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Unconditionally p-null sequences and
unconditionally p-compact operators

by

Ju Myung Kim (Seoul)

Abstract. We investigate sequences and operators via the unconditionally p-sum-
mable sequences. We characterize the unconditionally p-null sequences in terms of a certain
tensor product and then prove that, for every 1 ≤ p < ∞, a subset of a Banach space is
relatively unconditionally p-compact if and only if it is contained in the closed convex hull
of an unconditionally p-null sequence.

1. Introduction and main results. Grothendieck [G] showed that a
subset K of a Banach space X is relatively compact if and only if there
exists a null sequence (xn) in X such that

K ⊂
{∑

n

αnxn : (αn) ∈ B`1
}
,

where we denote by BZ the unit ball of a Banach space Z. The notion
of p-compactness of Sinha and Karn [SK] stems from this criterion. For
1 ≤ p ≤ ∞, a subset K of X is called relatively p-compact if there exists
(xn) ∈ `p(X) (or (xn) ∈ c0(X) if p =∞) such that

K ⊂ p-co({xn}) :=
{∑

n

αnxn : (αn) ∈ B`p∗
}
,

where 1/p+ 1/p∗ = 1 and `p(X) (resp. c0(X)) is the Banach space with the
norm ‖ · ‖p (resp. ‖ · ‖∞) of all X-valued absolutely p-summable (resp. null)
sequences.

For 1 ≤ p ≤ ∞, the closed subspace `up(X) of `wp (X), the Banach space
with the norm ‖ · ‖wp of all X-valued weakly p-summable sequences, consists
of sequences (xn) satisfying

‖(0, . . . , 0, xm, xm+1, . . .)‖wp → 0

as m → ∞. It is well known that (xn) ∈ `u1(X) if and only if (xn) is an
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unconditionally summable sequence (cf. [R, Example 3.4]). If (xn) ∈ `up(X),
we call it an unconditionally p-summable sequence. We say that a subset K
of X is relatively unconditionally p-compact (u-p-compact) if there exists
(xn) ∈ `up(X) such that K ⊂ p-co({xn}). Note that every u-p-compact set
is a compact set.

Piñeiro and Delgado [PD] introduced and studied p-null sequences. For
1 ≤ p <∞, a sequence (xn) in a Banach space X is said to be p-null if for
every ε > 0 there exist N ∈ N and (zk) ∈ `p(X) with ‖(zk)‖p ≤ ε such that
xn ∈ p-co({zk}) for all n ≥ N . The collection of all p-null sequences in X is
denoted by c0,p(X).

In this paper, a sequence is called unconditionally p-null (u-p-null) when
`p(X) and ‖ · ‖p are replaced by `up(X) and ‖ · ‖wp . We denote by c0,up(X)
the collection of all u-p-null sequences in X. Note that for every 1 ≤ p <∞,
c0,up(X) ⊂ c0(X) and c0,u∞(X) = c0(X). As in [PD], we can analogously
define a norm on c0,up(X) (see Section 3).

Fourie and Swart [FS2] studied the following norm on the tensor product
X ⊗ Y of Banach spaces X and Y . Let 1 ≤ p ≤ ∞. For u ∈ X ⊗ Y , define

wp(u) = inf
{
‖(xj)‖wp ‖(yj)‖wp∗ : u =

n∑
j=1

xj ⊗ yj
}
.

Then (X⊗Y,wp) is a normed space and we denote byX⊗̂wpY its completion.
Recall that a norm on tensor products of Banach spaces is a tensor norm
if it is a finitely generated uniform crossnorm (cf. [R, Section 6.1]). It was
shown in [FS2] that wp is a tensor norm. Oja [O] studied p-null sequences
in terms of the Chevet–Saphar tensor product. The following theorem is the
analogue of [O, Theorem 4.1] for u-p-null sequences.

Theorem 1.1. Let 1 ≤ p ≤ ∞. The tensor product c0 ⊗̂wp∗ X is iso-

metrically isomorphic to c0,up(X) and for every u ∈ c0 ⊗̂wp∗ X there exists

(xn) ∈ c0,up(X) such that u =
∑

n en ⊗ xn in c0 ⊗̂wp∗ X.

Piñeiro and Delgado [PD, Proposition 2.6] showed that for 1 ≤ p < ∞,
a sequence (xn) is in c0,p(X) if and only if (xn) ∈ c0(X) and the set
{xn} is relatively p-compact under an assumption depending on p, and
they asked whether the assumption could be deleted. Oja [O, Theorem 4.3]
gave an affirmative answer to that question. The following is the result of
[O, Theorem 4.3] adapted to u-p-null sequences.

Theorem 1.2. Let (xn) be a sequence in X and let 1 ≤ p < ∞. Then
the following statements are equivalent:

(a) (xn) ∈ c0,up(X).
(b) (xn) is null and the set {xn} is relatively u-p-compact.
(c) (xn) is weakly null and the set {xn} is relatively u-p-compact.
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It was shown in [PD, Theorem 2.5] that for 1 ≤ p < ∞, a subset of
a Banach space X is relatively p-compact if and only if it is contained in
the closed convex hull co({xn}) of a p-null sequence (xn). For an alternative
straightforward proof, see [AO]. For relatively u-p-compact sets we obtain
the following result, where bco(A) means the closed balanced convex hull of
a set A.

Corollary 1.3. Let K be a subset of X and let 1 ≤ p < ∞. Then the
following statements are equivalent:

(a) K is relatively u-p-compact.
(b) There exists (xn) ∈ c0,up(X) such that K ⊂ co({xn}).
(c) There exists (xn) ∈ c0,up(X) such that K ⊂ bco({xn}).

We prove Theorems 1.1 and 1.2 and Corollary 1.3 in Section 3 after
studying operators via unconditionally p-summable sequences.

2. Unconditionally p-compact and unconditionally (quasi) p-
nuclear operators. For 1 ≤ p ≤ ∞, following the definition of a p-compact
operator in [SK], a linear map T : X → Y is said to be u-p-compact
if T (BX) is a relatively u-p-compact subset of Y . The collection of all
u-p-compact operators from X to Y is denoted by Kup(X,Y ) and we define
a norm up on Kup(X,Y ) by

up(T ) = inf
{
‖(yn)‖wp : (yn) ∈ `up(Y ) and T (BX) ⊂ p-co({yn})

}
.

From Grothendieck’s criterion of compactness, the ideal [K, ‖ ·‖] of compact
operators equipped with the operator norm coincides with [Ku∞, u∞] and
we have:

Theorem 2.1. For every 1 ≤ p < ∞, [Kup, up] is a Banach operator
ideal.

The proof of Theorem 2.1 is similar to the one of [PP, Lemma 4] and
follows the scheme indicated by Delgado, Piñeiro and Serrano [DPS] for the
ideal of p-compact operators.

Recall that a p-nuclear operator T ∈ Np(X,Y ) from X to Y , for 1 ≤
p ≤ ∞, is represented as T =

∑
n x
∗
n ⊗ yn, where (x∗n) ∈ `p(X

∗) ((xn) ∈
c0(X

∗) if p = ∞) and (yn) ∈ `wp∗(Y ), and the p-nuclear norm νp(T ) equals
inf ‖(x∗n)‖p‖(yn)‖wp∗ , where the infimum is taken over all such representations
of T (cf. [DJT, Proposition 5.23]). When the spaces `p(X

∗) and `wp∗(Y )
are replaced by `up(X∗) and `up∗(Y ) respectively, the map is well known as
a classical p-compact operator (cf. [P, Section 18.3] and [FS1, FS2]). To
avoid confusion, in this paper, we call it an unconditionally p-nuclear (u-
p-nuclear) operator. The collection of all u-p-nuclear operators from X to
Y is denoted by Nup(X,Y ) and the u-p-nuclear norm νup is defined by
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νup(T ) = inf ‖(x∗n)‖wp ‖(yn)‖wp∗ , where the infimum is taken over all such
representations of T . It is well known that [Nup, νup] is a Banach operator
ideal (cf. [FS1, Theorems 2.1 and 2.5]).

Proposition 2.2. Ku2 = Nu2.

Proof. Clearly Nu2 ⊂ Ku2 (in fact, Nup∗ ⊂ Kup when 1 ≤ p ≤ ∞). To
show the other inclusion, let T : X → Y be a u-2-compact operator. Then
there exists (yn) ∈ `u2(Y ) such that T (BX) ⊂ {

∑
n αnyn : (αn) ∈ B`2}.

Define operators Ey : `2 → Y by Eyα =
∑

n αnyn, and Êy : `2/ker(Ey)→ Y

by Êy[α] = Eyα. Then Êy is a compact operator. In view of the factorization

in [SK, Section 3], T = ÊyTy, where Ty : X → `2/ker(Ey) is a bounded
operator. According to [FS1, Theorem 2.3], T is a u-2-nuclear operator.

For 1 ≤ p ≤ ∞, following the definition of a quasi p-nuclear operator
in [PP], a linear map T : X → Y is called quasi unconditionally p-nuclear
(quasi u-p-nuclear) if there exists (x∗n)∈ `up(X∗) such that ‖Tx‖≤ ‖(x∗n(x))‖p
for every x ∈ X. We denote by NQ

up(X,Y ) the collection of all quasi u-p-

nuclear operators from X to Y . For T ∈NQ
up(X,Y ), let νQup(T ) = inf ‖(x∗n)‖wp ,

where the infimum is taken over all such inequalities. Note that a quasi
u-∞-nuclear operator is just a compact operator (cf. [D, Exercise II.6(ii)]).

We can also use the proof of [PP, Lemma 4] to show that [NQ
up, ν

Q
up] is a

Banach operator ideal.

We now obtain the duality of u-p-compact operators, which is the ana-
logue of the duality of p-compact operators from [DPS]. In fact, Theorem 2.3
and the “only if” part of Theorem 2.4 are essentially due to [DPS].

Theorem 2.3. Let 1 ≤ p ≤ ∞ and let T : X → Y be a linear map.
Then T ∈ NQ

up(X,Y ) if and only if T ∗ ∈ Kup(Y ∗, X∗). In this case,

νQup(T ) = up(T
∗).

Proof. This is immediate from [DPS, Proposition 3.2].

Theorem 2.4. Let 1 ≤ p ≤ ∞ and let T : X → Y be a linear map.
Then T ∈ Kup(X,Y ) if and only if T ∗ ∈ NQ

up(Y ∗, X∗). In this case,

νQup(T ∗) ≤ up(T ).

Proof of the “only if” part of Theorem 2.4. Let T ∈ Kup(X,Y ) and let
(yn) ∈ `up(Y ) be such that T (BX) ⊂ p-co({yn}). Then by [DPS, Proposi-
tion 3.1],

‖T ∗y∗‖ ≤ ‖(iY (yn)(y∗))‖p
for every y∗ ∈ Y ∗. Note that (iY (yn)) ∈ `up(Y ∗∗), where iY : Y → Y ∗∗ is the

natural isometry, and ‖(iY (yn))‖wp = ‖(yn)‖wp . Hence T ∗ ∈ NQ
up(Y ∗, X∗) and

νQup(T ∗) ≤ up(T ).
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From Theorems 2.3 and 2.4, we have:

Corollary 2.5. Let 1 ≤ p ≤ ∞ and let T : X → Y be a linear map.
Then T ∈ Kup(X,Y ) (resp. NQ

up(X,Y )) if and only if T ∗∗ ∈ Kup(X∗∗, Y ∗∗)
(resp. NQ

up(X∗∗, Y ∗∗)). In this case, up(T
∗∗) ≤ up(T ) (resp. νQup(T ∗∗) ≤

νQup(T )).

In order to prove the “if” part of Theorem 2.4, we also use an argu-
ment from [DPS]. By definition we see that Nup(X,Y ) ⊂ NQ

up(X,Y ) and

νQup(T ) ≤ νup(T ) for every T ∈ Nup(X,Y ), and we have:

Lemma 2.6. Let 1 ≤ p ≤ ∞. Suppose that Y is injective. If T ∈
NQ
up(X,Y ), then T ∈ Nup(X,Y ) and νQup(T ) = νup(T ).

Proof. This proof is essentially due to [PP]. Let T ∈ NQ
up(X,Y ). Let

ε > 0 be given. Then there exists (x∗n) ∈ `up(X∗) such that for every x ∈ X,

‖Tx‖ ≤ ‖(x∗n(x))‖p and ‖(x∗n)‖wp ≤ νQup(T ) + ε. Consider the linear sub-
space Z = {(x∗n(x)) : x ∈ X} of `p (or of c0 if p = ∞) and the map J :
Z → Y , (x∗n(x)) 7→ Tx. Then J is well defined and linear, and ‖J‖ ≤ 1. Since
Y is injective, there exists an extension Ĵ : `p → Y of J with ‖Ĵ‖ = ‖J‖.
Define a map U : X → `p by Ux = (x∗n(x)). Then U is a compact operator
and the following diagram is commutative:

X
T //

U ��

Y

`p
Ĵ

??

Hence by [FS1, Theorem 2.5], T ∈ Nup(X,Y ) and νup(T ) ≤ ‖U‖ ‖Ĵ‖ ≤
‖(x∗n)‖wp ≤ ν

Q
up(T ) + ε, and so νQup(T ) = νup(T ).

Let K be a bounded subset of X. In [DPS], the authors defined the
operators uK : `1(K) → X and jK : X∗ → `∞(K), respectively, by
uK(ξx)x∈K =

∑
x∈K ξxx and jKx

∗ = (x∗(x))x∈K . We see that u∗K = jK .

We now obtain the versions for u-p-compactness of [DPS, Proposi-
tion 3.5, Corollary 3.6, Remark 3.7].

Proposition 2.7. Let 1 ≤ p ≤ ∞ and let K be a bounded subset of X.
Then the following statements are equivalent:

(a) K is relatively u-p-compact.
(b) uK is u-p-compact.
(c) jK is u-p-nuclear.

Proof. (a)⇒(b). Let (xn) ∈ `up(X) be such that K ⊂ p-co({xn}). Then

uK(B`1(K)) ⊂ bco(K) ⊂ p-co({xn}). Hence uK is u-p-compact.
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(b)⇒(a). Since K ⊂ uK(B`1(K)), this is clear.

(b)⇒(c). If uK is u-p-compact, then by Theorem 2.4(⇒), u∗K = jK is
quasi u-p-nuclear. Since `∞(K) is injective, (c) follows from Lemma 2.6.

(c)⇒(b). If u∗K = jK is u-p-nuclear, then by [DFS, Proposition 1.5.7], uK
is u-p∗-nuclear. Hence uK is u-p-compact, because, clearly, Nup∗ ⊂ Kup.

The following is a duality version of Proposition 2.7.

Proposition 2.8. Let 1 ≤ p ≤ ∞ and let C be a bounded subset of X∗.
Then the following statements are equivalent:

(a) C is relatively u-p-compact.
(b) The map uC : `1(C)→ X∗ defined by uC((ξx∗)x∗∈C) =

∑
x∗∈C ξx∗x

∗

is a u-p-compact operator.
(c) The map jC : X → `∞(C) defined by jCx = (x∗(x))x∗∈C is a u-p-

nuclear operator.

Proof. Use the duality relationships u∗CiX = jC and j∗Cil1(C) = uC , and
Theorems 2.3 and 2.4(⇒).

Corollary 2.9. Let 1 ≤ p ≤ ∞ and let K be a subset of X. If iX(K) is
a relatively u-p-compact subset of X∗∗, then K is a relatively u-p-compact
subset of X.

Proof. If iX(K) is a relatively u-p-compact subset ofX∗∗, then by Propo-
sition 2.8, the operator jiX(K) : X∗ → `∞(iX(K)), which is actually the
operator jK : X∗ → `∞(K) in Proposition 2.7, is u-p-nuclear. Hence K is
relatively u-p-compact.

We now complete the proof of Theorem 2.4.

Proof of the “if” part of Theorem 2.4. If T ∗ ∈ NQ
up(Y ∗, X∗), then by The-

orem 2.3, T ∗∗ ∈ Kup(X∗∗, Y ∗∗). Thus iY T (BX) = T ∗∗iX(BX) is a relatively
u-p-compact subset of Y ∗∗. Hence by Corollary 2.9, T (BX) is a relatively
u-p-compact subset of Y and so T ∈ Kup(X,Y ).

3. Proofs of main results. For a bounded sequence x̂ := (xn) inX, de-
fine an operator ux̂ : `1 → X by ux̂(αn) =

∑
n αnxn. Then for 1 ≤ p ≤ ∞, by

Proposition 2.7, the set {xn} is relatively u-p-compact if and only if the oper-
ator ux̂ is u-p-compact. As indicated for p-null sequences [PD, Remark 2.2],
a simple verification shows that a sequence (xn) is u-p-null if and only if
{xn} is relatively u-p-compact and up(ux̂(n) − ux̂) → 0 as n → ∞, where
x̂(n) := (x1, . . . , xn, 0, . . .).

Let 1 ≤ p ≤ ∞. We define a norm on c0,up(X) by ‖(xn)‖0up = up(ux̂) for

(xn) ∈ c0,up(X). Then (c0,u∞(X), ‖ · ‖0u∞) = (c0(X), ‖ · ‖∞) and we have the
following result whose proof is straightforward.
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Proposition 3.1. Let 1 ≤ p <∞. Then (c0,up(X), ‖ · ‖0up) is a Banach
space.

We need the following result to prove Theorem 1.1. Its prototype is [DPS,
Proposition 3.11].

Lemma 3.2. Let 1 ≤ p ≤ ∞ and let T : Y → X be a linear map.
Then T ∈ Kup(Y,X) if and only if TuBY

∈ Nup∗(`1(BY ), X). In this case,
up(T ) = νup∗(TuBY

).

Proof. If T ∈ Kup(Y,X), then by Theorem 2.4, T ∗ ∈ NQ
up(X∗, Y ∗) and

νQup(T ∗) ≤ up(T ). It follows from Lemma 2.6 that

(TuBY
)∗ = jBY

T ∗ ∈ Nup(X∗, `∞(BY )).

Hence by [DFS, Proposition 1.5.7], TuBY
∈ Nup∗(`1(BY ), X) and

νup∗(TuBY
) = νup(jBY

T ∗) = νQup(jBY
T ∗) ≤ up(T ).

To show the converse, let TuBY
=
∑

n(ζny )y ⊗ xn ∈ Nup∗(`1(BY ), X) be
a representation, where ((ζny )y) ∈ `up∗(`∞(BY )) and (xn) ∈ `up(X). Then

T (BY ) =
{∑

n

ζny xn : y ∈ BY
}
⊂ p-co

(
{‖((ζky )y)k‖wp∗xn}n

)
.

Hence T ∈ Kup(Y,X) and up(T ) ≤ ‖((ζky )y)k‖wp∗‖(xn)‖wp . Since the represen-
tation was arbitrary, up(T ) ≤ νup∗(TuBY

).

Since for every operator T : `1 → X, T coincides with TuB`1
i, where the

map i : `1 → `1(B`1) is the canonical isometry, by Lemma 3.2 we have:

Corollary 3.3. Let 1 ≤ p ≤ ∞ and let T : `1 → X be a linear
map. Then T ∈ Kup(`1, X) if and only if T ∈ Nup∗(`1, X). In this case,
up(T ) = νup∗(T ).

We also need a result of Fourie and Swart [FS2] to prove Theorem 1.1.

Lemma 3.4 ([FS2, Proposition 3.2]). Let 1 ≤ p ≤ ∞. If (xn) ∈ `up(X)

and (yn) ∈ `up∗(Y ), then
∑

n xn ⊗ yn converges in X ⊗̂wp Y . Conversely, if

u ∈ X ⊗̂wp Y , then there exist (xn) ∈ `up(X) and (yn) ∈ `up∗(Y ) such that∑
n xn ⊗ yn converges to u. Moreover,

wp(u) = inf
{
‖(xn)‖wp ‖(yn)‖wp∗ : u=

∞∑
n=1

xn⊗yn, (xn)∈ `up(X), (yn)∈ `up∗(Y )
}
.

Proof of Theorem 1.1. In order to show the first part, consider the linear
map J : (c0 ⊗X,wp∗)→ c0,up(X) defined by

J
(∑
j≤n

(λji )i ⊗ xj
)

=
(∑
j≤n

λjixj

)
i
.
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First, one may check that J(c0 ⊗X) ⊂ c0,up(X) using elementary tensors.
Since, for every (xn) ∈ c0,up(X) and m ∈ N, x̂(m) = J(

∑
j≤m ej ⊗ xj) and

lim
m→∞

‖x̂(m)− x̂‖0up = lim
m→∞

up(ux̂(m) − ux̂) = 0,

J(c0 ⊗X) is dense in c0,up(X).

To show that the map J : (c0 ⊗ X,wp∗) → c0,up(X) is an isometry, let

T =
∑

j≤n(λji )i ⊗ xj ∈ c0 ⊗X and let (zi) := (
∑

j≤n λ
j
ixj)i. Then T = uẑ.

From [DFS, Proposition 1.5.5] and Corollary 3.3, it follows that

‖(zi)‖0up = up(uẑ) = up(T ) = νup∗(T ) = wp∗
(∑
j≤n

(λji )i ⊗ xj
)
.

Since c0,up(X) is a Banach space, the extension Ĵ : c0 ⊗̂wp∗ X → c0,up(X)
of J is a surjective linear isometry.

In order to show the second part, let u ∈ c0 ⊗̂wp∗ X. Then by Lemma 3.4

there exist ((λji )i)j ∈ `up∗(c0) and (zj) ∈ `up(X) such that u =
∑∞

j=1(λ
j
i )i⊗zj

in c0 ⊗̂wp∗ X. For every i, let

xi :=

∞∑
j=1

λjizj .

We show that (xi) is the desired sequence. Let ε > 0 be given. Since

((λji )i)j ∈ `up∗(c0), it is easily seen that there exists an N ∈ N such that

sup
i≥N
‖(λji )j‖p∗‖(zj)‖

w
p ≤ ε.

Let C := supi≥N ‖(λ
j
i )j‖p∗ . We may assume that C 6= 0. Then i ≥ N implies

that

xi =

∞∑
j=1

λji
C
Czj ⊂ p-co({Czj}).

Since ‖(Czj)‖wp ≤ ε, (xi) ∈ c0,up(X). Recall the isometry Ĵ : c0 ⊗̂wp∗ X →
c0,up(X). Let Ĵ(u) := (ui). Since limn→∞(

∑
j≤n λ

j
izj)i = Ĵ(u) in c0,up(X),

limn→∞
∑

j≤n λ
j
izj = ui in X for every i. Hence (xi) = (ui) = Ĵ(u) and so

u = Ĵ−1((xi)) = lim
m→∞

Ĵ−1(x̂(m)) = lim
m→∞

∑
i≤m

ei ⊗ xi.

We need the main theorem in [O] to prove Theorem 1.2.

Lemma 3.5 ([O, Theorem 2.4]). Let α be a tensor norm. Assume that
X∗∗∗ or Y has the approximation property. If T ∈ Nα(X∗, Y ) and T ∗(Y ∗)

⊂ iX(X), then T ∈ X ⊗ Y in Nα(X∗, Y ).
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Corollary 3.6. Let 1 ≤ p ≤ ∞. Assume that X∗∗∗ or Y has the
approximation property. If T ∈ Nup(X∗, Y ) and T ∗(Y ∗) ⊂ iX(X), then
T =

∑
n xn ⊗ yn in Nup(X∗, Y ), where (xn) ∈ `up(X) and (yn) ∈ `up∗(Y ).

Proof. From Lemma 3.5, [DFS, Corollary 1.4.9 and Proposition 1.5.5],
it follows that

T ∈ X ⊗ Y Nup(X∗,Y )
= X ⊗ Y X∗∗⊗̂wpY = X ⊗̂wp Y.

Hence from Lemma 3.4 we obtain the conclusion.

Proof of Theorem 1.2. (a)⇒(b) and (b)⇒(c) are obvious.

(c)⇒(a). This proof is essentially due to [O, Theorem 4.3]. If {xn}
is relatively u-p-compact, then ux̂ ∈ Kup(`1, X). By Corollary 3.3, ux̂ ∈
Nup∗(`1, X) and up(ux̂) = νup∗(ux̂).

Since (xn) is weakly null, we see that u∗x̂(X∗) ⊂ c0. Since c∗∗∗0 has the
approximation property, it follows from Corollary 3.6 that ux̂ ∈ c0 ⊗̂wp∗ X.
Hence by Theorem 1.1 there exists (zn) ∈ c0,up(X) such that ux̂ =∑

n en ⊗ zn in c0 ⊗̂wp∗ X and so zk = xk for every k, which completes
the proof.

Remark 3.7. We can also prove Theorem 1.2 using the argument of
Lassalle and Turco [LT] based on Carl–Stephani theory [CS].

Proof of Corollary 1.3. (b)⇒(c) is trivial.

(c)⇒(a). If (xn) ∈ c0,up(X), then the set {xn} is relatively u-p-compact.
Thus there exists (zn) ∈ `up(X) such that {xn} ⊂ p-co({zn}). By (c) we have
K ⊂ p-co({zn}), hence the assertion (a) follows.

(a)⇒(b). Since K is relatively u-p-compact, there exists (xn) ∈ `up(X)
such that K ⊂ p-co({xn}). By a standard argument we can find a sequence
(βn) of positive numbers such that βn → 0 and (xn/βn) ∈ `up(X). Recall
the operators Ex, Ex/β : `p∗ → X defined in the proof of Proposition 2.2,
and the diagonal operator Dβ : `p∗ → `p∗ via (βn). We see that Dβ is a
compact operator. Then there exists a null sequence (zn) in `p∗ such that
Dβ(B`p∗ ) ⊂ co({zn}). Hence we have

K ⊂ p-co({xn}) = Ex(B`p∗ ) = Ex/βDβ(B`p∗ ) ⊂ co({Ex/βzn})

and, by Theorem 1.2, (Ex/βzn) ∈ c0,up(X) because (Ex/βzn) is a null se-
quence in X and the set {Ex/βzn} is relatively u-p-compact.

We can also prove [PD, Theorem 2.5] using [O, Theorem 4.3].
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