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Composition in ultradifferentiable classes
by

ARMIN RAINER and GERHARD SCHINDL (Wien)

Abstract. We characterize stability under composition of ultradifferentiable classes
defined by weight sequences M, by weight functions w, and, more generally, by weight
matrices M, and investigate continuity of composition (g, f) — f o g. In addition, we
represent the Beurling space £*) and the Roumieu space £1“} as intersection and union
of spaces £EM) and £} for associated weight sequences, respectively.

1. Introduction. This paper arose from our wish to characterize sta-
bility under composition of Denjoy—Carleman classes EM} and M), For
these classes we have developed a calculus in infinite dimensions beyond Ba-
nach spaces in [24] 26, 25] which is heavily based on composition: A smooth
mapping f is of class EM} if and only if fop e EM} for all £1M} Banach
plots (i.e., mappings defined in open subsets of Banach spaces); similarly for
EM) Sometimes curves suffice.

Denjoy—Carleman differentiable functions form classes of smooth func-
tions that are described by growth conditions on the Taylor expansion. The
growth is prescribed in terms of a sequence M = (Mj,) of positive real numbers
which serves as a weight for the iterated derivatives: for compact K the sets

f® (@)
{pkk‘!Mk cx €K, keN

are required to be bounded. The positive real number p is subject to either a
universal or an existential quantifier, thereby dividing the Denjoy—Carleman
classes into those of Beurling type €M) and those of Roumieu type M},
respectively. We write M for either £M) or £1M}

It is well-known that €M is stable under composition if M is log-convex
(see [34], [20], [13]), and usually in the literature log-convexity is assumed in
order to have stability under composition; but is log-convexity also nec-
essary? Actually, when proving stability under composition with Faa di
Bruno’s formula one needs a weaker condition that we call the (FdB)-
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property. We prove that the (FdB)-property (for the weakly log-convex
minorant M b(‘3)) is also a necessary condition for stability under compo-
sition if £M) is stable under derivation (see Theorem . More precisely,
if £M] ig stable under derivation, then stability under composition is in turn
equivalent to being holomorphically closed, being inverse closed, (M Z(C))l/ k
being almost increasing, and M°(©) having the (FdB)-property. For further
equivalent stability properties we refer to [33]. Inverse closedness has been
studied intensively, e.g. in [35], [10], [39]. In this context we prove that,
as in the Roumieu case [I1], one has £M) = g i ow C M) (see
Theorem . Finally, we demonstrate that log-convexity is not necessary
for stability under composition. We construct classes EM] which are stable
under composition and such that there is no log-convex N = (Nj) with
EM] = gIN] (see Example .

Another common way to define ultradifferentiable classes is by means of
a weight function w which controls the decay of the Fourier transform (see
[5] and [6]). We shall use the following equivalent description due to [9]: for
compact K the sets

{f(k)(x) exp<—;¢*(pk)> seK ke N},

where * is the Young conjugate of ¢(t) = w(et), are required to be bounded
either for all p > 0 in the Beurling case £“) or for some p > 0 in the Roumieu
case £} Again £ stands for either £©) or £1¢}. For these classes stability
under composition was characterized in [I6] under the additional assumption
of non-quasianalyticity. Note that the sets {EM : M a weight sequence}
and {4 w a weight function} have a large intersection but neither of
them contains the other (see [8]). We stress that the usual requirements on
the weight function w ensure that the spaces £ come with incorporated sta-
bility properties, for instance stability under derivation (see Corollary .

We prove that £ and £} can be represented (as locally convex
spaces with their natural topologies) as intersections and unions of ultra-
differentiable classes defined by means of associated weight sequences (see
Theorem . For each open subset U C R”, compact K C U, and for
2P = (§2) defined by

2= ;!eXpCsO*(pk))
we have
(1) EWW)=eWIU) and £ U)= () |JEWHK).

p>0 KCU p>0

We use this representation to characterize stability under composition, and
believe that it is also of independent interest.
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In fact, inspired by (1.1), we characterize stability under composition
for more general ultradifferentiable classes defined by weight matrices 9T =
{M* e R : X € A}, where A is an ordered subset of R:

EMW) = eMIW) and €M)= () |JeMHK),
AeA KCU \eA

endowed with their natural topologies. Among the spaces €™ and ™},
together denoted by E™. are all the spaces defined by means of weight se-
quences and weight functions, but not exclusively (see Theorem . For
instance, the intersection, resp. the union, of all non-quasianalytic Gevrey
classes is an autonomous &™-space, resp. ™ -space, with suitable 1.
Intersections of non-quasianalytic ultradifferentiable classes have been stud-
ied by Rudin [35], Boman [7], Chaumat and Chollet [12], Beaugendre [3] 4],
and Schmets and Valdivia [37, B8] (among others). It seems, however, that
unions of ultradifferentiable classes have not been investigated before.

Given that £ is stable under composition, the nonlinear composition
operators

comp™ : EMV(RP RY) x EMV(RY,R") — EPVRP,R") : (g, f) — fog,
ETVRP, f): EPVRP,RY) » ETIRVR) 1 g fog, feEPIRIRY,

turn out to be continuous. This is proved in Theorem [£.13] The special
case of £ was treated in [I6] (see also [1]). Under suitable assumptions we
expect comp™ to be of class £ (see Remark .

The paper is structured as follows. We first treat the weight sequence
case in Sections2land Bl In Section 4 we introduce ultradifferentiable classes
defined by weight matrices 9, characterize their stability under composi-
tion, and show that composition is continuous. We discuss classes defined
by weight functions w and identify them as classes defined by weight ma-
trices M in Section 5] and characterize their stability under composition in
Section [6

Notation and conventions. The notation £ for x € {M, w, M} stands
for either £® or £} with the following restriction: Statements that involve
more than one £ symbol must not be interpreted by mixing £€*) and
U} This convention will be used broadly, but self-evidently: For example,
M[=<N < M C €M in Proposition means M()N < £V C £
and M{=<IN < £ C ¢,

Let N =NsoU{0}. For a = (a1,...,04) € N?and z = (21,...,24) € RY
wewrite a! = a1l g, |a| = a1+ +ag, and 2@ = 2 - 25 Weuse §; =
0/0x;, 0% = O - - 97" and write d* f or f*) for the kth order Fréchet deriva-
tive of f, and d, f for the directional derivative in direction v. For sequences
of reals M = (M) and N = (Ny) we write M < N if My < Ny, for all k.
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L(Ey, ..., Ey; F) is the space of k-linear bounded mappings E X - - - X E,
— F' (between topological vector spaces); if E; = E for all 4, we also write
LF(E,F).

Let F and G denote classes of mappings. We write F C G if F(U,R™) C
G(U,R™) for all open subsets U C R™ and all n,m € N5y. We say that
F is stable under composition if g € F(U,V) and f € F(V,W) implies
foge F(U,W), for all open subsets U C RP, V C RY, W C R", and all
p,q,7 € Nxg. A class F is called holomorphically closed if f o g € F(U,C)
for each g € F(U) = F(U,R) and each f which is holomorphic in a complex
neighborhood of the range of g, and F is inverse closed if 1/f € F(U)
for each non-vanishing f € F(U). That F is derivation closed means that
f € F(U) implies 0, f € F(U) for all open U CR™ n € Ny, and 1 <i <mn.
A class F of smooth mappings is quasianalytic if for each open connected
U C R™ and each z € U the Borel mapping F(U) 3 f — (0%f(z))q is

injective.

2. Weight sequences and [M]-ultradifferentiable functions

2.1. Weight sequences. A sequence M = (M}) € RY of positive real
numbers is said to be log-convex if k +— log M}, is convex, i.e.,

(Mje) Vk: M7 < M1 My

weakly log-convex if

(Myi1c) (k!My)y is log-convex;

of moderate growth if

(Mpng) 3C>0Vj,k>1: My, < CIRM;My;
derivation closed if

(Mge) IC>0VE>1: My, < CFMy;
almost increasing if

(Mai) AIC>0Vi<k: M; <CMy;

have the (FdB)-property if
(Mpgg) 3C > 0Voy; € Nsg, an+-+-+aj =k: MMy, - My, < C*My;

and be quasianalytic if

o
(Mqa) Z(k'Mk)_l/k = Q.

k=1
Obviously (M) implies (Myc|), and (Mpe]) implies (Mqc)). If M is log-convex,
we further have M;M;, < MoM;y, for all j, k and (Mj,/Mp)'/* is increasing.
Moreover:
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2.2. LEMMA. For M € ]R§0 having the (FdB)-property, each of the fol-
lowing conditions is sufficient:

(1) M is log-convezx.

(2) M is derivation closed and (M,i/k)k is almost increasing.

(3) M]Mk S Mle+k_1 for all j,]{? Z 1.

Proof. (1) We show (Mpqp|) with C' := max{M;, 1} by induction on k.
The assertion is trivial for k = j. Assume that j < k. Then o, :=a; —1>1
for some 7, and we have

M, M,
MjMa1 o Maj = MjMa1 e Ma; o MOéj Maj < Ck_le:—l Mk;kl < CkMka
af -

by induction hypothesis and by (M.

(2) This is proved in more general terms in [.9[(3)=(4)] and
111(3)=(4)].

(3) This is readily seen by iteration. =

For M, N € Rlio we define:

M Uk
M<N & EIC’,p>OVk:Mk§Cpka & sup<Nk> < 00,
k k

M=~N & M=<Nand N <M,

1/k
M<aN & VYp>03C>0Vk: My <CpFN, < lim <’“> = 0.
k—oo \ N

The following lemma is a variant of [21, Lemma 6].

2.3. LEMMA. Let L, M € RY, satisfy L <« M and M'* — co. Then

there exist sequences N € ]RIEO, 1 = 1,2, satisfying (Nli)l/k — 0o such that
L<N'<aN?’aM.
Proof. Tt suffices to show that there exists N! € R§O with L < N' < M
and (N})/* — oo; for N2 = (N2) we may then choose N? := V' N} Mj.
The sequence N!' = (N}) defined by N} := max{y/My, Ly} is as re-
quired. We have L < N! < M, since

(M) = maX{Mk 5 <]\4k> } —0

as Mé/k — 00 and L < M. Moreover, N} > /M, implies (N})'/* — co. u
2.4. REMARK. The lemma remains true if we replace M,i/ o by
(kIMp)V® — oo and (N))V* — oo by (KIN))YF — oo; set N} =
max{\/My/k!, Ly} in the above proof. But in this case it is unclear if
@Mg/k > 0 implies @(Né)l/k > 0 which we need in Theorem m
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2.5. Regularizations (cf. [2], [27], or [22]). For M € RY ) with (k!M;,)/*
— 00 set
th b(c) 1 th
Ty (t) :==su t>0, and M su
m(t) = hen KMy BT RS T ()

Then Ths = Tyv)- The sequence (k!M. Z(C))k is the largest log-convex mi-
norant of (k!My)y; in particular, M is weakly log-convex if and only if
M = M*©). The condition (k!M})"* — oo guarantees that M = Mlz(c)
for infinitely many k.

We shall also use

¢ (o) .
= M
Su(t) i= max gy M= g ook Sar(t)

and again have Sy = Sy -

2.6. LEMMA. Let M, N € RY, satisfy (k!My)'/* — oo and (kINy)Y/*
— 0. Then M < N implies M"©) < N°©)  and M <N implies M"©) qN*(©) |

Proof. For p > 0 set N* = (Nf) := (p"Ny). Easy computations show
Tne(t) = T (t/p) and thus (N?)*(©) = (N*(©))?. Both assertions follow im-
mediately. =

2.7. [M]-ultradifferentiable functions. Let M € RY, andlet U C R"
be open. Define

EM(UY) = {f € C®(U,R) : VK C U compact Vp > 0 : HfH]\K/[p < 00},
EMYU) = {f e C®°(U,R) : YK C U compact Ip > 0: HfH]\K/[p < 00},

[FAAE: )IILWRnR)
up
k! ok M,

I£I13, = z €K, k:eN}

and endow £M)(U) with its natural Fréchet space topology and E1M}(U)
with the projective limit topology over K of the inductive limit topology
over p; note that it suffices to take countable limits. We write EM! for either
EM) or £IM} The elements of EM(U) are called [M]-ultradifferentiable
functions; an (M)/{M }-ultradifferentiable function is said to be of Beurl-
ing/Roumieu type, respectively. For compact K C U with smooth boundary,

ENK) = {f € CF(K) : | flli, < o}

is a Banach space, and we have

EMU) = lim lim & (K) and £MN(U) = lim lim &) (K);

KCU meN KCU meN
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we also set
EMNK) = {f € C®(K) :¥p > 0: |||}, < o0} = lim €} (K),
meN
EMNK) = {f € C™(K): 3p>0: | f|¥, < oo} = lim £ (K).
meN

The definitions work as well for mappings f : U — R™, and so we shall use
also EM(U, V), EMI(K, V), and 8[])\/[(K, V') for open subsets V' C R™.

By the Denjoy—Carleman theorem, M is quasianalytic if and only if
M(©) satisfies ; this is in turn equivalent to

00 Mb(c) 100 T (t
Zﬁ:oo and S Og7]\/[()dt:oo.
o (k+1)M, 1
For modern proofs see for instance [I8] 1.3.8], [36, 19.11], and [20)} 4.2].
2.8. EXAMPLES. For s € R>( the sequence G* = (G}) = ((k!)®) is log-
convex and has moderate growth; it is quasianalytic if and only if s = 0. The
clements of E1°}(U) are exactly the real analytic functions C*(U) and the
clements of £(C")(U) are exactly the restrictions of entire functions H(C™).
The class E1¢°} coincides with the Gevrey class Ggits,
2.9. LEMMA. Let M € Rlio be weakly log-convex. Then there exists a
function f € E{Iﬁil(R) ={feC®R):3p>0: HfHﬁg{p < oo} such that

g
£ (0)| > kM, for all k.

Such a function is called a characteristic EM} -function.

Proof. The complex valued function

o0

k! M, Yint (k + 1)Mk+1
2.10 g(t) := e“"MFt where i = -—"—"
A0 o= ) ¥,
belongs to 5;1](\;][321(]1%, C) and satisfies
(2.11) g (0) =hj, where hj > jIM;,

thus
9V (©O)] > j1M;,
for all j (see [40, Thm. 1]). Setting f := Re g+ Im g we obtain a real valued

function with the required properties. =

2.12. PROPOSITION. Let L,M,N € R§07 let U C R™ be open, and let
K C U be compact. We have:

(1) M < N = M C eVl gng M < N = &M € €M) with contin-
wous inclusions. If M is weakly log-convex, then also the converse
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implications hold; more precisely, EM(R) C EIN(R) = M < N and
EMIR) c EM(R) = M < N.
(2) We have
MU R = () EMWR™ = () WHUR™).
M<JN M<AN

If M is (weakly) log-convez, then the intersections may be taken over

all (weakly) log-convex M <1 N.
1/k

(3) If M,'" — oo then
EME R = ) eBERrRM = ) £PERM).
LM LaM
Lllc/k%oo Li/kﬁoo

If (K!M;,)'/* — oo then the unions may be taken over all L <A M with
(k!Lk)l/k — o00. If M is log-convex and Myi1/My — oo then the
unions may be taken over all log-convex L <t M with Lyy1/Li — 0.

Proof. (1) The directions “=" are clear by definition (see also [24], 2.3]).
If M is weakly log-convex, then the implications EM} C €IV} = M < N
and EM} € €WN) = M < N follow from the existence of a characteristic
EM_function (see Lemma 2.9). That M) € £WV) implies M < N is shown
in [I0, Thm. 2.2] and in more general terms in Proposition

(2) See [24], 2.4 and 8.2].

(3) follows from (1), Lemma [2.3] Remark [2.4] and [2I, Lemma 6].

As the elements of E{1(U7) are exactly the real analytic functions C¥(U)
and the elements of £ (U) are exactly the restrictions of entire functions
H(C"™), we may conclude:

(4) cv C &M} o (Cn) C €M )(U) VU C R™ « lim M,/* > 0.

(5) C¥ C €M) if and only if lim M, L/k

(6) M is derivation closed if M satlsﬁes Mgyc). If M is weakly log-
convex, then is also necessary for £M! being derivation closed:;
indeed, for M+1 = (M) := (Mj1) we find that EMTI(R) = {f":

fGE[M( )}

In particular, if L << M with lim L
by (1), (4), and (5).

Note that lim My /Mj, = oo implies lim M,i/k = oo and thus C¥ € €M),
Indeed, there exists kg with My, > 1, and for every C' > 0 there exists k1 > ko

such that M > CMj_- for all k > k1, whence Ml/}c > Ml/kcl_ko/k > /2

as k > 2ky. If M, Uk s 1ncreasmg, we also have the converse: lim M, AL

implies lim Mk+1/Mk =

1k

L/F < 0 then necessarily lim M,"" = oo,
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2.13. LEMMA ([I1, Lemme 3]). Let M € RY and X\ > 0. If My < A\* M,
for all k and

FB @) < kM, for all t € [\, k €N,
then
£ #(0)] < 2° k1M for all k € N,
2.14. PROPOSITION. Let M € RY| satisfy lim M/% > 0 and My = 1, let
K CR™ be compact, and let Ky :=|J,cp Br(z), A > 0, be a A-neighborhood
of K. Then EMY(K)) C S{Mb(c)}(K) via restriction.

Proof. By the assumption @Mé/ ¥ > 0 there exists 7 > 0 such that
My > 7% for all k. If f € EMY(K), then C := HfHIJ‘QIA , < 00, where we may
assume that p is such that pA7 > 1. The function fm)(;f) := f(x+tv) satisfies
”f:r,va\{)\,)\],p < HfHAK/[Np = (C for all » € K and v € S"!. By Lemma [2.13

we have
k£ ()] = [£8(0)] < 2C(ep) kM forallz € K, ve S 1 k€N,
since (CpFM;)°©) = CpkMZ(c) (see . Thus f|x € E{Mb(c)}(K) (see e.g.
23, 7.13.1)). =
2.15. THEOREM. Let M € R§O and let U CR"™ be open. We have:

(1) If lim M7% > 0 then £00(U) = £ (1),

(2) If lim M™% = oo then €0D(U) = €M )(T),
Under these assumptions EMI(U) is an algebra.

(1) is due to [1I, Thm. I & Appendix].

Proof. (1) Apply Propositions [2.121) and

(2) Proposition (1) implies S(Mb(c))(U) c EM)(U). Conversely, let
K C U be compact and let Ky := (J,cx Br(z) € U be a A-neighborhood of
K in U. By Proposition [2.12|(3), Proposition and Lemma

S(M)(K,\) _ US{L}(K)\) C Ug{Lb(c)}(K) c S(Mb(c))(}-()7

where the unions are taken over all L < M with L,lc/ P 4 . As K was
arbitrary, we have EM)(U) C E(Mb(c))(U).
The last statement is a well-known consequence of weak log-convexity. m

As a consequence, C% C M} — V) ig impossible. Assume the con-
trary. Then, by [2.12(4)&(5) and Theorem we may assume that M and
N are weakly log-convex, and by Proposition m(l)7 we have M <1 N. Set-
ting L = (Lg) with Ly := /M Ny, we obtain M <L <IN, and, by Lemma 2.6
we may assume that L is weakly log-convex. But then eM} c g(L) C gL} C
EWN) = eiM} and thus M ~ L ~ N, a contradiction.
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3. Stability under composition of &M, For M e ]R§O we define
M?° = (M) by setting
My = max{M;My, ... My, : a; € Nsg, a1 + -+ +a; =k}, My:=1
Clearly, M < M°. We have M° =< M if and only if M has the (FdB)-
property.
3.1. PROPOSITION. Let M € R§0 andletU CRP, V CR?, and W CR"

be open.

(1) If g € EM(U, V) and f € EM(V, W), then fog e EMNUW).
(2) If M has the (FAB)-property, then EM is stable under composition.

Proof. (1) Let K C U be compact. There exist Cy, p; > 0 (resp. for each
pg > 0 there exists Cy > 0) such that

Hg( (z )HLk RP RY)
k! <Gy
and there exist C¢, py > 0 (resp. for each py > 0 there exists Cy > 0) such

that
Hf(k) (y)HLk(Rq,RT)
k!
By Faa di Bruno’s formula (see [15] for the 1-dimensional version; the second

pEM;,  forallw € K, k €N,

< CppliMy,  forall y € g(K), k €N.

sum below is over all o € N Lo With ar + -+ a; = k)

I(f © 9)®) (@)l| L& e moy

Lk
Hf ||LJ R, R7) ||9 ||L%(JRP RY)
<22 H
i1l «
- J k—1 :
< S Comjeion T e, < o (3 (57 1) s )i
i>1 «a i=1 jz1

< CrCypr(pg(l+ Pfcg))kM
This implies the assertion in the Roumieu case. For the Beurling case, let
7 > 0 be arbitrary, and choose o > 0 such that 7 = /o + 0. If we set
pg = /o and py = \/5/Cy, then ||f o g||} < oc.
(2) follows immediately from (1) and Proposition [2.12{1).

We get a nice characterization of stability under composition if we as-
sume that £MM) is stable under derivation.

3.2. THEOREM. Let M € R§O and assume that EM is stable under
derivation. Consider the following conditions:
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EM] s stable under composition.
EM] s holomorphically closed.
EM] s inverse closed.

(1)

(2)

3) £

(4) (Mk(c))l/k is almost increasing.
(5)

(6) M"© has the (FAB)-property.

(7) M"©) has the (FdB)-property.

If lim hli/k > 0 then all conditions are equivalent in the Roumieu case

EM] — E{M} If hli/k
case.

= oo then all conditions are equivalent in any

Proof. Under the assumption @Mg/k > 0 we have EIM} = E{MHC)}, by
Theorem The equivalences (4)<(5) and and (6)<(7) follow from the
fact that 1M} (I) = E{Mb(o)}( I) for open intervals I (see |27, 6.5.1]), which
implies M"© ~ M) by [39, Lemma II]. Lemma [2.2 h and [2 - ) imply
(4)=(6).

Let us prove the remaining implications in the Roumieu case £ [M] — g{M}
Since C* C £M} by (4)7 we clearly have (1)=-(2)=(3). The implication
(3)=-(5) follows from [39], and (6)=(1) follows from Proposition Note
that (3)=>(4) is shown in greater generality in the proof of Theorem[4.9|below.

Now let us assume the stronger condition lim M,i/ ¥ — o0 and show the
remaining implications in the Beurling case EM = €M) Since C¥ C £M),
by [2.12(5), we have (1)=>(2)=>(3). The implication (3)=>(4) follows from
[10] since EM)(R) = 5(Mb(c))(R) is a Fréchet algebra, by Theorem and
(6)=(1) follows from Proposition .

3.3. Log-convexity is not necessary for stability under compo-
sition. There exist classes £M (containing C*) which are closed under
composition and there is no log-convex N &€ R§0 such that EM] = gV We
need the following lemma.

3.4. LEMMA. Let M € RY| be such that C* C M) (.., lim M}/* > 0

in the Roumieu case and lim Ml/k = 00 in the Beurling case). If there exists
a log-conver N € RY such that EMI = eIl then the sequence kiy1/k; is
bounded, where the k; are precisely those k with My = Z(C).

Proof. This is a special case of [I1, Appendix Prop. 3]. For the reader’s

convenience we give a short proof. By Theorem we have £M" ] = gIN]
and thus M°(©) ~ N, by Proposition 1). Since N is weakly log-convex,
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we have N < M) < M. Set

N kg 100
LI:{ k> k kl? } .

400, otherwise

For M € RY| consider the graph Iy := {(k,log(k!M})) : k € N}. Then
I'y ooy and I'p, lie on piecewise linear curves with vertices {(k;, log(k;!'My,)) :
i € N} and {(ki,log(k;!Ny,)) : i € N}, respectively. Since N is weakly log-
convex and since Iy, lies below Iy, we have N < L < M ") ~ N and
hence L ~ N. As N is log-convex, we have, for k; < k < k;41,

kiy1 —k

E—
log(k!Lyg) = log(ki!Ny,) + ————log(ki1-1! Ny, )
kit1 — ki kiy1 — k‘
kiv1 — k ki
> U T ookt + % og ki iy + log Ny,
S — og +k2+1 k; 0g Ki+1' + log Ny,
and therefore
RIL YR 1 ki — & 1 k—Fk
3.5) 1 > = logk!!+ - ———logk; '——1 k!
(3:5) Og(k!Nk> Tk ki — kT ki Ry LT 08

By Stirling’s formula, fOI' ki+1/ki =:a; and k = ka the l“ight-hand Side Of
(3.5) is greater than

1a —2 1 a
2 a: - 1(10g ki —1) + 2 a; i 1(1ogai +logh; —1) —log(2k:)
1 q
=3 g—q 08 log2 -1,

and so L ~ N implies that a; is bounded. =

3.6. EXAMPLE. Choose r € Rx>y4. Set k; = k;i—1[log(i + 1)], i > 2,
ki := 3, where [z] denotes the smallest integer n > z, and define
1, k=1,2,
pp = p(r)e == Sk =k,
Tki_lv kZ <k< ki-‘rlv

1
My = M) =+ T s
!

Then M = (My) is derivation closed, since puy/k < r* for all k, and M is
not weakly log-convex, since p = (ug) is not increasing. By construction we
have M;M;, < MMy, for all j, k> 1, ie.,

L I R Hjt+k—1

LDt ik >1.
Uk T g1 k- P E
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Indeed, since py/k is decreasing for k; < k < k;4; and since
HE;+1 Mk o—1
ki +1— ki+2 —1
it suffices to check that, for all 7,
Hlip1—1 Mk < Hkipo—2 Mhkipo—1
ki+1 -1 ki+1 - ki+2 -2 ki_;,_g -1
which is a straightforward computation. By Lemma (3) and Proposi-
tion EM s stable under composition.

Consider the graph I'yy := {P; := (k,log(k!My)) : k € N}. The subset
{Py : ki <k < kit1} lies on an affine line with slope (k; — 1) logr. The line
that connects Pj,_1 and Py, has slope k;logr, and the line that connects
Py,—1 and Py, , 1 has slope (ki — 1+ (kiy1 — k;) ') logr. All these slopes
are strictly increasing to infinity as ¢ — oo. We conclude that the graph
Lype) = {(k:,log(k!M,i(C))) : k € N} lies on the piecewise linear curve with
vertices {Py,—1 : @ € N} and that {k; — 1} is precisely the set of k with
My, = M.

As My /My = pr/k — oo we have Mkl:/k — o0 (see the remarks after

, and, by Lemma there is no log-convex N € R§O such that EM] =
EWI Tt is easy to see that the mapping r — EM ™) is injective.

for all 4,

4. More general spaces of ultradifferentiable functions

4.1. Weight matrices. A weight matriz M = {M* € RY; : X € A}
is a family of weakly log-convex sequences M* = (M}') satisfying Mg =1,
limk(k!M,i‘)l/k = o0, and M* < MH if X\ < u, where A is a directed par-
tially ordered set. Let .# = .#(A) be the set of all weight matrices 90t
parameterized by the same set A. Consider the following conditions:

M) VAeA: lim (MY >o0.

Mwy)  VAEA: lim (MY)YF = cc.

Mcwy)  INeA: lim(MY)Y*>o0.

M) VA€A3ueA3IC>0VkeN: M}, <CFMP.
Midcy) VA€ATueAIC>0VkeN:  Mp, <CPMJ.
Mimg)  VAE€ATue AIC>0Vj,keN: ML, <CIFMIM.
Mimg)) VAE€ATue AIC>0Vj,keN: My, <C7HMiM].
M (alg)) VA€ AIpe AIC >0V keN: MIML < CITEMR,.
M alg}) VAEAINeAIC >0V, keN: MM < CJ+kMJ4‘+k.
Mpap)) VAEATueAd: (MH)° =M.
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(Mpapy) VAEATueAd: (MY = M*.

(M1,)) VAEAVp>03ueA3C>0VkeN: prM! <M.
(M) VAEAVp>03ueA3C>0VkeN: pFMp <Ml
(Mpr)  VAedTped: MM

(Mpry) VAeAdTped: M < Mr

ObViOUSly, :>:>(]9ﬁ{cw}|) and (]Sm[mg]l):>(]?)ﬁ[dc]|) Both
and (My,1) are trivially satisfied since all M A are weakly log-convex; but
see Remarks [4.5

Henceforth we assume that A is R or any ordered subset of R. This
will enable us to assume that the limits over A € A in the definition of
[90]-ultradifferentiable functions in are countable. Then 91 is in fact an
infinite matrix, and the name weight matriz is justified. On the other hand
it is convenient to admit uncountable index sets A.

4.2. [M]-ultradifferentiable functions. Let 9t be a weight matrix,
let U C R™ be open, and let K C U be compact. We define

EM(K) = (| eMI(K), eM(K):= |JeMHK),

AEA AeA
A A
EMW) = N eMIW), W)= (] |JeM(x),
AeA KCU \eA

and endow these spaces with their natural topologies:

: A L. A
M) == 1lm eMI(W),  EPNU) = lim lim EMH(K).
AeA KCU e/
It is no loss of generality to assume that the limits are countable. We
write EM for either €™ or EM™}. The elements of EM(U) are called
(9] -ultradifferentiable functions. Note that EP(U) forms an algebra, since
all M* are weakly log-convex.
We shall use also EPU(U, V) and EPYU(K, V) for open subsets V C R™.
The inductive limit
m : . A m : A m
VK, R™) = lim lim £ (K, R™) = lim £,"" (K, R™),
AeA p>0 (\p)
where (A, p) < (p,0) if and only if A < pand p < o, is a Silva space. Indeed,
if A < p and p < o then the inclusion

M m MH m MH m
M (K, R™) — EM" (K, R™) — EM" (K, R™)

is compact, since the first inclusion is bounded and the second inclusion is
compact, by [20, Prop. 2.2].
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If 9 satisfies , respectively (9 r1)), we have

Em)(K,]Rm) LEM (K,R™) p_f;l “(K,R™), respectively

(4.3 (Ap)
MK R™) = (1%1% M (K, R™) = h%sl (K, R™)
P

as locally convex spaces, where the latter is a Silva space. Indeed, for p > 1
and by (9,) the inclusion

M (K RT) = £ (K,R™) — 61 (K, R™)
is compact. If (M(y,)|) then for each A € A and each p > 0 we find p € A
such that EM" (K, R™) C EFJ,W (K,R™) with continuous inclusion.

If M satisfies (M (gR)|), respectively (M pgry)), we have

M@, R™) = 1im MV (U, R™) = lim £ (U, R™), respectively

(4 4) AeA AeA
(K, R™) = lim MK, R™) = Tim £ (K, R™)
AeA xeA

as locally convex spaces.

Among the spaces M we recover the spaces EM defined by weight
sequences, if 9 = {M} consists just of a single M € R>0, and the spaces
EWI defined b weight functions (see Corollary - 5.15 below). We shall see in
Theorem that in general £™ is different from &M and from £,

4.5. REMARKS. (1) One can replace the condition that the M* € 90 are
weakly log-convex by the condition (03] (resp. (9cw))), and work with the

log-convex minorants (M?* b(c) without changing the space E(™}(U) (resp.
EMM(U)) (see Proposition and Theorem |2 -) Alternatively, assuming
(D }a1g)) makes € ) 1nto an algebra as well. The condition M* < M* if
A < p may be relaxed to M> < MH.

(2) Assuming that (M)‘/M“)l/k is (ultimately) monotonic in k for all
A, i1, we have either M* ~ M* for all A\, u or M* <« M* for all A < p. That
is, either &M = ¢ [M*] for all A or we have the representations in ((4.4).

For M. N € A we define
M=)N = YAedIped: MH < N,
M{=<IN & YAedIped: M < NH,
M[=]N = M[=<]N and N[<]M,
M(=IN = INeAIped: M < N*,
M{<)N = YAeAVueAd: M* 9 NH,
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4.6. PROPOSITION. For M, N € .4 we have:

(1) M= = £ C PV gnd EPU(R) C EPY(R) = M[=<]N.

(2) M{)M = £ C £V gnd EH(R) € EOV(R) = M{<)N.

(3) M(=IN = £ C Y gnd EM(R) C EMHR) = M(=<IN.

All inclusions are continuous.

Proof. (1) That 9[<]N implies ™ C £PV is clear by definition. If
EMHR) € EPY(R) then M{ <} follows from the existence of characteris-
tic &M} functions, by Lemma 2.9, If @) (R) C £(R) then this inclusion
is continuous, by the closed graph theorem, since convergence in ™ (R)
implies pointwise convergence; here we follow [10, Thm. 2.2]. Thus for each

A € A, each compact I C R, and each 7 > 0 there exist p € A4, J C R
compact, and constants C, p > 0 such that

IFIYE < ClfIBE for fe EM(R).

It =

In particular, for fi(z) = €* and 7 = 1, we obtain
k k

t
T (£) = SUp —— < C'stup ——— = CTou(t/p),
() = sup KINY = 7 pek KlpF ME nan(t/p)
and thus . . i
t t
k!N = sup > su = k!p—M,’;,

120 Ty (8) ~ 150 CTan(t/p) — C
that is, M (=)N.

(2) That MM{<)N implies £ C £V is clear by definition. The converse
follows from the existence of characteristic £} functions.

(3) That M(<}9% implies £ C £ is clear by definition. Conversely,
it €M (R) C £M(R) then the closed graph theorem (cf. [19, 5.4.1]) implies
that this inclusion is continuous. Indeed, £ (R) is a Fréchet space, £ (R)
is projective limit of Silva spaces, hence webbed, and convergence implies
pointwise convergence. This and Grothendieck’s factorization theorem (e.g.
[28, 24.33]) imply that for each compact I C R there exist A € A, 7 > 0,
uwe A, J C R compact, and constants C, p > 0 such that

A
117, < ClfIEL for f e EMI(R).

t we obtain, as in (1),

Applying this to fi(z) = €’
My < C(7/p)* Ny,
that is, M(Z}N. =
We may conclude:
(4) H(C™) € EM(U) for all open U C R™ if and only if holds.
(5) ¢ C £ if and only if (cwy) holds.
(6) ™M is derivation closed if and only if (2qq)) holds.
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Note that for L € RY we have L(<}90 if and only if L{=<}9; in particular,
H(C™) € EMMU) if and only if C¥(U) € EM(U), for all open U C R™.
Moreover:

4.7. COROLLARY. Let M € RIEO with lim M,i/k = 0o. Then there is no

N € R§0 such that
£0N(R) ¢ EN(®) ¢ ER),
Proof. This follows from Proposition and Theorem [2.75] =

4.8. REMARK. It is easy to see that £1™} is non-quasianalytic if and only
if there is some A € A such that M?* is non-quasianalytic. Likewise, if €™ is
non-quasianalytic then M? is non-quasianalytic for all A € A. Intersections
Ny € [M]where M runs through a large family of non-quasianalytic weakly
log-convex weight sequences, can be quasianalytic (see [26] and references
therein). But we do not know whether £™) can be quasianalytic if all M* are
non-quasianalytic and A is restricted to a 1-parameter family (as assumed
in this paper).

4.9. THEOREM. For a weight matriz M satisfying (Myqe)) and (DMycowry)

the following are equivalent:

(1) M is stable under composition.
(2) £ is holomorphically closed.
(3) For all X € A there are pp € A and C > 0 such that

(M) < CMf)hifj<k.
(4) M satisfies (Mypany)-
Note that (M;cwy) is only needed for (1)=(2), and (Migyc) is only
=(4).

needed for (3)
Proof. (1)=+(2). This is obvious, by [1.6[5).
(2)=(3). We prove that (3) holds if £{™} is inverse closed; we follow the

idea of [39]. Let A € A be fixed and let g € EM}(R,C) be as defined by
[2-10) (with M = (My) replaced by M* = (M})). Choose H > 0 such that

H > 1+ supycg |g(t)|. We have H — g € E{MA}(R,C), and thus
fi=(H-g) e £M(R,0),

as 1M (R, C) is inverse closed, by assumption. Thus, there exist p € A and
constants C, p > 0 such that

(4.10) £, < C.
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By Faa di Bruno’s formula and using (2.11)), for £ > 1,

Y S

J=21ar+-~a;=
ap>0

1 g

1 -

_ 1 !

521 ag o ta;=k (H = g(0)77 )
ay>0

g(aé)

By (A-10),
k f®0)] _
Cp Mlg = k! o Z Z (H — ]-‘rl H ag'

Jj2lar++aj=k
ap>0

1 J
2L 2 oy L

j2lar+-+aj;=k

ap>0
1 N
>——— || M
= gy LM
In particular, for ay = --- = a; = p, p € N5, we have

oM > ()Y
and hence, for all j and p,
CQ(M;:j)l/pj > (Mﬁ)l/p.
For arbitrary p < k choose j so that jp < k < (j + 1)p. Then
11/(ip) in)11/(ip)
o (Jp)!

ip) UP)! _
(M,i”)l/k > (M;;)l/op)( ) > C; I(MI;\)I/p

-1 A1

Rk =72
since (k!M[')'/* is non-decreasing.

(3)=(4). By (Mqq)), for A € A there exist u € A and D > 0 such that
MI?H < DkM,’: for all kK > 1. The assumption implies that there is v € A
such that M,g1 . Mg] < CFMY for all B; € N5 with By + -+ + 8 = k. Let
I:={i:a; >2} and set o := a; — 1. Then, as u > A,

Mf\Mé\l . "Mé‘j = Mj\(Mf‘)j*”' HMO/} < Dk*ij)‘(Ml)‘)j*m HMS;

iel i€l
< DMy ek vy < CR M,
which shows (4).

(4)=(1). Let g € EMHU, V) and f € EM(V, W), for open subsets

UCRP,V CRIW CR", and let K C U be compact. By defini-
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tion, there exist \; € A, ¢ = 1,2, such that g € E{MM}(K, V) and f €

P2} (g(K), W), and there exists A > \;, i = 1,2. By (M(zapy), there
exists 1 € A such that (M*)° < M*#, and thus, by Proposition we have
fogc€ E{M“}(K, W), which implies the assertion. =

4.11. THEOREM. For a weight matriz M satisfying (Mqc))) and (D))

the following are equivalent:

(1) €M is stable under composition.
(2) £ is holomorphically closed.
(3) For all X € A there are p € A and C > 0 such that

(MY < M)V ifj <k
(4) M satisfies (M pap)|)-

Note that (913]) is only needed for (1)=>(2), and (M (4)|) is only needed
for (3)=(4).

Proof. (1)=+(2). This is obvious, by [1.6[(4).

(2)=(3). We follow [10]. Since all M* are weakly log-convex, &™) (R)
is a Fréchet algebra which is locally m-convex, by [29], i.e., €™ (R) has an
equivalent seminorm system {p} such that p(fg) < p(f)p(g) for all f,g €
EM(R). So for each A € A, compact K C R, and p > 0 there exist p, pu € A,
compact L C R, ¢ > 0 and constants C, D > 0 such that

1™ < Cp(F™) < Co()™ < CO™(IFIN™,  fe €M R), meN,
in particular, for fi(z) = €'® and p = 1, we find

Tyx(mt) < CD™(Tau(t/o))™.
Let j < k and suppose that k = jl with [ € N. We have, for some constant C,

(Typr (£)) /% = W - ovrpus )
W ()7 = T ll <CY*D Trn .
t ol

_ £\ VI
<o(ne ()
ol
(k!MM)Y* = sup = T(j!M;’L)l/j-

t
- > -
t>0 (TMA(t))l/k B igg é(TM“(ﬁ))l/j ¢

thus

In general choose | € N such that Ij < k < (I 4 1)j. Then, as (K!M)'/* is
increasing,

. , ol . . o(l+1
(M) > () > Ty > T

Ve
e (JIM)
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and, by Stirling’s formula, there is a constant C' > 0 such that (M ]“ Wi <
C(MM)VE for all j < k.

(3)=(4). The assumption implies that Mp M b < CFMY for all B;
in Nyo with 81 +---4+3; = k. By there exist 1/ € Aand D > 0 such
that M{ <D MIQL forall k > 1. Let I := {i : a; > 2} and set o := a; — L.
Then, as v < p,

MY, - My, = MYy P T] g, < Py =i T adt,

icl iel
< DMy ek < CF
which shows (4).

(4)=(1). Let g € EM(WU,V) and f € EM(V,W), for open subsets
UCRP, VCR?IL W CR", and let K C U be compact. By definition, for
each 1 € A we have g € EM)(K, V) and f € EM")(¢(K),W). By
and by Proposition we obtain fog € E(MA)(K, W) for each A € A, which
implies the assertion. =

4.12. Composition operators. Let 9t be a weight matrix. If 9 sat-
isfies (MMpqpj), we may consider the nonlinear composition operators

comp™ : EP(RP RY) x EPN(RI, R™) — EPVRP,R) : (g, f) — foy,
EPURP, f) : EM(RP,RY) — EMRP.R) 1 g fog,  feEM(RLR),
by Theorems [£.9] and [£.11]

4.13. THEOREM. We have:

1 satisfies FaB)), then comp 18 continuous.
(1) If M satisfies (MEap)), th &
(2) If M satisfies (Mypany)), then EUM(Re, f), for f € EHRI, R, is

continuous and comp™ s sequentially continuous.

Proof. We follow [1] and subdivide the proof into several claims.

4.14. Cram. If M satisfies (Mpqpy)), then comp™ is bounded.

We treat the cases E™ and ™ separately.

(EP = &) Let B € EMH(RP,RY) and By C EMH(RL,R™) be
bounded subsets. Let K C RP be an arbitrary, but fixed, compact subset.
Then By is bounded in £} (K, RY). Since the inductive limit £ (K, RY) =

1&1 5MA (K,R?) is regular (see , B; is contained and bounded in
some step SM "(K,R%), i.e., there exist Ay € A and p; > 0 such that
SUpyep, HgHKp1 < 0o. In particular, the closure

(4.15) L:= | g(x)

geB]
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is a compact subset of RY, and By is bounded in EMI(L,R") =
lig()\p) Ez)\/IA(L,RT). So there exist A\a € A and ps > 0 such that

SUp fep, Hf||%/[;22 < oo. For A := max \;, we have

A A
(4.16) C1 := sup HgH]\K/{pl <oo and Cs:= sup HfH%/{pQ < o0.
gEB feB

By the proof of Proposition we find that

Ao
(4.17) sup |f o gH%) < C1C2p2 < 00 with o := p1(1 4 p2Cy),
(9.f)EBL1xB2

and, by (M pgpy|), there exist p € A and C' > 0 such that

Ao
(4.18) sup [foglioe < sup foglit,)” < oc.
(9,f)EB1 X B2 (g,f)EB1xB2

Since K was arbitrary, comp{™} (B; x By) is bounded in £} (RP, R").

(EP = £ON) Let B; CEM(RP,R?) and By €E™) (R, R") be bounded.
Let p € A, let K C RP be compact, and let 7 > 0. By , we find
A € Aand C > 0 such that (M?); < C*M} for all k. Choose p > 0 so that
7/C = \/p+pandset py = \/p. Let C; be defined by ; B is bounded in
E%A (K,RY). Set po = \/p/C1 and let C3 be defined by ; Bs is bounded
in SA (L,R"), where L is defined by . As before, we deduce and
(4.18), where o = 7/C', which completes the proof of the claim.

4.19. CLAaM. If M satisfies (Mpqp)), then comp™ is sequentially con-
tinuous.

(€PN = £U) Let (gn, fu) = (9, f) in ETV(RP,RY) x £V (RIRT).
Then the sets By := {g, : n € N}, By :== {f, : n € N}, and {f, o g, :
n € N} C comp™} (B, x By) are bounded, by Claim Let K C RP
be an arbitrary, but fixed, compact subset, and let L be given by .
By regularity of the inductive limit £ (K, R") = lim 5M *(K,R"), the
set {fn 0 gn : n € N} is contained and bounded in some step EM (K, R”)
and hence is precompact in EM"(K,R"), where A < p and p < o (see 4. ,
and so it has an accumulation point h € EM" (K, R"). It is well-known that
composition of continuous mappings, i.e., comp’ : CO(K, L) x CO(L,R") —
CY(K,R"), is continuous (see e.g. [I4, Thm. 3.4.2]), and thus f,og, — fog
in CO(K,R"). It follows that f o g = h. As K was arbitrary, the assertion
follows.

(P = £OM) The proof is analogous; note that here {f, o g, : n € N}
is precompact in every step EM" (K, R").

4.20. CLa. If M satisfies (Mpap)), then comp™ is continuous.
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This follows from Claim since £ (RP, RY) x £ (R, R") is metriz-
able.

4.21. Cramm. If M satisfies (Mypqpy), then S{m}(RP,f) s continuous.

Arguments similar to those in the proof of Claim [£.19] show that the
restricted mapping E (K, f) : (K RY) — S{W}(K ,R") is sequen-
tially continuous, thus continuous, for each compact subset K C RP, since
EMMH(K,RY) is sequential, by and e.g. [31, 8.5.28]. The projective
structure of &M} (RP,R?) = @K S{W}(K, R?) implies that the mapping
EM(Re, f) : EH(RP, R?) — EH(RP,R7) is continuous. m

4.22. COROLLARY. Let M € R% satisfy (Mgqg]). Then comp™) is con-
tinuous, E{M}(Rp,f), for f e EM} (R4, R"), is continuous, and comp™} s
sequentially continuous.

Proof. This is a special case of Theorem [4.13} weak log-convexity of M
is not needed here. u

4.23. REMARK. If M additionally has moderate growth, then the map-
ping comp™! is even M which is a consequence of the EM-exponential
law (see [25, 5.5]). We expect that more generally comp™ is M if 9
satisfies (Mpgp)) and (M) Work on this is in progress and will appear
in a forthcoming paper.

5. Weight functions and [w]-ultradifferentiable functions

5.1. Weight functions. Let % be the set of all continuous increasing
functions w : [0,00) — [0, 00) with wlj 1) = 0, limy_,0 w(t) = 00, and such
that the following assumptlons , H, and are satisfied:

(w1) w(2t) = O(w(t)) ast— oco.
(w2) log(t) = o(w(t)) ast— oc.
(ws3) @t w(eh) is convex on [0, 00).

Occasionally, we shall also consider the following conditions:

(waq) w(t)=0(t) ast— 0.

(ws) w(t) =o0(t) ast— oco.

(we) dH >1Vt>0: 2w(t) <w(Ht)+ H.

(w7) AC >03tp >0VA>1VE> 1ty w(M) < Clw(t).
(wg) 3C>03H>0Vt>0: w(t?) < Cw(Ht)+C.

Then # forms an abelian semigroup with respect to pointwise addition,
which also preserves all conditions f.
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For w € # the Young conjugate of ¢, given by
©*(t) == sup{st — ¢(s) : s >0}, t>0,
is convex, increasing, and satisfies ©*(0) =0, ¢** =, and lim;_,~ t/¢* () =0.
Moreover, the functions t — ¢(t)/t and t — ¢*(t)/t are increasing (cf. [9]).
Convexity of ¢* and ¢*(0) = 0 implies
(5.2) P (1) + 9" (5) < (t+5) < 3907 (20) + 39°(25),  t,8>0.
Note that w(t) := max{0, (logt)*}, s > 1, belongs to # and satisfies all
the listed conditions except @
For w,o € # we define:
w=o & o(t)=0(w(t)) as t — oo,
wrRo & wocand o 2w,
wo & o(t) =o(w(t)) as t — oco.
5.3. [w]-ultradifferentiable functions. Let w € # and let U C R"
be open. Define

EWNU) = {f € C®°(U,R) : VK C U compact Vp >0 : | fll%,, < oo},
el Uy .= {f € C*(U,R) : VK C U compact 3p > 0 : | fll%,, < oo},

1,
11, = sup{uf“ﬂ(x)HLk(Rn,R) exp<_p¢ <pk>) v K ke N},

and endow @) (U) with its natural Fréchet space topology and £{“}(U) with
the projective limit topology over K of the inductive limit topology over p;
note that it suffices to take countable limits. We write £ for either £¢)
or £19}. The elements of EW(U) are called [w]-ultradifferentiable functions;
an (w)/{w}-ultradifferentiable function is said to be of Beurling/Roumieu
type, respectively. For compact K C U with smooth boundary, set

& (K) = {f € C%(K) : |[fll%,, < oo},

EW(K) = {f € C®(K) :¥p>0:|f||%, < oo} = T&:\Tfi’/m(K),
me
EWHE) = {f € C®(K):3p>0: || f|%, < oo} = lim & (K).
meN
We shall also use EWN(U, V), EM(K, V), and EJ(K,V) for open subsets
V CR™.
Note that £ is quasianalytic if and only if
Twl(t
S & dt = oo
t2
1
(e.g., by Corollary 5.8 and Theorem 5.14 below), and in this case we say
that w is quasianalytic.
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5.4. ExaMPLES. For s € Rx the weight function v*(t) = t'/(+%) has
all properties listed in except and if s = 0; it is quasianalytic
if and only if s = 0. The elements of £{7°}(U) are exactly the real analytic
functions C¥(U), and the elements of £€0")(U) are exactly the restrictions

of entire functions from #(C™). The class £17°} coincides with the Gevrey
class G1ts,

5.5. Associated sequences. For w € # and each p > 0 consider the
sequence §2° € R§O defined by

1 1,
= klexp(pgo (pk))

By the properties of ¢*, each 2 is weakly log-convex, (k!(?,’;’)l/k oo, and
2r < 27 if p<o. By (5.2),
(5.6) JUZRIQL < ( + k)20, < JIPRIF,  jkeN.

In particular, 2, < Cﬂip for all k, where C' > 0 is a constant depending
on p.

With (2” we may associate the function w, :=log o Tip» (cf. [20, (3.1)]).
Then

1 1 1
wy(t) = sup <k: logt — gp*(pk:)) < sup (s logt — ga*(ps)) = —w(t).
keN P >0 P P

5.7. LEMMA. For w € W we have w ~ w, for all p > 0.

Proof. Tt suffices to show that w & wy; for arbitrary p > 0 replace w by
sw. By [27, 1.8.111],

wi(t) = 2u§(k:logt —o*(k)) = klogt — ™ (ky),
€

where k; € N is such that wy, <t < wy,4+1 and wy, = k:Q,i/Q,Ll oo,
Consider the function f; : [0,00) — R given by fi(s) = slogt — ©*(s),
which is concave (for ¢t > 1) since ¢* is convex. Concavity of f; shows that
w(t) = supgsq fi(s) = fi(s¢) for some point s; € (ks — 1,k + 1).

Assume that s; € (kt, k¢ + 1). By concavity of f; and since f;(0) = 0, we

find " 5
fe(se) < ftlitt)st < ft]itt) (ke +1) < 2f(ke)

and hence w(t) < 2w (t) for sufficiently large ¢t. The case s; € (k¢ — 1, ky) is
similar. =

5.8. COROLLARY. For w € # we have:

(1) w is quasianalytic if and only if each (equivalently, some) 2 is quasi-
analytic.
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(2) w satisfies @ if and only if each (equivalently, some) §2° has mod-
erate growth.

Proof. This follows from Lemma [20, Lemma 4.1 and Prop. 3.6]. =
5.9. LEMMA. Forw € # we have
(5100 Yo>03H>1Yp>03C>1VkeN: "2 <Ccol’.
Moreover, w € W satisfies if and only if

(5.11) Vo>0Vr>0: 2\~
If w e W satisfies then
(5.12) IC>1Vp>0: 9 a0

It follows that is an obstruction for @D
Proof. The following inequality is well-known (see e.g. [16, p. 404]):

S
(5.13)  3L>1Vt>0VseN: L'"(t)+sLt <@"(Lt)+ Y L'
i=1
For the reader’s convenience we give a short proof. By , there exists
L; > 1 such that w(2t) < Liw(t) + Ly for all ¢ > 0, and hence there exists
L > 1 such that p(t + 1) < Lp(t) + L for all ¢ > 0. Thus, for ¢t > 0,

" (Lt)+ L = iglg(Lts —(p(s) = L))

> sup(Lts — Lp(s — 1)) = L*(t) + Lt,
s>1

and ((5.13) follows by iteration.
By choosing s such that e* > o and by setting ¢t := pk, H := L°® and

C:= exp(HLp >oi_1 L"), we see that (5.13)) implies (5.10)).

Let us prove that implies (5.11)). By () there exists a constant
H > 1 such that 2w(t) < w(Ht) + H for all ¢ > 0, and consequently, as

wljo,1) = 0,

©*(t) = sup(ts — w(e®)) = sup(ts — w(e®)) = sup(tlogu — w(u))

s>0 seR u>0
> sup(tlogu — tw(Hu)) — LH = 1p*(2t) — tlog H — 3 H.
u>0

By setting t := pk, we may conclude that
JH >1Vp>0vkeN: QF < HCgkor

which implies £2%¢ < 27 for all p > 0. Iteration and the fact that £2° < 2?°
yield 22"7 =~ ¢ for all p > 0 and all n € N, and (5.11)) follows.
Conversely, assume that ([5.11)) holds, which means that

1 1
Vp>0Vr>03C>0VkeN: ;go*(pk:) < Ck+ ;QD*(T]C).
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By (5.2)), we conclude that

1 1
Vp>0Vr>03D>0Vt>0: ;gp*(pt) < Dt+D+2—<p*(27't).
T

Thus
Lo(t) = sup (5 — =" (275)
— =sup| ts — — T
or P\ =00 27 ¥
1
< sup<ts + Ds — *(,0 (ps)) +D =-p(t+D)+ D,
>0 P
and hence . .
—w(t) < ~w(ePt)+ D
-(t) < wlePt) +

Setting p = 4 and 7 = 1 implies .
Let us prove (5.12)). By there exist constants C, H > 0 such that

Co* <2Ct> = sup(2tlogu — Cw(u)) = sup(2tlogu — Cw(Hu)) + 2tlog H

u>0 u>0
< sup(2tlogu — w(u?)) + 2tlog H + C = ¢*(t) + 2tlog H + C.
u>0

By setting t := pk, we find that for all p > 0 and all k£ € N,
c C k
(2k)1028/C < ClPE 1028,

Thus, the sequence L = (Lg) defined by k!Lj := (2]4:)!(25,40 > (k:!(),’:/c)2
satisfies 2°/C < L < ¢, which implies (5.12).
5.14. THEOREM. Let w € W, let U C R™ be open, and let K C U be
compact. Then:
(1) For each p>0 we have E¥’H(U) C EHU) and EW(U) C £92)(U)
with continuous inclusion.
(2) We have, as locally convex spaces,

U) =lm(U) and EWH(K) =lim M} (K).
p>0 p>0
(3) w satisfies (wg)) if and only if WUy = W), for each p > 0, as
locally convex spaces.

(4) If w satisfies (wg)), then also
EWU) =lim V) = lim eV HU)  and

p>0 p>0
£ (k) = lim €19} (K) = lim £(7)(K)
p>0 p>0

as locally convex spaces.
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Proof. (1) Let p > 0 be fixed. If f € E{?°}(U) then for each compact
K C U there exists o > 0 such that Hf”%pg < o0. By (5.10), there exist
constants H,C > 1 such that

H w
oo > Ol fI%s 2 111" = IF1% 1o
whence f € £HU).
Assume that f € £@)(U). Let p,o > 0 be fixed. By (5.10), there exist

constants H,C' > 1 such that 2} < Cakﬁfp for all k. Since f € EW(U),
for each compact K C U we have HfH‘}’(p/H < 00, and thus

or/H n
00 > O\ fll% pyer = CIFIIEL = 1 f1I%o-

Since ¢ > 0 was arbitrary, we conclude that f € £ (U ).
(2) follows from (1), since the inclusions £)(U) D @p>0 EW)(U) and
el (K) c @po EW}H(K) are clear and continuous by definition.

(3) follows from (2), (5.11)), and Proposition [2.12)(1).
(4) is a direct consequence of (2), (5.12]), and Proposition 1). m

5.15. COROLLARY. Letw € # and let U C R™ be open. Then EXNU) =
E®NU) as locally convex spaces, where the weight matriz 20 == {27 : p > 0}
satisfies

m(mg) and .gﬁ mg}ls
Dﬁ(alg) and (9N alg}ls
Z)JT(L)} and (M,
If w satisfies , respectively , then 20 satisfies (My)), respectively
(D)) If w satisfies , then 25 satisfies (Mpr)) and 15)CR£BRE ).

Proof. This is an immediate consequence of Theorem (5.6), and
(5.10]).

For w(t) = max{0,t — 1} ~ ¢t we find ¢*(t) = tlogt —t + 1, for t > 1,

©*|jp1] = 0, and it is easy to see that @ implies (My)) and implies
M (), by Lemma [5.16] Finally, from (5.12) it follows that implies
S);R(BR) and (90 BRY|)- ®

5.16. LEMMA. For w,oc € # we have:

(1) If w =0 then 3H > 1V¥p>03C >0: 2 < CXHr,
(2) If w<io then VH >0Vp>03C >0: 0 <CXHr.

Here X are the sequences associated with o.

Proof. (1) If w < o then there exists H > 1 such that o(t) < Hw(t) + H
for all ¢ > 0, and thus also ¢,(t) < Hyp,(t) + H and finally Hp} (t) <
©x(Ht) + H. Setting t = pk gives the assertion.
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(2) If w < o then for all H > 0 there exists D > 0 such that o(t) <
Huw(t) + D for all t > 0, and thus Hy,(t) < @5 (Ht) + D as in (1). Setting
t = pk gives the assertion. =

5.17. COROLLARY. For w,oc € # we have:

(1) w=0o=EW C &l and EWIR) C ELVIR) = w < 0o.
(2) w<o = EWC €@ and ER) CEPDR) = wao.
(3) There is no o € # such that E@)(R) C ELI(R) C £H(R).

Proof. (1) If 20 := {2 : p > 0} and & := {X* : p > 0}, where X7°
are the sequences associated with o, then in view of Proposition [£.6] and
Corollary it suffices to show

(1) w < o if and only if W[<]S.

If w < o then Lemma implies 2(=<)S as well as W{<}6&.
Conversely, assume 20{<}&, i.e., using (5.10)),

1 1
Vp>03r>03C >0VkeN: ;go::(pk) < —pi(tk) + C,
T

and, by (52),
1 1
Vpo>03r>03ID>0Vt>0: —p.(pt) < 2—(,0;(27'15) + D.
P T

Thus
1 1, 1, 1
Z%(t) = igrg (ts - QTsoa(2TS)> < igg (ts - pww(p8)> +D = ;‘Pw(t) + D,
and hence
(5.18) Low < Lo+,
2T p

which implies o(t) = O(w(t)) as t — o0, i.e., w = 0.
If 2(=X)S, then the same arguments yield (5.18), but with swapped
quantifiers:

1
Vr>0dp>03dD >0Vt >0: 2—0(t)<
T

Again this implies w < o.

(2) If w<to then Lemma implies £} C £(9). Conversely, if £1«}(R)
C £@)(R), then 12} admits a characteristic function and is contained
in £ thus

1 1
Vp>0V7r>03C >0VkeN: ;gpj](pk) < —gr(tk) + C.
T

As in (1) we may derive that for all p, 7 > 0 there is D > 0 such that (5.18)
for all t > 0, hence o(t) = o(w(t)) as t — oo, i.e., w < 0.
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(3) If E@)(R) C E7H(R), then W(<}S, by Corollary and Proposi-
tion As in (1) we may derive that there exist p,7 > 0 such that (5.18]),
and so w = 0. This and (1) imply the assertion. m

As EW(U) = C¥(U) and EW(U) = H(C™) (via restriction), condition
is equivalent to C* C ¢} and condition is equivalent to C¥ C £W).

5.19. Intersection and union of all non-quasianalytic Gevrey
classes. For the weight matrix & = {G® : s > 0} with G* = (G}) = ((k!)®)

(5.20) EOW)=(6""U), UCR"open,
s>0

is the intersection and

(5.21) 8N K = U G'**(K), K CR" compact,
s>0

is the union of all non-quasianalytic Gevrey classes G115 = £{G°} (as locally

convex spaces). Indeed, G* < G for all s < ¢ (so & satisfies (M pg)) and
(DBRy)), and hence we get (5.20):

QW) =) =N e w) =g W),

s>0 s>0 s>0

while is evident by definition. Note that £(®), and hence also 1%},
is non-quasianalytic. In fact, the sequence L = (Lj) defined by k!Lj :=
k*(log(k + €))?* is non-quasianalytic and satisfies L <t G* for all s > 0, and,
as (k!Ly)"/¥ is increasing, £ is non-quasianalytic, by the Denjoy—Carleman
theorem.

The following theorem shows that there exist spaces ™ that are dif-
ferent from £M as well as from £,

5.22. THEOREM. Neither £(®)(R) nor E{8}(R) coincides (as vector space)
with EM(R), EMH(R), E@N(R), or EH(R) for any weight sequence M or
weight function w.

Proof. We show first that, given a weight matrix 9t = {M?* : A € A}
with M?* % M* for all X\ # pu, there cannot exist a weakly log-convex
M € RY, such that EPI(R) = EMI(R). Indeed, if there is such an M,
Proposition implies M ~ M* for some \. Then, by Proposition M(l),

EMN(R) = M (R) = (eMI®R) ¢ EM(R),
A
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and, for compact K C R,
EMIR) = eMH(R) = mg{sm}(K) _ ﬂUS{MA}(K

2 UNet i =Ust e 20)

which contradicts the assumptlon in both cases.

As E@)(R) contains C*(R) it cannot coincide with EM)(R) for any
weight sequence M, by Theorem and the first paragraph; neither can
EBH(R) coincide with EMI(R).

If there exists w € # such that £(®)(R) = £“)(R), then Proposition
implies that for each p > 0 there exist s, p’ > 0 such that

(5.23) 27 <G =< 0P,
and thus, by Proposition 1),
g{m’} C gits ¢ gl

Since G115 = €00} with y(t) = t1/0+%) using the fact that there exist char-
acteristic {7}~ and £/} -functions (where I'™ are the sequences associated
with v), and by (5.10]), we conclude that, for all k,

7<pw(p’k) S @y (Th) +C and —gi(Tk) < H—sow(Hpk) + D,

for suitable constants 7,C, D, H. As in the derivation of - this implies
w ~ v and hence £®)(R) = E(“)(R) = EM(R) = £(E)(R), a contradiction.
Thus there is no w € # with £©)(R) = £EW(R).

If there exists w € # such that E{®}(R) = £{“}(R), then Proposition
implies that for each p’ > 0 there exist s, p > 0 such that holds. Then
the same arguments show w = 7 and hence £{®}(R) = £{«}(R) = EH(R) =
G'*5(R), a contradiction. Thus there is no w € # with £{®}(R) = £{“}(R).

For the remaining cases note that M (<}N{ <)M and M{<)N(=Z}M is
impossible for any two weight matrices 9, 91 € .#. This fact together with
Proposition (and Theorem implies that there is no weight sequence
M and no weight function w so that £®)(R) = EIMH(R), £@)(R) = £1W}(R),
EBHR) = EM(R), or EIH(R) = E@)(R). u

5.24. COROLLARY. Composition is continuous on the intersection of all
non-quasianalytic Gevrey classes. More precisely, comp(®) is continuous,
EWBYRe f), for f e EHRI,R"), is continuous, and compl® is sequen-
tially continuous.

Proof. This follows from Theorems [£.13] and [5.22] =
We expect that compl® is even E® (see Remark .
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5.25. REMARK. More autonomous spaces £ can be produced by choos-
ing the weight matrix 90 := {M? : A > 0} such that each M* has moderate
growth, satisfies lim (M) > 0 and lim 1), /u3 > 1 for some n € N with
,ug = kM,i‘/M,i‘fl, and M?* % M* for \ # u. Here we may use the compari-
son theorems of [8] and argue as above.

6. Stability under composition of £, Stability under composition
of W was characterized in [I6] for non-quasianalytic weights w. In this
section we apply the characterization obtained by means of the associated
weight matrix 20 = {£2° : p > 0} and relate it to the results of [16].

6.1. LEMMA. Ifw € ¥ is subadditive, then (£2°)° < 2%/ for each p > 0.
Then the weight matrix 20 satisfies (M (pqp)) and (DMipqpy)-
Proof. Subadditivity of w implies
(6.2) QJPQ,’; < _Q;Jrk, j,keN
(cf. [I7, Lemma 3.3]). Indeed, exp(%go*(pk;)) = SUpy> S* exp(—%w(s)) and
hence, using subadditivity of w,
Itk 1
QP00 < sup > ex (—w s+t )
e R O
(s +t)Itk 1
— —— )| < 02?7, ..
o GrRr TP /)W(SJr ) = D

By (5.6), (6.2) and since 2 < 227 we get, for a; € Nsg with ag + -+ + @
-k,

QPP P < CIPP 0P 0% < i
J a1 Qaj — J a;j—1 = k>

-1

which implies the assertion. m
6.3. THEOREM. Forw € # satisfying the following are equivalent:

(1) £} is stable under composition.

(2) For each p > 0 there is T > 0 such that (£2°)° 2§27, i.e., W satisfies
(rasy).

(3) There exists a subadditive @ € W such that w ~ @.

(4) w satisfies (wr)).

Proof. (1)<(2) follows from Theorem 4.9 and Corollary

(3)<(4). See [32, Prop. 1.1} and [30, Lemma 1].

(3)=-(2) follows from Lemma

(2)=-(3). The proof is inspired by [16, Prop. 2.3] which treats the non-

quasianalytic case. We do not assume non-quasianalyticity (or quasianalyt-
icity) and use Claim to remedy the lack of £{*}-functions of compact
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support. If w does not satisfy , then there exist increasing sequences
(k) € NN and (t,) € RY, such that

(6.4) w(knty) > nzknw(tn).

Set a,, := e~ ™) and fn(x) = ane™®, z € R. Then

. 1 , 1
[ fnllg,, = ansupt], exp(—w*(m)) = @, expsup <.7 log t,, — pid (m))
jEN P jEN

— enwltn) gwpltn) < o= (n=1/p)wl(tn)

and so {f, : n € N} is bounded in £{“}(R,C) (even in £“) (R, C)). The set
{C > 2+ 2¥: k € N} forms a bounded subset of £{}(D, C), where D C C
is the unit disk and where we identify C = R?). Indeed, for |z| < r < 1
choose p > 0 so that r+ 1/p < 1, and thus

|afz'f| (k) hej 1 ( 1>’f
< sup —<(r4+—-) .
jGN pIj! <k \J 1 p

So {z = z* : k € N} is bounded in C*(D,C) and, by (W), in £}(D, C).
Since 20 satisfies (M rqp}) by assumption (2), we may conclude, from Claim

that the set { ¥ : n, k € N} is bounded in £{“}(R, C). Thus there exists
p > 0 such that

00> sup () Oexp( 567 (01)) = sup ab(tab exp (17 (a)

n,k,jEN n,k,jeEN

_ —1
= sup a ewp(tn ) > D sup (Ik Clw(tnk) _ =D sup e nkw(tn)+C w(tnk)’
nkEN n,keN n,keN

for constants C, D > 0, by Lemma which contradicts (6.4]). m
6.5. THEOREM. Forw € # satisfying the following are equivalent:

(1) £ s stable under composition.

(2) £“) is holomorphically closed.

(3) For each p > 0 there exists T > 0 such that (£27)° < 2P, i.e., W
satisfies .

(4) There exists H > 1 such that for each p > 0 we have (£2°)° < QHr.

(5) There exists a subadditive @ € W such that w ~ &.

(6) w satisfies (wr)).
Note that is needed only for (1)=-(2).

Proof. (1)<(2)<(3) follows from Theorem and Corollary
(2)=(6) follows from an argument due to [10] (see [L6, p. 405].

)
(5)<(6). See [32, Prop. 1.1] and [30, Lemma 1].
(5)=(4) follows from Lemmas and
(4)=(@3)

= is evident. =
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6.6. COROLLARY. Forw € W satisfying the following are equivalent:

(1) For each p > 0 there exists T > 0 such that (£2°)° < (27.
(2) For each p > 0 there exists T > 0 such that (£27)° < £2°.
(3) There exists H > 1 such that (£2°)° = 21?7 for each p > 0.

Proof. Combine Theorems and .
Special cases of Theorem were proven in [16, 4.2 and 4.4]):
6.7. COROLLARY. Letw € W satisfy . Then comp™) is continuous,

EWHRP, f), for f € EWWHRY, R, is continuous, and comp'“} is sequentially
continuous.

Proof. This is a special case of Theorem by Corollary Theo-

rem and Theorem "

We expect that the mapping comp®! is even £ (see Remark .
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