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Abstract. This paper deals with Besov spaces of logarithmic smoothness Bg:’; formed
by periodic functions. We study embeddings of Bg;i’ into Lorentz—Zygmund spaces

Ly,q(log L) . Our techniques rely on the approximation structure of Bp'?, Nikol’skif type

inequalities, extrapolation properties of L, 4(log L)g and interpolation.

1. Introduction. Besov spaces of generalized smoothness arise in the
solution of some natural questions. Among other things, they are useful in
fractal analysis and a related spectral theory (see the book by Triebel [32]
and the references given there), as well as in probability theory and in the
theory of stochastic processes (see the paper by Farkas and Leopold [18]).
Besov spaces of smoothness near zero are distinguished elements of the class
above.

Already in 1979, DeVore, Riemenschneider and Sharpley [14] introduced
spaces ngff with zero classical smoothness and logarithmic smoothness with
exponent b. They defined them by means of the modulus of continuity.
Similar spaces BI(,E)T’b) were considered later by Merucci [22] and Cobos and
Fernandez [10] but following the Fourier-analytical approach. The precise
relationship between these two kinds of spaces has not been established yet.
The first results in this direction can be found in the recent report of Triebel
[33, Section 3.

Triebel has also studied in [33] embeddings of those spaces into Lorentz—
Zygmund spaces Ly (log L)g. For spaces ngf, this problem was already
considered by Caetano, Gogatishvili and Opic [6] who proved sharp em-
beddings for 1 < p < cocand 1 < r < ¢ < oo. Here b+ 1/r > 0 and
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B =b+1/r+1/max{p,q} —1/q. See also [7] where compact embeddings
are studied. Techniques of [6] are related to Kolyada’s inequality which es-
timates from below the modulus of continuity in terms of non-increasing
rearrangements of functions. The method used in [33] to establish embed-
dings relies on expansions in terms of the Haar basis and the description of
Lorentz—Zygmund spaces as extrapolation spaces.

In this paper we consider Besov spaces of logarithmic smoothness formed
by periodic functions and we prove similar embeddings to those of [6] which
cover the full range of indices if g > 0, that is, for 0 < p < 0o and 0 <
r < g < oo. Our methods are based on the description of Besov spaces as
approximation spaces and are simpler than those in [6].

As was shown by Pietsch [27), 28] (see also [5], 24, 26]) the theory of ap-
proximation spaces is very flexible and produces interesting results on spaces
of functions, sequences and operators. In particular, Pietsch established in
[27, p. 126] (see also [29] 6.7.8]) embeddings between classical Besov spaces
by means of the Nikol’skil inequality for trigonometric polynomials. In the
present paper, we use the description of Besov spaces of logarithmic smooth-
ness as limiting approximation spaces in the sense of Cobos and Milman [12]
and Fehér and Gréssler [19] to derive embeddings into Lorentz—Zygmund
spaces Ly 4(log L)g. A key role in our arguments is played by the Nikol’skii
inequality and a variant of it. Extrapolation properties of spaces L, 4(log L)g
are important in the case 8 > 0, while we use interpolation to deal with the
case 8 < 0.

In the subsequent paper [§], the authors have given another approach to
study embeddings of spaces B,?jff into Lorentz—Zygmund spaces.

2. Limiting approximation spaces and Besov spaces. Let (X, ||| x)
be a quasi-Banach space and let (Gp)nen, be a sequence of subsets of X
satisfying the following conditions:

(21) Go = {0}7
(2.2) Gn C Gpy1  for any n € Ny = NU {0},
(2.3) Gp+ Gm € Gpgyn  for any n,m € N.

For any f € X, we put
En(f) = Eo(f; X) =inf{||f —gllx : 9 € Gn1}, neEN,

for the error of best approximation of f by the elements of G,,_1.

Let 0 < ¢ < oo and v € R. The (limiting) approximation space Xéoﬂ) =
(X, Gn)((lo’ﬁ/) consists of all f € X having a finite quasi-norm



Besov spaces of logarithmic smoothness 195

> /
171000 = (3 (1 +logm B (1)) ) i 0 < g < oo,

n=1

Hf”XéO”) =sup{(1+logn)"E,(f)} if ¢= co.

n>1
See [13, 12, [19]. Note that if v < —1/g then (32°° (1 +logn)n~1)1/7 < oo
and so Xéoﬁ) = X. Hence, the case of interest is v > —1/q.

Put p, = 22", n =0,1,2,.... It is shown in [I3, 19] that X(gom is formed
by all those f € X such that there is a representation f = > >° g, with
gn € Gy, and

<i(2n(w+1/q) lgn Hx)q> Y < oo.

n=0
Moreover
el (S (an(r+1/0) /e N
(24) 1fllon).0 =] (3@ VD gl )7) 7 =3 g gn € G }
n=0 n=0
is a quasi-norm equivalent to || - || X0

Let T = [0,27) be the unit circle. For 0 < p < oo, we write L, for
the Lebesgue space of all (classes of) real-valued 27m-periodic measurable
functions f such that

27
) 1/p
0
with the obvious modification if p = co. Given 0 < r < oo and b > —1/r, the
Besov space ngf consists of all functions f € L, having a finite quasi-norm
: ) S dt\ "
112 = 161z, + ((0+ og et r,)" )
0
where w(f,t), is the modulus of continuity

w(f,t)p = sup [[AnfllL,
|h|<t

and
Apf(x) = f(z+h) = fz).
In order to describe ngf as an approximation space, we take X = L,
and G, = T}, the subset of all trigonometric polynomials of order n,

T, = { Z cpe® ey = @}
[k|<n

In what follows, if W, Z are non-negative quantities depending on certain
parameters, we write W < Z if there is a constant ¢ > 0 independent of the



196 F. Cobos and O. Dominguez

parameters in W and Z such that W < c¢Z. If W < Z and Z S W, we write
W~ Z.

LEMMA 2.1. Let 0 < p,r < oo and b > —1/r. Then we have, with
equivalence of quasi-norms,

By = (Ly, Tn)\™.

Proof. If 1 < p,r < oo this formula was established in [I4], Corollary 7.1]
by using weak type interpolation ideas. Next we check the case of the other
values of parameters with the help of Jackson and Bernstein-type inequa-
lities.

Assume that 0 < p < 1. According to Ivanov [20] and Storozhenko,
Krotov and Osval’d [31], for any f € L, we have

E.(f) <cw (Z, f) where ¢ = ¢(p).

P
Hence

||f” )(0 by = (Z 1 + logn (f)]Tnfl) 1/r
n=1

<§:[1+logn <Z f)p]rn—1>l/r

n=1

S (w(w,f); +o§o[(1 +logt)bw<7traf>py Cff>m

1 b r 1/r
Sl + (1] (14106 T ) wiee 1] §)
0

~ 1l g

To establish the converse inequality, we first recall that it was also shown
by Ivanov [20] and Storozhenko, Krotov and Osval’d [31] that

(5r), < Hmon)”

k=1

Therefore

1100 S A lle, + (D210 + )@, ),l")
n=0

00 2n

S e, + (Z [(1 b2 (Z kp_lEk(f)p) l/p]r>1/r

n=0 k=1

1/r
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~ HfHLp + (io: [(1 + n)b27" (zn: 2UpE21/(f)p) 1/}7} r) 1/r
v=0

n=0
=fllz, + (i [(1 + )PP Zn: P (f)p} 7“/19) 1/r
n=0 v=0

<, + (@ m ()

n=0
where we have used in the last inequality a variant of Hardy’s inequality
(see [26, Lemma 3.10, p. 70]). Consequently,

1 lg0e S (D210 + ) Ban (1))

n=0

1/r

~ (i[a + logn)bEn(f)]rn_l)l/r

n=1

= “f“(Lp)go,b). n

3. Lorentz—Zygmund spaces and Nikol’skii inequality. Let 0 <
p < 00,0 < g < oo and —0o < B < oo. The Lorentz—Zygmund space
Ly q(log L)g on T is formed by all (classes of) measurable functions f on T
having a finite quasi-norm

2m dt 1/(1
11y tosrs = ((§16770+ Pogep? o )
0

Here f* is the non-increasing rearrangement of f given by

Ft) =inf{s >0:m{z €T:|f(e"™)| > s}) <t}.
See [2| [16]. Observe that if p = ¢, then L, (logL)g is just the Zygmund
space L,(log L)g. In particular, for 8 = 0 we obtain the Lebesgue space L.
If 3 =0 but p # ¢, we get the Lorentz function space Ly 4.

The Nikol’skii inequality for trigonometric polynomials (see [23], 3.4.3]
and [I]) says that there is a universal constant ¢ > 1 such that

3.1) gz, < cnl/p_l/q||g||Lp forall0 <p<g<oo,g€T,andnecN.

This inequality has been extended to Lorentz spaces by Sherstneva [30] (see
also [15]).

Next we establish a result in this direction but involving Lorentz—Zyg-
mund spaces.

LEMMA 3.1. Let 0 < ¢ <p<o0,d>1/p—1/q and let p,, = 2%". There
18 a constant ¢ > 0 such that

19111, 4 tog 2y < 2" TP D g|lp, for all g € T,,, and n € No.
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Proof. 1t is not hard to check that
(3.2) 1l < @/ flias € Lpa
Moreover, by [4, Theorem 5.1.2], we have
Al < e¥h*(s) forall s (0,7/2] and h € Ty,
This inequality yields
(3.3) Il|z, .. > sYPe™48||h||r.,  for all s € (0,7/2] and h € T,.
Indeed,

Ihllrym = sup #/P07(t) > s'/Ph"(s) > 5P |h] 1.
o<t<2m
We proceed now with the inequality of the statement. Take any n € Ny
and g € T),,,. Let s = 272" and p(t) = (1 + [logt|)?. We have

s 2
HgH%p,q(logL)d Stq/p 1 ()7 dt + S tq/p_lp(t)qg*(t)q dt
= -71 + Is.

Using [16}, Proposition 3.4.33/(v)] and (3.3)), (3.2)), we derive

S
L < gl Stq””lp(t)th
0

~ lgllt s/Pp(s)? < e 0p(s)7 g4
— M1 4 [log 272" ) g4

d
~ 2 glld

As for Iy, we write
2m
I = § (g (@) (o0
S
where A = q(1 — ¢/p)~' = (1/¢ — 1/p)~ L. By the Hélder inequality, we get
q o A1 o\ 1Ta/P
1< gl (§ o e tar) .
S
We estimate the integral by splitting it into two sets. Clearly,
2m
S p ML dt = ¢; < oo
1
Furthermore, since dA > —1, we have
1
S(l —logt)™t~tdt < (1 —logs) T,

S
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Taking into account that s = 272", we obtain
L < |lgllf, (1 — log s) N =a/p)

~ Qn(l/q—l/p+d)q||g||% )
P

Consequently,

19111, 4105 £)g S 2" 9P D lg] 1, m

4. Embeddings. By the construction of Besov spaces ng,lz, we have
ngf? — Ly. Next we will improve this embedding with the help of Lorentz—
Zygmund spaces. Note that

Ly q(log L)g < Ly

if either ¢ < pand 8 >0, 0or p < g and 8 > 1/p — 1/q (see [16, Theorem
3.4.45]).

It was shown by Edmunds and Triebel [17, 2.6.2, pp. 69-73] that Zyg-
mund spaces Ly(log L)g can be described in terms of simple Lebesgue spaces.
For Lorentz—Zygmund spaces a similar result holds but now in terms of
Lorentz spaces. In particular, for 5 > 0 the result reads as follows (see
Karadzhov and Milman [2I, Theorems 4.4 and 4.7] or Cobos, Ferndndez-
Cabrera, Manzano and Martinez [I1], Corollary 3.3]).

Let 0 <p<o0,0<q<o0, >0 and jg € N be such that for all j € N
with j > jo we have 1/p* = 1/p —1/27 > 0. Then Ly, ,(log L) consists of
all measurable functions f on T which can be represented as

oo
(4.1) F=Y"f fi€Lpy,
J=Jo
such that
S 1/q
(42) (X 2™sls,, ) <oe.
J=Jo

Moreover, the infimum of the expression in (4.2)) taken over all admissible
representations (i is a quasi-norm equivalent to || - || Lpq(logL)s-
Next we establish the embedding results.

THEOREM 4.1. Let 0 < p < o0, 0 <r < qg<oo,b+1/r >0 and let
B=b+1/r+1/max{p,q} —1/q > 0. Then

BYY < L, ,(log L)s.

Proof. By Lemma we know that ngff = (Ly, Tn)ﬁo’b) , so we can work

with the quasi-norm || - [|(o ), defined in (2.4). We distinguish two cases.
If g <p,then 3=0b+1/r+1/p—1/q and 8 > 0 by assumption. Let
jo € N be such that 1/p*s > 0 for all j > jo. If j > jo + 1, it follows from
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[16, Proposition 3.4.4] that
(4.3) HhHLij,q < Cj”hHLijfl for all h € va]'_l
where

Tt (et — )] AR
¢ = (2m)V/P 1w [pyj S/PVJ : ,,q)]
q(p¥i-t — p¥i)

N 1/q=1/p+1/27~1
= (2m)M/? [pq 20 + 2}

pq
~ 2i(1/a=1/p)

By 1’ there is a constant ¢ > 0 such that given any f € ngff we can find
a representation f = > 2% g; with g; € T),; and

e . 1/r
(> gille,)7) " < ell o

j=0
Using (4.3) and the Nikol’skii inequality (3.1]), we derive

< 9i(1/g=1/p)92/~0~ 12771

195-go-1llz v, lg5—so-1ll,

~ WD g,

Therefore, since r < ¢, we obtain

£z, 0Ly S 2754) g; _jo—1ll% .
pJ.q
Jj=jo+1 '

o0
< ( E Qjﬂqzj(l/qfl/p)q”gj_jo—lHqL )1/q
~ P
Jj=jo+1

> Jr
< (2 g,)
j=0

< 11500

Suppose now p < g, so f = b+ 1/r. Let jo € N be such that p < p"7 < ¢
for all 7 > jo. According to [16, Proposition 3.4.4],

(4.4) IBle ., < ClbllL,,_, forall he Ly,

1

where now C' is independent of j € N with j > jo + 1. Take any f € Bg,’ff
and choose a representation f = Z?io gj with g; € T),; and
o 1/
(> gL, )7)

Jj=0

\
< cllfll goe-
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By (4.4) and the Nikol’skii inequality (3.1]), we get
195-do—1ll2 s , S Ngj—jo—1llL w1 S N9j—jo—1llL,-
Consequently,

> . 1/q
1 epatosery S (32 2O g0 lt, )
Jj=jo+1 ’
- 1/q
< (30 2O g )
Jj=jo+1
o 1/
< (D20 0migy)17,)
7=0

<1l
This completes the proof. m

o0

If B < 0 then the description of L ,(log L)s in terms of Lorentz spaces
is of a different type (see [11, Corollary 3.3]). For this reason we have to use
another approach. We start with the case 0 < r < 1.

THEOREM 4.2. Let 1 < ¢ < p<oo, 0 <7r <1, b+1/r >0 and
B=b+1/r+1/p—1/q. Then
BYY < Ly 4(log L)s.

Proof. First note that under the present assumptions, the quasi-norm
of L, 4(log L)g is equivalent to a norm (see [16, Lemma 3.4.39]). Take any

fe ng,lf and choose a representation f = Z;')io gj with g; € T),; and

> 1/r
(D@ gile,)7) " < el o

J=0

Using Lemma we derive

0o
HfHL@q(logL)B S Z ||gj||Lp,q(logL)@
7=0
oo

S22 gjll,
§=0

> , 1/r
S (2@ Mg, )
j=0
S 1l m
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Next we deal with the case 1 < r < ¢. For this, we will use the real
interpolation method (see [3]).

THEOREM 4.3. Letl<r<qg<p<oo,b+1/r>0and B=0+1/r+

1/p—1/q. Then
Byt < Lpq(log L)s.
Proof. Take by, by such that
0<bp+1<b+1/r<b+1
and let 0 < 6 < 1 with
b+1/r=(1-=60)(bop+1)+60(by +1)=(1—0)by+ by + 1.
According to Theorem [4.2] we have the continuous embeddings
BYY < Lpg(log L)y 141/p-1/» i =0, 1.

Moreover, by [19, Theorem 5|, we have

0,0 130,01 _ 0y
(Bp,l ’Bp,l )9,7" - Bp,r

where v = (1 —0)bg +60by1 +1—1/r = b, and according to [25, Example 6.1],
ifr,=0bi+14+1/p—1/q,i=0,1, then
(Lp,q(log L)y, Ly q(log L) 7, )g,r — (Lp,q(log L)z, Lpg(log L)7 )o.q
= Lpq(log L)~
where 7= (1 —-0)10+ 01, =b+1/r+1/p —1/q = 3. Consequently,
Byl < Lpg(logL)s. =

Note that if 3 = 0 then Theorems [.2] and [.3] give the following embed-
ding into Lorentz spaces.

COROLLARY 4.4. Let 1 < p < 00, 0 < r < o0 and —1/r < b <
min{—1/p,1 —1/r —1/p}. Set 1/q=b+1/r + 1/p. Then

b
By? < Lyg.

We close the paper with a direct consequence of the previous embeddings

and [9, Corollary 3.6].

COROLLARY 4.5. Assume that either

1 1 1
0<p<oo,0<r<qg<oo,b+1/r>0,8=b+-+——r" ——

T max{p,q} ¢
or

1<g<p<oo, 0<r<oo, r<gq, b+1/r>0, pf=b+-+-—-.
r P q
If 6 < B then the embedding
BYY < Ly q(log L)s

18 compact.
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