Unconditionally *p*-null sequences and unconditionally *p*-compact operators

by

JU MYUNG KIM (Seoul)

Abstract. We investigate sequences and operators via the unconditionally *p*-summable sequences. We characterize the unconditionally *p*-null sequences in terms of a certain tensor product and then prove that, for every $1 \le p < \infty$, a subset of a Banach space is relatively unconditionally *p*-compact if and only if it is contained in the closed convex hull of an unconditionally *p*-null sequence.

1. Introduction and main results. Grothendieck [G] showed that a subset K of a Banach space X is relatively compact if and only if there exists a null sequence (x_n) in X such that

$$K \subset \Big\{ \sum_{n} \alpha_n x_n : (\alpha_n) \in B_{\ell_1} \Big\},\$$

where we denote by B_Z the unit ball of a Banach space Z. The notion of p-compactness of Sinha and Karn [SK] stems from this criterion. For $1 \leq p \leq \infty$, a subset K of X is called relatively p-compact if there exists $(x_n) \in \ell_p(X)$ (or $(x_n) \in c_0(X)$ if $p = \infty$) such that

$$K \subset p\text{-}\operatorname{co}(\{x_n\}) := \left\{\sum_n \alpha_n x_n : (\alpha_n) \in B_{\ell_{p^*}}\right\},\$$

where $1/p + 1/p^* = 1$ and $\ell_p(X)$ (resp. $c_0(X)$) is the Banach space with the norm $\|\cdot\|_p$ (resp. $\|\cdot\|_{\infty}$) of all X-valued absolutely p-summable (resp. null) sequences.

For $1 \le p \le \infty$, the closed subspace $\ell_p^u(X)$ of $\ell_p^w(X)$, the Banach space with the norm $\|\cdot\|_p^w$ of all X-valued weakly p-summable sequences, consists of sequences (x_n) satisfying

 $||(0,\ldots,0,x_m,x_{m+1},\ldots)||_p^w \to 0$

as $m \to \infty$. It is well known that $(x_n) \in \ell_1^u(X)$ if and only if (x_n) is an

DOI: 10.4064/sm224-2-2

²⁰¹⁰ Mathematics Subject Classification: 46B45, 46B50, 46B28, 47L20.

Key words and phrases: unconditionally p-summable sequence, unconditionally p-null sequence, unconditionally p-compact set, Banach operator ideal, tensor norm.

unconditionally summable sequence (cf. [R, Example 3.4]). If $(x_n) \in \ell_p^u(X)$, we call it an *unconditionally p-summable sequence*. We say that a subset Kof X is relatively *unconditionally p-compact* (*u-p*-compact) if there exists $(x_n) \in \ell_p^u(X)$ such that $K \subset p\text{-co}(\{x_n\})$. Note that every *u-p*-compact set is a compact set.

Piñeiro and Delgado [PD] introduced and studied *p*-null sequences. For $1 \leq p < \infty$, a sequence (x_n) in a Banach space X is said to be *p*-null if for every $\varepsilon > 0$ there exist $N \in \mathbb{N}$ and $(z_k) \in \ell_p(X)$ with $||(z_k)||_p \leq \varepsilon$ such that $x_n \in p$ -co($\{z_k\}$) for all $n \geq N$. The collection of all *p*-null sequences in X is denoted by $c_{0,p}(X)$.

In this paper, a sequence is called *unconditionally p-null* (*u-p-null*) when $\ell_p(X)$ and $\|\cdot\|_p$ are replaced by $\ell_p^u(X)$ and $\|\cdot\|_p^w$. We denote by $c_{0,up}(X)$ the collection of all *u-p-null* sequences in X. Note that for every $1 \le p < \infty$, $c_{0,up}(X) \subset c_0(X)$ and $c_{0,u\infty}(X) = c_0(X)$. As in [PD], we can analogously define a norm on $c_{0,up}(X)$ (see Section 3).

Fourie and Swart [FS2] studied the following norm on the tensor product $X \otimes Y$ of Banach spaces X and Y. Let $1 \leq p \leq \infty$. For $u \in X \otimes Y$, define

$$w_p(u) = \inf \left\{ \|(x_j)\|_p^w \|(y_j)\|_{p^*}^w : u = \sum_{j=1}^n x_j \otimes y_j \right\}.$$

Then $(X \otimes Y, w_p)$ is a normed space and we denote by $X \otimes_{w_p} Y$ its completion. Recall that a norm on tensor products of Banach spaces is a *tensor norm* if it is a finitely generated uniform crossnorm (cf. [R, Section 6.1]). It was shown in [FS2] that w_p is a tensor norm. Oja [O] studied *p*-null sequences in terms of the Chevet–Saphar tensor product. The following theorem is the analogue of [O, Theorem 4.1] for *u-p*-null sequences.

THEOREM 1.1. Let $1 \leq p \leq \infty$. The tensor product $c_0 \otimes_{w_{p^*}} X$ is isometrically isomorphic to $c_{0,up}(X)$ and for every $u \in c_0 \otimes_{w_{p^*}} X$ there exists $(x_n) \in c_{0,up}(X)$ such that $u = \sum_n e_n \otimes x_n$ in $c_0 \otimes_{w_{p^*}} X$.

Piñeiro and Delgado [PD, Proposition 2.6] showed that for $1 \leq p < \infty$, a sequence (x_n) is in $c_{0,p}(X)$ if and only if $(x_n) \in c_0(X)$ and the set $\{x_n\}$ is relatively *p*-compact under an assumption depending on *p*, and they asked whether the assumption could be deleted. Oja [O, Theorem 4.3] gave an affirmative answer to that question. The following is the result of [O, Theorem 4.3] adapted to *u*-*p*-null sequences.

THEOREM 1.2. Let (x_n) be a sequence in X and let $1 \le p < \infty$. Then the following statements are equivalent:

- (a) $(x_n) \in c_{0,up}(X)$.
- (b) (x_n) is null and the set $\{x_n\}$ is relatively u-p-compact.
- (c) (x_n) is weakly null and the set $\{x_n\}$ is relatively u-p-compact.

It was shown in [PD, Theorem 2.5] that for $1 \leq p < \infty$, a subset of a Banach space X is relatively p-compact if and only if it is contained in the closed convex hull $\overline{\operatorname{co}}(\{x_n\})$ of a p-null sequence (x_n) . For an alternative straightforward proof, see [AO]. For relatively u-p-compact sets we obtain the following result, where $\overline{\operatorname{bco}}(A)$ means the closed balanced convex hull of a set A.

COROLLARY 1.3. Let K be a subset of X and let $1 \le p < \infty$. Then the following statements are equivalent:

- (a) K is relatively u-p-compact.
- (b) There exists $(x_n) \in c_{0,up}(X)$ such that $K \subset \overline{co}(\{x_n\})$.
- (c) There exists $(x_n) \in c_{0,up}(X)$ such that $K \subset \overline{bco}(\{x_n\})$.

We prove Theorems 1.1 and 1.2 and Corollary 1.3 in Section 3 after studying operators via unconditionally p-summable sequences.

2. Unconditionally *p*-compact and unconditionally (quasi) *p*-nuclear operators. For $1 \le p \le \infty$, following the definition of a *p*-compact operator in [SK], a linear map $T : X \to Y$ is said to be *u*-*p*-compact if $T(B_X)$ is a relatively *u*-*p*-compact subset of Y. The collection of all *u*-*p*-compact operators from X to Y is denoted by $\mathcal{K}_{up}(X,Y)$ and we define a norm u_p on $\mathcal{K}_{up}(X,Y)$ by

$$u_p(T) = \inf \{ \|(y_n)\|_p^w : (y_n) \in \ell_p^u(Y) \text{ and } T(B_X) \subset p\text{-co}(\{y_n\}) \}.$$

From Grothendieck's criterion of compactness, the ideal $[\mathcal{K}, \|\cdot\|]$ of compact operators equipped with the operator norm coincides with $[\mathcal{K}_{u\infty}, u_{\infty}]$ and we have:

THEOREM 2.1. For every $1 \leq p < \infty$, $[\mathcal{K}_{up}, u_p]$ is a Banach operator ideal.

The proof of Theorem 2.1 is similar to the one of [PP, Lemma 4] and follows the scheme indicated by Delgado, Piñeiro and Serrano [DPS] for the ideal of *p*-compact operators.

Recall that a *p*-nuclear operator $T \in \mathcal{N}_p(X, Y)$ from X to Y, for $1 \leq p \leq \infty$, is represented as $T = \sum_n x_n^* \otimes y_n$, where $(x_n^*) \in \ell_p(X^*)$ $((x_n) \in c_0(X^*)$ if $p = \infty$) and $(y_n) \in \ell_{p^*}^w(Y)$, and the *p*-nuclear norm $\nu_p(T)$ equals inf $||(x_n^*)||_p ||(y_n)||_{p^*}^w$, where the infimum is taken over all such representations of T (cf. [DJT, Proposition 5.23]). When the spaces $\ell_p(X^*)$ and $\ell_{p^*}^w(Y)$ are replaced by $\ell_p^u(X^*)$ and $\ell_{p^*}^u(Y)$ respectively, the map is well known as a classical *p*-compact operator (cf. [P, Section 18.3] and [FS1, FS2]). To avoid confusion, in this paper, we call it an unconditionally *p*-nuclear (*u*-*p*-nuclear) operator. The collection of all *u*-*p*-nuclear norm ν_{up} is defined by $\mathcal{N}_{up}(X,Y)$ and the *u*-*p*-nuclear norm ν_{up} is defined by

 $\nu_{up}(T) = \inf \|(x_n^*)\|_p^w \|(y_n)\|_{p^*}^w$, where the infimum is taken over all such representations of T. It is well known that $[\mathcal{N}_{up}, \nu_{up}]$ is a Banach operator ideal (cf. [FS1, Theorems 2.1 and 2.5]).

PROPOSITION 2.2. $\mathcal{K}_{u2} = \mathcal{N}_{u2}$.

Proof. Clearly $\mathcal{N}_{u2} \subset \mathcal{K}_{u2}$ (in fact, $\mathcal{N}_{up^*} \subset \mathcal{K}_{up}$ when $1 \leq p \leq \infty$). To show the other inclusion, let $T: X \to Y$ be a *u*-2-compact operator. Then there exists $(y_n) \in \ell_2^u(Y)$ such that $T(B_X) \subset \{\sum_n \alpha_n y_n : (\alpha_n) \in B_{\ell_2}\}$. Define operators $E_y: \ell_2 \to Y$ by $E_y \alpha = \sum_n \alpha_n y_n$, and $\hat{E}_y: \ell_2/\ker(E_y) \to Y$ by $\hat{E}_y[\alpha] = E_y \alpha$. Then \hat{E}_y is a compact operator. In view of the factorization in [SK, Section 3], $T = \hat{E}_y T_y$, where $T_y: X \to \ell_2/\ker(E_y)$ is a bounded operator. According to [FS1, Theorem 2.3], T is a *u*-2-nuclear operator.

For $1 \leq p \leq \infty$, following the definition of a quasi *p*-nuclear operator in [PP], a linear map $T: X \to Y$ is called *quasi unconditionally p*-nuclear (quasi *u*-*p*-nuclear) if there exists $(x_n^*) \in \ell_p^u(X^*)$ such that $||Tx|| \leq ||(x_n^*(x))||_p$ for every $x \in X$. We denote by $\mathcal{N}_{up}^Q(X, Y)$ the collection of all quasi *u*-*p*nuclear operators from X to Y. For $T \in \mathcal{N}_{up}^Q(X, Y)$, let $\nu_{up}^Q(T) = \inf ||(x_n^*)||_p^w$, where the infimum is taken over all such inequalities. Note that a quasi *u*- ∞ -nuclear operator is just a compact operator (cf. [D, Exercise II.6(ii)]). We can also use the proof of [PP, Lemma 4] to show that $[\mathcal{N}_{up}^Q, \nu_{up}^Q]$ is a Banach operator ideal.

We now obtain the duality of *u*-*p*-compact operators, which is the analogue of the duality of *p*-compact operators from [DPS]. In fact, Theorem 2.3 and the "only if" part of Theorem 2.4 are essentially due to [DPS].

THEOREM 2.3. Let $1 \leq p \leq \infty$ and let $T : X \to Y$ be a linear map. Then $T \in \mathcal{N}_{up}^Q(X,Y)$ if and only if $T^* \in \mathcal{K}_{up}(Y^*,X^*)$. In this case, $\nu_{up}^Q(T) = u_p(T^*)$.

Proof. This is immediate from [DPS, Proposition 3.2].

THEOREM 2.4. Let $1 \leq p \leq \infty$ and let $T : X \to Y$ be a linear map. Then $T \in \mathcal{K}_{up}(X,Y)$ if and only if $T^* \in \mathcal{N}_{up}^Q(Y^*,X^*)$. In this case, $\nu_{up}^Q(T^*) \leq u_p(T)$.

Proof of the "only if" part of Theorem 2.4. Let $T \in \mathcal{K}_{up}(X,Y)$ and let $(y_n) \in \ell_p^u(Y)$ be such that $T(B_X) \subset p\text{-co}(\{y_n\})$. Then by [DPS, Proposition 3.1],

$$||T^*y^*|| \le ||(i_Y(y_n)(y^*))||_p$$

for every $y^* \in Y^*$. Note that $(i_Y(y_n)) \in \ell_p^u(Y^{**})$, where $i_Y : Y \to Y^{**}$ is the natural isometry, and $\|(i_Y(y_n))\|_p^w = \|(y_n)\|_p^w$. Hence $T^* \in \mathcal{N}_{up}^Q(Y^*, X^*)$ and $\nu_{up}^Q(T^*) \leq u_p(T)$.

From Theorems 2.3 and 2.4, we have:

COROLLARY 2.5. Let $1 \leq p \leq \infty$ and let $T: X \to Y$ be a linear map. Then $T \in \mathcal{K}_{up}(X,Y)$ (resp. $\mathcal{N}_{up}^Q(X,Y)$) if and only if $T^{**} \in \mathcal{K}_{up}(X^{**},Y^{**})$ (resp. $\mathcal{N}_{up}^Q(X^{**},Y^{**})$). In this case, $u_p(T^{**}) \leq u_p(T)$ (resp. $\nu_{up}^Q(T^{**}) \leq \nu_{up}^Q(T)$).

In order to prove the "if" part of Theorem 2.4, we also use an argument from [DPS]. By definition we see that $\mathcal{N}_{up}(X,Y) \subset \mathcal{N}_{up}^Q(X,Y)$ and $\nu_{up}^Q(T) \leq \nu_{up}(T)$ for every $T \in \mathcal{N}_{up}(X,Y)$, and we have:

LEMMA 2.6. Let $1 \leq p \leq \infty$. Suppose that Y is injective. If $T \in \mathcal{N}_{up}^Q(X,Y)$, then $T \in \mathcal{N}_{up}(X,Y)$ and $\nu_{up}^Q(T) = \nu_{up}(T)$.

Proof. This proof is essentially due to [PP]. Let $T \in \mathcal{N}_{up}^Q(X, Y)$. Let $\varepsilon > 0$ be given. Then there exists $(x_n^*) \in \ell_p^u(X^*)$ such that for every $x \in X$, $||Tx|| \leq ||(x_n^*(x))||_p$ and $||(x_n^*)||_p^w \leq \nu_{up}^Q(T) + \varepsilon$. Consider the linear subspace $Z = \{(x_n^*(x)) : x \in X\}$ of ℓ_p (or of c_0 if $p = \infty$) and the map $J : Z \to Y$, $(x_n^*(x)) \mapsto Tx$. Then J is well defined and linear, and $||J|| \leq 1$. Since Y is injective, there exists an extension $\hat{J} : \ell_p \to Y$ of J with $||\hat{J}|| = ||J||$. Define a map $U : X \to \ell_p$ by $Ux = (x_n^*(x))$. Then U is a compact operator and the following diagram is commutative:

Hence by [FS1, Theorem 2.5], $T \in \mathcal{N}_{up}(X,Y)$ and $\nu_{up}(T) \leq ||U|| ||\hat{J}|| \leq ||(x_n^*)||_p^w \leq \nu_{up}^Q(T) + \varepsilon$, and so $\nu_{up}^Q(T) = \nu_{up}(T)$.

Let K be a bounded subset of X. In [DPS], the authors defined the operators $u_K : \ell_1(K) \to X$ and $j_K : X^* \to \ell_{\infty}(K)$, respectively, by $u_K(\xi_x)_{x \in K} = \sum_{x \in K} \xi_x x$ and $j_K x^* = (x^*(x))_{x \in K}$. We see that $u_K^* = j_K$.

We now obtain the versions for *u-p*-compactness of [DPS, Proposition 3.5, Corollary 3.6, Remark 3.7].

PROPOSITION 2.7. Let $1 \le p \le \infty$ and let K be a bounded subset of X. Then the following statements are equivalent:

- (a) K is relatively u-p-compact.
- (b) u_K is u-p-compact.
- (c) j_K is u-p-nuclear.

Proof. (a) \Rightarrow (b). Let $(x_n) \in \ell_p^u(X)$ be such that $K \subset p\text{-co}(\{x_n\})$. Then $u_K(B_{\ell_1(K)}) \subset \overline{\text{bco}}(K) \subset p\text{-co}(\{x_n\})$. Hence u_K is *u*-*p*-compact.

(b) \Rightarrow (a). Since $K \subset u_K(B_{\ell_1(K)})$, this is clear.

(b) \Rightarrow (c). If u_K is *u*-*p*-compact, then by Theorem 2.4(\Rightarrow), $u_K^* = j_K$ is quasi *u*-*p*-nuclear. Since $\ell_{\infty}(K)$ is injective, (c) follows from Lemma 2.6.

(c) \Rightarrow (b). If $u_K^* = j_K$ is *u*-*p*-nuclear, then by [DFS, Proposition 1.5.7], u_K is *u*-*p**-nuclear. Hence u_K is *u*-*p*-compact, because, clearly, $\mathcal{N}_{up^*} \subset \mathcal{K}_{up}$.

The following is a duality version of Proposition 2.7.

PROPOSITION 2.8. Let $1 \le p \le \infty$ and let C be a bounded subset of X^* . Then the following statements are equivalent:

- (a) C is relatively u-p-compact.
- (b) The map $u_C : \ell_1(C) \to X^*$ defined by $u_C((\xi_{x^*})_{x^* \in C}) = \sum_{x^* \in C} \xi_{x^*} x^*$ is a u-p-compact operator.
- (c) The map $j_C : X \to \ell_{\infty}(C)$ defined by $j_C x = (x^*(x))_{x^* \in C}$ is a u-pnuclear operator.

Proof. Use the duality relationships $u_C^* i_X = j_C$ and $j_C^* i_{l_1(C)} = u_C$, and Theorems 2.3 and $2.4(\Rightarrow)$.

COROLLARY 2.9. Let $1 \le p \le \infty$ and let K be a subset of X. If $i_X(K)$ is a relatively u-p-compact subset of X^{**} , then K is a relatively u-p-compact subset of X.

Proof. If $i_X(K)$ is a relatively *u*-*p*-compact subset of X^{**} , then by Proposition 2.8, the operator $j_{i_X(K)} : X^* \to \ell_{\infty}(i_X(K))$, which is actually the operator $j_K : X^* \to \ell_{\infty}(K)$ in Proposition 2.7, is *u*-*p*-nuclear. Hence K is relatively *u*-*p*-compact.

We now complete the proof of Theorem 2.4.

Proof of the "if" part of Theorem 2.4. If $T^* \in \mathcal{N}_{up}^Q(Y^*, X^*)$, then by Theorem 2.3, $T^{**} \in \mathcal{K}_{up}(X^{**}, Y^{**})$. Thus $i_Y T(B_X) = T^{**}i_X(B_X)$ is a relatively *u-p*-compact subset of Y^{**} . Hence by Corollary 2.9, $T(B_X)$ is a relatively *u-p*-compact subset of Y and so $T \in \mathcal{K}_{up}(X, Y)$.

3. Proofs of main results. For a bounded sequence $\hat{x} := (x_n)$ in X, define an operator $u_{\hat{x}} : \ell_1 \to X$ by $u_{\hat{x}}(\alpha_n) = \sum_n \alpha_n x_n$. Then for $1 \le p \le \infty$, by Proposition 2.7, the set $\{x_n\}$ is relatively *u*-*p*-compact if and only if the operator $u_{\hat{x}}$ is *u*-*p*-compact. As indicated for *p*-null sequences [PD, Remark 2.2], a simple verification shows that a sequence (x_n) is *u*-*p*-null if and only if $\{x_n\}$ is relatively *u*-*p*-compact and $u_p(u_{\hat{x}(n)} - u_{\hat{x}}) \to 0$ as $n \to \infty$, where $\hat{x}(n) := (x_1, \ldots, x_n, 0, \ldots)$.

Let $1 \leq p \leq \infty$. We define a norm on $c_{0,up}(X)$ by $||(x_n)||_{up}^0 = u_p(u_{\hat{x}})$ for $(x_n) \in c_{0,up}(X)$. Then $(c_{0,u\infty}(X), ||\cdot||_{u\infty}) = (c_0(X), ||\cdot||_{\infty})$ and we have the following result whose proof is straightforward.

PROPOSITION 3.1. Let $1 \le p < \infty$. Then $(c_{0,up}(X), \|\cdot\|_{up}^0)$ is a Banach space.

We need the following result to prove Theorem 1.1. Its prototype is [DPS, Proposition 3.11].

LEMMA 3.2. Let $1 \leq p \leq \infty$ and let $T : Y \to X$ be a linear map. Then $T \in \mathcal{K}_{up}(Y,X)$ if and only if $Tu_{B_Y} \in \mathcal{N}_{up^*}(\ell_1(B_Y),X)$. In this case, $u_p(T) = \nu_{up^*}(Tu_{B_Y})$.

Proof. If $T \in \mathcal{K}_{up}(Y, X)$, then by Theorem 2.4, $T^* \in \mathcal{N}_{up}^Q(X^*, Y^*)$ and $\nu_{up}^Q(T^*) \leq u_p(T)$. It follows from Lemma 2.6 that

$$(Tu_{B_Y})^* = j_{B_Y}T^* \in \mathcal{N}_{up}(X^*, \ell_\infty(B_Y)).$$

Hence by [DFS, Proposition 1.5.7], $Tu_{B_Y} \in \mathcal{N}_{up^*}(\ell_1(B_Y), X)$ and

$$\nu_{up^*}(Tu_{B_Y}) = \nu_{up}(j_{B_Y}T^*) = \nu_{up}^Q(j_{B_Y}T^*) \le u_p(T).$$

To show the converse, let $Tu_{B_Y} = \sum_n (\zeta_y^n)_y \otimes x_n \in \mathcal{N}_{up^*}(\ell_1(B_Y), X)$ be a representation, where $((\zeta_y^n)_y) \in \ell_{p^*}^u(\ell_\infty(B_Y))$ and $(x_n) \in \ell_p^u(X)$. Then

$$T(B_Y) = \left\{ \sum_{n} \zeta_y^n x_n : y \in B_Y \right\} \subset p \text{-co}\left(\{ \| ((\zeta_y^k)_y)_k \|_{p^*}^w x_n \}_n \right)$$

Hence $T \in \mathcal{K}_{up}(Y, X)$ and $u_p(T) \leq \|((\zeta_y^k)_y)_k\|_{p^*}^w \|(x_n)\|_p^w$. Since the representation was arbitrary, $u_p(T) \leq \nu_{up^*}(Tu_{B_Y})$.

Since for every operator $T: \ell_1 \to X, T$ coincides with $Tu_{B_{\ell_1}}i$, where the map $i: \ell_1 \to \ell_1(B_{\ell_1})$ is the canonical isometry, by Lemma 3.2 we have:

COROLLARY 3.3. Let $1 \leq p \leq \infty$ and let $T : \ell_1 \to X$ be a linear map. Then $T \in \mathcal{K}_{up}(\ell_1, X)$ if and only if $T \in \mathcal{N}_{up^*}(\ell_1, X)$. In this case, $u_p(T) = \nu_{up^*}(T)$.

We also need a result of Fourie and Swart [FS2] to prove Theorem 1.1.

LEMMA 3.4 ([FS2, Proposition 3.2]). Let $1 \leq p \leq \infty$. If $(x_n) \in \ell_p^u(X)$ and $(y_n) \in \ell_{p^*}^u(Y)$, then $\sum_n x_n \otimes y_n$ converges in $X \otimes_{w_p} Y$. Conversely, if $u \in X \otimes_{w_p} Y$, then there exist $(x_n) \in \ell_p^u(X)$ and $(y_n) \in \ell_{p^*}^u(Y)$ such that $\sum_n x_n \otimes y_n$ converges to u. Moreover,

$$w_p(u) = \inf \left\{ \|(x_n)\|_p^w \|(y_n)\|_{p^*}^w : u = \sum_{n=1}^\infty x_n \otimes y_n, (x_n) \in \ell_p^u(X), (y_n) \in \ell_{p^*}^u(Y) \right\}.$$

Proof of Theorem 1.1. In order to show the first part, consider the linear map $J: (c_0 \otimes X, w_{p^*}) \to c_{0,up}(X)$ defined by

$$J\Big(\sum_{j\leq n} (\lambda_i^j)_i \otimes x_j\Big) = \Big(\sum_{j\leq n} \lambda_i^j x_j\Big)_i.$$

First, one may check that $J(c_0 \otimes X) \subset c_{0,up}(X)$ using elementary tensors. Since, for every $(x_n) \in c_{0,up}(X)$ and $m \in \mathbb{N}$, $\hat{x}(m) = J(\sum_{j \leq m} e_j \otimes x_j)$ and

$$\lim_{m \to \infty} \|\hat{x}(m) - \hat{x}\|_{up}^{0} = \lim_{m \to \infty} u_p(u_{\hat{x}(m)} - u_{\hat{x}}) = 0,$$

 $J(c_0 \otimes X)$ is dense in $c_{0,up}(X)$.

To show that the map $J: (c_0 \otimes X, w_{p^*}) \to c_{0,up}(X)$ is an isometry, let $T = \sum_{j \leq n} (\lambda_i^j)_i \otimes x_j \in c_0 \otimes X$ and let $(z_i) := (\sum_{j \leq n} \lambda_i^j x_j)_i$. Then $T = u_{\hat{z}}$. From [DFS, Proposition 1.5.5] and Corollary 3.3, it follows that

$$||(z_i)||_{up}^0 = u_p(u_{\hat{z}}) = u_p(T) = \nu_{up^*}(T) = w_{p^*}\Big(\sum_{j \le n} (\lambda_i^j)_i \otimes x_j\Big).$$

Since $c_{0,up}(X)$ is a Banach space, the extension $\hat{J} : c_0 \otimes_{w_{p^*}} X \to c_{0,up}(X)$ of J is a surjective linear isometry.

In order to show the second part, let $u \in c_0 \otimes_{w_{p^*}} X$. Then by Lemma 3.4 there exist $((\lambda_i^j)_i)_j \in \ell_{p^*}^u(c_0)$ and $(z_j) \in \ell_p^u(X)$ such that $u = \sum_{j=1}^{\infty} (\lambda_i^j)_i \otimes z_j$ in $c_0 \otimes_{w_{p^*}} X$. For every *i*, let

$$x_i := \sum_{j=1}^{\infty} \lambda_i^j z_j.$$

We show that (x_i) is the desired sequence. Let $\varepsilon > 0$ be given. Since $((\lambda_i^j)_i)_j \in \ell_{n^*}^u(c_0)$, it is easily seen that there exists an $N \in \mathbb{N}$ such that

$$\sup_{i\geq N} \|(\lambda_i^j)_j\|_{p^*}\|(z_j)\|_p^w \leq \varepsilon.$$

Let $C := \sup_{i \ge N} \|(\lambda_i^j)_j\|_{p^*}$. We may assume that $C \ne 0$. Then $i \ge N$ implies that

$$x_i = \sum_{j=1}^{\infty} \frac{\lambda_i^j}{C} C z_j \subset p \text{-co}(\{C z_j\}).$$

Since $||(Cz_j)||_p^w \leq \varepsilon$, $(x_i) \in c_{0,up}(X)$. Recall the isometry $\hat{J} : c_0 \otimes_{w_{p^*}} X \to c_{0,up}(X)$. Let $\hat{J}(u) := (u_i)$. Since $\lim_{n\to\infty} (\sum_{j\leq n} \lambda_i^j z_j)_i = \hat{J}(u)$ in $c_{0,up}(X)$, $\lim_{n\to\infty} \sum_{j\leq n} \lambda_i^j z_j = u_i$ in X for every *i*. Hence $(x_i) = (u_i) = \hat{J}(u)$ and so

$$u = \hat{J}^{-1}((x_i)) = \lim_{m \to \infty} \hat{J}^{-1}(\hat{x}(m)) = \lim_{m \to \infty} \sum_{i \le m} e_i \otimes x_i. \bullet$$

We need the main theorem in [O] to prove Theorem 1.2.

LEMMA 3.5 ([O, Theorem 2.4]). Let α be a tensor norm. Assume that X^{***} or Y has the approximation property. If $T \in \mathcal{N}_{\alpha}(X^*, Y)$ and $T^*(Y^*) \subset i_X(X)$, then $T \in \overline{X \otimes Y}$ in $\mathcal{N}_{\alpha}(X^*, Y)$.

140

COROLLARY 3.6. Let $1 \leq p \leq \infty$. Assume that X^{***} or Y has the approximation property. If $T \in \mathcal{N}_{up}(X^*, Y)$ and $T^*(Y^*) \subset i_X(X)$, then $T = \sum_n x_n \otimes y_n$ in $\mathcal{N}_{up}(X^*, Y)$, where $(x_n) \in \ell_p^u(X)$ and $(y_n) \in \ell_{p^*}^u(Y)$.

Proof. From Lemma 3.5, [DFS, Corollary 1.4.9 and Proposition 1.5.5], it follows that

$$T \in \overline{X \otimes Y}^{\mathcal{N}_{up}(X^*,Y)} = \overline{X \otimes Y}^{X^{**}\hat{\otimes}_{w_p}Y} = X \,\hat{\otimes}_{w_p} \, Y.$$

Hence from Lemma 3.4 we obtain the conclusion. \blacksquare

Proof of Theorem 1.2. (a) \Rightarrow (b) and (b) \Rightarrow (c) are obvious.

(c) \Rightarrow (a). This proof is essentially due to [O, Theorem 4.3]. If $\{x_n\}$ is relatively *u*-*p*-compact, then $u_{\hat{x}} \in \mathcal{K}_{up}(\ell_1, X)$. By Corollary 3.3, $u_{\hat{x}} \in \mathcal{N}_{up^*}(\ell_1, X)$ and $u_p(u_{\hat{x}}) = \nu_{up^*}(u_{\hat{x}})$.

Since (x_n) is weakly null, we see that $u_{\hat{x}}^*(X^*) \subset c_0$. Since c_0^{***} has the approximation property, it follows from Corollary 3.6 that $u_{\hat{x}} \in c_0 \otimes_{w_{p^*}} X$. Hence by Theorem 1.1 there exists $(z_n) \in c_{0,up}(X)$ such that $u_{\hat{x}} = \sum_n e_n \otimes z_n$ in $c_0 \otimes_{w_{p^*}} X$ and so $z_k = x_k$ for every k, which completes the proof. \blacksquare

REMARK 3.7. We can also prove Theorem 1.2 using the argument of Lassalle and Turco [LT] based on Carl–Stephani theory [CS].

Proof of Corollary 1.3. (b) \Rightarrow (c) is trivial.

(c) \Rightarrow (a). If $(x_n) \in c_{0,up}(X)$, then the set $\{x_n\}$ is relatively *u*-*p*-compact. Thus there exists $(z_n) \in \ell_p^u(X)$ such that $\{x_n\} \subset p$ -co($\{z_n\}$). By (c) we have $K \subset p$ -co($\{z_n\}$), hence the assertion (a) follows.

(a) \Rightarrow (b). Since K is relatively u-p-compact, there exists $(x_n) \in \ell_p^u(X)$ such that $K \subset p$ -co($\{x_n\}$). By a standard argument we can find a sequence (β_n) of positive numbers such that $\beta_n \to 0$ and $(x_n/\beta_n) \in \ell_p^u(X)$. Recall the operators $E_x, E_{x/\beta} : \ell_{p^*} \to X$ defined in the proof of Proposition 2.2, and the diagonal operator $D_\beta : \ell_{p^*} \to \ell_{p^*}$ via (β_n) . We see that D_β is a compact operator. Then there exists a null sequence (z_n) in ℓ_{p^*} such that $D_\beta(B_{\ell_{p^*}}) \subset \overline{\operatorname{co}}(\{z_n\})$. Hence we have

$$K \subset p\text{-}\operatorname{co}(\{x_n\}) = E_x(B_{\ell_p*}) = E_{x/\beta}D_\beta(B_{\ell_p*}) \subset \overline{\operatorname{co}}(\{E_{x/\beta}z_n\})$$

and, by Theorem 1.2, $(E_{x/\beta}z_n) \in c_{0,up}(X)$ because $(E_{x/\beta}z_n)$ is a null sequence in X and the set $\{E_{x/\beta}z_n\}$ is relatively *u-p*-compact.

We can also prove [PD, Theorem 2.5] using [O, Theorem 4.3].

Acknowledgments. The author would like to express his sincere gratitude to the referee for kind and valuable comments. This work was supported by NRF-2013R1A1A2A10058087 funded by the Korean Government.

J. M. Kim

References

- [AO] K. Ain and E. Oja, A description of relatively (p, r)-compact sets, Acta Comment. Univ. Tartu. Math. 16 (2012), 227–232.
- [CS] B. Carl and I. Stephani, On A-compact operators, generalized entropy numbers and entropy ideals, Math. Nachr. 199 (1984), 77–95.
- [DPS] J. M. Delgado, C. Piñeiro, and E. Serrano, Operators whose adjoints are quasi p-nuclear, Studia Math. 197 (2010), 291–304.
- [D] J. Diestel, Sequences and Series in Banach Spaces, Springer, New York, 1984.
- [DFS] J. Diestel, J. H. Fourie, and J. Swart, The Metric Theory of Tensor Products, Amer. Math. Soc., Providence, RI, 2008.
- [DJT] J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge Univ. Press, Cambridge, 1995.
- [FS1] J. H. Fourie and J. Swart, Banach ideals of p-compact operators, Manuscripta Math. 26 (1979), 349–362.
- [FS2] J. H. Fourie and J. Swart, Tensor products and Banach ideals of p-compact operators, Manuscripta Math. 35 (1981), 343–351.
- [G] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
- [LT] S. Lassalle and P. Turco, *The Banach ideal of A-compact operators and related approximation properties*, J. Funct. Anal. 265 (2013), 2452–2464.
- [O] E. Oja, Grothendieck's nuclear operator theorem revisited with an application to p-null sequences, J. Funct. Anal. 263 (2012), 2876–2892.
- [PP] A. Persson und A. Pietsch, p-nukleare und p-integrale Abbildungen in Banachräumen, Studia Math. 33 (1969), 19–62.
- [P] A. Pietsch, *Operator Ideals*, North-Holland, Amsterdam, 1980.
- [PD] C. Piñeiro and J. M. Delgado, p-Convergent sequences and Banach spaces in which p-compact sets are q-compact, Proc. Amer. Math. Soc. 139 (2011), 957–967.
- [R] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer, Berlin, 2002.
- [SK] D. P. Sinha and A. K. Karn, Compact operators whose adjoints factor through subspaces of l_p , Studia Math. 150 (2002), 17–33.

Ju Myung Kim Department of Mathematical Sciences Seoul National University Seoul, 151-747, Korea E-mail: kjm21@kaist.ac.kr

> Received August 22, 2013 Revised version September 29, 2014 (7837)