 generates a
joint F-model (vkn)n. Observe that, by Theorem 4.5, the sequence (vkn)n is
(suppression) 1-unconditional for all k ∈ N.

Let M be an infinite subset of M ′ such that M(k) ∈ Mk for all k ∈ N.
Fix a sequence (Fn)n of finite subsets of M such that for every n ∈ N
maxFn < minFn+1 and Fn is of cardinality n. Set L = {maxFn : n ∈ N}.
For every s ∈ F�L let ns be such that min s = maxFns , and tis be the unique
initial segment of {Fs(j)(i) : j = 1, . . . , |s|} belonging to F , for all 1 ≤ i ≤ ns.
The existence of tis follows from the fact that F is very large in L and F̂
is spreading, while the uniqueness of tis follows from F being thin. Observe
that for every s ∈ F�L and every 1 ≤ i ≤ ns, min tis ≥ M(i) ≥ M ′(i) ∈ M ′i
and therefore

(4.20) ‖xitis‖ ≤ Bi.
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For every s in F�L set zs =
∑ns

i=1 y
i
tis

and pass to an infinite subset L′ of L
such that (zs)s∈F�L′ generates an F-spreading model (e′n)n. Since (c−1k Bk)k
is summable and for each k ∈ N the F-subsequence (xks)s∈F�L′ is subordi-
nated and weakly null, by (4.20), one can easily derive that (zs)s∈F�L′ is
also subordinated and weakly null. Thus (e′n)n belongs to SMw

ξ (X). First
we prove the following claim.

Claim. The sequence (e′n)n ck-dominates (ekn)n for all k ∈ N.

Proof of Claim. Fix some k ∈ N. Pick l ∈ N, real numbers a1, . . . , al in
[−1, 1] and ε > 0. We will show that

(4.21)
∥∥∥ l∑
j=1

aje
k
j

∥∥∥ ≤ ck∥∥∥ l∑
j=1

aje
′
j

∥∥∥+ ε.

Pick k′ ≥ k such that

(4.22)
∞∑

q=k′+1

c−1q Bq <
ε

5ck
∑l

j=1 |aj |
.

Let (bq)
k′l
q=1 be defined by b(j−1)k′+i = aj for all 1 ≤ j ≤ l and 1 ≤ i ≤ k′.

Moreover, for every plegma family s = (sj)
l
j=1 in F�L with ns1 ≥ L(k′)

we set (tsq)k
′l
q=1 = (t1s1 , . . . , t

k′
s1 , . . . , t

1
sl
, . . . , tk

′
sl
). Observe that for every plegma

family s = (sj)
l
j=1 in F�L with ns1 ≥ L(k′) both the k′l-tuple (tsq)

k′l
q=1 and

the (
∑l

j=1 nsj )-tuple (t1s1 , . . . , t
ns1
s1 , . . . , t1sl , . . . , t

nsl
sl ) are plegma families. We

pass to an infinite subset L′ of L such that minL′ ≥ L(k′) and for every
plegma family s = (sj)

l
j=1 in F�L′ we have∣∣∣∣∥∥∥ l∑

j=1

aje
′
j

∥∥∥− ∥∥∥ l∑
j=1

ajzsj

∥∥∥∣∣∣∣ < ε

5ck
,(4.23)

∣∣∣∣c−1k ∥∥∥ l∑
j=1

aje
k
j

∥∥∥− ∥∥∥ l∑
j=1

ajy
k
tksj

∥∥∥∣∣∣∣ < ε

5ck
,(4.24) ∣∣∣∣∥∥∥∑

q∈F
bqy

ik′ (q)
tsq

∥∥∥− ∥∥∥∑
q∈F

bqv
k′
q

∥∥∥∣∣∣∣ < ε

5ck
for all F ⊆ {1, . . . , k′l},(4.25)

where ik′ is as defined in (4.2). Fix a plegma family s = (sj)
l
j=1 in F�L′ and

set

Fk = {(j − 1)k′ + k : j = 1, . . . , l}.
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By the unconditionality of (vk′n )n we get∥∥∥ k′l∑
q=1

bqy
ik′ (q)
tsq

∥∥∥ (4.25)
≥

∥∥∥ k′l∑
q=1

bqv
k′
q

∥∥∥− ε

5ck
≥
∥∥∥∑
q∈Fk

bqv
k′
q

∥∥∥− ε

5ck
(4.26)

(4.25)
≥

∥∥∥∑
q∈Fk

bqy
ik′ (q)
tsq

∥∥∥− 2ε

5ck
=
∥∥∥ l∑
j=1

ajy
k
tksj

∥∥∥− 2ε

5ck

(4.24)
≥ c−1k

∥∥∥ l∑
j=1

aje
k
j

∥∥∥− 3ε

5ck
.

Moreover,

ck

∥∥∥ l∑
j=1

aje
′
j

∥∥∥+ ε
(4.23)
≥ ck

∥∥∥ l∑
j=1

ajzsj

∥∥∥+ 4ε

5
= ck

∥∥∥ l∑
j=1

aj

nsj∑
i=1

yitisj

∥∥∥+ 4ε

5

≥ ck
∥∥∥ l∑
j=1

aj

k′∑
i=1

yitisj

∥∥∥− ck l∑
j=1

|aj | ·
∥∥∥ nsj∑
i=k′+1

yitisj

∥∥∥+ 4ε

5

≥ ck
∥∥∥ l∑
j=1

aj

k′∑
i=1

yitisj

∥∥∥− ck l∑
j=1

|aj |
nsj∑

i=k′+1

c−1i ‖x
i
tisj
‖+ 4ε

5

(4.20),(4.22)
≥ ck

∥∥∥ l∑
j=1

aj

k′∑
i=1

yitisj

∥∥∥+ 3ε

5

= ck

∥∥∥ k′l∑
q=1

bqy
ik′ (q)
tsq

∥∥∥+ 3ε

5
.

(4.27)

Clearly (4.21) follows from (4.26) and (4.27). Since (4.21) holds for every
choice of natural numbers k, l, real numbers a1, . . . , al in [−1, 1] and ε > 0,
the claim follows.

Let K = ‖e′1‖ and (en)n = (K−1e′n)n. Then (en)n is a normalized se-
quence belonging to SMw

ξ (X), i.e. assertion (i) of Theorem 4.11 is satisfied.
By the Claim, assertion (ii) is immediate and K = ‖e1‖ ≥ c−1k ‖e

k
1‖ = c−1k

for all k ∈ N. Thus K ≥ maxk∈N c
−1
k . Finally, by the definition of (e′n)n and

(en)n it is easy to check that assertion (iii) is also true and K ≤
∑∞

k=1 c
−1
k .

The proof of Theorem 4.11 is complete.

5. From countable to uncountable increasing sequences of
spreading models. Using identical arguments to the ones used in [Sa,
proof of Theorem 2.2] one can prove the following.
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Theorem 5.1. Let C be a family of normalized Schauder basic sequences
satisfying:

(i) For every (xn)n and (yn)n in C there exists (zn)n in C such that
(zn)n 2-dominates both (xn)n and (yn)n.

(ii) For every sequence (ck)k of positive reals satisfying
∑∞

k=1 c
−1
k < ∞

and every infinite sequence (x1n)n, (x
2
n)n, . . . in C there exist (xn)n in

C and a constant K with maxk∈N c
−1
k ≤ K ≤

∑∞
k=1 c

−1
k such that:

(a) The sequence (xn)n (ckK)-dominates (xkn)n for all k ∈ N.
(b) For every l ∈ N and every choice of reals a1, . . . , al in [−1, 1] we

have ‖
∑l

j=1 ajxj‖ ≤ K−1
∑∞

k=1 c
−1
k ‖

∑l
j=1 ajx

k
j ‖.

If C contains a strictly increasing (with respect to domination) sequence of
length ω, then C contains a strictly increasing sequence of length ω1.

By Lemma 4.7 and Theorem 4.11 the collection C of all normalized ele-
ments of SMw

ξ (X) satisfies the assumptions of Theorem 5.1. Hence we have
the following.

Corollary 5.2. Let X be a Banach space and ξ a countable ordinal. If
SMw

ξ (X) contains a strictly increasing sequence of length ω, then C contains
a strictly increasing sequence of length ω1.

6. On the richness of SMw
ξ (X). In this section we will generalize

some results from [Do]. We will code the set SMw
ξ (X), for X separable, as

an analytic subset of [N]∞. Recall that a binary relation 4 on some set A is
called a pre-partial order if:

(i) a 4 a for every a ∈ A, and
(ii) for every a, b, c ∈ A, if a 4 b and b 4 c, then a 4 c.

As usual, every binary relation on a set A can be viewed as a subset of the
Cartesian product A×A. If A is a topological space, we endow the Cartesian
product with the product topology.

Proposition 6.1. Let 4 be an Fσ pre-partial order on [N]∞ and ≈ the
equivalence relation defined by a ≈ b iff a 4 b and b 4 a. Let A be an analytic
subset of [N]∞ such that either A does not contain any strictly increasing
sequence of length ω, or A contains a strictly increasing sequence of length ω1.
Then:

(i) If A/≈ is uncountable then A contains an antichain of size contin-
uum, i.e. there exists a subset P ⊂ A of cardinality c such that for
every a 6= b in P we have a 64 b and b 64 a.

(ii) If A contains a strictly decreasing sequence of length ω1, then A
contains a strictly increasing sequence of length ω1.
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(iii) If A does not contain a strictly increasing sequence of length ω, then
there exists a countable ordinal ζ such that A does not contain any
decreasing sequence of length ζ.

Assertion (i) is a consequence of a result due to J. H. Silver [Si] (see
also [Do, Lemma 5] for a simplified version adapted to our needs). Actually,
by Silver’s Theorem the set P can be chosen to be a perfect subset of A.
Assertions (ii) and (iii) follow by similar arguments to the ones developed
in [Do, proof of Theorem 3].

Theorem 6.2. Let X be a Banach space with separable dual and ξ a
countable ordinal. Then:

(i) If SMw
ξ (X) is uncountable then there exist continuum many pair-

wise incomparable elements of SMw
ξ (X).

(ii) If SMw
ξ (X) contains a strictly decreasing sequence of length ω1,

then SMw
ξ (X) contains a strictly increasing sequence of length ω1.

(iii) If SMw
ξ (X) does not contain a strictly increasing sequence of

length ω, then there exists a countable ordinal ζ such that SMw
ξ (X)

does not contain any decreasing sequence of length ζ.

The above theorem follows from Proposition 6.1 and the following ana-
logue of Lemma 7 from [Do] which provides the desired coding of SMw

ξ (X).
In order to state it we need some additional notation. Let (un)n be the
standard unconditional Schauder basis of Pełczyński’s universal space for
unconditional Schauder basic sequences (see [Pe]). We define the following
pre-partial ordering 4 on [N]∞: for every L and M in [N]∞ we set L 4 M
iff (un)n∈M dominates (un)n∈L.

Lemma 6.3. Let X be a Banach space with separable dual and ξ be a
countable ordinal. Then there exists an analytic subset A of [N]∞ satisfying:

(i) For every (en)n in SMw
ξ (X) there exists M in A such that the se-

quences (en)n and (un)n∈M are equivalent.
(ii) For every M in A there exists (en)n in SMw

ξ (X) such that the se-
quences (en)n and (un)n∈M are equivalent.

Proof. Fix a regular thin family F of order ξ. We consider the following
subset G of [N]∞× [N]∞×XF ×XF̂ . We write (M,L, (xs)s∈F , (yt)t∈F̂ ) ∈ G
if:

(a) There exists C > 0 such that for every k ∈ N, every (sj)
k
j=1 in

Plmk(F�L) with s1(1) ≥ L(k) and every a1, . . . , ak reals we have

(6.1) C−1
∥∥∥ k∑
j=1

ajxsj

∥∥∥ ≤ ∥∥∥ k∑
j=1

ajuM(j)

∥∥∥ ≤ C∥∥∥ k∑
j=1

ajxsj

∥∥∥
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where (un)n is the standard unconditional Schauder basis of Pełczyń-
ski’s universal space for unconditional Schauder basic sequences.

(b) The F-subsequence (xs)s∈F�L is subordinated and weakly null. More-
over, if ϕ̂ : F̂�L → X witnesses (xs)s∈F�L being subordinated, then
ϕ̂(t) = yt for all t ∈ F̂�L.

Invoking the separability of X∗, it is easy to check that G is a Borel subset
of [N]∞ × [N]∞ ×XF ×XF̂ . We let A be the projection of G onto the first
coordinate, that is,

(6.2) A = {M ∈ [N]∞ : there is (L, (xs)s∈F , (yt)t∈F̂ ) ∈ [N]∞ ×XF ×XF̂

such that (M,L, (xs)s∈F , (yt)t∈F̂ ) ∈ G}.
Since G is Borel, A is analytic. It remains to check that A satisfies (i) and
(ii) of the lemma. Indeed, let (en)n ∈ SMw

ξ (X). By Corollary 3.3, there
exist an infinite subset L of N and an F-sequence (xs)s∈F in X such that
(xs)s∈F�L is subordinated, weakly null and generates (en)n as an F-spreading
model. Moreover, by the universality of Pełczyński’s space, there exists an
infinite subsetM of N such that (un)n∈M and (en)n are equivalent. Finally, if
ϕ̂ : F̂ → X is the continuous map witnessing that (xs)s∈F�L is subordinated,
then we set yt = ϕ̂(t) for all t ∈ F̂�L and yt = 0 otherwise. It follows readily
that (M,L, (xs)s∈F , (yt)t∈F̂ ) belongs to G and therefore M belongs to A.
Since (un)n∈M and (en)n are equivalent, conclusion (i) is satisfied.

Conversely, let M ∈ A. By the definition of A, there exist an infinite
subset L of N, an F-sequence (xs)s∈F ) in X and a family (yt)t∈F̂ of elements
in X such that (M,L, (xs)s∈F , (yt)t∈F̂ ) belongs to G. We pass to an infinite
subset L′ of L such that (xs)s∈F�L′ generates an F-spreading model (en)n.
By (6.1), it is easy to see that (en)n and (un)n∈M are equivalent, while by
(b) above, (en)n belongs to SMw

ξ (X). That is, (ii) also holds true.

A question of interest is whether one can drop the separable dual as-
sumption in Theorem 6.2. In that direction we have the following.

Theorem 6.4. Let X be a separable Banach space admitting no spread-
ing model of order 1 equivalent to the standard basis of `1, and ξ a countable
ordinal. Then:

(i) If SMw
ξ (X) is uncountable then there exist continuum many pair-

wise incomparable elements of SMw
ξ (X).

(ii) If SMw
ξ (X) contains a strictly decreasing sequence of length ω1,

then SMw
ξ (X) contains a strictly increasing sequence of length ω1.

(iii) If SMw
ξ (X) does not contain any strictly increasing sequence of

length ω, then there exists a countable ordinal ζ such that SMw
ξ (X)

does not contain any decreasing sequence of length ζ.



168 B. Sarı and K. Tyros

Theorem 6.4 follows from Proposition 6.1 and the following analogue of
Lemma 6.3 which provides us with the desired analytic coding of SMw

ξ (X).

Lemma 6.5. Let X be a separable Banach space admitting no spreading
model of order 1 equivalent to the standard basis of `1 and ξ a countable
ordinal. Then there exists an analytic subset A of [N]∞ satisfying:

(i) For every (en)n in SMw
ξ (X) there exists M in A such that the se-

quences (en)n and (un)n∈M are equivalent.
(ii) For every M in A there exists (en)n in SMw

ξ (X) such that the se-
quences (en)n and (un)n∈M are equivalent.

Let us recall that (un)n is the standard unconditional Schauder basis of
Pełczyński’s universal space for unconditional Schauder basic sequences (see
[Pe]). For the proof of Lemma 6.5 we will need the following lemma.

Lemma 6.6. Let F be a regular thin family and L an infinite subset
of N. Also let X be a Banach space and ϕ̂ : F̂�L→ X a map such that for
every t in (F̂�L) \ F and every sequence (sn)n in F�L convergent to t, we
have ϕ̂(sn)

w→ ϕ̂(t). Then ϕ̂ is subordinated.

Proof. Since the topology on F̂�L is metrizable, it suffices to check that
ϕ̂ is sequentially continuous. Let (tn)n be a sequence in F̂�L converging to
some t. Clearly t belongs to F̂�L. Moreover, without loss of generality, we
may assume that min(tn \ t) → ∞. We need to show that ϕ̂(tn)

w→ ϕ̂(t).
Fix x∗ ∈ X∗. For every n ∈ N, we pick sn ∈ F�L such that tn v sn and
|x∗(ϕ̂(tn)) − x∗(ϕ̂(sn))| < 1/n. Since min(tn \ t) → ∞, we see that (sn)n
converges to t. By the assumptions on ϕ̂, we find that x∗(ϕ̂(sn))→ x∗(ϕ̂(t)).
Since |x∗(ϕ̂(tn))−x∗(ϕ̂(sn))| < 1/n for all n ∈ N, it follows that x∗(ϕ̂(tn))→
x∗(ϕ̂(t)), and the proof is complete.

Before we proceed to the proof of Lemma 6.5, we need to introduce some
additional notation. Let F be a regular thin family, L an infinite subset of N
and k a positive integer. We set

(6.3) Blk(F�L) = {(si)ki=1 : (si)
k
i=1 is a block sequence in F�L}.

Let us observe that the families Blk(F�L) have the Ramsey property. In
particular, we have the following.

Proposition 6.7. Let F be a regular thin family, L an infinite subset
of N and k a positive integer. Then for every finite coloring of Blk(F�L) there
exists an infinite subset L′ of L such that Blk(F�L′) is monochromatic.
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Proof. By passing to an infinite subset of L if necessary, we may assume
that F is very large in L. For every infinite subset L′ of L, we set

(6.4) UBlk(F�L′) =
{ k⋃
i=1

si : (si)
k
i=1 ∈ Blk(F�L′)

}
.

It is easy to observe that UBlk(F�L) is a family of finite subsets of N which
is very large in L and thin. Moreover, for every infinite subset L′ of L, the
operator sending each (si)

k
i=1 from Blk(F�L′) to

⋃k
i=1 si is 1-1 and onto

UBlk(F�L′). So fixing a finite coloring on Blk(F�L) we induce a finite col-
oring on UBlk(F�L). By the Ramsey property for thin families (see [NW],
[PR] or [AKT2, Proposition 2.6]) there is an infinite subset L′ of L such that
UBlk(F�L′) is monochromatic. Clearly, Blk(F�L′) is then also monochro-
matic.

Finally, let F be a regular thin family and t an element of F̂ . We set

(6.5) F[t] = {s ∈ [N]<∞ : min s > max t and t ∪ s ∈ F}.

It follows easily that F[t] is regular thin. We are ready to proceed to the
proof of Lemma 6.5.

Proof of Lemma 6.5. Let F be a regular thin family of order ξ. We define
a subset G of the product [N]∞ × [N]∞ ×XF̂ ×XF as follows. We say that
(M,L, (yt)t∈F̂ , (xs)s∈F ) is in G if:

(I) There exists C > 0 such that for every k ∈ N, every (sj)
k
j=1 in

Plmk(F�L) with s1(1) ≥ L(k) and any real a1, . . . , ak we have

(6.6) C−1
∥∥∥ k∑
j=1

ajxsj

∥∥∥ ≤ ∥∥∥ k∑
j=1

ajuM(j)

∥∥∥ ≤ C∥∥∥ k∑
j=1

ajxsj

∥∥∥
where (un)n is the standard unconditional Schauder basis of Peł-
czyński’s universal space for unconditional Schauder basic sequen-
ces.

(II) For every s ∈ F�L we have ys = xs and y∅ = 0.
(III) For every t in (F̂�L) \ F , set L′ = {q ∈ L : q > max t}; then for

every ε > 0 there exists n0 ∈ N such that for every n ≥ n0 and
every block sequence (t′j)

n
j=1 in F[t]�L with min t′1 ≥ L′(n) we have

(6.7)

∥∥∥∥ 1n
n∑
j=1

yt∪t′j − yt
∥∥∥∥ ≤ ε.

It is easy to check that G is a Borel subset of [N]∞ × [N]∞ × XF̂k × XFk .
We have the following claim.
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Claim 1. Let (M,L, (yt)t∈F̂ , (xs)s∈F ) ∈ G. Then every F-spreading
model generated by an F-subsequence (xs)s∈F�L belongs to SMw

ξ (X) and
it is equivalent to (un)n∈M .

Proof of Claim 1. First observe that the second part of the conclusion is
immediate by property (I) above. Next, let ϕ̂ : F̂�L→ X with ϕ̂(t) = yt for
all t ∈ F̂�L. We need to show that ϕ̂ is continuous, where X is considered
with the weak topology. By Lemma 6.6, it suffices to show that for every
t ∈ F̂�L and every (sn)n in F�L convergent to t, we have ysn

w→ yt.
Assume to the contrary that there exist t ∈ F̂�L, a sequence (sn)n in F�L

convergent to t, an element x∗ in X∗ of norm 1 and some ε > 0 such that
x∗(ysn − yt) ≥ 2ε for all n. Passing to a subsequence of (sn)n if necessary,
we may assume that each sn end-extends t and (sn \ t)n is a block sequence.
We set tn = sn \ t for all n. Then for every n ∈ N,

(6.8)
∥∥∥∥ 1n

n∑
j=1

ysn+j − yt
∥∥∥∥ ≥ x∗( 1

n

n∑
j=1

ysn+j − yt
)
≥ 2ε,

which contradicts (III).
Hence (xs)s∈F�L is subordinated. Moreover, by (II), it follows that

ϕ̂(∅) = 0 and therefore (xs)s∈F�L is weakly null. The proof of the claim
is complete.

The converse of Claim 1 holds as well.

Claim 2. For every element (en)n of SMw
ξ (X) there exists an element

(M,L, (yt)t∈F̂ , (xs)s∈F ) of G such that the F-subsequence (xs)s∈F�L gener-
ates (en)n as an F-spreading model.

Proof of Claim 2. Fix (en)n in SMw
ξ (X). By the universality property of

Pełczyński’s space, there exists an infinite subsetM of N such that (en)n and
(un)n∈M are equivalent. By Corollary 3.3, there exist an infinite subset P of
N and an F-sequence (xs)s∈F such that (xs)s∈F�P is subordinated, weakly
null and generates (en)n as an F-spreading model. For every t ∈ F̂�P we set
yt = ϕ̂(t) and we pick an arbitrary yt for every t ∈ F̂ \ (F̂�P ). Clearly for
every infinite subset P ′ of P , (M,P ′, (yt)t∈F̂ , (xs)s∈F ) satisfies (I) and (II). It
suffices to choose an infinite subset L of P such that (M,L, (yt)t∈F̂ , (xs)s∈F )
satisfies (III).

First, let us observe that the following property holds true:

(P) For every infinite subset P ′ of P and every t in (F̂�M) \ F , there
exists an infinite subset P ′′ of P ′ such that minP ′′ > max t and for
every n ∈ N and any block sequences (tj)nj=1, (t

′
j)
n
j=1 in F[t]�P

′′ with
min t1,min t′1 ≥ P ′′(n) we have
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n∑
j=1

yt∪tj − yt
∥∥∥∥− ∥∥∥∥ 1n

n∑
j=1

yt∪t′j − yt
∥∥∥∥∣∣∣∣ ≤ 1

n
.

Indeed, let P ′ and t be as above. We setQ0 = P ′ and we inductively construct
a decreasing sequence (Qn)n of infinite subsets of Q0 such that for every
n ∈ N we have

(6.9)
∣∣∣∣∥∥∥∥ 1n

n∑
j=1

yt∪tj − yt
∥∥∥∥− ∥∥∥∥ 1n

n∑
j=1

yt∪t′j − yt
∥∥∥∥∣∣∣∣ ≤ 1

n
,

for every choice of block sequences (tj)
n
j=1, (t

′
j)
n
j=1 in F[t]�Qn. Assume that

for some n ∈ N the sets Q0, . . . , Qn−1 have been chosen. Since ϕ̂ is continuous
and F̂�Qn−1 is compact, the set {ys : s ∈ F̂�Qn−1} is weakly compact and
therefore bounded. Let C > 0 be such that ‖ys‖ ≤ C for all s ∈ F̂�Qn−1.
Let (Ai)

i0
i=1 be a partition of [0, C] into sets of diameter at most 1/n. We

define a finite coloring on Bln(F[t]�Qn−1) as follows. We assign to a block
sequence (tj)

n
j=1 in F[t]�Qn−1 the color i ∈ {1, . . . , i0} if

(6.10)
∥∥∥∥ 1n

n∑
j=1

yt∪tj − yt
∥∥∥∥ ∈ Ai.

Applying Proposition 6.7 we obtain an infinite subset Qn of Qn−1 such that
the set Bln(F[t]�Qn) is monochromatic. It is easy to check that Qn is as
desired and the inductive step is complete. Pick an infinite subset P ′′ of P ′
such that P ′′(n) ∈ Qn for all n. Thus (P) holds.

Set L0 = P and inductively construct a decreasing sequence (Lq)q of
infinite subsets of P and a strictly increasing sequence (lq)q in P for every
q ∈ N:

(a) lq = minLq.
(b) For every t subset of {lp : 1 ≤ p ≤ q − 1} belonging to F̂ \ F ,

every n ∈ N and any block sequences (tj)
n
j=1, (t

′
j)
n
j=1 in Fl�Lq with

min t1,min t′1 ≥ Lq(n) we have

(6.11)

∣∣∣∣∥∥∥∥ 1n
n∑
j=1

yt∪tj − yt
∥∥∥∥− ∥∥∥∥ 1n

n∑
j=1

yt∪t′j − yt
∥∥∥∥∣∣∣∣ ≤ 1

n
.

The inductive step of the construction is carried out as follows. Assume that
for some q ∈ N the sets L0, . . . , Lq−1 are constructed. Let {tr}Nr=1 be an
enumeration of the set {t ∈ F̂ \ F : t ⊆ {lp : 1 ≤ p ≤ q − 1}}. Applying
property (P), we construct a decreasing sequence (Qr)

N
r=1 of infinite sub-

sets of Lq−1 \ {lq−1} such that for every n ∈ N and any block sequences
(tj)

n
j=1, (t

′
j)
n
j=1 in F[t]�Qr with min t1,min t′1 ≥ Qr(n) we have
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(6.12)
∣∣∣∣∥∥∥∥ 1n

n∑
j=1

ytr∪tj − ytr
∥∥∥∥− ∥∥∥∥ 1n

n∑
j=1

ytr∪t′j − ytr
∥∥∥∥∣∣∣∣ ≤ 1

n
.

Setting Lq = QN completes the inductive step of the construction.
We set L = {lq : q ∈ N}. Then for every t in (F̂�L) \ F , every n ∈ N

and any block sequences (tj)
n
j=1, (t

′
j)
n
j=1 in F[t]�L

′, where L′ = {q ∈ L :

q ≥ max t}, with min t1,min t′1 ≥ L′(n), it follows that

(6.13)
∣∣∣∣∥∥∥∥ 1n

n∑
j=1

yt∪tj − yt
∥∥∥∥− ∥∥∥∥ 1n

n∑
j=1

yt∪t′j − yt
∥∥∥∥∣∣∣∣ ≤ 1

n
.

In order to check that property (III) is satisfied we fix some t from (F̂�L)\F .
Let L′ = {q ∈ L : q > max t}. Let (tn)n be a block sequence in F[t]�L

′. By
the lemma’s assumptions, the sequence (yt∪tn − yt)n admits no spreading
model equivalent to the standard basis of `1. Moreover, by the continuity
of ϕ̂, (yt∪tn − yt)n is weakly null. Hence, by a well known dichotomy of
H. P. Rosenthal concerning Cesàro summability and `1 spreading models,
there exists a subsequence (yt∪tmn − yt)n of (yt∪tn − yt)n which is Cesàro
summable to zero. Hence

(6.14) lim
n→∞

∥∥∥∥ 1n
n∑
j=1

yt∪tmn+j − yt
∥∥∥∥

≤ 2 lim
n→∞

∥∥∥∥ 1

2n

2n∑
j=1

yt∪tmj − yt
∥∥∥∥− lim

n→∞

∥∥∥∥ 1n
n∑
j=1

yt∪tmj − yt
∥∥∥∥ = 0.

Clearly, (III) follows from (6.13) and (6.14). The proof of the claim is com-
plete.

Let A be the projection of G onto the first coordinate, that is,

(6.15)
A = {M ∈ [N]∞ : there exists (L, (yt)t∈F̂ , (xs)s∈F ) ∈ [N]∞ ×XF̂ ×XF

such that (M,L, (yt)t∈F̂ , (xs)s∈F ) ∈ G}.
Since G is Borel, A is analytic. It remains to check that A satisfies (i)
and (ii) of Lemma 6.5. Indeed, fix (en)n in SMw

ξ (X). By Claim 2, there
is (M,L, (yt)t∈F̂ , (xs)s∈F ) in G such that (xs)s∈F�L generates (en)n as an
F-spreading model. By the definition of A, M belongs to A and by prop-
erty (I) the sequences (en)n and (un)n∈M are equivalent. Conversely, let
M ∈ A. By the definition of A, there exist an infinite subset L of N, an
F-sequence (xs)s∈F in X and a family (yt)t∈F̂ of elements in X such that
(M,L, (yt)t∈F̂ , (xs)s∈F ) belongs to G. We pass to an infinite subset L′ of L
such that (xs)s∈F�L′ generates an F-spreading model (en)n. By Claim 1 the
sequences (en)n and (un)n∈M are equivalent and (en)n belongs to SMw

ξ (X).
The proof of Lemma 6.5 is complete.
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