Unconditionally p-null sequences and unconditionally p-compact operators

by
Ju Myung Kim (Seoul)

Abstract

We investigate sequences and operators via the unconditionally p-summable sequences. We characterize the unconditionally p-null sequences in terms of a certain tensor product and then prove that, for every $1 \leq p<\infty$, a subset of a Banach space is relatively unconditionally p-compact if and only if it is contained in the closed convex hull of an unconditionally p-null sequence.

1. Introduction and main results. Grothendieck [G] showed that a subset K of a Banach space X is relatively compact if and only if there exists a null sequence $\left(x_{n}\right)$ in X such that

$$
K \subset\left\{\sum_{n} \alpha_{n} x_{n}:\left(\alpha_{n}\right) \in B_{\ell_{1}}\right\}
$$

where we denote by B_{Z} the unit ball of a Banach space Z. The notion of p-compactness of Sinha and Karn [SK] stems from this criterion. For $1 \leq p \leq \infty$, a subset K of X is called relatively p-compact if there exists $\left(x_{n}\right) \in \ell_{p}(X)$ (or $\left(x_{n}\right) \in c_{0}(X)$ if $\left.p=\infty\right)$ such that

$$
K \subset p-\operatorname{co}\left(\left\{x_{n}\right\}\right):=\left\{\sum_{n} \alpha_{n} x_{n}:\left(\alpha_{n}\right) \in B_{\ell_{p^{*}}}\right\}
$$

where $1 / p+1 / p^{*}=1$ and $\ell_{p}(X)$ (resp. $\left.c_{0}(X)\right)$ is the Banach space with the norm $\|\cdot\|_{p}$ (resp. $\|\cdot\|_{\infty}$) of all X-valued absolutely p-summable (resp. null) sequences.

For $1 \leq p \leq \infty$, the closed subspace $\ell_{p}^{u}(X)$ of $\ell_{p}^{w}(X)$, the Banach space with the norm $\|\cdot\|_{p}^{w}$ of all X-valued weakly p-summable sequences, consists of sequences $\left(x_{n}\right)$ satisfying

$$
\left\|\left(0, \ldots, 0, x_{m}, x_{m+1}, \ldots\right)\right\|_{p}^{w} \rightarrow 0
$$

as $m \rightarrow \infty$. It is well known that $\left(x_{n}\right) \in \ell_{1}^{u}(X)$ if and only if $\left(x_{n}\right)$ is an

[^0]unconditionally summable sequence (cf. [R, Example 3.4]). If $\left(x_{n}\right) \in \ell_{p}^{u}(X)$, we call it an unconditionally p-summable sequence. We say that a subset K of X is relatively unconditionally p-compact (u - p-compact) if there exists $\left(x_{n}\right) \in \ell_{p}^{u}(X)$ such that $K \subset p$-co $\left(\left\{x_{n}\right\}\right)$. Note that every u - p-compact set is a compact set.

Piñeiro and Delgado [PD] introduced and studied p-null sequences. For $1 \leq p<\infty$, a sequence $\left(x_{n}\right)$ in a Banach space X is said to be p-null if for every $\varepsilon>0$ there exist $N \in \mathbb{N}$ and $\left(z_{k}\right) \in \ell_{p}(X)$ with $\left\|\left(z_{k}\right)\right\|_{p} \leq \varepsilon$ such that $x_{n} \in p-\operatorname{co}\left(\left\{z_{k}\right\}\right)$ for all $n \geq N$. The collection of all p-null sequences in X is denoted by $c_{0, p}(X)$.

In this paper, a sequence is called unconditionally p-null (u - p-null) when $\ell_{p}(X)$ and $\|\cdot\|_{p}$ are replaced by $\ell_{p}^{u}(X)$ and $\|\cdot\|_{p}^{w}$. We denote by $c_{0, u p}(X)$ the collection of all u-p-null sequences in X. Note that for every $1 \leq p<\infty$, $c_{0, u p}(X) \subset c_{0}(X)$ and $c_{0, u \infty}(X)=c_{0}(X)$. As in PD, we can analogously define a norm on $c_{0, u p}(X)$ (see Section 3).

Fourie and Swart [FS2] studied the following norm on the tensor product $X \otimes Y$ of Banach spaces X and Y. Let $1 \leq p \leq \infty$. For $u \in X \otimes Y$, define

$$
w_{p}(u)=\inf \left\{\left\|\left(x_{j}\right)\right\|_{p}^{w}\left\|\left(y_{j}\right)\right\|_{p^{*}}^{w}: u=\sum_{j=1}^{n} x_{j} \otimes y_{j}\right\}
$$

Then $\left(X \otimes Y, w_{p}\right)$ is a normed space and we denote by $X \hat{\otimes}_{w_{p}} Y$ its completion. Recall that a norm on tensor products of Banach spaces is a tensor norm if it is a finitely generated uniform crossnorm (cf. [R, Section 6.1]). It was shown in [FS2] that w_{p} is a tensor norm. Oja [O] studied p-null sequences in terms of the Chevet-Saphar tensor product. The following theorem is the analogue of [O, Theorem 4.1] for u - p-null sequences.

Theorem 1.1. Let $1 \leq p \leq \infty$. The tensor product $c_{0} \hat{\otimes}_{w_{p^{*}}} X$ is isometrically isomorphic to $c_{0, u p}(X)$ and for every $u \in c_{0} \hat{\otimes}_{w_{p^{*}}} X$ there exists $\left(x_{n}\right) \in c_{0, u p}(X)$ such that $u=\sum_{n} e_{n} \otimes x_{n}$ in $c_{0} \hat{\otimes}_{w_{p^{*}}} X$.

Piñeiro and Delgado [PD, Proposition 2.6] showed that for $1 \leq p<\infty$, a sequence $\left(x_{n}\right)$ is in $c_{0, p}(X)$ if and only if $\left(x_{n}\right) \in c_{0}(X)$ and the set $\left\{x_{n}\right\}$ is relatively p-compact under an assumption depending on p, and they asked whether the assumption could be deleted. Oja [O, Theorem 4.3] gave an affirmative answer to that question. The following is the result of [O. Theorem 4.3] adapted to u - p-null sequences.

Theorem 1.2. Let $\left(x_{n}\right)$ be a sequence in X and let $1 \leq p<\infty$. Then the following statements are equivalent:
(a) $\left(x_{n}\right) \in c_{0, u p}(X)$.
(b) $\left(x_{n}\right)$ is null and the set $\left\{x_{n}\right\}$ is relatively u-p-compact.
(c) $\left(x_{n}\right)$ is weakly null and the set $\left\{x_{n}\right\}$ is relatively u-p-compact.

It was shown in PD , Theorem 2.5] that for $1 \leq p<\infty$, a subset of a Banach space X is relatively p-compact if and only if it is contained in the closed convex hull $\overline{\mathrm{co}}\left(\left\{x_{n}\right\}\right)$ of a p-null sequence $\left(x_{n}\right)$. For an alternative straightforward proof, see [AO]. For relatively u - p-compact sets we obtain the following result, where $\overline{\mathrm{bco}}(A)$ means the closed balanced convex hull of a set A.

Corollary 1.3. Let K be a subset of X and let $1 \leq p<\infty$. Then the following statements are equivalent:
(a) K is relatively u-p-compact.
(b) There exists $\left(x_{n}\right) \in c_{0, u p}(X)$ such that $K \subset \overline{\mathrm{co}}\left(\left\{x_{n}\right\}\right)$.
(c) There exists $\left(x_{n}\right) \in c_{0, u p}(X)$ such that $K \subset \overline{\mathrm{bco}}\left(\left\{x_{n}\right\}\right)$.

We prove Theorems 1.1 and 1.2 and Corollary 1.3 in Section 3 after studying operators via unconditionally p-summable sequences.
2. Unconditionally p-compact and unconditionally (quasi) p nuclear operators. For $1 \leq p \leq \infty$, following the definition of a p-compact operator in [SK], a linear map $T: X \rightarrow Y$ is said to be u-p-compact if $T\left(B_{X}\right)$ is a relatively u-p-compact subset of Y. The collection of all u - p-compact operators from X to Y is denoted by $\mathcal{K}_{u p}(X, Y)$ and we define a norm u_{p} on $\mathcal{K}_{u p}(X, Y)$ by

$$
u_{p}(T)=\inf \left\{\left\|\left(y_{n}\right)\right\|_{p}^{w}:\left(y_{n}\right) \in \ell_{p}^{u}(Y) \text { and } T\left(B_{X}\right) \subset p-\operatorname{co}\left(\left\{y_{n}\right\}\right)\right\}
$$

From Grothendieck's criterion of compactness, the ideal $[\mathcal{K},\|\cdot\|]$ of compact operators equipped with the operator norm coincides with $\left[\mathcal{K}_{u \infty}, u_{\infty}\right]$ and we have:

Theorem 2.1. For every $1 \leq p<\infty,\left[\mathcal{K}_{u p}, u_{p}\right]$ is a Banach operator ideal.

The proof of Theorem 2.1 is similar to the one of [$\overline{\mathrm{PP}}$, Lemma 4] and follows the scheme indicated by Delgado, Piñeiro and Serrano [DPS] for the ideal of p-compact operators.

Recall that a p-nuclear operator $T \in \mathcal{N}_{p}(X, Y)$ from X to Y, for $1 \leq$ $p \leq \infty$, is represented as $T=\sum_{n} x_{n}^{*} \otimes y_{n}$, where $\left(x_{n}^{*}\right) \in \ell_{p}\left(X^{*}\right)\left(\left(x_{n}\right) \in\right.$ $c_{0}\left(X^{*}\right)$ if $\left.p=\infty\right)$ and $\left(y_{n}\right) \in \ell_{p^{*}}^{w}(Y)$, and the p-nuclear norm $\nu_{p}(T)$ equals $\inf \left\|\left(x_{n}^{*}\right)\right\|_{p}\left\|\left(y_{n}\right)\right\|_{p^{*}}^{w}$, where the infimum is taken over all such representations of T (cf. [DJT, Proposition 5.23]). When the spaces $\ell_{p}\left(X^{*}\right)$ and $\ell_{p^{*}}^{w}(Y)$ are replaced by $\ell_{p}^{u}\left(X^{*}\right)$ and $\ell_{p^{*}}^{u}(Y)$ respectively, the map is well known as a classical p-compact operator (cf. P, Section 18.3] and [FS1, FS2]). To avoid confusion, in this paper, we call it an unconditionally p-nuclear (u -p-nuclear) operator. The collection of all u - p-nuclear operators from X to Y is denoted by $\mathcal{N}_{u p}(X, Y)$ and the u - p-nuclear norm $\nu_{u p}$ is defined by
$\nu_{u p}(T)=\inf \left\|\left(x_{n}^{*}\right)\right\|_{p}^{w}\left\|\left(y_{n}\right)\right\|_{p^{*}}^{w}$, where the infimum is taken over all such representations of T. It is well known that $\left[\mathcal{N}_{u p}, \nu_{u p}\right]$ is a Banach operator ideal (cf. [FS1, Theorems 2.1 and 2.5]).

Proposition 2.2. $\mathcal{K}_{u 2}=\mathcal{N}_{u 2}$.
Proof. Clearly $\mathcal{N}_{u 2} \subset \mathcal{K}_{u 2}$ (in fact, $\mathcal{N}_{u p^{*}} \subset \mathcal{K}_{u p}$ when $1 \leq p \leq \infty$). To show the other inclusion, let $T: X \rightarrow Y$ be a u-2-compact operator. Then there exists $\left(y_{n}\right) \in \ell_{2}^{u}(Y)$ such that $T\left(B_{X}\right) \subset\left\{\sum_{n} \alpha_{n} y_{n}:\left(\alpha_{n}\right) \in B_{\ell_{2}}\right\}$. Define operators $E_{y}: \ell_{2} \rightarrow Y$ by $E_{y} \alpha=\sum_{n} \alpha_{n} y_{n}$, and $\hat{E}_{y}: \ell_{2} / \operatorname{ker}\left(E_{y}\right) \rightarrow Y$ by $\hat{E}_{y}[\alpha]=E_{y} \alpha$. Then \hat{E}_{y} is a compact operator. In view of the factorization in [SK, Section 3], $T=\hat{E}_{y} T_{y}$, where $T_{y}: X \rightarrow \ell_{2} / \operatorname{ker}\left(E_{y}\right)$ is a bounded operator. According to [FS1, Theorem 2.3], T is a u-2-nuclear operator.

For $1 \leq p \leq \infty$, following the definition of a quasi p-nuclear operator in [PP], a linear map $T: X \rightarrow Y$ is called quasi unconditionally p-nuclear (quasi u - p-nuclear) if there exists $\left(x_{n}^{*}\right) \in \ell_{p}^{u}\left(X^{*}\right)$ such that $\|T x\| \leq\left\|\left(x_{n}^{*}(x)\right)\right\|_{p}$ for every $x \in X$. We denote by $\mathcal{N}_{u p}^{Q}(X, Y)$ the collection of all quasi u-pnuclear operators from X to Y. For $T \in \mathcal{N}_{u p}^{Q}(X, Y)$, let $\nu_{u p}^{Q}(T)=\inf \left\|\left(x_{n}^{*}\right)\right\|_{p}^{w}$, where the infimum is taken over all such inequalities. Note that a quasi $u-\infty$-nuclear operator is just a compact operator (cf. [D, Exercise II.6(ii)]). We can also use the proof of $\left[\mathrm{PP}\right.$, Lemma 4] to show that $\left[\mathcal{N}_{u p}^{Q}, \nu_{u p}^{Q}\right]$ is a Banach operator ideal.

We now obtain the duality of u - p-compact operators, which is the analogue of the duality of p-compact operators from [DPS]. In fact, Theorem 2.3 and the "only if" part of Theorem 2.4 are essentially due to [DPS].

Theorem 2.3. Let $1 \leq p \leq \infty$ and let $T: X \rightarrow Y$ be a linear map. Then $T \in \mathcal{N}_{u p}^{Q}(X, Y)$ if and only if $T^{*} \in \mathcal{K}_{u p}\left(Y^{*}, X^{*}\right)$. In this case, $\nu_{u p}^{Q}(T)=u_{p}\left(T^{*}\right)$.

Proof. This is immediate from [DPS, Proposition 3.2].
Theorem 2.4. Let $1 \leq p \leq \infty$ and let $T: X \rightarrow Y$ be a linear map. Then $T \in \mathcal{K}_{u p}(X, Y)$ if and only if $T^{*} \in \mathcal{N}_{u p}^{Q}\left(Y^{*}, X^{*}\right)$. In this case, $\nu_{u p}^{Q}\left(T^{*}\right) \leq u_{p}(T)$.

Proof of the "only if" part of Theorem 2.4. Let $T \in \mathcal{K}_{u p}(X, Y)$ and let $\left(y_{n}\right) \in \ell_{p}^{u}(Y)$ be such that $T\left(B_{X}\right) \subset p-\operatorname{co}\left(\left\{y_{n}\right\}\right)$. Then by DPS, Proposition 3.1],

$$
\left\|T^{*} y^{*}\right\| \leq\left\|\left(i_{Y}\left(y_{n}\right)\left(y^{*}\right)\right)\right\|_{p}
$$

for every $y^{*} \in Y^{*}$. Note that $\left(i_{Y}\left(y_{n}\right)\right) \in \ell_{p}^{u}\left(Y^{* *}\right)$, where $i_{Y}: Y \rightarrow Y^{* *}$ is the natural isometry, and $\left\|\left(i_{Y}\left(y_{n}\right)\right)\right\|_{p}^{w}=\left\|\left(y_{n}\right)\right\|_{p}^{w}$. Hence $T^{*} \in \mathcal{N}_{u p}^{Q}\left(Y^{*}, X^{*}\right)$ and $\nu_{u p}^{Q}\left(T^{*}\right) \leq u_{p}(T)$.

From Theorems 2.3 and 2.4, we have:
Corollary 2.5. Let $1 \leq p \leq \infty$ and let $T: X \rightarrow Y$ be a linear map. Then $T \in \mathcal{K}_{u p}(X, Y)\left(\right.$ resp. $\left.\mathcal{N}_{u p}^{Q}(X, Y)\right)$ if and only if $T^{* *} \in \mathcal{K}_{u p}\left(X^{* *}, Y^{* *}\right)$ (resp. $\mathcal{N}_{u p}^{Q}\left(X^{* *}, Y^{* *}\right)$). In this case, $u_{p}\left(T^{* *}\right) \leq u_{p}(T)\left(\right.$ resp. $\nu_{u p}^{Q}\left(T^{* *}\right) \leq$ $\left.\nu_{u p}^{Q}(T)\right)$.

In order to prove the "if" part of Theorem 2.4, we also use an argument from DPS. By definition we see that $\mathcal{N}_{u p}(X, Y) \subset \mathcal{N}_{u p}^{Q}(X, Y)$ and $\nu_{u p}^{Q}(T) \leq \nu_{u p}(T)$ for every $T \in \mathcal{N}_{u p}(X, Y)$, and we have:

Lemma 2.6. Let $1 \leq p \leq \infty$. Suppose that Y is injective. If $T \in$ $\mathcal{N}_{u p}^{Q}(X, Y)$, then $T \in \mathcal{N}_{u p}(X, \bar{Y})$ and $\nu_{u p}^{Q}(T)=\nu_{u p}(T)$.

Proof. This proof is essentially due to $\left[\mathrm{PP}\right.$. Let $T \in \mathcal{N}_{u p}^{Q}(X, Y)$. Let $\varepsilon>0$ be given. Then there exists $\left(x_{n}^{*}\right) \in \ell_{p}^{u}\left(X^{*}\right)$ such that for every $x \in X$, $\|T x\| \leq\left\|\left(x_{n}^{*}(x)\right)\right\|_{p}$ and $\left\|\left(x_{n}^{*}\right)\right\|_{p}^{w} \leq \nu_{u p}^{Q}(T)+\varepsilon$. Consider the linear subspace $Z=\left\{\left(x_{n}^{*}(x)\right): x \in X\right\}$ of ℓ_{p} (or of c_{0} if $p=\infty$) and the map J : $Z \rightarrow Y,\left(x_{n}^{*}(x)\right) \mapsto T x$. Then J is well defined and linear, and $\|J\| \leq 1$. Since Y is injective, there exists an extension $\hat{J}: \ell_{p} \rightarrow Y$ of J with $\|\hat{J}\|=\|J\|$. Define a map $U: X \rightarrow \ell_{p}$ by $U x=\left(x_{n}^{*}(x)\right)$. Then U is a compact operator and the following diagram is commutative:

Hence by [FS1, Theorem 2.5], $T \in \mathcal{N}_{u p}(X, Y)$ and $\nu_{u p}(T) \leq\|U\|\|\hat{J}\| \leq$ $\left\|\left(x_{n}^{*}\right)\right\|_{p}^{w} \leq \nu_{u p}^{Q}(T)+\varepsilon$, and so $\nu_{u p}^{Q}(T)=\nu_{u p}(T)$.

Let K be a bounded subset of X. In DPS], the authors defined the operators $u_{K}: \ell_{1}(K) \rightarrow X$ and $j_{K}: X^{*} \rightarrow \ell_{\infty}(K)$, respectively, by $u_{K}\left(\xi_{x}\right)_{x \in K}=\sum_{x \in K} \xi_{x} x$ and $j_{K} x^{*}=\left(x^{*}(x)\right)_{x \in K}$. We see that $u_{K}^{*}=j_{K}$.

We now obtain the versions for u - p-compactness of DPS, Proposition 3.5, Corollary 3.6, Remark 3.7].

Proposition 2.7. Let $1 \leq p \leq \infty$ and let K be a bounded subset of X. Then the following statements are equivalent:
(a) K is relatively u-p-compact.
(b) u_{K} is u-p-compact.
(c) j_{K} is u-p-nuclear.

Proof. $(\mathrm{a}) \Rightarrow(\mathrm{b})$. Let $\left(x_{n}\right) \in \ell_{p}^{u}(X)$ be such that $K \subset p-\operatorname{co}\left(\left\{x_{n}\right\}\right)$. Then $u_{K}\left(B_{\ell_{1}(K)}\right) \subset \overline{\mathrm{bco}}(K) \subset p-\operatorname{co}\left(\left\{x_{n}\right\}\right)$. Hence u_{K} is u - p-compact.
(b) \Rightarrow (a). Since $K \subset u_{K}\left(B_{\ell_{1}(K)}\right)$, this is clear.
(b) $\Rightarrow(\mathrm{c})$. If u_{K} is u-p-compact, then by Theorem $2.4(\Rightarrow), u_{K}^{*}=j_{K}$ is quasi u - p-nuclear. Since $\ell_{\infty}(K)$ is injective, (c) follows from Lemma 2.6.
(c) $\Rightarrow(\mathrm{b})$. If $u_{K}^{*}=j_{K}$ is $u-p$-nuclear, then by [DFS, Proposition 1.5.7], u_{K} is u - p^{*}-nuclear. Hence u_{K} is u-p-compact, because, clearly, $\mathcal{N}_{u p^{*}} \subset \mathcal{K}_{u p}$.

The following is a duality version of Proposition 2.7.
Proposition 2.8. Let $1 \leq p \leq \infty$ and let C be a bounded subset of X^{*}. Then the following statements are equivalent:
(a) C is relatively u-p-compact.
(b) The map $u_{C}: \ell_{1}(C) \rightarrow X^{*}$ defined by $u_{C}\left(\left(\xi_{x^{*}}\right)_{x^{*} \in C}\right)=\sum_{x^{*} \in C} \xi_{x^{*}} x^{*}$ is a u-p-compact operator.
(c) The map $j_{C}: X \rightarrow \ell_{\infty}(C)$ defined by $j_{C} x=\left(x^{*}(x)\right)_{x^{*} \in C}$ is a u-pnuclear operator.
Proof. Use the duality relationships $u_{C}^{*} i_{X}=j_{C}$ and $j_{C}^{*} i_{l_{1}(C)}=u_{C}$, and Theorems 2.3 and 2.4 \Rightarrow).

Corollary 2.9. Let $1 \leq p \leq \infty$ and let K be a subset of X. If $i_{X}(K)$ is a relatively u-p-compact subset of $X^{* *}$, then K is a relatively u-p-compact subset of X.

Proof. If $i_{X}(K)$ is a relatively u - p-compact subset of $X^{* *}$, then by Proposition 2.8, the operator $j_{i_{X}(K)}: X^{*} \rightarrow \ell_{\infty}\left(i_{X}(K)\right)$, which is actually the operator $j_{K}: X^{*} \rightarrow \ell_{\infty}(K)$ in Proposition 2.7, is u - p-nuclear. Hence K is relatively u - p-compact.

We now complete the proof of Theorem 2.4.
Proof of the "if" part of Theorem 2.4. If $T^{*} \in \mathcal{N}_{u p}^{Q}\left(Y^{*}, X^{*}\right)$, then by Theorem 2.3, $T^{* *} \in \mathcal{K}_{u p}\left(X^{* *}, Y^{* *}\right)$. Thus $i_{Y} T\left(B_{X}\right)=T^{* *} i_{X}\left(B_{X}\right)$ is a relatively u-p-compact subset of $Y^{* *}$. Hence by Corollary 2.9, $T\left(B_{X}\right)$ is a relatively $u-p$-compact subset of Y and so $T \in \mathcal{K}_{u p}(X, Y)$.
3. Proofs of main results. For a bounded sequence $\hat{x}:=\left(x_{n}\right)$ in X, define an operator $u_{\hat{x}}: \ell_{1} \rightarrow X$ by $u_{\hat{x}}\left(\alpha_{n}\right)=\sum_{n} \alpha_{n} x_{n}$. Then for $1 \leq p \leq \infty$, by Proposition 2.7, the set $\left\{x_{n}\right\}$ is relatively u - p-compact if and only if the operator $u_{\hat{x}}$ is u-p-compact. As indicated for p-null sequences [PD, Remark 2.2], a simple verification shows that a sequence $\left(x_{n}\right)$ is $u-p$-null if and only if $\left\{x_{n}\right\}$ is relatively u - p-compact and $u_{p}\left(u_{\hat{x}(n)}-u_{\hat{x}}\right) \rightarrow 0$ as $n \rightarrow \infty$, where $\hat{x}(n):=\left(x_{1}, \ldots, x_{n}, 0, \ldots\right)$.

Let $1 \leq p \leq \infty$. We define a norm on $c_{0, u p}(X)$ by $\left\|\left(x_{n}\right)\right\|_{u p}^{0}=u_{p}\left(u_{\hat{x}}\right)$ for $\left(x_{n}\right) \in c_{0, u p}(X)$. Then $\left(c_{0, u \infty}(X),\|\cdot\|_{u \infty}^{0}\right)=\left(c_{0}(X),\|\cdot\|_{\infty}\right)$ and we have the following result whose proof is straightforward.

Proposition 3.1. Let $1 \leq p<\infty$. Then $\left(c_{0, u p}(X),\|\cdot\|_{u p}^{0}\right)$ is a Banach space.

We need the following result to prove Theorem 1.1. Its prototype is DPS, Proposition 3.11].

Lemma 3.2. Let $1 \leq p \leq \infty$ and let $T: Y \rightarrow X$ be a linear map. Then $T \in \mathcal{K}_{u p}(Y, X)$ if and only if $T u_{B_{Y}} \in \mathcal{N}_{u p^{*}}\left(\ell_{1}\left(B_{Y}\right), X\right)$. In this case, $u_{p}(T)=\nu_{u p^{*}}\left(T u_{B_{Y}}\right)$.

Proof. If $T \in \mathcal{K}_{u p}(Y, X)$, then by Theorem $2.4, T^{*} \in \mathcal{N}_{u p}^{Q}\left(X^{*}, Y^{*}\right)$ and $\nu_{u p}^{Q}\left(T^{*}\right) \leq u_{p}(T)$. It follows from Lemma 2.6 that

$$
\left(T u_{B_{Y}}\right)^{*}=j_{B_{Y}} T^{*} \in \mathcal{N}_{u p}\left(X^{*}, \ell_{\infty}\left(B_{Y}\right)\right)
$$

Hence by DFS, Proposition 1.5.7], $T u_{B_{Y}} \in \mathcal{N}_{u p^{*}}\left(\ell_{1}\left(B_{Y}\right), X\right)$ and

$$
\nu_{u p^{*}}\left(T u_{B_{Y}}\right)=\nu_{u p}\left(j_{B_{Y}} T^{*}\right)=\nu_{u p}^{Q}\left(j_{B_{Y}} T^{*}\right) \leq u_{p}(T)
$$

To show the converse, let $T u_{B_{Y}}=\sum_{n}\left(\zeta_{y}^{n}\right)_{y} \otimes x_{n} \in \mathcal{N}_{u p^{*}}\left(\ell_{1}\left(B_{Y}\right), X\right)$ be a representation, where $\left(\left(\zeta_{y}^{n}\right)_{y}\right) \in \ell_{p^{*}}^{u}\left(\ell_{\infty}\left(B_{Y}\right)\right)$ and $\left(x_{n}\right) \in \ell_{p}^{u}(X)$. Then

$$
T\left(B_{Y}\right)=\left\{\sum_{n} \zeta_{y}^{n} x_{n}: y \in B_{Y}\right\} \subset p-\operatorname{co}\left(\left\{\left\|\left(\left(\zeta_{y}^{k}\right)_{y}\right)_{k}\right\|_{p^{*}}^{w} x_{n}\right\}_{n}\right)
$$

Hence $T \in \mathcal{K}_{u p}(Y, X)$ and $u_{p}(T) \leq\left\|\left(\left(\zeta_{y}^{k}\right)_{y}\right)_{k}\right\|_{p^{*}}^{w}\left\|\left(x_{n}\right)\right\|_{p}^{w}$. Since the representation was arbitrary, $u_{p}(T) \leq \nu_{u p^{*}}\left(T u_{B_{Y}}\right)$.

Since for every operator $T: \ell_{1} \rightarrow X, T$ coincides with $T u_{B_{\ell_{1}}} i$, where the $\operatorname{map} i: \ell_{1} \rightarrow \ell_{1}\left(B_{\ell_{1}}\right)$ is the canonical isometry, by Lemma 3.2 we have:

Corollary 3.3. Let $1 \leq p \leq \infty$ and let $T: \ell_{1} \rightarrow X$ be a linear map. Then $T \in \mathcal{K}_{u p}\left(\ell_{1}, X\right)$ if and only if $T \in \mathcal{N}_{u p^{*}}\left(\ell_{1}, X\right)$. In this case, $u_{p}(T)=\nu_{u p^{*}}(T)$.

We also need a result of Fourie and Swart [FS2] to prove Theorem 1.1.
Lemma 3.4 ([FS2, Proposition 3.2]). Let $1 \leq p \leq \infty$. If $\left(x_{n}\right) \in \ell_{p}^{u}(X)$ and $\left(y_{n}\right) \in \ell_{p^{*}}^{u}(Y)$, then $\sum_{n} x_{n} \otimes y_{n}$ converges in $X \hat{\otimes}_{w_{p}} Y$. Conversely, if $u \in X \hat{\otimes}_{w_{p}} Y$, then there exist $\left(x_{n}\right) \in \ell_{p}^{u}(X)$ and $\left(y_{n}\right) \in \ell_{p^{*}}^{u}(Y)$ such that $\sum_{n} x_{n} \otimes y_{n}$ converges to u. Moreover,
$w_{p}(u)=\inf \left\{\left\|\left(x_{n}\right)\right\|_{p}^{w}\left\|\left(y_{n}\right)\right\|_{p^{*}}^{w}: u=\sum_{n=1}^{\infty} x_{n} \otimes y_{n},\left(x_{n}\right) \in \ell_{p}^{u}(X),\left(y_{n}\right) \in \ell_{p^{*}}^{u}(Y)\right\}$.
Proof of Theorem 1.1. In order to show the first part, consider the linear $\operatorname{map} J:\left(c_{0} \otimes X, w_{p^{*}}\right) \rightarrow c_{0, u p}(X)$ defined by

$$
J\left(\sum_{j \leq n}\left(\lambda_{i}^{j}\right)_{i} \otimes x_{j}\right)=\left(\sum_{j \leq n} \lambda_{i}^{j} x_{j}\right)_{i}
$$

First, one may check that $J\left(c_{0} \otimes X\right) \subset c_{0, u p}(X)$ using elementary tensors. Since, for every $\left(x_{n}\right) \in c_{0, u p}(X)$ and $m \in \mathbb{N}, \hat{x}(m)=J\left(\sum_{j \leq m} e_{j} \otimes x_{j}\right)$ and

$$
\lim _{m \rightarrow \infty}\|\hat{x}(m)-\hat{x}\|_{u p}^{0}=\lim _{m \rightarrow \infty} u_{p}\left(u_{\hat{x}(m)}-u_{\hat{x}}\right)=0
$$

$J\left(c_{0} \otimes X\right)$ is dense in $c_{0, u p}(X)$.
To show that the map $J:\left(c_{0} \otimes X, w_{p^{*}}\right) \rightarrow c_{0, u p}(X)$ is an isometry, let $T=\sum_{j \leq n}\left(\lambda_{i}^{j}\right)_{i} \otimes x_{j} \in c_{0} \otimes X$ and let $\left(z_{i}\right):=\left(\sum_{j \leq n} \lambda_{i}^{j} x_{j}\right)_{i}$. Then $T=u_{\hat{z}}$. From [DFS, Proposition 1.5.5] and Corollary 3.3, it follows that

$$
\left\|\left(z_{i}\right)\right\|_{u p}^{0}=u_{p}\left(u_{\hat{z}}\right)=u_{p}(T)=\nu_{u p^{*}}(T)=w_{p^{*}}\left(\sum_{j \leq n}\left(\lambda_{i}^{j}\right)_{i} \otimes x_{j}\right)
$$

Since $c_{0, u p}(X)$ is a Banach space, the extension $\hat{J}: c_{0} \hat{\otimes}_{w_{p^{*}}} X \rightarrow c_{0, u p}(X)$ of J is a surjective linear isometry.

In order to show the second part, let $u \in c_{0} \hat{\otimes}_{w_{p^{*}}} X$. Then by Lemma 3.4 there exist $\left(\left(\lambda_{i}^{j}\right)_{i}\right)_{j} \in \ell_{p^{*}}^{u}\left(c_{0}\right)$ and $\left(z_{j}\right) \in \ell_{p}^{u}(X)$ such that $u=\sum_{j=1}^{\infty}\left(\lambda_{i}^{j}\right)_{i} \otimes z_{j}$ in $c_{0} \hat{\otimes}_{w_{p^{*}}} X$. For every i, let

$$
x_{i}:=\sum_{j=1}^{\infty} \lambda_{i}^{j} z_{j}
$$

We show that $\left(x_{i}\right)$ is the desired sequence. Let $\varepsilon>0$ be given. Since $\left(\left(\lambda_{i}^{j}\right)_{i}\right)_{j} \in \ell_{p^{*}}^{u}\left(c_{0}\right)$, it is easily seen that there exists an $N \in \mathbb{N}$ such that

$$
\sup _{i \geq N}\left\|\left(\lambda_{i}^{j}\right)_{j}\right\|_{p^{*}}\left\|\left(z_{j}\right)\right\|_{p}^{w} \leq \varepsilon
$$

Let $C:=\sup _{i \geq N}\left\|\left(\lambda_{i}^{j}\right)_{j}\right\|_{p^{*}}$. We may assume that $C \neq 0$. Then $i \geq N$ implies that

$$
x_{i}=\sum_{j=1}^{\infty} \frac{\lambda_{i}^{j}}{C} C z_{j} \subset p-\operatorname{co}\left(\left\{C z_{j}\right\}\right)
$$

Since $\left\|\left(C z_{j}\right)\right\|_{p}^{w} \leq \varepsilon,\left(x_{i}\right) \in c_{0, u p}(X)$. Recall the isometry $\hat{J}: c_{0} \hat{\otimes}_{w_{p^{*}}} X \rightarrow$ $c_{0, u p}(X)$. Let $\hat{J}(u):=\left(u_{i}\right)$. Since $\lim _{n \rightarrow \infty}\left(\sum_{j \leq n} \lambda_{i}^{j} z_{j}\right)_{i}=\hat{J}(u)$ in $c_{0, u p}(X)$, $\lim _{n \rightarrow \infty} \sum_{j \leq n} \lambda_{i}^{j} z_{j}=u_{i}$ in X for every i. Hence $\left(x_{i}\right)=\left(u_{i}\right)=\hat{J}(u)$ and so

$$
u=\hat{J}^{-1}\left(\left(x_{i}\right)\right)=\lim _{m \rightarrow \infty} \hat{J}^{-1}(\hat{x}(m))=\lim _{m \rightarrow \infty} \sum_{i \leq m} e_{i} \otimes x_{i}
$$

We need the main theorem in O to prove Theorem 1.2.
Lemma 3.5 ($\boxed{(1)}$, Theorem 2.4]). Let α be a tensor norm. Assume that $X^{* * *}$ or Y has the approximation property. If $T \in \mathcal{N}_{\alpha}\left(X^{*}, Y\right)$ and $T^{*}\left(Y^{*}\right)$ $\subset i_{X}(X)$, then $T \in \overline{X \otimes Y}$ in $\mathcal{N}_{\alpha}\left(X^{*}, Y\right)$.

Corollary 3.6. Let $1 \leq p \leq \infty$. Assume that $X^{* * *}$ or Y has the approximation property. If $T \in \mathcal{N}_{u p}\left(X^{*}, Y\right)$ and $T^{*}\left(Y^{*}\right) \subset i_{X}(X)$, then $T=\sum_{n} x_{n} \otimes y_{n}$ in $\mathcal{N}_{u p}\left(X^{*}, Y\right)$, where $\left(x_{n}\right) \in \ell_{p}^{u}(X)$ and $\left(y_{n}\right) \in \ell_{p^{*}}^{u}(Y)$.

Proof. From Lemma 3.5, [DFS, Corollary 1.4.9 and Proposition 1.5.5], it follows that

$$
T \in \overline{X \otimes Y}^{\mathcal{N}_{u p}\left(X^{*}, Y\right)}=\overline{X \otimes Y}^{X^{* *} \hat{\otimes}_{w_{p}} Y}=X \hat{\otimes}_{w_{p}} Y
$$

Hence from Lemma 3.4 we obtain the conclusion.
Proof of Theorem 1.2. $(\mathrm{a}) \Rightarrow(\mathrm{b})$ and $(\mathrm{b}) \Rightarrow(\mathrm{c})$ are obvious.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$. This proof is essentially due to [O, Theorem 4.3]. If $\left\{x_{n}\right\}$ is relatively u - p-compact, then $u_{\hat{x}} \in \mathcal{K}_{u p}\left(\ell_{1}, X\right)$. By Corollary $3.3, u_{\hat{x}} \in$ $\mathcal{N}_{u p^{*}}\left(\ell_{1}, X\right)$ and $u_{p}\left(u_{\hat{x}}\right)=\nu_{u p^{*}}\left(u_{\hat{x}}\right)$.

Since $\left(x_{n}\right)$ is weakly null, we see that $u_{\hat{x}}^{*}\left(X^{*}\right) \subset c_{0}$. Since $c_{0}^{* * *}$ has the approximation property, it follows from Corollary 3.6 that $u_{\hat{x}} \in c_{0} \hat{\otimes}_{w_{p^{*}}} X$. Hence by Theorem 1.1 there exists $\left(z_{n}\right) \in c_{0, u p}(X)$ such that $u_{\hat{x}}=$ $\sum_{n} e_{n} \otimes z_{n}$ in $c_{0} \hat{\otimes}_{w_{p^{*}}} X$ and so $z_{k}=x_{k}$ for every k, which completes the proof.

Remark 3.7. We can also prove Theorem 1.2 using the argument of Lassalle and Turco [LT] based on Carl-Stephani theory [CS].

Proof of Corollary 1.3. (b) $\Rightarrow(\mathrm{c})$ is trivial.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$. If $\left(x_{n}\right) \in c_{0, u p}(X)$, then the set $\left\{x_{n}\right\}$ is relatively u-p-compact. Thus there exists $\left(z_{n}\right) \in \ell_{p}^{u}(X)$ such that $\left\{x_{n}\right\} \subset p-\operatorname{co}\left(\left\{z_{n}\right\}\right)$. By (c) we have $K \subset p-\operatorname{co}\left(\left\{z_{n}\right\}\right)$, hence the assertion (a) follows.
$(\mathrm{a}) \Rightarrow(\mathrm{b})$. Since K is relatively u - p-compact, there exists $\left(x_{n}\right) \in \ell_{p}^{u}(X)$ such that $K \subset p-\operatorname{co}\left(\left\{x_{n}\right\}\right)$. By a standard argument we can find a sequence $\left(\beta_{n}\right)$ of positive numbers such that $\beta_{n} \rightarrow 0$ and $\left(x_{n} / \beta_{n}\right) \in \ell_{p}^{u}(X)$. Recall the operators $E_{x}, E_{x / \beta}: \ell_{p^{*}} \rightarrow X$ defined in the proof of Proposition 2.2, and the diagonal operator $D_{\beta}: \ell_{p^{*}} \rightarrow \ell_{p^{*}}$ via $\left(\beta_{n}\right)$. We see that D_{β} is a compact operator. Then there exists a null sequence $\left(z_{n}\right)$ in $\ell_{p^{*}}$ such that $D_{\beta}\left(B_{\ell_{p^{*}}}\right) \subset \overline{\operatorname{co}}\left(\left\{z_{n}\right\}\right)$. Hence we have

$$
K \subset p-\operatorname{co}\left(\left\{x_{n}\right\}\right)=E_{x}\left(B_{\ell_{p^{*}}}\right)=E_{x / \beta} D_{\beta}\left(B_{\ell_{p^{*}}}\right) \subset \overline{\operatorname{co}}\left(\left\{E_{x / \beta} z_{n}\right\}\right)
$$

and, by Theorem $1.2,\left(E_{x / \beta} z_{n}\right) \in c_{0, u p}(X)$ because $\left(E_{x / \beta} z_{n}\right)$ is a null sequence in X and the set $\left\{E_{x / \beta} z_{n}\right\}$ is relatively u - p-compact.

We can also prove [PD, Theorem 2.5] using [O, Theorem 4.3].
Acknowledgments. The author would like to express his sincere gratitude to the referee for kind and valuable comments. This work was supported by NRF-2013R1A1A2A10058087 funded by the Korean Government.

References

[AO] K. Ain and E. Oja, A description of relatively (p, r)-compact sets, Acta Comment. Univ. Tartu. Math. 16 (2012), 227-232.
[CS] B. Carl and I. Stephani, On A-compact operators, generalized entropy numbers and entropy ideals, Math. Nachr. 199 (1984), 77-95.
[DPS] J. M. Delgado, C. Piñeiro, and E. Serrano, Operators whose adjoints are quasi p-nuclear, Studia Math. 197 (2010), 291-304.
[D] J. Diestel, Sequences and Series in Banach Spaces, Springer, New York, 1984.
[DFS] J. Diestel, J. H. Fourie, and J. Swart, The Metric Theory of Tensor Products, Amer. Math. Soc., Providence, RI, 2008.
[DJT] J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge Univ. Press, Cambridge, 1995.
[FS1] J. H. Fourie and J. Swart, Banach ideals of p-compact operators, Manuscripta Math. 26 (1979), 349-362.
[FS2] J. H. Fourie and J. Swart, Tensor products and Banach ideals of p-compact operators, Manuscripta Math. 35 (1981), 343-351.
[G] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
$[\mathrm{LT}]$ S. Lassalle and P. Turco, The Banach ideal of \mathcal{A}-compact operators and related approximation properties, J. Funct. Anal. 265 (2013), 2452-2464.
[O] E. Oja, Grothendieck's nuclear operator theorem revisited with an application to p-null sequences, J. Funct. Anal. 263 (2012), 2876-2892.
[PP] A. Persson und A. Pietsch, p-nukleare und p-integrale Abbildungen in Banachräumen, Studia Math. 33 (1969), 19-62.
[P] A. Pietsch, Operator Ideals, North-Holland, Amsterdam, 1980.
[PD] C. Piñeiro and J. M. Delgado, p-Convergent sequences and Banach spaces in which p-compact sets are q-compact, Proc. Amer. Math. Soc. 139 (2011), 957-967.
[R] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer, Berlin, 2002.
[SK] D. P. Sinha and A. K. Karn, Compact operators whose adjoints factor through subspaces of l_{p}, Studia Math. 150 (2002), 17-33.

Ju Myung Kim
Department of Mathematical Sciences
Seoul National University
Seoul, 151-747, Korea
E-mail: kjm21@kaist.ac.kr

[^0]: 2010 Mathematics Subject Classification: 46B45, 46B50, 46B28, 47L20.
 Key words and phrases: unconditionally p-summable sequence, unconditionally p-null sequence, unconditionally p-compact set, Banach operator ideal, tensor norm.

