Corrigendum to "Commutators on $\left(\sum \ell_{q}\right)_{p}$ "

(Studia Math. 206 (2011), 175-190)

by
Dongyang Chen (Xiamen), William B. Johnson (College Station, TX) and Bentuo Zheng (Memphis, TN)

Abstract

We give a corrected proof of Theorem 2.10 in our paper "Commutators on $\left(\sum \ell_{q}\right)_{p}$ " [Studia Math. 206 (2011), 175-190] for the case $1<q<p<\infty$. The case when $1=q<p<\infty$ remains open. As a consequence, the Main Theorem and Corollary 2.17 in that paper are only valid for $1<p, q<\infty$.

Throughout this note, "small perturbation" means using the image of the subspace under an operator that is close to the identity. The notation is as in CJZh. We thank Eugenio Spinu for spotting the error in the last line of the proof of Theorem 2.10 in CJZh, where it is claimed "Then it is easy to see that $\sum_{n=0}^{\infty} R^{n} T L^{n}$ is strongly convergent if $\sum_{n} \epsilon_{n}<\infty$ ".

Theorem 1. Let $1<p<q<\infty$. Let $T: Z_{p, q} \rightarrow Z_{p, q}$ be $Z_{p, q}$-strictly singular. Then for all $\epsilon>0$ there is a 1-complemented subspace Y of $Z_{p, q}$ which is isometric to $Z_{p, q}$ and $\left\|\left.T\right|_{Y}\right\|<\epsilon$.

Lemma 2. Let $S: \ell_{q} \rightarrow Z_{p, q}(1<p<q<\infty)$. Then for all $\epsilon>0$ there is an $N \in \mathbb{N}$ such that $\left\|P_{[N, \infty)} S\right\|<\epsilon$.

Proof. Suppose not. Then there is an $\epsilon>0$ such that $\left\|P_{[N, \infty)} S\right\| \geq \epsilon$ for any $N \in \mathbb{N}$. So by a standard perturbation argument, there is a normalized block basis $\left(x_{i}\right)$ of ℓ_{q} whose image sequence ($T x_{i}$) is equivalent to the unit vector basis of ℓ_{p}. Since $1<p<q<\infty$, this contradicts the boundedness of T.

Lemma 3. Let $S: Z_{p, q} \rightarrow \ell_{q}(1<p<q<\infty)$. Then for all $\epsilon>0$ there is a subspace Y of $Z_{p, q}$ such that Y is isometric to ℓ_{q}, Y is 1-complemented in $Z_{p, q}$, and $\left\|\left.S\right|_{Y}\right\|<\epsilon$.

[^0]Proof. Let $\left(e_{i, j}\right)$ be the natural unit vector basis of $Z_{p, q}$, where $\left(e_{i, j}\right)_{j}$ is the unit vector basis of the i th ℓ_{q}. By passing to appropriate subsequences of $\left(e_{i, j}\right)$ and perturbing S slightly, we may assume that the $\left(S e_{i, j}\right)$ are disjointly supported in ℓ_{q}. Since $1<p<q<\infty$, we can pick an $N \in \mathbb{N}$ so large that $N^{1 / q-1 / p}<\epsilon /\|S\|$. Let $x_{j}=N^{-1 / p} \sum_{i=1}^{N} e_{i, j}$. Then $\left(x_{j}\right)$ is 1-equivalent to the unit vector basis of ℓ_{q}. Let Y be the closed linear span of $\left(x_{j}\right)$. Then Y is 1-complemented in $Z_{p, q}$ and $\left\|\left.S\right|_{Y}\right\|<\epsilon$.

Proof of Theorem 1. Fix $\epsilon>0$. Let $\left(\epsilon_{i}\right)$ be a sequence of positive reals decreasing to 0 fast so that $\sum \epsilon_{i}<\min \{\epsilon / 4,1 / 4\}$. We write $Z_{p, q}=\left(\sum \ell_{q}^{(n)}\right)_{\ell_{p}}$. Let $X_{1}=\ell_{q}^{(1)}$. By Lemma 2, there is $N_{1} \in \mathbb{N}$ such that $\left.P_{\left[N_{1}, \infty\right)} T\right|_{X_{1}}<\epsilon_{1}$. By Lemma 3, there are $N_{2} \in \mathbb{N}$ and $X_{2} \subset P_{\left[N_{1}, N_{2}\right)} Z_{p, q}$ such that $X_{2} \equiv \ell_{q}$, X_{2} is 1-complemented in $Z_{p, q}$, and $\left\|\left.P_{\left[1, N_{1}\right)} T\right|_{X_{2}}\right\|<\epsilon_{2} / 2$. By using Lemma 2 again and increasing N_{2}, we may also assume that $\left\|\left.P_{\left[N_{2}, \infty\right)} T\right|_{X_{2}}\right\|<\epsilon_{2} / 2$.

So by induction we get an increasing sequence $\left(N_{i}\right)$ of positive integers and a sequence $\left(X_{i}\right)$ of subspaces such that

- $X_{i} \equiv \ell_{q}$;
- X_{i} is 1-complemented in $Z_{p, q}$;
- $X_{i} \subset P_{\left[N_{i-1}, N_{i}\right)} Z_{p, q}\left(\right.$ where $\left.N_{0}=1\right)$;
- $\left\|\left.\left(I-P_{\left[N_{i-1}, N_{i}\right)}\right) T\right|_{X_{i}}\right\|<\epsilon_{i}$.

We claim that for all but finitely many $i \in \mathbb{N}$, there is a subspace Y_{i} of X_{i} such that $Y_{i} \equiv \ell_{q}, Y_{i}$ is 1-complemented in X_{i}, and $\left\|\left.T\right|_{Y_{i}}\right\|<\epsilon$. Suppose not. Then there is an infinite subset $I \subset \mathbb{N}$ such that for all $i \in I$ and for every 1-complemented subspace Y_{i} of X_{i} that is isometric to ℓ_{q} we have $\left\|\left.T\right|_{Y_{i}}\right\| \geq \epsilon$. Therefore, for each $i \in I$ there is a normalized block basis $\left(x_{i, j}\right)_{j}$ of X_{i} such that $\left\|T x_{i, j}\right\| \geq \epsilon$. By passing to a subsequence of $\left(x_{i, j}\right)_{j}$ and doing a small perturbation, we may assume that $\left(T x_{i, j}\right)_{j}$ is disjointly supported in $Z_{p, q}$. Since $Z_{p, q}$ has a lower q-estimate with constant $1,\left(T x_{i, j}\right)_{j}$ is $\|T\| / \epsilon$-equivalent to $\left(x_{i, j}\right)_{j}$. For each $i \in I$, let Y_{i} be the closed linear span of $\left(x_{i, j}\right)_{j}$. Then $\sum_{i \in I} Y_{i}$ is isometric to $Z_{p, q}$. Next we show that $\left.T\right|_{\sum_{i \in I} Y_{i}}$ is an isomorphism. To see this, let $\left(y_{i}\right)_{i \in I} \in \sum_{i \in I} Y_{i}$ with $\sum_{i \in I}\left\|y_{i}\right\|^{p}=1$. Then we have

$$
\begin{aligned}
\left\|T\left(\left(y_{i}\right)_{i \in I}\right)\right\| & \geq\left\|\sum_{i \in I} P_{\left[N_{i-1}, N_{i}\right)} T y_{i}\right\|-\sum_{i \in I}\left\|\left(I-P_{\left[N_{i-1}, N_{i}\right)}\right) T y_{i}\right\| \\
& \geq\left(\sum_{i \in I}\left(1-\epsilon_{i}\right)^{p}\left\|T y_{i}\right\|^{p}\right)^{1 / p}-\sum_{i \in I} \epsilon_{i}\left\|y_{i}\right\| \\
& \geq 3 \epsilon / 4-\sum_{i \in I} \epsilon_{i}>\epsilon / 2
\end{aligned}
$$

This contradicts the hypothesis that T is $Z_{p, q^{-}}$-strictly singular.

Having our claim, without loss of generality, we assume that for all $i \in \mathbb{N}$ there is a subspace Y_{i} of X_{i} such that $Y_{i} \equiv \ell_{q}, Y_{i}$ is 1-complemented in X_{i}, and $\left\|\left.T\right|_{Y_{i}}\right\|<\epsilon$. Let $Y=\sum Y_{i}$. Then Y is isometric to $Z_{p, q}$ and 1-complemented in $Z_{p, q}$. Let $\left(y_{i}\right) \in S_{Y}$. We have

$$
\begin{aligned}
\left\|T\left(\left(y_{i}\right)\right)\right\| & \leq\left\|\sum P_{\left[N_{i-1}, N_{i}\right)} T y_{i}\right\|+\sum\left\|\left(I-P_{\left[N_{i-1}, N_{i}\right)}\right) T y_{i}\right\| \\
& \leq\left(\sum\left\|T y_{i}\right\|^{p}\right)^{1 / p}+\sum \epsilon_{i}\left\|y_{i}\right\|<\epsilon+\sum \epsilon_{i}<5 \epsilon / 4
\end{aligned}
$$

Since ϵ is arbitrary, we are done.
Lemma 4. Let $1<p, q<\infty$ and $n \in \mathbb{N}$. Set $Z:=\left(\sum_{k=1}^{n} X_{n}\right)_{p}$ with each X_{n} isometrically isomorphic to ℓ_{q}. Suppose that X is a subspace of Z. Then for each $\epsilon>0$ there is a subspace Y of X such that Y is $1+\epsilon$ isomorphic to ℓ_{q} and Y is $1+\epsilon$-complemented in Z.

Proof. By the principle of small perturbations we can assume that X contains a sequence $\left(x_{k}\right)$ that is disjointly supported with respect to the canonical basis $\left(e_{i, j}\right)_{i=1, j=1}^{\infty, n_{1}^{n}}$. By passing to a subsequence of $\left(x_{k}\right)$ and making another small perturbation, we can assume for every $j=1, \ldots, n$ that there is a scalar a_{j} such that for each $k \in \mathbb{N}$ we have $\left\|P_{j} x_{k}\right\|=a_{j}$, so that $\sum_{j=1}^{n} a_{j}^{p}=1$. One checks easily that $\left(x_{k}\right)$ is 1-equivalent to the unit vector basis of ℓ_{q}. Indeed, if $z=\sum_{k} b_{k} x_{k}$, then

$$
\begin{aligned}
\|z\|^{p} & =\sum_{j=1}^{n}\left\|P_{j} z\right\|^{p}=\sum_{j=1}^{n}\left\|\sum_{k} b_{k} P_{j} x_{k}\right\|^{p} \\
& =\sum_{j=1}^{n}\left(a_{j}\left(\sum_{k}\left|b_{k}\right|^{q}\right)^{1 / q}\right)^{p}=\left(\sum_{j=1}^{n} a_{j}^{p}\right)\left(\sum_{k}\left|b_{k}\right|^{q}\right)^{p / q} .
\end{aligned}
$$

To see that $\left[x_{k}\right]$ is norm one complemented in Z, assume without loss of generality that no a_{j} is zero and let $x_{k, j}^{*}$ be the unique norm one functional in $Z^{*}=\left(\sum_{k=1}^{n} X_{n}^{*}\right)_{p^{\prime}}$ for which $\left\langle x_{k, j}^{*}, P_{j} x_{k}\right\rangle=a_{j}$. So $x_{k, j}^{*}$ has the same support as $P_{j} x_{k}$ and for each j, the sequence $\left(x_{k, j}^{*}\right)_{k}$ is 1-equivalent to the unit vector basis of $\ell_{q^{\prime}}$. Define $x_{k}^{*}:=\sum_{j=1}^{n} a_{j}^{p-1} x_{k, j}^{*}$. Then the sequence $\left(x_{k}^{*}\right)$ is 1-equivalent to the unit vector basis for $\ell_{q^{\prime}}$ and is biorthogonal to the sequence $\left(x_{k}\right)$. This implies that $P x:=\sum_{k}\left\langle x_{k}^{*}, x\right\rangle x_{k}$ defines a norm one projection from Z onto $\left[x_{k}\right]$.

LEMMA 5. $Z_{p, q}$ is complementably homogeneous for $1<p<q<\infty$.
Proof. Let $X=\left(\sum X_{k}\right)$ be a subspace of $Z_{p, q}$ isomorphic to $Z_{p, q}$ such that each X_{k} is isomorphic to ℓ_{q}. Let $\left(\epsilon_{i}\right)$ be a sequence of positive reals decreasing to 0 fast. Let Y_{1} be a subspace of X_{1} which is $1+\epsilon_{1}$-isomorphic to ℓ_{q}. By Lemma 2 and a small perturbation, we may assume that there is $N_{1} \in \mathbb{N}$ such that $\left\|\left.P_{\left[N_{1}, \infty\right)}\right|_{Y_{1}}\right\|=0$. By Lemma 2, Lemma 3, stability
of ℓ_{q}, and a small perturbation, we may assume that there is a subspace Y_{2} of X such that Y_{2} is $1+\epsilon_{2}$-isomorphic to ℓ_{q} and $\left.\left(I-P_{\left[N_{1}, N_{2}\right)}\right)\right|_{Y_{2}}=0$ for some $N_{2}>N_{1}$. Inductively, we get a sequence $\left(Y_{k}\right)$ of subspaces of X and a sequence $\left(N_{k}\right)$ of increasing positive integers such that Y_{k} is $1+\epsilon_{k}$-isomorphic to ℓ_{q} and $Y_{k} \subset P_{\left[N_{k-1}, N_{k}\right)} Z_{p, q}$. By Lemma 4 and passing to subspaces of each Y_{k}, we may assume that Y_{k} is $1+\epsilon_{k}$-complemented in $P_{\left[N_{k-1}, N_{k}\right)} Z_{p, q}$. Let $Y=\sum Y_{k}$. Then Y is $1+\epsilon$-isomorphic to $Z_{p, q}$ and $1+\epsilon$-complemented in $Z_{p, q}$ if $\sum \epsilon_{k}<\epsilon$.

Theorem 6. Let $1<q<p<\infty$. Let $T: Z_{p, q} \rightarrow Z_{p, q}$ be $Z_{p, q}$-strictly singular. Then there is a 1-complemented subspace Y of $Z_{p, q}$ which is isometric to $Z_{p, q}$ and $\left\|P_{Y} T\right\|<\epsilon$, where P_{Y} is a norm 1 projection from $Z_{p, q}$ onto Y.

Proof. This follows immediately by applying Theorem 1 for T^{*} and Lemma 5

Corrected proof of Theorem 2.10 in [JZh] for $1<q<p<\infty$. By [D, Theorem 8], it is enough to show that there is an ℓ_{p}-decomposition $\left\{X_{i}\right\}$ of $Z_{p, q}$ into uniformly isomorphic copies of $Z_{p, q}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(\sum_{k \geq n} P_{k}\right) T\right\|=\lim _{n \rightarrow \infty}\left\|T\left(\sum_{k \geq n} P_{k}\right)\right\|=0 \tag{*}
\end{equation*}
$$

where P_{k} is the natural projection from $Z_{p, q}$ onto X_{k}.
By the original proof of Theorem 2.10 in [CJZh], we can get a sequence $\left(X_{n}\right)_{n=1}^{\infty}$ of subspaces of $\left(\sum_{n=0}^{\infty} Z_{p, q}\right)_{\ell_{p}}$ such that
(1) X_{n} is isometric to $Z_{p, q}$ and 1-complemented in $Z_{p, q}$;
(2) $\left\|\left.T\right|_{X_{n}}\right\|<\epsilon_{n}$;
(3) $\left\|\sum_{n=1}^{\infty} x_{n}\right\|=\left(\sum_{n=1}^{\infty}\left\|x_{n}\right\|^{p}\right)^{1 / p}$ for all $x_{n} \in X_{n}$;
(4) $Z_{p, q}=\left(\sum_{n=1}^{\infty} X_{n}\right)_{p} \oplus X_{0}$ and X_{0} is isomorphic to $Z_{p, q}$.

By Theorem 6 and passing to subspaces X_{n}^{\prime} of each $X_{n}(n \geq 1)$ (absorbing the complements of X_{n}^{\prime} in X_{n} into X_{0}), we may assume one additional condition:
(5) $\left\|P_{n} T\right\|<\epsilon_{n}(n \geq 1)$, where P_{n} is the norm one projection from $Z_{p, q}$ onto X_{n}.

Now equation (*) clearly holds if $\lim _{n \rightarrow \infty} \sum_{k \geq n} \epsilon_{k}=0$.
Acknowledgements. Dongyang Chen was a participant in the NSF Workshop in Analysis and Probability, Texas A\&M University.

The research of William B. Johnson is supported in part by NSF DMS1301604.

The research of Bentuo Zheng is supported in part by NSF DMS-1200370.

Bentuo Zheng was a participant in the NSF Workshop in Analysis and Probability, Texas A\&M University.

References

[D] D. Dosev, Commutators on ℓ_{1}, J. Funct. Anal. 256 (2009), 3490-3509.
[CJZh] D. Chen, W. B. Johnson and B. T. Zheng, Commutators on $\left(\sum \ell_{q}\right)_{p}$, Studia Math. 206 (2011), 175-190.

Dongyang Chen
School of Mathematical Sciences Xiamen University
Xiamen, 361005, China
E-mail: cdy@xmu.edu.cn

William B. Johnson
Department of Mathematics
Texas A\&M University
College Station, TX 77843, U.S.A.
E-mail: johnson@math.tamu.edu

Bentuo Zheng
Department of Mathematical Sciences
The University of Memphis
Memphis, TN 38152, U.S.A.
E-mail: bzheng@memphis.edu

Received July 2, 2014
Revised version September 9, 2014

[^0]: 2010 Mathematics Subject Classification: Primary 47B47; Secondary 46B20.
 Key words and phrases: commutators, maximal ideal, strictly singular operators.

