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O-minimal version of Whitney’s extension theorem

by

Krzysztof Kurdyka (Le Bourget-du-Lac)
and Wiesław Pawłucki (Kraków)

Abstract. This is a generalized and improved version of our earlier article [Stu-
dia Math. 124 (1997)] on the Whitney extension theorem for subanalytic Cp-Whitney
fields (with p finite). In this new version we consider Whitney fields definable in an ar-
bitrary o-minimal structure on any real closed field R and obtain an extension which
is a Cp-function definable in the same o-minimal structure. The Whitney fields that we
consider are defined on any locally closed definable subset of Rn. In such a way, a local
version of the theorem is included.

Introduction. This paper is a generalized and improved version of our
[KPaw]. Assume that R is any real closed field, and a fixed o-minimal struc-
ture on R is given. Throughout the paper we will be talking about definable
sets and mappings referring to this o-minimal structure. (For fundamen-
tal definitions and results on o-minimal structures the reader is referred to
[vdD] or [C].) The main theorem of our paper is the following version of the
Whitney extension theorem [W]:

Theorem 1. Let E be a definable closed subset of an open definable
subset Ω of Rn, and let p and q be positive integers such that p ≤ q. Let

F (x,X) =
∑
|κ|≤p

1

κ!
F κ(x)Xκ (X = (X1, . . . , Xn))

be a definable Cp-Whitney field on E. (Definability of F means that all F κ are
definable functions.) Then there exists a definable Cp-function f : Ω → R,
Cq on Ω \ E, such that Dκf = F κ on E whenever κ ∈ Nn with |κ| ≤ p.

The method of proof is by explicit construction as in [KPaw]. It is based
on stratifications of definable sets into Λp-regular cells which will be pre-
sented in Section 2, while Section 1 is devoted to some basic facts on Whitney
fields.
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A. Thamrongthanyalak has independently written a paper on Whitney’s
extension theorem in o-minimal structures (see [Th]). Taking into account
some differences both in the approach and the results, we think that our
article may still be of interest and therefore worth publishing.

1. Cp-Whitney fields. In Section 1 we principally follow Glaeser [G].
Let p ∈ N and let A be any subset of Rn. We denote by C(A) the algebra
of continuous functions on A with values in R. A Cp-Whitney field on A is a
polynomial

F (u,X) =
∑
|κ|≤p

1

κ!
F κ(u)Xκ ∈ C(A)[X] = C(A)[X1, . . . , Xn],

which fulfills the following condition:

(1.1) for each c ∈ A and each α ∈ Nn such that |α| ≤ p,

Dα
XF (a, 0)−Dα

XF (b, a− b) = o(|a− b|p−|α|),
when A 3 a→ c and A 3 b→ c,

or equivalently (see [M, Chapter I, Theorem 2.2] or [T, Chapitre IV, Propo-
sition 1.5]),

(1.2) for each c ∈ A,
F (a, x− a)− F (b, x− b) = o(|x− a|p + |x− b|p),

uniformly with respect to x ∈ Rn, when A 3 a→ c and A 3 b→ c.

Remark 1. A C0-Whitney field is simply a continuous function on A.

Remark 2. If p ≥ 1, a polynomial

F (u,X) =
∑
|κ|≤p

1

κ!
F κ(u)Xκ ∈ C(A)[X]

is a Cp-Whitney field on A if and only if

(1.3) for each c ∈ A,

F 0(a)−
∑
|κ|≤p

1

κ!
F κ(b)(a− b)κ = o(|a− b|p),

when A 3 a→ c and A 3 b→ c,

and

(1.4) for any i ∈ {1, . . . , n}, ∂F
∂Xi

is a Cp−1-Whitney field on A.

Remark 3. If F is a Cp-Whitney field on a subset A ⊂ Rn, then its
restriction F |B to a subset B ⊂ A, defined by F |B(u,X) = F (u,X) for any
u ∈ B, is a Cp-Whitney field on B.
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Let πp : C(A)[X]→ C(A)[X] denote the natural projection

πp

(∑
κ

1

κ!
F κXκ

)
=
∑
|κ|≤p

1

κ!
F κXκ

onto the space of polynomials of degree ≤ p.
Remark 4. If F is a Cp-Whitney field on A, where p ≥ 1, then πp−1(F )

is a Cp−1-Whitney field on A, so any Cp-Whitney field defines in a natural
way some Cp−1-Whitney field.

Proposition 1. The set Ep(A) of all Cp-Whitney fields on a subset
A ⊂ Rn with the natural addition and multiplication defined by FG :=
πp(FG) is an R-algebra.

Proof. It is clear that the sum of two Cp-Whitney fields is a Cp-Whitney
field. To check this for the product, using induction on p, take any F,G
in Ep(A). Since

F 0(a)G0(a)− F (b, a− b)G(b, a− b)
= [F 0(a)− F (b, a− b)]G0(a) + F (b, a− b)[G0(a)−G(b, a− b)]
= o(|a− b|p)

when A 3 a → c and A 3 b → c, condition (1.3) is satisfied. On the other
hand, for any i ∈ {1, . . . , n},

∂(FG)

∂Xi
=

∂F

∂Xi
G+ F

∂G

∂Xi

is a Cp−1-Whitney field by induction hypothesis, which proves condition
(1.4).

It is also natural to define the composition of Cp-Whitney fields as follows.
Let F1, . . . , Fm ∈ Ep(A), where A ⊂ Rn, and let H ∈ Ep(B), where B ⊂ Rm
is such that (F 0

1 , . . . , F
0
m)(A) ⊂ B. Put F = (F1, . . . , Fm) and

(H ◦ F )(u,X)

= πp[H(F 0
1 (u), . . . , F

0
m(u), F1(u,X)− F 0

1 (u), . . . , Fm(u,X)− F 0
m(u))],

for any u ∈ A.
Proposition 2. The composition of Cp-Whitney fields defined as above

is a Cp-Whitney field.

Proof. By condition (1.2) for H, we have

H0(F 0
1 (a), . . . , F

0
m(a))

−H(F 0
1 (b), . . . , F

0
m(b), F1(b, a− b)− F 0

1 (b), . . . , Fm(b, a− b)− F 0
m(b))

= o(|(F1(b, a− b)− F 0
1 (b), . . . , Fm(b, a− b)− F 0

m(b))|p) = o(|a− b|p),
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when A 3 a→ c and A 3 b→ c, which gives (1.3). On the other hand,

∂(H ◦ F )
∂Xi

=

m∑
j=1

(∂H
∂Yj
◦ F
)∂Fj
∂Xi

;

hence it is a Cp−1-Whitney field, by induction hypothesis and Proposition 1,
so condition (1.4) is satisfied.

When restricting to definable functions f : U → R and definable map-
pings g = (g1, . . . , gm) : U → Rm, where U is an open subset of Rn, all the
notions and basic results of classical differentiable calculus are valid, at least
for finite differentiability classes. This is so principally because the Mean
Value Theorem holds in this case (see [vdD, Chapter 7]). In particular, we
have the well defined notion of Cp-function and the Taylor formula in the
following version.

Theorem 2. If f : U → R is a definable Cp-function on an open defin-
able subset U of Rn, then the polynomial

Tf(u,X) = T puf(X) :=
∑
|κ|≤p

1

κ!
Dκf(u)Xκ,

called the Taylor field of f , is a Cp-Whitney field on U .

A Cp-Whitney field

F (u,X) =
∑
|κ|≤p

1

κ!
F κ(u)Xκ

on a definable subset A of Rn is called definable if all the functions F κ are
definable. It is clear that the sum, product and composition of definable Cp-
Whitney fields are definable, and the Taylor field of a definable Cp-function
is a definable Cp-Whitney field. We will use the following remark.

Remark 5 (see [G, pp. 87–88]). Let k and n be integers such that 1 ≤
k ≤ n. Let Ω be a definable open subset of Rk treated as a subset of Rn via
the injection Ω 3 v 7→ (v, 0) ∈ Rn. Then every definable Cp-Whitney field

F (v,X) = F (v, V,W ) =
∑

|α|+|β|≤p

1

α!β!
F (α,β)(v)V αW β

on Ω, where α ∈ Nk, β ∈ Nn−k, V = (X1, . . . , Xk) andW = (Xk+1, . . . , Xn),
can be identified with the polynomial

F̃ (v,W ) =
∑
|β|≤p

1

β!
F (0,β)(v)W β,

where, for each β ∈ Nn−k with |β| ≤ p, F (0,β) is a definable Cp−|β|-function
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on Ω such that

(1.5) DαF (0,β) = F (α,β), for each α ∈ Nk with |α| ≤ p− |β|.

2. Λp-regular mappings and Λp-regular cells. In the rest of the
paper all the subsets of spaces Rn (n ∈ N) and mappings between such
subsets will be assumed definable. Therefore, for simplicity we will often
skip the adjective definable.

Let ϕ : Q→ Rl be a Cp-mapping defined on an open subset Q of Rk. We
say that ϕ is a Λp-regular mapping (in Q) if there exists a positive integer C
such that

(2.1) |Dαϕ(y)| ≤ C/dist(y, ∂Q)|α|−1, for α ∈ Nk with 1 ≤ |α| ≤ p.
A subset A of Rk is called quasi-convex if there is a positive integer M

such that for any two points a1, a2 ∈ A there exists a (definable) conti-
nuous arc λ : [0, |a1 − a2|] → A such that λ(0) = a1, λ(|a1 − a2|) = a2
and |λ′(t)| ≤ M for any t ∈ [0, |a1 − a2|] such that λ′(t) exists. (Then λ is
necessarily piecewise C1.)

By the Mean Value Theorem we immediately obtain the following

Remark 6. If ϕ : Q→ Rl is a Λ1-regular mapping and A is any quasi-
convex subset of Q, then ϕ|A is a Lipschitz mapping; consequently, it extends
in a unique way by continuity to A.

We say that two closed subsets K and L of Rm are simply separated if
either K ∩L = ∅ or there is a positive integer N such that dist(u,K ∩L) ≤
N dist(u, L) for each u ∈ K.

The following proposition motivates our interest in Λp-regular mappings.

Proposition 3 (see [KPaw, Proposition 3 and Remark 3]). Let Φ :
Ω → Rn be a Λp-regular mapping defined on an open subset Ω ⊂ Rm and
let A be a closed quasi-convex subset of Ω such that A and ∂Ω are simply
separated. Let B be a subset of Rn such that Φ(A) ⊂ B and let r : B →
[0,+∞) be a function such that

r(x) ≤ C ′ dist(x, Φ(A \A)), for any x ∈ B,
where C ′ is a positive constant. Let

F (x,X) =
∑
|κ|≤p

1

κ!
F κ(x)Xκ

be a Cp-Whitney field on B such that, for each b ∈ Φ(A \ A), F κ(x) =
o(r(x)p−|κ|), when B 3 x→ b and |κ| ≤ p. Put

G(y, Y ) := F ◦ TΦ(y, Y ) =
∑
|σ|≤p

1

σ!
Gσ(y)Y σ, where Y = (Y1, . . . , Ym).
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Then, for each a ∈ A \ A, Gσ(y) = o(r(Φ(x))p−|σ|), when A 3 x → a and
|σ| ≤ p.

Proof. It suffices to repeat the proof of Proposition 3 in [KPaw] (see also
Remark 3 there).

Remark 7. If Ω is quasi-convex, we can take A = Ω in Proposition 3.

Now we recall after [KPaw] (see also [Paw2]) the definition of Λp-regular
cells. We say that S is an open Λp-regular cell in Rn if

(2.2) S is any open interval in R, when n = 1;
(2.3) S = {(x′, xn) : x′ ∈ T, ψ1(x

′) < xn < ψ2(x
′)}, where x′ = (x1,

. . . , xn−1), T is an open Λp-regular cell in Rn−1 and every ψi (i = 1, 2)
is either a Λp-regular function on T with values in R, or identically
equal to −∞, or identically equal to +∞, and ψ1(x

′) < ψ2(x
′), for

each x′ ∈ T , when n > 1.

Remark 8. It follows from Remark 6, by induction on n, that such a
cell S is quasi-convex and if ψi is finite, then it is Lipschitz on T , thus it
admits a continuous extension ψi to T (cf. [Paw1, Proposition 1]).

For any open Λp-regular cell in Rn, one defines, by induction on n, a
sequence ρj : S → [0,+∞] (j = 1, . . . , 2n) of functions associated with the
cell S:

(1) When n = 1 and S = (a1, a2), we set

ρ1(x) =

{
x− a1 if a1 ∈ R,
+∞ if a1 = −∞,

ρ2(x) =

{
a2 − x if a2 ∈ R,
+∞ if a2 = +∞.

(2) When n > 1 and S = {(x′, xn) : x′ ∈ T, ψ1(x
′) < xn < ψ2(x

′)}, let
σj (j = 1, . . . , 2n − 2) be the functions associated with T . We set, for any
x = (x′, xn) ∈ S, ρj(x) = σj(x

′), for j = 1, . . . , 2n− 2, and

ρ2n−1(x) =

{
xn − ψ1(x

′) if ψ1 : T → R,
+∞ if ψ1 ≡ −∞,

ρ2n(x) =

{
ψ2(x

′)− xn if ψ2 : T → R,
+∞ if ψ2 ≡ +∞.

Remark 9 ([KPaw, Lemma 3]). There exists a positive integer K such
that

1

K
min
j
ρj(x) ≤ dist(x, ∂S) ≤ min

j
ρj(x), for each x ∈ S.

(We adopt the convention dist(x, ∅) = +∞.)

Remark 10 ([KPaw, Lemma 4]). Each of the functions ρj which is finite
is Λp-regular on S and Lipschitz on S (with an integral constant).
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Lemma 1 ([KPaw, Lemma 5]). If ρj 6= ±∞, there exists a positive in-
teger C̃ such that |Dα(1/ρj)(x)| ≤ C̃ dist(x, ∂S)−|α|−1, whenever x ∈ S and
|α| ≤ p.

Proof. Put r := ρj . If α ∈ Nn \ {0} and |α| ≤ p, we have

(2.4) Dα(1/r) =

|α|∑
ν=1

( ∑
λ1+···+λν=α
λ1 6=0,...,λν 6=0

aαλ1...λν (D
λ1r) . . . (Dλνr)

)
· r−1−ν ,

where aαλ1...λν is an integer depending only on α, λ1, . . . , λν . The lemma fol-
lows from (2.1) and Remark 9.

Extending the definition of an open Λp-regular cell, we call a subset S of
Rn an m-dimensional Λp-regular cell in Rn, where m ∈ {0, . . . , n−1}, if S =
{(u,w) : u ∈ T , w = Φ(u)}, where u = (x1, . . . , xm), w = (xm+1, . . . , xn), T
is an open Λp-regular cell in Rm and Φ : T → Rn−m is a Λp-regular mapping.

Let us recall that a (definable) Cp-stratification of a (definable) subset
E of Rn is a finite decomposition S of E into (definable) connected Cp-
submanifolds of Rn, called strata, such that, for each S ∈ S, its boundary
in E, i.e. ∂ES := (S \ S) ∩ E, is the union of some strata of dimensions
< dimS. If A1, . . . , Ak, where k ∈ N, are subsets of E, we call a stratification
S compatible with the subsets A1, . . . , Ak if each Aj is a union of some strata.

This is the fundamental theorem on Λp-regular stratifications:

Theorem 3 ([KPaw, Proposition 4]).Given any finite number A1, . . . , Ak
of definable subsets of a definable subset E of Rn, there exists a Cp-stratifi-
cation S of E, compatible with the subsets A1, . . . , Ak and such that every
stratum S ∈ S is a Λp-regular cell in Rn in some linear coordinate system.

Proof. The proof is based on the main result of [K] (formulated there
for subanalytic sets, but automatically generalizable to arbitrary o-minimal
structures), which gives the theorem for the case p = 1, i.e. for Λ1-strati-
fications. Then we have the following.

Proposition 4 ([KPaw, Proposition 1]). Let Φ : Ω → R be a definable
function on an open subset Ω of Rm. Let p ∈ N and p ≥ 1. Then there exists
a closed nowhere dense definable subset Z of Ω such that Φ is Cp on Ω \ Z
and for every open ball K = K(u, r) ⊂ Ω \ Z, with center u and radius r,
we have |DαΦ(u)| ≤ C supK |Φ|/r|α|, for each α ∈ Nm with |α| ≤ p, where
C is a positive integer depending only on m and p.

For the proof of Theorem 3 we need the following immediate corollary to
Proposition 4.

Corollary ([KPaw, Proposition 2]). Let Φ : Ω → R be a definable
C1-function defined on an open subset Ω of Rm and such that |∂Φ/∂xj | ≤M
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on Ω, for j = 1, . . . ,m. Let p ∈ N and p ≥ 1. Then there exists a closed,
definable nowhere dense subset of Ω such that Φ is of class Cp on Ω \ Z
and

|DαΦ(u)| ≤ C(m, p)M dist(u, Z ∪ ∂Ω)1−|α|

whenever u ∈ Ω \ Z, α ∈ Nm, 1 ≤ |α| ≤ p, and where C(m, p) is a positive
integer depending only on m and p.

The proof of Proposition 4 is the same as that of [KPaw, Proposition 1].
Now, to finish the proof of Theorem 3, we use the Corollary to Proposition 4
to refine the Λ1-stratification obtained at the beginning of the proof to a Λp-
stratification, arguing by induction on dimE. For more details, see [KPaw,
proof of Proposition 4].

3. Two lemmas on Cp-functions

Lemma 3 ([KPaw, Lemma 6]). Let Γ be an open subset of Rn, a ∈ Γ
and r : Γ → R. Let g, h : Γ → R be two Cp-functions such that Dκg(x) =
o(r(x)p−|κ|) and Dκh(x) = O(r(x)−|κ|), when x → a, for any κ ∈ Nn with
|κ| ≤ p. Then Dκ(gh)(x) = o(r(x)p−|κ|), when x → a, for any κ ∈ Nn with
|κ| ≤ p.

Proof. Immediate by Leibniz’s formula.

Lemma 4 ([KPaw, Lemma 7]). Let χ : Q → R be a Cp-function on an
open subset Q of Rm (m < n) and r : Q→ (0,+∞). Let c ∈ Q. Assume that
Dαχ(u) = O(r(u)−|α|−1), when u → c, for any α ∈ Nm with |α| ≤ p. Let
ψ : R→ R be any Cp-function. Let Γ be an open subset of Rm×Rn−m = Rn

contained in

{(u,w) ∈ Q×Rn−m : w = (w1, . . . , wn−m), |wi| ≤ Cr(u) (i = 1, . . . , n−m)},

where C is a positive constant. Define g : Γ → R by

g(u,w) = ψ(χ(u)w1) · . . . · ψ(χ(u)wn−m).

Then D(α,β)g(u,w) = O(r(u)−|α|−|β|), when (u,w)→ (c, 0), for any α ∈ Nm
and β ∈ Nn−m such that |α|+ |β| ≤ p.

Proof. This a straightforward calculation. For details, see [KPaw, proof
of Lemma 7].

4. Proof of Theorem 1. Before beginning the proof we introduce the
following two useful definitions. The closure of the set⋃

|κ|≤p

{x ∈ E : F κ(x) 6= 0}
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in Ω will be called the support of the Whitney field F and denoted suppF .
A Cp-Whitney field F on E is called flat on a subset E′ ⊂ E if F κ(x) = 0,
whenever x ∈ E′ and |κ| ≤ p.

We want to prove that there exists a function f : Ω → R as in Theorem 1
and, in addition, of class Cq on Ω \suppF . It will be convenient to formulate
the following more general assertion. If A is a definable closed subset of Ω
such that suppF ⊂ A ⊂ E, then there exists a function f : Ω → R as in
Theorem 1 and, in addition, of class Cq on Ω \ A. We will prove this by
induction on m = dimA. The case m = 0 is easy, so assume that m > 0.
Take a Cq-stratification S of A such that every stratum S ∈ S is a Λq-regular
(thus, Λp-regular) cell in Rn in some linear coordinate system, and every F κ
(|κ| ≤ p) is of class Cq on S.

By induction hypothesis applied to F restricted to E \
⋃
{S ∈ S :

dimS = m}, we get an appropriate extension fo. Replacing now F by
F − Tfo|E, we can assume without loss of generality that F is flat on every
stratum from S of dimension < m. Similarly, using additional induction on
the number of m-dimensional strata in S whose closures cover suppF , we
can assume that suppF is contained in the closure in Ω of just one stratum
S ∈ S and F is flat on its boundary in Ω, i.e. on ∂ΩS = (S \ S) ∩Ω. In the
case m = n, i.e. S is open in Rn, it suffices to define f(x) = F 0(x) for x ∈ S,
and f(x) = 0 for x ∈ Ω \S (Hestenes’ Lemma, [T, p. 80]), so let 1 ≤ m < n.
Then S = {(u, ϕ(u)) : u ∈ T}, where T is an open Λp-regular cell in Rm and
ϕ : T → Rn−m is a Λp-regular mapping.

We will distinguish three cases.

Case I: E = S ∩ Ω = A ⊃ suppF and ϕ ≡ 0, i.e. S = T × 0 and
Rn \Ω ⊂ S \ S = (T \ T )× 0.

In this case set Γ (T ) := {(u,w) ∈ T × Rn−m : |w| < dist(u, ∂T )}.
We shall construct a function f satisfying the conclusion of Theorem 1 and
additionally such that f = 0 on Ω\Γ (T ). Since, by Remark 5, F (as restricted
to S) is the sum of the Cp-Whitney fields

Fβ(u, 0;X) = Fβ(u, 0;U,W ) =
∑

|α|≤p−|β|

1

α!β!
F (α,β)(u)UαW β,

where β ∈ Nn−m, |β| ≤ p, U = (U1, . . . , Um) = (X1, . . . , Xm), W =
(W1, . . . ,Wn−m) = (Xm+1, . . . , Xn), we can assume that F is equal to one
of them, i.e. F (u, 0;X) = Fβ(u, 0;X), for a fixed β.

Let ∆ be the trace of Ω on Rm, i.e. ∆× 0 = Ω ∩ (Rm × 0). Notice that
∂ΩS = ∂∆T × 0. There exists a finite decomposition

T ∩∆ =
⋃
ν

Qν ∪ Z
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such that

(4.1) every Qν is an open Λq-regular cell in Rm in some linear coordinate
system;

(4.2) every Qν is contained in T , while Z is closed in ∆ and dimZ < m,
(4.3) on every Qν all the functions F (α,β) are of class Cq,
and, by Proposition 4,

(4.4) for each γ ∈ Nm such that |γ| ≤ p, we have the estimates

|DγF (α,β)(u)|
≤ C sup{|F (α,β)(v)| : v ∈ Qν , |u− v| < dist(u, ∂Qν)}/dist(u, ∂Qν)|γ|,
for each u ∈ Qν .

Since T × 0 and Rn \Γ (T ) are simply separated, Z× 0 and Ω \Γ (T ) are
locally simply separated in Ω (see [Paw3] for the definition and properties
of simply separated subsets). It follows that the formula

G(x,X) =

{
F (x,X) when x ∈ Z × 0,
0 when x ∈ Ω \ Γ (T ),

defines a definable Cp-Whitney field on (Z × 0)∪ (Ω \ Γ (T )) (see [M, Chap-
ter I, Remark 5.6]). By the induction hypothesis there exists a definable
Cp-extension g : Ω → R of G which is of class Cq outside Z × 0. It suffices to
get an extension for F − T (g)|E instead of that for F . Since Γ (Qν) ⊂ Γ (T )
and Γ (Qν) ∩ Γ (Qµ) ⊂ Z × 0 when ν 6= µ, it is enough to get an extension
of every field

(4.5) F |(Qν ∩∆)× 0− T (g)|(Qν ∩∆)× 0,

for every ν separately.
Fix ν and put Q = Qν . Put

h(u,w) =
1

β!
F (0,β)(u)wβ − g(u,w)

for each (u,w) ∈ T × Rn−m. This is a definable Cp-function, which is Cq on
Ω ∩ (Q×Rn−m). Now we have the following

Lemma 5. Let κ = (ε, θ) ∈ Nm × Nn−m with |κ| ≤ p and let a ∈ ∂∆Q =
(Q \Q) ∩∆. Then

Dκh(u,w) = o(dist(u, ∂Q)p−|κ|)

when Γ (Q) 3 (u,w)→ (a, 0).

Proof. When a ∈ T this is immediate by the Taylor formula , since h is
Cp and p-flat on Z ∩ T ⊃ (∂Q) ∩ T . Suppose now that a ∈ (∂T ) ∩ ∆. We
distinguish two possibilities.

(I) Γ (Q) 3 (u,w)→ (a, 0) and dist(u, ∂Q) < dist(u, ∂T ).
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Let ũ ∈ ∂Q be such that |u − ũ| = dist(u, ∂Q). By the Taylor formula
for Dκh on the line segment L ⊂ Q×Rn−m joining points (u,w) and (ũ, 0)
(we take L without the endpoints), we have

|Dκh(u,w)| ≤
∑

|λ|=p−|κ|

sup
x∈L
|Dκ+λh(x)|

√
|u− ũ|2 + |w|2

|λ|

≤
√
2
p−|κ|

(p+ 1)n sup
x∈L, |ω|=p

|Dωh(x)|dist(u, ∂Q)p−|κ|.

Obviously,
sup

x∈L, |ω|=p
|Dωh(x)| ≤ (∗) + (∗∗),

where

(∗) = sup
x∈L, |ω|=p

∣∣∣∣Dω

(
1

β!
F (0,β)(u)wβ

)
(x)

∣∣∣∣, (∗∗) = sup
x∈L, |ω|=p

|Dωg(x)|.

It is clear that (∗∗) → 0, when (u,w) → (a, 0), because g is p-flat at (a, 0).
Now we will show the same about (∗).

Put ω = (σ, τ). We can assume that τ ≤ β, because otherwise (∗) = 0.
Then

Dω

(
1

β!
F (0,β)(u)wβ

)
=

1

(β − τ)!
DγF (α,β)(u)wβ−τ ,

where σ = α+ γ and |α|+ |β| = p.
Let x = (u∗, w∗) ∈ L. Then, by (4.4),

|DγF (α,β)(u∗)w
β−τ
∗ |

≤ C sup{|F (α,β)(v)| : v ∈ Q, |u∗ − v| < dist(u∗, ∂Q)}|w∗||β|−|τ |

dist(u∗, ∂Q)|γ|

≤ C sup{|F (α,β)(v)| : v ∈ Q, |u∗ − v| < dist(u∗, ∂Q)},

because |w∗| < dist(u∗, ∂Q) and |γ| = |σ|−|α| = p−|τ |−|α| = |β|−|τ |. But
the last tends to 0 when Γ (Q) 3 (u,w)→ (a, 0), since F is p-flat at (a, 0).

(II) Γ (Q) 3 (u,w)→ (a, 0) and dist(u, ∂Q) = dist(u, ∂T ).

By the Taylor formula for g on a line segment L ⊂ Q × Rn−m joining
points (u,w) and (ũ, 0), where ũ ∈ ∂T and |u− ũ| = dist(u, ∂T ), we have

|Dκg(u,w)| ≤
∑

|λ|=p−|κ|

sup
x∈L
|Dκ+λg(x)|

√
|u− ũ|2 + |w|2

|λ|

≤
√
2
p−|κ|

(p+ 1)n sup
x∈L, |ω|=p

|Dωg(x)| dist(u, ∂Q)p−|κ|,
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and observe that
sup

x∈L, |ω|=p
|Dωg(x)| → 0, when Γ (Q) 3 (u,w)→ (a, 0),

since g is p-flat at (a, 0).
Now we have to estimate

Dκ

[
1

β!
F (0,β)(u)wβ

]
.

We can assume that θ ≤ β, because otherwise this is 0. Then

Dκ

[
1

β!
F (0,β)(u)wβ

]
=

1

(β − θ)!
DεF (0,β)(u)wβ−θ.

Now two cases are possible: either |ε| > p− |β| or |ε| ≤ p− |β|.
In the first case ε = ε′ + ε′′, where |ε′| = p− |β|. By (4.4),

|DεF (0,β)(u)wβ−θ|
≤ sup{|F (ε′,β)(v)| : v ∈ Q, |u− v| < dist(u, ∂Q)}|w||β|−|θ|/dist(u, ∂Q)|ε

′′|

≤ sup{|F (ε′,β)(v)| : v ∈ Q, |u− v| < dist(u, ∂Q)} dist(u, ∂Q)|β|−|θ|−|ε
′′|,

and the desired conclusion follows, since |β| − |θ| − |ε′′| = p − |κ| and
F (ε′,β)(a) = 0.

In the second case it follows from (1.5), (1.1) and the flatness of F on
∂ΩS that

Dκ

[
1

β!
F (0,β)(u)wβ

]
=

1

(β − θ)!
F (ε,β)(u)wβ−θ = o(|u− ũ|p−|β|−|ε|)|w||β|−|θ|,

where ũ ∈ ∂T is such that |u− ũ| = dist(u, ∂T ) = dist(u, ∂Q).
Consequently,

Dκ

[
1

β!
F (0,β)(u)wβ

]
= o(dist(u, ∂Q)p−|κ|),

since p− |β| − |ε|+ |β| − |θ| = p− |κ|. The proof of the lemma is complete.

Now we will define the desired extension of the Whitney field (4.5). Take
a semialgebraic Cq-function ψ : R → [0, 1] such that ψ(t) = 1 near 0 and
ψ(t) = 0 if |t| ≥ 1. Let ρ1, . . . , ρ2m denote the functions associated with the
cell Q. Define

f(u,w) =
n−m∏
i=1

2m∏
j=1

ψ(wiK
√
n−m/ρj(u))h(u,w),

where K is as in Remark 9. This is a definable Cq-function on Q × Rn−m
coinciding with h in a neighborhood of Q×0. Combining Lemma 1, Lemma 4
(where we set r(u) = dist(u, ∂Q)), Lemma 5 and Lemma 3, we see that

(4.6) Dκf(u,w) = o(dist(u, ∂Q)p−|κ|), when Γ (Q) 3 (u,w)→ (a, 0),
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for each a ∈ (Q \ Q) ∩ ∆ and κ ∈ Nn with |κ| ≤ p. On the other hand,
f(u,w) = 0 if (u,w) ∈ (Q × Rn−m) \ Γ (Q), due to Remark 9; hence, f
extends to a Cp-function on Ω vanishing outside Γ (Q) and Cq outside S.
This completes the proof of Theorem 1 in Case I.

Case II: As in Case I, S ∩ Ω = A ⊃ suppF and ϕ ≡ 0, i.e. S = T × 0
and Rn \Ω ⊂ S \ S = (T \ T )× 0, but A is a proper subset of E.

Take the definable function r : T → (0,+∞) defined by

r(u) :=

{
inf{|w| : (u,w) ∈ E \ S} when {w : (u,w) ∈ E \ S} 6= ∅,
1 otherwise.

Since F is flat on E \ S,
(4.7) F κ(u, 0) = o(r(u)p−|κ|) when T 3 u→ a, κ ∈ Nm, |κ| ≤ p,
for any a ∈ (∂T ) ∩∆. By Theorem 3, there exists a finite decomposition

T ∩∆ =
⋃
ν

Qν ∪ Z

such that

(4.8) every Qν is an open Λq-regular cell in Rm in some linear coordinate
system;

(4.9) every Qν is contained in T , while Z is closed in ∆ and dimZ < m,
(4.10) on every Qν the function r is of class Cq,
and either

(4.11.1) for all j ∈ {1, . . . ,m}, |∂r/∂uj | ≤ 1 on Qν , and (by Corollary to
Proposition 4 after perhaps a subdivision of Qν)

|Dκr(u)|dist(u, ∂Qν)|κ|−1

is bounded on Qν for each κ ∈ Nm with |κ| ≤ p,
or

(4.11.2) for some j ∈ {1, . . . ,m}, |∂r/∂uj | > 1 on Qν .

By the induction hypothesis we can assume in addition that F is flat
on Z × 0, and hence on every (∂Qν ∩ ∆) × 0. Notice that it is enough to
have, for every ν, an appropriate extension fν : Ω → R of the Cp-Whitney
field F |E ∩ (Qν × Rn−m) such that fν vanishes outside Γ (Qν), since then
we will glue all fν together to get a final extension. Fix ν. We will write Q
instead of Qν . Let g : Ω → R denote the extension of the Cp-Whitney field
F |(Q ∩∆)× 0 constructed in Case I. By the Taylor formula, (4.7) implies

(4.12) Dκg(u,w) = o(r(u)p−|κ|), when Q × Rn−m 3 (u,w) → (a, 0) with
|w| < Cr(u),

for each κ ∈ Nn with |κ| ≤ p, a ∈ (∂Q) ∩∆ and any positive constant C.
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We distinguish two subcases depending on whether (4.11.1) or (4.11.2)
holds.

Subcase II.1: (4.11.1) holds.

Define

f(u,w) :=
n−m∏
i=1

ψ(wi
√
n−m/r(u))g(u,w)

for each (u,w) ∈ Q×Rn−m.
Set Γ∗(Q) = {(u,w) ∈ Q × Rn−m : |w| < min(r(u), dist(u, ∂Q))}. We

will check that

(4.13) Dκf(u,w) = o(min(r(u), dist(u, ∂Q))p−|κ|)

when Γ∗(Q) 3 (u,w)→ (a, 0), for each κ ∈ Nn with |κ| ≤ p and a ∈ (∂Q)∩∆.
When r(u) < dist(u, ∂Q), |Dαr(u)|r(u)|α|−1 (|α| ≤ p) are bounded and,

by the formula (2.4) in the proof of Lemma 1, |Dα(1/r)(u)|r(u)|α|+1 are
bounded too. Hence, (4.13) follows from Lemma 3 combined with Lemma 4
and (4.12).

When r(u) ≥ dist(u, ∂Q), by (2.4) and (4.11.1),

|Dα(1/r)|dist(u, ∂Q)|α|+1 (|α| ≤ p)
are bounded. Hence, (4.13) again follows from Lemma 3 combined with
Lemma 4 and (4.6).

Since f = 0 on (Q × Rn−m) \ Γ∗(Q) and E \ S ⊂ (Q × Rn−m) \ Γ∗(Q),
f extends to a Cp-function f : Ω → R flat on E \ S.

Subcase II.2: (4.11.2) holds.

Choose j ∈ {1, . . . ,m} such that |∂r/∂uj | > 1. We shall check that
r(u) ≥ dist(u, ∂Q), for each u ∈ Q. To see this take any point a=(a1, . . . , am)
in T . Then

{t ∈ R : (a1, . . . , aj−1, t, aj+1 . . . , am) ∈ T} = (b1, c1) ∩ · · · ∩ (bk, ck),

where b1 < c1 ≤ b2 < · · · ≤ bk < ck. For some l ∈ {1, . . . , k}, aj ∈ (bl, cl).
By the Mean Value Theorem, for each uj ∈ (bl, cl),

r(a1, . . . , aj−1, uj , aj+1, . . . , am) ≥ min(uj − bl, cl − uj)
≥ dist((a1, . . . , aj−1, uj , aj+1, . . . , am), ∂Q);

hence, r(a) ≥ dist(a, ∂Q).
It follows that E \S ⊂ Rn \Γ (Q), hence f(u,w) := g(u,w) is the desired

extension. This completes the proof in Subcase II.2 and the proof in Case II.

Case III (general): As in Case II, E ⊃ S ∩ Ω = A ⊃ suppF , but
S = {(u, ϕ(u)) : u ∈ T}, where ϕ 6≡ 0.
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It is enough to prove the theorem with Ω replaced by the maximal pos-
sible open subset of Rn in which S ∩Ω is closed, i.e. Rn \ (S \Ω). Therefore,
one can assume that Rn \ Ω ⊂ S \ S. Let ∆ := Rm \ π(Rn \ Ω), where
π : Rn = Rm ×Rn−m 3 (u,w) 7→ u ∈ Rm denotes the natural projection.

Set r(x) := min(dist(x,E \ S),dist(x, ∂S)), for each x ∈ S.
Consider the following Λp-regular automorphism:

Φ : T ×Rn−m 3 (u,w) 7→ (u,w + ϕ(u)) ∈ T ×Rn−m

of T × Rn−m, which is of class Cq. Since F is flat on E \ S ⊃ ∂S ∩ Ω, for
each b ∈ (∂S) ∩Ω and each κ ∈ Nn with |κ| ≤ p,

F κ(x) = o(r(x)p−|κ|), when S 3 x→ b.

It follows from Proposition 3, Remark 9 and the Hestenes Lemma that G :=
(F |S) ◦ (TΦ) is a Cp-Whitney field on T × 0, which extends to a Cp-Whitney
field on (T ∩∆)× 0 flat on (∂T ) ∩∆× 0 with Gκ of class Cq on T × 0 and
such that

(4.14) Gκ(u, 0) = o(r(u, ϕ(u))p−|κ|), when T 3 u→ a,

for any a ∈ (∂T ) ∩ ∆ and κ ∈ Nn with |κ| ≤ p. Since Φ extends to a
bi-Lipschitz homeomorphism Φ : T ×Rn−m → T ×Rn−m, (4.14) implies

(4.15) Gκ(u, 0) = o(dist((u, 0), Ẽ \ (T × 0))p−|κ|), when T 3 u→ a,

where Ẽ := Φ
−1

(E ∩ (T ×Rn−m)).
It follows from (4.15) that G extends to a Cp-Whitney field on Ẽ flat on

Ẽ \ (T × 0). Hence, we are in the situation of Case II if Ẽ 6= ∅, or Case I if
Ẽ = ∅. Therefore, there exists a definable Cp-function g : Rn \ ((Rm \∆)×0)
→ R such that Tg = G on Ẽ and g ≡ 0 outside Γ (T ). By Proposition 3 (see
Remark 7), the function f(x) := g ◦ Φ−1 extends by 0 to Ω to the desired
function. This completes the proof of Theorem 1.
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