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Abstract. Let T : C1(R)→ C(R) be an operator satisfying the “chain rule inequal-
ity”

T (f ◦ g) ≤ (Tf) ◦ g · Tg, f, g ∈ C1(R).

Imposing a weak continuity and a non-degeneracy condition on T , we determine the form
of all maps T satisfying this inequality together with T (− Id)(0) < 0. They have the form

Tf =

{
(H ◦ f/H)f ′p, f ′ ≥ 0,

−A(H ◦ f/H)|f ′|p, f ′ < 0,

with p > 0, H ∈ C(R), A ≥ 1. For A = 1, these are just the solutions of the chain
rule operator equation. To prove this, we characterize the submultiplicative, measurable
functions K on R which are continuous at 0 and 1 and satisfy K(−1) < 0 < K(1). Any
such map K has the form

K(α) =

{
αp, α ≥ 0,

−A|α|p, α < 0,

with A ≥ 1 and p > 0. Corresponding statements hold in the supermultiplicative case
with 0 < A ≤ 1.

1. Introduction and results. Let S : C1(R) → C(R) be an operator
satisfying the “chain rule”

(1.1) S(f ◦ g) = (Sf) ◦ g · Sg, f, g ∈ C1(R).

It was shown in [AKM] that if S is non-degenerate and if the image of S
contains functions with negative values, then S has the form

(1.2) Sf =
H ◦ f
H
|f ′|p sgn f ′

where H ∈ C(R), H > 0 and p > 0 are suitably chosen. A priori, S is not
assumed to be a continuous operator, though a posteriori this is a conse-
quence of formula (1.2). Letting G be an antiderivative of H1/p > 0, G is a
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strictly monotone C1-function with

Sf =

∣∣∣∣d(G ◦ f)

dG

∣∣∣∣p sgn

(
d(G ◦ f)

dG

)
.

In this sense, the solutions S of (1.1) are pth powers of some transformed
derivative. Equation (1.1) is remarkably rigid and stable as shown in [KM]:
The solutions of the more general equation

V (f ◦ g) = (S1f) ◦ g · S2g, f, g ∈ C1(R),

for operators V, S1, S2 : C1(R) → C(R) under some weak non-degeneracy
conditions are just natural modifications of the solutions S of (1.1): there
are continuous functions c1, c2 ∈ C(R) such that

V f = c1 ◦ f · c2 · Sf, S1f = c1 ◦ f · Sf, S2f = c2 · Sf.

Clearly, these are solutions of the more general equation, but there are no
others. So (1.1) is rigid. If the chain rule is perturbed by a function B of
(x, (f ◦ g)(x), g(x)), i.e.

S(f ◦ g) = Sf ◦ g · Sg +B(·, f ◦ g(·), g(·)),

then under weak conditions on S, we have B = 0, i.e. equation (1.1) is
superstable.

In this paper we study another weakening of the chain rule equation
showing again a very stable behavior. We replace the equality requirement by
an inequality requirement: we study operators T : C1(R)→ C(R) satisfying
the chain rule inequality

(1.3) T (f ◦ g) ≤ (Tf) ◦ g · Tg, f, g ∈ C1(R),

and determine its solutions under mild continuity and non-degeneracy as-
sumptions on T , if the image of T also contains functions with negative val-
ues. In fact, solutions of the operator inequality (1.3) are bounded by suitable
solutions of the operator equation (1.1). This is a similar phenomenon to
the one in Gronwall’s inequality [G] in its (weaker) differential form, where
any solution of a differential inequality is bounded by a solution of the corre-
sponding differential equation. Again the form of solutions T of (1.3) is very
similar to those for (1.1), up to some constant A ≥ 1 in the case of f ′ < 0.
This again exhibits a very stable behavior of the chain rule in operator form.

The dependence on the derivative f ′ in (1.2), and also for solutions
of (1.3), is of power type; to prove this, we need a suitable result on sub-
multiplicative functions on R (not only on R+) which seems to be of some
independent interest. Let I ⊂ R be an open interval. Recall that K : I → R
is submultiplicative if

(1.4) K(αβ) ≤ K(α)K(β), α, β ∈ I.
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Theorem 1.1. Let K : R → R be a measurable and submultiplicative
function which is continuous at 0 and at 1. Assume further that K(−1) <
0 < K(1). Then there exists p > 0 such that

K(α) =

{
αp, α ≥ 0,

−A|α|p, α < 0.

Here K(−1) ≤ −1.

Examples. The measurability assumption is necessary since there are
lots of non-measurable submultiplicative functions: Let f : R → R be a
non-measurable additive function and define

K(α) =

{
exp(f(lnα)), α ≥ 0,

−A exp(f(ln |α|)), α < 0,

with A > 1 and K(0) := 0. Then K is non-measurable and submultiplica-
tive with K(−1) < 0 < K(1). By a well-known result of Banach [B] and
Sierpiński [S], measurable additive functions are linear, in which case this
example would have the form given in Theorem 1.1.

Also, for any d > 0, c ≥ 0, c 6= d,

K(α) =


1, α = 1,

−c, α = 0,

−d, α /∈ {0, 1},
is measurable and submultiplicative with K(−1) < 0 < K(1), but continu-
ous neither at 0 nor at 1.

There are numerous measurable submultiplicative functions from R≥0
to R≥0 different from powers αp which are continuous at 0 and 1 (cf. Re-
mark (b) after Theorem 1.2). However, they cannot be extended to mea-
surable submultiplicative functions on R which also attain negative values.
Only measurable multiplicative maps on R≥0 extend to such maps on R.

Remark. A corresponding result holds for supermultiplicative functions,
i.e. with K(αβ) ≥ K(α)K(β), under the same assumptions. The result is
formally the same, except that now 0 < A ≤ 1. The proof is similar.

Studying the “chain rule operator inequality” (1.3), we will impose a
non-degeneracy and a mild continuity condition on T .

Definition 1.1. An operator T : C1(R) → C(R) is non-degenerate
provided that for any open interval I ⊂ R and any x ∈ I there exists
g ∈ C1(R) with g(x) = x, Im(g) ⊂ I and (Tg)(x) > 1.

Definition 1.2. An operator T : C1(R)→ C(R) is pointwise continuous
if for any sequence of functions fn ∈ C1(R) and f ∈ C1(R) with fn → f
and f ′n → f ′ uniformly on all compact subsets of R, we have the pointwise
convergence limn→∞(Tfn)(x) = (Tf)(x) for all x ∈ R.
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The continuity assumption on T is rather weak, and the non-degeneracy
assumption just means that the image of T should contain sufficiently many
functions; it is a very weak surjectivity type assumption. Our main result
concerning the chain rule inequality then states:

Theorem 1.2. Let T : C1(R) → C(R) be an operator such that the
chain rule inequality holds:

(1.3) T (f ◦ g) ≤ (Tf) ◦ g · Tg, f, g ∈ C1(R).

Assume in addition that T is non-degenerate and pointwise continuous. Sup-
pose also that there exists x ∈ R such that

T (− Id)(x) < 0.

Then there exists a continuous function H ∈ C(R), H > 0, a number p > 0
and some A ≥ 1 such that T has the form

(1.5) Tf =

{
(H ◦ f/H)f ′p, f ′ ≥ 0,

−A(H ◦ f/H)|f ′|p, f ′ < 0.

Remarks. (a) Equation (1.5) means that Tf ≤ Sf with Sf as given
by (1.2), i.e. any solution of the chain rule inequality is bounded from above
by a corresponding solution of the chain rule equality (1.1) for which A = 1.
Note that −A = T (− Id)(0) ≤ −1 and hence T (− Id)(0) = −1 implies that
T = S. Further, T (− Id)(x) < 0 for all x ∈ R. With (1.2) and (1.5) we
have precise formulas for all solutions of (1.1) and (1.3) under the assumed
conditions.

(b) The condition T (− Id)(x) < 0 guarantees that there are sufficiently
many negative functions in the range of T . If it is violated, there are many
solutions of (1.3) different from (1.5) which only allow for non-negative func-
tions in the range of T . Examples of non-negative solutions of (1.3) can be
given in the form

Tf(x) = F (x, f(x), |f ′(x)|),
where F : R2 × R+ → R+ is a continuous function satisfying

(1.6) F (x, z, αβ) ≤ F (y, z, α)F (x, y, β)

for all x, y, z ∈ R and α, β ≥ 0. One may take e.g.

F (y, z, α) = exp(d(y, z)) ·max(αp, αq),

or

F (y, z, α) = exp(d(y, z)) + max(αp, αq)

where 0 < p, q and d is either a metric on R or d(y, z) = z−y. Moreover, given
any continuous submultiplicative function f : R+ → R+ and a continuous
function F : R2 × R+ → R+ satisfying (1.6), the composition f ◦ F will
also satisfy (1.6). By [GMP], for any fixed c ≥ e the function f given by
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f(x) = ln(c+x) is submultiplicative and monotone on R+. The same is true
for

f(x) = max(xp, xq) ln(c+ x)γ , x ≥ 0,

where 0 < p, q, c ≥ e and γ ≥ 0. This yields many examples of operators
T satisfying (1.3) but not T (− Id)(x) < 0 which are not of the form given
by (1.5).

(c) Note that the operator T in Theorem 1.2 is not assumed to be linear.
For the solution operator S of the chain rule equation (1.1) in [AKM] no
continuity assumption is needed. For the chain rule inequality, we have less
information. In our proof, we need a weak continuity assumption instead.

(d) A similar result is valid for the super chain rule inequality

T (f ◦ g) ≥ (Tf) ◦ g · Tg, f, g ∈ C1(R),

under the same assumptions as in Theorem 1.2 except for a slightly stronger
condition of non-degeneracy: In addition we require that for any open inter-
val I ⊂ R and any x ∈ I there exists h ∈ C1(R) with h(x) = x, Im(h) ⊂ I
and (Th)(x) < 0. In the case of the sub chain rule inequality (1.3), the latter
fact can be proved from the assumptions (see Lemma 3.2). The solutions
of the super chain rule inequality have the same form as (1.5) except that
now 0 < A ≤ 1. The proof is similar to the one of Theorem 1.2, except that
Lemma 3.2 is replaced by the stronger assumption of non-degeneracy.

(e) The assumption in Theorem 1.2 on T (− Id)(x) < 0 for some x will
be used only in Lemma 3.2 below.

2. Submultiplicative functions on R. To prove Theorem 1.1, we first
collect a few simple facts on submultiplicative and subadditive functions.

Lemma 2.1. Let K : R>0 → R be submultiplicative with K(1) > 0.
Assume that K is continuous at 1. Then K(1) ≥ 1 and K|R>0 > 0.

Proof. Since 0 < K(1) ≤ K(1)2, we have K(1) ≥ 1. Since K is con-
tinuous at 1, there is ε > 0 such that K|[1/(1+ε),1+ε] > 0. For any θ in

[1/(1+ε), 1+ε], K(θ) > 0 and K(1/θ) > 0; hence 0 < K(θ) ≤ K(1/θ)K(θ2)
implies that K(θ2) > 0, i.e. K|[1/(1+ε)2,(1+ε)2] > 0. Inductively we conclude
that K|R>0 > 0 since R>0 =

⋃
n∈N[1/(1 + ε)n, (1 + ε)n].

Lemma 2.2. Let K : R→ R be submultiplicative with K(−1)< 0<K(1).
Assume that K is continuous at 0 and 1. Then K(0) = 0 and there is ε > 0
such that 0 < K(x) < 1 for all x ∈ (0, ε), and 1 < K(x) < ∞ for all
x ∈ (1/ε,∞). Further, K|R>0 > 0 > K|R<0.

Proof. The inequality K(0) =K((−1) ·0)≤K(−1)K(0) with K(−1)< 0
shows that K(0) > 0 is impossible. Hence K(0) ≤ 0. By Lemma 2.1,
K|R>0 > 0. Since K is assumed to be continuous at 0, we conclude that
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K(0) = 0 and hence there is ε > 0 with 0 < K|(0,ε) < 1. But for any θ > 0,
1 ≤ K(1) ≤ K(θ)K(1/θ), which implies that K|(1/ε,∞) > 1. Further, for any
θ > 0, K(−θ) ≤ K(−1)K(θ) < 0, i.e. K|R<0 < 0.

Remark. Instead of K(−1) < 0, it suffices to assume that K(−t0) < 0
for some t0 > 0.

A function f : R→ R is subadditive provided that

f(s+ t) ≤ f(s) + f(t), s, t ∈ R.
We recall a few well-known facts on subadditive functions in the following
lemma (cf. Hille–Phillips [HP, Chapter VII]):

Lemma 2.3. Assume f : R → R is measurable and subadditive. Define
p := supt<0 f(t)/t and q := inft>0 f(t)/t. Then f is bounded on compact
intervals, −∞ < p ≤ q < ∞ and f(0) ≥ 0. Moreover, the limits p =
limt→−∞ f(t)/t and q = limt→∞ f(t)/t both exist. If additionally f(0) = 0
and f is continuous at 0, then f is continuous on R.

As a consequence of Lemma 2.3, for any t > 0,

f(t) = qt+ b(t), b(t) ≥ 0, lim
t→∞

b(t)

t
= 0

and for any t < 0,

f(t) = pt+ a(t), a(t) ≥ 0, lim
t→−∞

a(t)

t
= 0.

If f ≥ 0 near ∞ and f ≤ 0 near −∞, Lemma 2.3 yields 0 ≤ p ≤ q <∞.

Proof of Theorem 1.1. (a) Assume that K : R → R is measurable,
submultiplicative, continuous at 0 and 1, and K(−1) < 0 < K(1). By
Lemma 2.2, K(0) = 0, K|R>0 > 0 and 0 < K < 1 in (0, ε) and 1 < K <∞
in (1/ε,∞) for a suitable 0 < ε < 1. Let f(t) := lnK(exp(t)), t ∈ R. Then
f is measurable and subadditive, and by Lemma 2.3 we have

−∞ < p := sup
t<0

f(t)

t
= lim

t→−∞

f(t)

t
≤ q := inf

t>0

f(t)

t
= lim

t→∞

f(t)

t
<∞.

Since f is negative near −∞ and positive near ∞, we have 0 ≤ p ≤ q <∞
with

f(t) =

{
pt+ a(t), t < 0,

qt+ b(t), t > 0,

where a(t) ≥ 0 for t < 0, b(t) ≥ 0 for t > 0 and limt→−∞ a(t)/t =
limt→∞ b(t)/t = 0. This means that for 0 < α < 1,

K(α) = exp(f(ln(α))) = αp exp(a(ln(α))) ≥ αp,
and for 1 < α <∞,

K(α) = exp(f(ln(α))) = αq exp(b(ln(α))) ≥ αq.
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We note that

lim
α→0

αε
K(α)

αp
= lim

α→∞
α−ε

K(α)

αq
= 0 for any ε > 0,

although we do not need it.
(b) We claim that p = q > 0. To prove this, we use the fact that K|R<0 <

0 < K|R>0 by Lemma 2.2. Hence for all y < 0 < x, by submultiplicativity,

K(xy) ≤ K(x)K(y), |K(xy)| ≥ |K(y)|K(x).

Since K(1) ≥ 1 and 1 ≤ K((−1)2) ≤ K(−1)2, we have K(−1) ≤ −1.
Therefore

K(−1) ≤ K(1)K(−1), |K(−1)| ≥ |K(−1)|K(1),

implying that K(1) ≤ 1, i.e. K(1) = 1. Thus f(0) = 0. Fix t < 0 and choose
y < −1 and 0 < x < 1 with t = xy. Then by submultiplicativity,

K(t) = K((−1)x|y|) ≤ K(−1)K(x)K(|y|),
|K(t)| ≥ |K(−1)|K(x)K(|y|) ≥ xp|y|q = |t|qxp−q.

Assuming p 6= q, i.e. p < q, and letting x tend to 0 (and hence y to −∞)
would give the contradiction that |K(t)| = ∞. Hence 0 ≤ p = q < ∞. In
fact, 0 < p = q since K is continuous at 0 with K(0) = 0 and K(x) ≥ xp

for 0 < x < 1.
(c) Now let g(t) := ln |K(− exp(t))| for t ∈ R. Then for any s, t ∈ R,

g(s+ t) = ln |K(− exp(s) exp(t))|(2.1)

≥ ln |K(− exp(s))|+ lnK(exp(t))

= g(s) + f(t) = g(s) + pt+ a(t)

with a(t) ≥ 0 for all t ∈ R and limt→±∞ a(t)/t = 0. For t > 0, the function a
was called b before. Since f(0) = 0, we have a(0) = 0. Setting s = 0 in (2.1)
and t = −s in (2.1) and then renaming s as t yields

g(t) ≥ g(0) + pt+ a(t), g(0) ≥ g(t)− pt+ a(−t),
hence

g(0) + pt+ a(t) ≤ g(t) ≤ g(0) + pt− a(−t).
Since a ≥ 0 on R, this implies that a = 0 on R and g(t) = g(0) + pt for all
t ∈ R. Also f(t) = pt for all t ∈ R. Therefore for all β < 0 < α,

K(α) = αp exp(a(ln(α))) = αp, |K(β)| = exp(g(ln(|β|))) = exp(g(0))|β|p.
Hence exp(g(0)) = |K(−1)| ≥ 1, i.e. g(0) ≥ 0. Thus K(β) = K(−1)|β|p,
proving Theorem 1.1.

3. Localization. We will now show that the operator T in Theorem 1.2
is locally defined, more precisely (Tf)(x) only depends on x, f(x) and f ′(x).
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Proposition 3.1. Let T : C1(R)→ C(R) be non-degenerate, pointwise
continuous and satisfy the chain rule inequality

(3.1) T (f ◦ g) ≤ (Tf) ◦ g · Tg, f, g ∈ C1(R).

Assume also that there is x0 ∈ R such that T (− Id)(x0) < 0. Then there is
a function F : R3 → R such that for all f ∈ C1(R) and all x ∈ R,

(Tf)(x) = F (x, f(x), f ′(x)).

We first strengthen the condition of non-degeneracy.

Lemma 3.2. Under the assumptions of Proposition 3.1, for any open
interval I ⊂ R and for any x ∈ I there exists g ∈ C1(R) with g(x) = x and
Im(g) ⊂ I such that (Tg)(x) < 0.

Recall that non-degeneracy required the existence of a similar function
g but with (Tg)(x) > 1.

Proof of Lemma 3.2. (a) By (3.1), T (Id)(x) ≤ T (Id)(x)2 for any x ∈ R.
Hence T (Id)(x)≥ 1 or T (Id)(x)≤ 0. If there were x0 ∈ R with T (Id)(x0)≤ 0,
use the fact that T is non-degenerate to find g ∈ C1(R) with g(x0) = x0
and (Tg)(x0) > 1. Then

1 ≤ (Tg)(x0) = T (g ◦ Id)(x0) ≤ (Tg)(x0)T (Id)(x0) ≤ 0

yields a contradiction. Hence T (Id)(x) ≥ 1 for all x ∈ R.

(b) Similarly, T (− Id)(x) < 0 for all x ∈ R: Since

1 ≤ T (Id)(x) = T ((− Id)2)(x) ≤ T (− Id)(−x)T (− Id)(x),

we have T (− Id)(x) 6= 0 for all x ∈ R. By assumption, there is x0 ∈ R with
T (− Id)(x0) < 0. Hence T (− Id)(x) < 0 since else by the continuity of the
function T (− Id), there would be y ∈ R with T (− Id)(y) = 0, which we just
showed to be impossible.

(c) Take any open interval I ⊂ R and x1 ∈ I. Then there is ε > 0
such that Jε := (x1 − ε, x1 + ε) ⊂ I. Consider J̃ := J − {x1} = (−ε, ε).
By non-degeneracy of T , there is a function f ∈ C1(R) with f(0) = 0,
Im(f) ⊂ J̃ and (Tf)(0) > 1. Now

T (−f)(0) = T ((− Id) ◦ f)(0) ≤ T (− Id)(0)(Tf)(0) < 0

and Im(−f) ⊂ J̃ since Im(f) ⊂ J̃ and J̃ = −J̃ . We transport −f back
to J by conjugation, using the continuity assumption on T . For y ∈ R, let
Sy := Id + y ∈ C1(R) denote the shift by y. Since for yn → y, Syn → Sy
uniformly on compact sets, we conclude that T (Syn)(x)→ T (Sy)(x) for all
x ∈ R. Therefore T (Sy)(x) depends continuously on y for any fixed x. Since

1 ≤ T (Id)(x1) ≤ T (Sx1)(0)T (S−x1)(x1),

we get T (Sx1)(0) 6= 0. Using that T (S0)(0) = T (Id)(0) ≥ 1 > 0, the conti-
nuity of T (Sy)(0) in y implies that T (Sx1)(0) > 0 and T (S−x1)(x1) > 0. Let
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g := Sx1 ◦ (−f) ◦ S−x1 . Then g ∈ C1(R), g(x1) = x1, Im(g) ⊂ J ⊂ I and by
submultiplicativity,

(Tg)(x1) ≤ T (Sx1)((−f) ◦ S−x1(x1))T (−f)(S−x1(x1))T (S−x1)(x1)

= T (Sx1)(0)T (−f)(0)T (S−x1)(x1) < 0,

since T (−f)(0) < 0 and T (Sx1)(0) > 0, T (S−x1)(x1) > 0. Hence g satisfies
the assertions of Lemma 3.2.

Remark. The argument in (b) also shows that T (− Id)(0) ≤ −1.

We next show that T is localized on intervals.

Lemma 3.3. Under the assumptions of Proposition 3.1, for any open
interval I ⊂ R we have:

(a) Let c ∈ R and f ∈ C1(R) with f |I = c. Then Tf |I = 0.
(b) Let f ∈ C1(R) with f |I = Id|I . Then Tf |I = 1.
(c) Take f1, f2 ∈ C1(R) with f1|I = f2|I and assume that f2 is invert-

ible. Then Tf1|I ≤ Tf2|I . Therefore, if f1 is also invertible, then
Tf1|I = Tf2|I .

Proof. (a) For the constant function c, c◦g = c for any g ∈ C1(R), hence

Tc(x) ≤ Tc(g(x))Tg(x) for any x ∈ I.

By non-degeneracy of T and Lemma 3.2, we find g1, g2 ∈ C1(R) with
gj(x) = x, Im(gj) ⊂ I (j = 1, 2) and (Tg1)(x) > 1, (Tg2)(x) < 0. Then
Tc(x) ≤ Tc(x)Tgi(x). Assuming Tc(x) > 0, we get Tc(x) < 0 by apply-
ing g2. Assuming Tc(x) < 0, and applying g1, we find

|Tc(x)| ≥ |Tc(x)| |Tg1(x)| > |Tc(x)|.

Therefore Tc(x) = 0 for all x ∈ I.

Now assume that f ∈ C1(R) satisfies f |I = c. Choose g1, g2 as before.
Then f ◦gj = c (j = 1, 2) and hence, by what we just showed, for x ∈ I, 0 =
Tc(x) ≤ Tf(x)Tgj(x), yielding Tf(x) = 0 since Tg1(x) > 0 and Tg2(x) < 0.
Thus Tf |I = 0.

(b) Assume that f ∈ C1(R) satisfies f |I = Id|I . Let x ∈ I and choose
again g1, g2 ∈ C1(R) with gj(x) = x, Im(gj) ⊂ I (j = 1, 2) with Tg1(x) > 1
and Tg2(x) < 0. Then f ◦ gj = gj for j = 1, 2 and

Tgj(x) = T (f ◦ gj)(x) ≤ Tf(x)Tgj(x).

This inequality for g1 yields Tf(x) ≥ 1, and for g2 we get |Tg2(x)| ≥
Tf(x)|Tg2(x)|, i.e. Tf(x) ≤ 1. Hence Tf(x) = 1, Tf |I = 1.

(c) Assume that f1|I = f2|I and that f2 is invertible. Let g := f−12 ◦ f1.
Then g ∈ C1(R) with f1 = f2 ◦ g, and since f1|I = f2|I , we have g|I = Id|I .
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By (b), Tg|I = 1. Hence for x ∈ I, g(x) = x and

Tf1(x) = T (f2 ◦ g)(x) ≤ Tf2(x)Tg(x) = Tf2(x).

Therefore Tf1|I ≤ Tf2|I . If f1 is invertible as well, clearly Tf1|I = Tf2|I .

Proof of Proposition 3.1. (i) Let C := {f ∈ C1(R) | f is invertible and
f ′(x) 6= 0 for all x ∈ R}. Fix any x0 ∈ R. For f ∈ C, consider the tangent
line at x0,

g(x) := f(x0) + f ′(x0)(x− x0), x ∈ R,

and set

h(x) :=

{
f(x), x ≤ x0,
g(x), x > x0.

By definition, g and h are C1(R)-functions belonging to C. Let I− :=
(−∞, x0) and I+ := (x0,∞). Then f |I− = h|I− and h|I+ = g|I+ . By
Lemma 3.3, Tf |I− = Th|I− and Th|I+ = Tg|I+ . Since Tf , Th and Tg are

continuous functions and {x0} = I−∩I+, we get Tf(x0) = Th(x0) = Tg(x0).
However, g and therefore also Tg(x0) only depend on x0, f(x0) and f ′(x0).
Therefore there exists a function F : R2 × (R \ {0}) → R such that for all
f ∈ C and all x0 ∈ R,

Tf(x0) = F (x0, f(x0), f
′(x0)).

(ii) For f ∈ C1(R), let I := (y0, y1) be an interval where f is strictly
increasing with f ′(x) > 0 for any x ∈ I and f ′(y0) = 0, f ′(y1) = 0 (or
y0 = −∞, f ′(y1) = 0 or f ′(y0) = 0, y1 = ∞, with obvious modifications in
the following). For sufficiently small ε0 > 0, f ′(y0 + ε) > 0 and f ′(y1− ε) > 0
for any 0 < ε ≤ ε0. Define f̃ ∈ C1(R) by

f̃(x) =


f(y0), x ≤ y0,
f(x), x ∈ I,

f(y1), x ≥ y1.

Then f̃ ′(y0) = f̃ ′(y1) = 0 and f̃ is the limit of some functions f̃ε ∈ C in the

sense that f̃ε → f̃ and f̃ ′ε → f̃ ′ uniformly on compact subsets of R as ε→ 0.
One may choose e.g.

f̃ε(x) =


f(y0 + ε) + f ′(y0 + ε)(x− (y0 + ε)), x ≤ y0 + ε,

f(x), x ∈ (y0 + ε, y1 − ε),
f(y1 − ε) + f ′(y1 − ε)(x− (y1 − ε)), x ≥ y1 − ε.

Note that f̃ε ∈ C for any 0 < ε ≤ ε0 since f̃ε is invertible with f̃ ′ε(x) > 0 for
all x ∈ R. By part (i), for any x ∈ (y0+ε, y1−ε), T f̃ε(x) = F (x, f(x), f ′(x)),
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since for these x, f̃ε(x) = f(x) and f̃ ′ε(x) = f ′(x). By the continuity assump-
tion on T , we have

T f̃(x) = lim
ε→0

T f̃ε(x) = F (x, f(x), f ′(x))

for all x ∈ (y0, y1). Since f̃ε ∈ C is invertible, by Lemma 3.3(c) we have for
any x ∈ Iε := (y0 + ε, y1 − ε) with f |Iε = f̃ε|Iε ,
(3.2) Tf(x) ≤ T f̃ε(x) = T f̃(x) = F (x, f(x), f ′(x)).

(iii) Hence it suffices to show that T f̃(x) ≤ Tf(x) for all x ∈ (y0, y1)
since then Tf(x) = F (x, f(x), f ′(x)) by (3.2). We may write f̃ = f ◦g where

g(x) =


y0, x ≤ y0,
x, x ∈ (y0, y1),

y1, x ≥ y1.
If g were in C1(R), then g|(y0,y1) = Id and Tg|(y0,y1) = 1 so that

T f̃(x) = T (f ◦ g)(x) ≤ Tf(g(x))Tg(x) = Tf(x),

which would prove the claim. However, g /∈ C1(R). Therefore, we approxi-
mate g by functions gε ∈ C1(R). Let

gε(x) =



y0 + ε/2, x < y0,

y0 + (ε2 + (x− y0)2)/(2ε), y0 ≤ x ≤ y0 + ε,

x, y0 + ε ≤ x ≤ y1 − ε,
y1 − (ε2 + (y1 − x)2)/(2ε), y1 − ε ≤ x ≤ y1,
y1 − ε/2, x ≥ y1.

Then gε(y1) = y1 − ε/2, g′ε(y1) = 0, gε(y1 − ε) = y1 − ε, g′ε(y1 − ε) = 1
and similar equations hold for y0 and y0 + ε so that gε ∈ C1(R). Note that
f ◦ gε → f̃ , (f ◦ gε)′ → f̃ ′ uniformly on compact sets of R, with f ◦ gε,
f̃ ∈ C1(R). One has g′ε = 1 in (y0 + ε, y1 − ε) and 0 ≤ g′ε ≤ 1 in (y1 − ε, y1)
and g′ε = 0 in (y1,∞). As gε|Iε = Id|Iε where Iε = (y0 + ε, y1 − ε), we have
Tgε|Iε = 1 by Lemma 3.3(b). By the operator inequality (3.1), for x ∈ Iε,

T (f ◦ gε)(x) ≤ Tf(gε(x))Tgε(x) = Tf(x).

By the continuity assumption on T , for x ∈ (y0, y1),

T f̃(x) = lim
ε→0

T (f ◦ gε)(x) ≤ Tf(x).

Together with (3.2) we get

(3.3) Tf(x) = F (x, f(x), f ′(x)), x ∈ (y0, y1).

(iv) We see that formula (3.3) holds on all intervals of monotonicity
of f ∈ C1(R) with non-vanishing derivative. On intervals J where f is
constant, Tf |J = 0 by Lemma 3.3(a), and F (x, y, 0) = 0 is a result of
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continuity arguments like limε→0 T f̃ε(x) = T f̃(x) for boundary points of J
together with Tf |J = 0. Equation (3.3) thus holds on J , meaning 0 = 0
there. Similarly, if x ∈ R is a limit point of end points xn of intervals of
monotonicity of f where f ′(xn) = 0 and Tf(xn) = 0, we have f ′(x) = 0 and
Tf(x) = 0 by continuity of f ′ and Tf . With F (x, y, 0) = 0, equation (3.3)
also holds for those points x, stating that 0 = 0 there. Hence (3.3) holds for
all f ∈ C1(R) and all x ∈ R.

4. Proof of Theorem 1.2. We now prove Theorem 1.2, giving the form
of the solutions of the chain rule inequality under the assumptions stated
there. By Proposition 3.1, there is F : R3 → R such that for all f ∈ C1(R)
and x ∈ R,

Tf(x) = F (x, f(x), f ′(x)).

(a) In the case of the chain rule operator equation (1.1), this yields a
functional equation for F . Functional equations have been studied inten-
sively (cf. Aczél [A]). In the case of the chain rule operator inequality (1.3),
the localization of Proposition 3.1 yields the following equivalent functional
inequality for F ,

(4.1) F (x, z, αβ) ≤ F (y, z, α)F (x, y, β)

for all x, y, z, α, β ∈ R. Just choose f, g ∈ C1(R) with g(x) = y, f(y) = z
and g′(x) = β, f ′(y) = α. The equations Tc = 0, T (Id) = 1 mean that

(4.2) F (x, y, 0) = 0, F (x, x, 1) = 1.

By (4.1) and (4.2),

1 = F (x, x, 1) ≤ F (y, x, 1)F (x, y, 1),

hence F (x, y, 1) 6= 0 for all x, y ∈ R. In fact, F (x, y, 1) > 0 since F (x, y, 1) =
T (Sy−x)(x) depends continuously on y and F (x, x, 1) = 1 > 0. Here Sy−x is
the shift by y − x (cf. the arguments in the proof of Lemma 3.2).

By the remark after the proof of Lemma 3.2, T (− Id)(0) < 0, which
means F (0, 0,−1) < 0. Actually, for any x ∈ R,

F (x, x,−1) ≤ F (0, x, 1)F (0, 0,−1)F (x, 0, 1) < 0.

Fix x0 ∈ R and let K(α) := F (x0, x0, α). By (4.1) for x = y = z = x0,
K is submultiplicative. Further K(−1) < 0 < K(1) and K(0) = 0. As-
sume that αn, α ∈ R satisfy limn→∞ αn = α. Consider the functions fn, f
defined by fn(x) := αn(x − x0) + x0 and f(x) := α(x − x0) + x0. Then
fn(x0) = f(x0) = x0 and f ′n(x) = αn → α = f ′(x) uniformly on R and
fn → f uniformly on compacta. Hence by the continuity assumption on T ,
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we have Tfn(x0)→ Tf(x0), which means that

K(αn) = F (x0, x0, αn) = Tfn(x0)→ Tf(x0) = F (x0, x0, α) = K(α).

Therefore K is continuous on R. Theorem 1.1 implies that there is p(x0) > 0
such that

(4.3) K(α) =

{
αp(x0), α > 0,

F (x0, x0,−1)|α|p(x0), α < 0.

For any x, y, z ∈ R,

F (x, x, α) ≤ F (z, x, 1)F (z, z, α)F (x, z, 1) = d(x, z)F (z, z, α)

where d(x, z) := F (z, x, 1)F (x, z, 1) ≥ 1 is a number independent of α.
Fixing x 6= z, for any α > 0 we have αp(x)−p(z) ≤ d(x, z). If p(x) 6= p(z),
we would get a contradiction either for α → 0 or for α → ∞. Hence the
exponent p := p(x) is independent of x ∈ R.

(b) We now study F (x, z, α) for x 6= z. By (4.1) and (4.3) for α > 0 and
β ∈ R,

F (x, z, αβ) ≤ F (x, z, β)F (x, x, α) = αpF (x, z, β)

and

F (x, z, β) ≤ F (x, z, αβ)F

(
x, x,

1

α

)
=

1

αp
F (x, z, αβ).

Therefore

F (x, z, αβ) ≤ αpF (x, z, β) ≤ F (x, z, αβ),

i.e. F (x, z, αβ) = αpF (x, z, β). Setting β = 1 and β = −1, we find that

(4.4) F (x, z, α) =

{
F (x, z, 1)αp, α > 0,

F (x, z,−1)|α|p, α < 0.

We know that F (x, z, 1) > 0. On the other hand,

F (x, z,−1) ≤ F (0, z, 1)F (0, 0,−1)F (x, 0, 1) < 0.

Let c±(x, z) := F (x, z,±1) and set a(x, z) := |c−(x, z)|/c+(x, z). Since

c−(x, z) = F (x, z,−1) ≤ F (x, z, 1)F (x, x,−1) ≤ −F (x, z, 1) = −c+(x, z),

using F (x, x,−1) ≤ −1, we have a(x, z) ≥ 1 for all x, z,∈ R. Choose α, β ∈
{1,−1} in the functional inequality (4.1) to find

c+(x, z) ≤ c+(y, z)c+(x, y) (α = 1, β = 1),

c−(x, z) ≤ c−(y, z)c+(x, y) (α = −1, β = 1),

c−(x, z) ≤ c+(y, z)c−(x, y) (α = 1, β = −1).

Using these inequalities, the definition of a, and observing that sgn(c−) =−1,
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we get

(4.5) c+(x, z) max(a(y, z), a(x, y))

≤ c+(y, z)c+(x, y) max(a(y, z), a(x, y))

= max(|c−(y, z)|c+(x, y), c+(y, z)|c−(x, y)|)
≤ |c−(x, z)| = c+(x, z)a(x, z).

Since c+(x, z) > 0, this implies that max(a(y, z), a(x, y)) ≤ a(x, z) for all
x, y, z ∈ R. This yields a(x, y) ≤ a(x, 0) ≤ a(0, 0) and a(0, 0) ≤ a(x, 0) ≤
a(x, y). Therefore a is constant, a(x, y) = a(0, 0) for all x, y ∈ R. Let A :=
a(0, 0) = a(x, z). Then A ≥ 1 and c−(x, z) = −Ac+(x, z). Since we now have
equalities everywhere in (4.5), we conclude that

c+(x, z) = c+(y, z)c+(x, y), x, y ∈ R.

For y = 0, c+(x, z) = c+(0, z)c+(x, 0), 1 = c+(x, x) = c+(0, x)c+(x, 0). Let
H(x) := c+(0, x). Then H > 0 and c+(x, z) = H(z)/H(x). Hence by (4.4)
with F (x, z,±1) = c±(x, z),

F (x, z, α) =

{
(H(z)/H(x))αp, α > 0,

−A(H(z)/H(x))|α|p, α < 0.

Note that H(z) = F (0, z, 1) = T (Sz)(0) depends continuously on z as we
showed in the proof of Lemma 3.2. Together with (3.3) this ends the proof
of Theorem 1.2.
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