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Lyapunov theorem for q-concave Banach spaces

by

Anna Novikova (Rehovot)

Abstract. A generalization of the Lyapunov convexity theorem is proved for a vector
measure with values in a Banach space with unconditional basis, which is q-concave for
some q < ∞ and does not contain any isomorphic copy of l2.

1. Introduction. Let X be a Banach space, (Ω,Σ) be a measurable
space, where Ω is a set and Σ is a σ-algebra of subsets of Ω. If m : Σ → X
is a σ-additive X-valued measure, then the range of m is the set m(Σ) =
{m(A) : A ∈ Σ}.

The measure m is non-atomic if for every set A ∈ Σ with m(A) 6= 0,
there exist B ∈ Σ with B ⊂ A such that m(B) 6= 0 and m(A \B) 6= 0.

According to the famous Lyapunov theorem [4] the range of every Rn-
valued non-atomic measure µ is convex. However, this theorem does not gen-
eralize directly to the infinite-dimensional case: for every infinite-dimensional
Banach space X there is an X-valued non-atomic measure (of bounded vari-
ation) whose range is not convex [1, Corollary IX.1.6].

We will call an X-valued measure a Lyapunov measure if the closure of
its range is convex. And the Banach space X is a Lyapunov space if every
X-valued non-atomic measure is Lyapunov.

The following result was obtained in [7].

Theorem 1.1 (Uhl). Let X have Radon-Nikodym property. Then any
X-valued measure of bounded variation is Lyapunov.

For measures with unbounded variation this is no longer true. There exist
non-atomic measures with values in Hilbert space which are not Lyapunov. It
follows that also spaces containing isomorphic copies of l2 are not Lyapunov:
in particular, all Lp[0, 1], C[0, 1], l∞. Nevertheless it was proved in [2] that
the sequence spaces c0 and lp, 1 ≤ p < ∞, p 6= 2 are examples of Lyapunov
spaces.
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On the other hand, using a compactness argument, it was proven in [6]
that in a Banach space with unconditional basis every non-negative (with
respect to the order induced by the basis) non-atomic measure is Lyapunov.

Recall that for Banach spaces X,Y and Z, an operator T : X → Y is
said to be Z-strictly singular if it is not an isomorphism when restricted to
any isomorphic copy of Z in X.

We say that a linear operator T : Lp(µ)→ X is narrow if for every ε > 0
and every measurable set A ⊂ [0, 1] there exists x ∈ Lp with x2 = IA and	
[0,1] x dµ = 0 such that ‖Tx‖ < ε (we call such an x a mean zero sign).

In [5, Theorem B] it was shown that for every 1 < p < ∞ and every
Banach space X with an unconditional basis, every l2-strictly singular op-
erator T : Lp → X is narrow, where Lp denotes the Lp space on (0, 1) with
Lebesgue measure.

We will use the following notion of q-concavity [3, 1.d.3].
Let X be a Banach lattice, let V be an arbitrary Banach space and let

1 ≤ q <∞. A linear operator T : X → V is called q-concave if there exists
a constant M <∞ such that( n∑

i=1

‖Txi‖q
)1/q

≤M
∥∥∥( n∑

i=1

|xi|q
)1/q∥∥∥

for every choice of vectors {xi}ni=1 in X.
We say that the space X is q-concave if the identity operator on X is

q-concave.

2. Main result. The following theorem is a generalization of the result
from [2] mentioned above.

Theorem 2.1. Let X be a p-concave (p < ∞) Banach space with an
unconditional basis, which contains no isomorphic copy of l2. Then X is a
Lyapunov space.

Proof. Assume the contrary: X is not Lyapunov, i.e. there is a non-
atomic measure µ with values in X such that the closure of its range is not
convex. Then by [2, Lemma 3] there exists (Ω,Σ, λ) with a nonnegative mea-
sure λ : Σ → R such that for all A ∈ Σ we have 0 ≤ λ(A) ≤ const ‖µ‖(A),
and a bounded operator T : L∞(Ω,Σ, λ)→ X such that

• T : (L∞, w
∗)→ (X,w) is continuous and T (IA) = µ(A);

• there exists ε > 0 such that for any mean zero sign f ∈ L∞ (i.e. a
function f that takes only the values 1, −1 or 0) we have ‖Tf‖ ≥
δλ(supp f).

Since X is p-concave, it follows that the operator T is q-concave for all
q > p. And by the factorization theorem [3, 1.d.12], T can be factorized
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through Lq, i.e. T = ST1, where T1 : L∞(Ω, λ) → Lq(Ω, ν) is the formal
identity map, positive and continuous, and S : Lq(Ω, ν) → X is bounded.
Notice also that since X contains no isomorphic copy of l2, the operator S
is l2-strictly singular.

We have

‖µ(A)‖X = ‖S(IA)‖X ≤ ‖S‖ · ‖IA‖Lq(ν) = ‖S‖ · ν1/q(A).

Thus there exists C > 0 such that 0 ≤ λ(A) ≤ Cν1/q(A) for all A ⊂ Ω.
Then by the Radon–Nikodym theorem we have

λ(A) =
�

Ω

y(t)IA dν,

where y ∈ L1(Ω, ν) is positive a.e.

Choose Ω0 ⊂ Ω of positive measure ν so that there are a, b such that
0 < a ≤ y(t) ≤ b < ∞ for all t ∈ Ω0. Consider the identity operator
Id : Lq(Ω0, λ)→ Lq(Ω0, ν) and the operator S0 := S ◦ Id. It follows that for
any mean zero sign x on Ω0 (with respect to λ) such that |x| = IΩ0 , we have

‖S0(x)‖ = ‖Sx‖ = ‖Tx‖ > δλ(Ω0).

So S0 : Lq(Ω0, λ)→ X is l2-strictly singular but not narrow.

Following the construction in [5, Proposition 3.1], for each ε > 0 we can

find a tree {Am,k} of Ω0 and an operator S̃ : Lq(Ω0, Σ1, λ)→ X, where Σ1

is the σ-algebra generated by {Am,k}, with the following properties:

(P1) λ(Am,k) = 2−mλ(Ω0) for all m, k;

(P2) ‖S̃x‖ ≥ 1
2δλ(Ω0) for each mean zero sign x ∈ Lq(Ω0, Σ1, λ);

(P3) S̃(h′1) = 0 and S̃h′n = (Psn−Psn−1)S0h′n, where 0 = s1 < s2 < · · · ,
the Pn are the basis projections in X, and {h′2m+k} is the Haar sys-
tem with respect to the tree {Am,k}, normalized in Lq(Ω0, Σ1, λ);

(P4) for all x ∈ Lq(λ) with ‖x‖ = 1, we have ‖S̃x‖ ≤ ‖S0x‖+ ε;

(P5) for each x ∈ Lq(λ) with ‖x‖ = 1 of the form x =
∑N

n=L βnh
′
n we

have ‖S̃x‖ ≤ ‖S0x‖+ εL for some sequence εL → 0 as L→∞.

Note that if we consider a map J : Σ1(Ω0)→ B(0, 1) such that

J(An,k) = ∆n,k = [(k − 1)/2n, k/2n], m(J(An,k)) = λ−1(Ω0)λ(An,k),

where B(0, 1) is the Borel algebra and m is Lebesgue measure, then
Lq(Ω0, Σ1, λ) is isometric to Lq = Lq((0, 1),B,m). Thus we have an oper-

ator S̃ : Lq → X of a special structure, not narrow and l2-strictly singular.
This contradicts [5, Theorem B].

It remains an open question whether any Banach space which does not
contain isomorphic copies of l2 is Lyapunov.
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