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Finite generation in C∗-algebras and Hilbert C∗-modules

by
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Abstract. We characterize C∗-algebras and C∗-modules such that every maximal
right ideal (resp. right submodule) is algebraically finitely generated. In particular, C∗-
algebras satisfy the Dales–Żelazko conjecture.

1. Introduction. Magajna’s paper [11] characterizing C∗-modules con-
sisting of compact operators has been much emulated, as is revealed by
a cursory search in a citation index. Here we prove a complementary char-
acterization, inspired by the recent Dales–Żelazko conjecture that if A is
a unital Banach algebra all of whose maximal right ideals are algebraically
finitely generated as right modules over A, then A is finite-dimensional [8].
Indeed the instigation of this paper was a question Dales asked indepen-
dently of both authors, and which both authors answered around August
2012, as to whether this conjecture was true for C∗-algebras. (He was able
to answer this for special classes of C∗-algebras.) One ingredient of the solu-
tion is a characterization of algebraically finitely generated one-sided ideals
in C∗-algebras. Although this is well known to experts (the algebraically
finitely generated projective modules over a C∗-algebra constitute one of
the common ways to picture its K-theory, and hence are well understood),
we could not find it in the literature. Thus we include a direct proof due to
Rørdam, as well as a very short C∗-module proof. We then use this to char-
acterize C∗-algebras and C∗-modules such that every maximal right ideal
(resp. right submodule) is algebraically finitely generated.

Turning to notation and background, we denote by A1 the unitization of
the C∗-algebra A. By ‘projection’ in this paper we mean a self-adjoint idem-
potent e in A. Then e is a minimal projection in A if eAe is one-dimensional
(which, if A is a von Neumann algebra, is equivalent to e having no non-
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trivial proper subprojections). For convenience we usually work with right
modules in this paper. It is well known that all C∗-algebras have an abun-
dant supply of maximal right ideals. This is equivalent to saying that the
bidual of A, A′′, which is a von Neumann algebra, has an abundant supply
of non-zero minimal projections (see [13, 3.13.6], or the paragraph before
Lemma 2.2 below, for the correspondence between minimal projections and
maximal right ideals). Indeed, every right ideal is an intersection of maximal
right ideals (see [13, 3.13.5]). We will not really use the facts in the present
paragraph though, except for those which we prove below.

Before we proceed, we require another piece of terminology. Let H and
K be Hilbert spaces. A closed subspace Z of B(K,H) is called a ternary ring
of operators (or a TRO, for short) if it is closed under the ternary product,
that is, ZZ∗Z ⊆ Z. Every Hilbert C∗-module Z may be viewed as a TRO by
identifying it with the (1-2)-corner of its linking algebra (see e.g. [2, 8.1.19
and 8.2.8]). Thus we will write z∗w in place of 〈z, w〉 for elements in a right
C∗-module Z. Also, the so-called compact operators K(Z) may be written as
ZZ∗ (here and below for sets X,Y we write XY for the closure of the span
of products xy for x ∈ X, y ∈ Y ). To say that two TRO’s are isomorphic
as TRO’s means that there is a linear isomorphism between them which is
a ternary morphism (that is, T (xy∗z) = T (x)T (y)∗T (z)). Hamana showed
that this is equivalent to inducing a corner-preserving ∗-isomorphism be-
tween the Morita linking C∗-algebras of the TRO’s; and it is also equivalent
to being completely isometric as operator spaces (a result also contributed
to by Harris, Kaup, Kirchberg, Ruan, and no doubt others; see e.g. [2] for
references and self-contained proofs). The reader can consult the same ref-
erence for the theory of C∗-modules, [10, 13] for C∗-algebras, and [7, 12] for
Banach algebras.

2. Finitely generated ideals. The following lemma is well known to
experts, although we could not find a reference for it. We shall present
a direct self-contained proof; we are grateful to Mikael Rørdam for having
communicated it to us. Of course there are many other proofs, including the
one in the next Remark.

Lemma 2.1. Every algebraically finitely generated closed left (resp. right)
ideal of a C∗-algebra A is actually singly generated, and equals Ap (resp. pA)
for a projection p ∈ A.

Proof. We consider first the case where A is unital. Let J ⊆ A be a closed
left ideal. We shall use the following general fact: for each positive element
a ∈ J and each continuous function f : [0,∞)→ R with f(0) = 0, we have
f(a) ∈ J . (This follows by approximating f uniformly on the spectrum of a
by real polynomials vanishing at 0.)
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Suppose that J is generated as a left ideal by the elements a1, . . . , an for
some n ∈ N, and set b = a∗1a1 + · · · + a∗nan ∈ J . Then b1/4 belongs to J
by the above fact, so that b1/4 = c1a1 + · · ·+ cnan for some c1, . . . , cn ∈ A.
We may suppose that J is non-zero, which implies that b is non-zero, and
consequently c1, . . . , cn are not all zero. Since

x∗x+ y∗y − (x∗y + y∗x) = (x− y)∗(x− y) ≥ 0 for any x, y ∈ A,

we deduce that

a∗jc
∗
jckak + a∗kc

∗
kcjaj ≤ a∗jc∗jcjaj + a∗kc

∗
kckak

for j 6= k. Hence

b1/2 = (b1/4)∗b1/4 =

n∑
j,k=1

a∗jc
∗
jckak ≤ n

n∑
j=1

a∗jc
∗
jcjaj ≤ nK

n∑
j=1

a∗jaj = nKb,

where K = max1≤j≤n ‖cj‖2 > 0. By elementary spectral calculus, this im-
plies that the spectrum of b is contained in the set {0} ∪ [(nK)−2,∞), so
that we can take a continuous function f : [0,∞)→ [0, 1] such that f(0) = 0
and f(t) = 1 for each t ≥ (nK)−2. Then p = f(b) is a projection such that
pb = bp = b, and p belongs to J by the fact stated above. In particular we
have

0 = (1− p)b(1− p) =

n∑
j=1

(
aj(1− p)

)∗
aj(1− p),

which implies that aj = ajp ∈ Ap for each j ∈ {1, . . . , n}. Hence J = Ap,
and the result follows.

Let us now consider the case where A is non-unital. Let J be a closed,
finitely generated left ideal of A. Then J is finitely generated when regarded
as a left ideal of A1. Let p be a projection in A1 such that J = A1p =
{x ∈ A1 : xp = x}. Then p = 1p ∈ J ⊂ A, so

J = {x ∈ A : xp = x} = Ap.

The right-ideal case is similar or follows by symmetry by considering the
opposite C∗-algebra.

Remark. Lemma 2.1 also follows from a well-known C∗-module ‘gen-
eralization’ of it, which is a basic result in the theory of Hilbert C∗-modules
(see e.g. [16, pp. 255–257] or [2, proof of 8.1.27]). Namely, a right C∗-module
Z over A is algebraically finitely generated over A iff there are finitely many
zk ∈ Z with z =

∑
k zkz

∗
kz for all z ∈ Z. Note that this immediately implies

Lemma 2.1 by taking Z to be the right ideal of A in that lemma: in this case
if e =

∑
k zkz

∗
k, which is in Z, then e2 = e and e ≥ 0. So e is a projection in

the right ideal, and now it is easy to see that this right ideal equals eA.
If K is a maximal right ideal of A then e, the complement of the support

projection of K, is a minimal projection in A′′. This is well known (see [13,
3.13.6]), but here is a simple argument for this. We recall that the support
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projection of K is the smallest projection p ∈ A′′ with px = x for all x ∈ K
(see e.g. [1]). Thus e is the largest projection in A′′ with ex = 0 for all x ∈ K.
We will assume for simplicity that e ∈ A, which will be the case in Corollary
2.3 below, but the general case is very similar (but uses modifications of some
steps below exploiting Cohen factorization and ‘second dual techniques’ valid
in any Arens regular Banach algebra, and one should replace eAe and eA
below by {a ∈ A : a = eae} and {a ∈ A : a = ea}). We will use only the well-
known fact that every non-trivial C∗-algebra has a proper non-zero closed
right ideal, e.g. the right kernel of any non-faithful state. If e is not minimal,
that is, if Ae = eAe is not one-dimensional, then Ae has a proper closed non-
zero right ideal I, and I = IAe as usual. Then W = IA is a closed right ideal
of A. Note that W 6= eA since {w ∈ W : we = w} ⊂ I 6= Ae. On the other
hand, K+W = A by maximality of K (note K∩W ⊂ (1−e)A∩eA = {0}).
Thus eA = e(K + W ) = W . This contradiction shows that e is a minimal
projection.

Lemma 2.2. A C∗-algebra A is unital if even one maximal right ideal is
algebraically finitely generated over A.

Proof. As we said above, a maximal right ideal of A has a support pro-
jection whose complement is a minimal projection q ∈ A′′. On the other
hand, if J is an algebraically finitely generated right ideal, then by Lemma
2.1 the support projection of J is in J . Thus if J is an algebraically finitely
generated right ideal which is a maximal right ideal, then 1 − q ∈ J ⊂ A
for a non-zero minimal projection q in A′′. Hence q = 1 − (1 − q) belongs
to M(A), the multiplier algebra of A, and of course qAq 6= {0} since q 6= 0.
Therefore {0} 6= qAq = Cq ⊂ A, and so q and 1 = (1 − q) + q are in A.
Consequently, A is unital.

Corollary 2.3. A C∗-algebra A is finite-dimensional iff every maximal
right ideal is algebraically finitely generated over A.

Proof. For the non-obvious direction, by Lemma 2.2 we may suppose
that A is unital. Let J be the right ideal generated by all the minimal
projections in A. If J 6= A, let K be a maximal (proper) right ideal of A
containing J . The support projection of K is in A by Lemma 2.1, hence its
complement e is in A too. As we proved before Lemma 2.2, e is a minimal
projection, and we obtain the contradiction e ∈ J ⊆ K = (1 − e)A. So
A = J , and therefore 1 =

∑n
k=1 ekak =

∑n
k=1 a

∗
kek for minimal projections

ek, and some ak ∈ A. It is well known from pure algebra that dim(eAf) ≤ 1
for minimal e, f ∈ A (a quick proof in our case, where these are projections:
if v = eaf 6= 0 then v∗v is a positive scalar multiple of f , so that left
multiplication by v∗ is an isomorphism eAf ∼= fAf). From these facts it is
clear that A =

∑n
j,k=1 ejAek is finite-dimensional.
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Remark. Although we have chosen to give a self-contained C∗-algebraic
argument in the last proof, there are more algebraic arguments available that
even allow one to generalize some of the above. For example, note that the
hypothesis in the last result, together with a result of the type of Lemma 2.1,
implies that every maximal right ideal is a (module) direct summand. But
the latter implies finite dimensionality. Indeed, the elementary argument in
[14, lines after Proposition 5.10] (which is a slight variant of our argument
in the last proof) shows that any ring A whose maximal right ideals are
(module) direct summands, equals its socle. Hence A is semisimple in the
ring-theoretic sense, and one can apply the Wedderburn–Artin theorem. We
thank Manuel Reyes for the last reference, and helpful comments on these
results in an earlier version of our paper. So if A is in addition a Banach
algebra over C, it is now clear that it is finite-dimensional. Similarly, one
obtains the well-known fact that a unital Banach algebra with dense socle
(and hence which equals its socle) is finite-dimensional. This is also related
to the theory of modular annihilator algebras (see e.g. [12, 8.4.14 and its
proof]).

Corollary 2.4. A unital C∗-algebra A is finite-dimensional iff A con-
tains all minimal projections in A′′.

Proof. If A contains all such projections and J is a maximal right ideal
of A, then the support projection p of J is in A (since its complement is
a minimal projection). So J = pA. The result now follows from Corollary
2.3.

Remark. One might ask which of the results above extend to the class
of not necessarily self-adjoint algebras of operators on a Hilbert space (resp.
to classes of Banach algebras). In [4] (resp. [3]) there are variants of one or
two of the facts above for closed right ideals with a contractive (resp. ‘real-
positive’) left approximate identity. For example, comparing with Lemma
2.1, such right ideals which are algebraically finitely generated as right mod-
ules over the algebra A, are precisely the right ideals of the form eA for
a projection e (resp. a ‘real-positive’ idempotent) in the algebra (see [4,
Corollary 2.13] and [3, Corollary 4.7]; in the latter reference it is also as-
sumed that A has a contractive approximate identity but probably this is
not necessary). Comparing with Lemma 2.2, and following its proof, one
sees that A is a unital operator algebra say, which has even one such ideal
which is algebraically finitely generated over A, and which is maximal in
the sense that the complement e of its support projection is minimal in the
sense that eA′′e is one-dimensional. However, even if A is unital, it need not
have any right ideals of this type at all. Thus our techniques above towards
the Dales–Żelazko conjecture break down in this case, although our method
suggests that the way to proceed may be via the socle of A.
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3. A C∗-module generalization. We now show that C∗-modules of
the form

⊕m
k=1 B(Cnk , Hk) (that is, direct sums of rectangular matrix blocks

with the length of the rows in each block allowed to be infinite) are the
‘only’ right C∗-modules Z such that every maximal right submodule of Z is
algebraically finitely generated.

Theorem 3.1. Let Z be a right C∗-module. Then every maximal right
submodule of Z is algebraically finitely generated iff there are positive inte-
gers m,n1, . . . , nm, and Hilbert spaces Hk, such that Z ∼=

⊕m
k=1 B(Cnk , Hk)

as TRO’s.

Proof. (⇒) Suppose that Z is a right C∗-module over a C∗-algebra B,
and that every maximal right submodule of Z is algebraically finitely gener-
ated over B. Then every maximal right submodule W of Z is algebraically
finitely generated over Z∗Z (since W is a non-degenerate Z∗Z-module and
hence any w ∈ W may be written as w = w′c for w′ ∈ W , c ∈ Z∗Z
by Cohen’s factorization theorem; hence wb = w′(cb) with cb ∈ Z∗Z, for
b ∈ B). So we may assume that B = Z∗Z.

We will be using the simple relationship between right submodules of Z
and right ideals of ZZ∗ perhaps first noticed by Brown [6]. If J is a maximal
right ideal of A = K(Z) = ZZ∗, then JZ is a right submodule of Z. If
JZ = Z then

J = JA = JZZ∗ = ZZ∗ = A,

a contradiction. So JZ is a proper right submodule of Z. If W is a proper
closed right submodule of Z containing JZ, then WZ∗ is a right ideal of
K(Z) and it contains JA = J . If WZ∗ = A, then W = WZ∗Z = AZ = Z,
a contradiction. Hence WZ∗ = J , so that W = WZ∗Z = JZ. Thus JZ is
a maximal right submodule of Z, and hence JZ is finitely generated over
Z∗Z. By the well-known argument/fact in the Remark after Lemma 2.1
above, JZ has generators z1, . . . , zn with

n∑
k=1

zkz
∗
kaz = az

for all a∈ J and z ∈ Z. Hence ea = a for all a ∈ J where e =
∑n

k=1 zkz
∗
k ∈ J .

Clearly J = eZZ∗. By Lemma 2.2 we see that ZZ∗ is unital, and by
Corollary 2.3 we find that ZZ∗ is a finite-dimensional C∗-algebra, hence
ZZ∗ ∼=

⊕m
k=1 Mnk

∗-isomorphically. Now we are in a well-known territory—
indeed, Hilbert C∗-modules over C∗-algebras of compact operators are com-
pletely understood. For example, by basic Morita equivalence (as in e.g. [11,
proof on pp. 851–852], or [15, p. 2125]) we have Z∗Z ∼=

⊕m
k=1 K(Hk), and

Z ∼=
⊕m

k=1 B(Cnk , Hk), for Hilbert spaces Hk. (The cited papers do not ex-
plicitly use the term ‘ternary morphism’, but it is clear that their morphisms
are such.)
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(⇐) This is the easy direction. Indeed, if Z =
⊕m

k=1 B(Cnk , Hk) then
every right Z∗Z-submodule W is finitely generated over Z∗Z (since WW ∗

is finite-dimensional, hence unital). And clearly this property is preserved
by ternary isomorphisms.

Remark. All right C∗-modules (which are not Hilbert spaces) have an
abundant supply of maximal right submodules (one can see this for example
from the paragraph before Lemma 2.2, and the correspondence in the proof
of Theorem 3.1). Indeed, every right submodule is an intersection of maximal
right submodules.

As a closing remark, we consider the case of ‘larger sets of generators’.
Let κ be a cardinal number. We will say that a right module V over A is
algebraically κ-generated if there is a set {vα : α < κ} in V with cardinal-
ity κ such that every element in A is a finite sum

∑n
k=1 vαk

ak for some
ak ∈ A1 and α1, . . . , αn < κ. We call algebraically ℵ0-generated modules
algebraically countably generated. One might ask if ‘algebraically finitely
generated’ could be replaced by ‘algebraically countably generated’ or ‘alge-
braically κ-generated’ for some uncountable cardinal κ in all of the results in
our paper. In fact this is automatic in the countable case: It is proved in [5]
that a right ideal of a Banach algebra is closed if its closure is algebraically
countably generated in this sense. The proof in [5] works for modules too;
thus a right submodule of a Banach module over A is closed if its closure is
algebraically countably generated. Then as in [8, Corollary 1.6], closed alge-
braically countably generated right submodules of a Banach module over A
are finitely generated. One can even go one step further using some set the-
ory related to Martin’s axiom. We shall use the so-called pseudo-intersection
number p, a certain cardinal; namely, p is the minimal cardinality of a fam-
ily (Uα)α<λ of open dense subsets of R such that

⋂
α<λ Uα is not dense

in R.

Corollary 3.2. A closed algebraically countably generated right sub-
module of a Banach module over A is finitely generated. Moreover, if a closed
algebraically κ-generated right submodule of a Banach module is separable,
where κ < p, then it is finitely generated.

Proof. The ‘countably generated’ case is just as in the proof of [8, Corol-
lary 1.6], but using the module version of Boudi’s result discussed above. In
the other case, let G be a set of algebraic generators for a closed submodule
I, with |G| < p. Then the family of all finite subsets of G has the same
cardinality. For cardinals < p, there is a generalization of Baire’s category
theorem valid in separable metric spaces (see e.g. [9, Corollary 22C]). We
proceed similarly to the proof of [8, Corollary 1.6], but apply this gener-
alized Baire principle to the union of the closed submodules generated by
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finite subsets of G, to see that one such submodule equals I. Finally, apply
the module version of Boudi’s result discussed above.

Let us note that the separability assumption in Corollary 3.2 cannot be
dropped. Indeed, let A = C[0, ω1], that is, A is the commutative C∗-algebra
of all continuous functions on the ordinal interval [0, ω1]. Let I be the ideal
of A consisting of functions which vanish at ω1. (As a Banach space, I is
clearly non-separable.) Each function f in I has countable support supp f ,
since continuous functions on [0, ω1] are eventually constant. Let f ∈ I. We
can then write f = f · 1[0,α], where 1[0,α] is the characteristic function of
the ordinal interval [0, α] and α = sup supp f . Since α is countable, we have
1[0,α] ∈ I. Thus I is not finitely generated, but is algebraically ℵ1-generated
(regardless of whether ℵ1 < p or not).
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