Lyapunov theorem for q-concave Banach spaces

by

Anna Novikova (Rehovot)

Abstract. A generalization of the Lyapunov convexity theorem is proved for a vector measure with values in a Banach space with unconditional basis, which is q-concave for some $q < \infty$ and does not contain any isomorphic copy of l_2 .

1. Introduction. Let X be a Banach space, (Ω, Σ) be a measurable space, where Ω is a set and Σ is a σ -algebra of subsets of Ω . If $m: \Sigma \to X$ is a σ -additive X-valued measure, then the range of m is the set $m(\Sigma) = \{m(A): A \in \Sigma\}$.

The measure m is non-atomic if for every set $A \in \Sigma$ with $m(A) \neq 0$, there exist $B \in \Sigma$ with $B \subset A$ such that $m(B) \neq 0$ and $m(A \setminus B) \neq 0$.

According to the famous Lyapunov theorem [4] the range of every \mathbb{R}^n -valued non-atomic measure μ is convex. However, this theorem does not generalize directly to the infinite-dimensional case: for every infinite-dimensional Banach space X there is an X-valued non-atomic measure (of bounded variation) whose range is not convex [1, Corollary IX.1.6].

We will call an X-valued measure a Lyapunov measure if the closure of its range is convex. And the Banach space X is a Lyapunov space if every X-valued non-atomic measure is Lyapunov.

The following result was obtained in [7].

Theorem 1.1 (Uhl). Let X have Radon-Nikodym property. Then any X-valued measure of bounded variation is Lyapunov.

For measures with unbounded variation this is no longer true. There exist non-atomic measures with values in Hilbert space which are not Lyapunov. It follows that also spaces containing isomorphic copies of l_2 are not Lyapunov: in particular, all $L_p[0,1]$, C[0,1], l_{∞} . Nevertheless it was proved in [2] that the sequence spaces c_0 and $l_p, 1 \leq p < \infty, p \neq 2$ are examples of Lyapunov spaces.

²⁰¹⁰ Mathematics Subject Classification: Primary 46E30.

Key words and phrases: Lyapunov theorem, vector measure, convexity.

196 A. Novikova

On the other hand, using a compactness argument, it was proven in [6] that in a Banach space with unconditional basis every non-negative (with respect to the order induced by the basis) non-atomic measure is Lyapunov.

Recall that for Banach spaces X, Y and Z, an operator $T: X \to Y$ is said to be Z-strictly singular if it is not an isomorphism when restricted to any isomorphic copy of Z in X.

We say that a linear operator $T: L_p(\mu) \to X$ is narrow if for every $\epsilon > 0$ and every measurable set $A \subset [0,1]$ there exists $x \in L_p$ with $x^2 = \mathbb{I}_A$ and $\int_{[0,1]} x \, d\mu = 0$ such that $||Tx|| < \epsilon$ (we call such an x a mean zero sign).

In [5, Theorem B] it was shown that for every 1 and every Banach space <math>X with an unconditional basis, every l_2 -strictly singular operator $T: L_p \to X$ is narrow, where L_p denotes the L_p space on (0,1) with Lebesgue measure.

We will use the following notion of q-concavity [3, 1.d.3].

Let X be a Banach lattice, let V be an arbitrary Banach space and let $1 \leq q < \infty$. A linear operator $T: X \to V$ is called q-concave if there exists a constant $M < \infty$ such that

$$\left(\sum_{i=1}^{n} \|Tx_i\|^q\right)^{1/q} \le M \left\| \left(\sum_{i=1}^{n} |x_i|^q\right)^{1/q} \right\|$$

for every choice of vectors $\{x_i\}_{i=1}^n$ in X.

We say that the space X is q-concave if the identity operator on X is q-concave.

2. Main result. The following theorem is a generalization of the result from [2] mentioned above.

Theorem 2.1. Let X be a p-concave $(p < \infty)$ Banach space with an unconditional basis, which contains no isomorphic copy of l_2 . Then X is a Lyapunov space.

Proof. Assume the contrary: X is not Lyapunov, i.e. there is a non-atomic measure μ with values in X such that the closure of its range is not convex. Then by [2, Lemma 3] there exists $(\Omega, \Sigma, \lambda)$ with a nonnegative measure $\lambda : \Sigma \to \mathbb{R}$ such that for all $A \in \Sigma$ we have $0 \le \lambda(A) \le \operatorname{const} \|\mu\|(A)$, and a bounded operator $T : L_{\infty}(\Omega, \Sigma, \lambda) \to X$ such that

- $T:(L_{\infty},w^*)\to (X,w)$ is continuous and $T(\mathbb{I}_A)=\mu(A)$;
- there exists $\epsilon > 0$ such that for any mean zero sign $f \in L_{\infty}$ (i.e. a function f that takes only the values 1, -1 or 0) we have $||Tf|| \ge \delta \lambda(\operatorname{supp} f)$.

Since X is p-concave, it follows that the operator T is q-concave for all q > p. And by the factorization theorem [3, 1.d.12], T can be factorized

through L_q , i.e. $T = ST_1$, where $T_1 : L_{\infty}(\Omega, \lambda) \to L_q(\Omega, \nu)$ is the formal identity map, positive and continuous, and $S : L_q(\Omega, \nu) \to X$ is bounded. Notice also that since X contains no isomorphic copy of l_2 , the operator S is l_2 -strictly singular.

We have

$$\|\mu(A)\|_X = \|S(\mathbb{I}_A)\|_X \le \|S\| \cdot \|\mathbb{I}_A\|_{L_q(\nu)} = \|S\| \cdot \nu^{1/q}(A).$$

Thus there exists C > 0 such that $0 \le \lambda(A) \le C\nu^{1/q}(A)$ for all $A \subset \Omega$. Then by the Radon–Nikodym theorem we have

$$\lambda(A) = \int_{\Omega} y(t) \mathbb{I}_A \, d\nu,$$

where $y \in L_1(\Omega, \nu)$ is positive a.e.

Choose $\Omega_0 \subset \Omega$ of positive measure ν so that there are a, b such that $0 < a \le y(t) \le b < \infty$ for all $t \in \Omega_0$. Consider the identity operator $\mathrm{Id}: L_q(\Omega_0, \lambda) \to L_q(\Omega_0, \nu)$ and the operator $S^0 := S \circ \mathrm{Id}$. It follows that for any mean zero sign x on Ω_0 (with respect to λ) such that $|x| = \mathbb{I}_{\Omega_0}$, we have

$$||S^{0}(x)|| = ||Sx|| = ||Tx|| > \delta\lambda(\Omega_{0}).$$

So $S^0: L_q(\Omega_0, \lambda) \to X$ is l_2 -strictly singular but not narrow.

Following the construction in [5, Proposition 3.1], for each $\epsilon > 0$ we can find a tree $\{A_{m,k}\}$ of Ω_0 and an operator $\widetilde{S}: L_q(\Omega_0, \Sigma_1, \lambda) \to X$, where Σ_1 is the σ -algebra generated by $\{A_{m,k}\}$, with the following properties:

- (P1) $\lambda(A_{m,k}) = 2^{-m}\lambda(\Omega_0)$ for all m, k;
- (P2) $\|\widetilde{S}x\| \geq \frac{1}{2}\delta\lambda(\Omega_0)$ for each mean zero sign $x \in L_q(\Omega_0, \Sigma_1, \lambda)$;
- (P3) $\widetilde{S}(h'_1) = 0$ and $\widetilde{S}h'_n = (P_{s_n} P_{s_{n-1}})S^0h'_n$, where $0 = s_1 < s_2 < \cdots$, the P_n are the basis projections in X, and $\{h'_{2^m+k}\}$ is the Haar system with respect to the tree $\{A_{m,k}\}$, normalized in $L_q(\Omega_0, \Sigma_1, \lambda)$;
- (P4) for all $x \in L_q(\lambda)$ with ||x|| = 1, we have $||\widetilde{S}x|| \le ||S^0x|| + \epsilon$;
- (P5) for each $x \in L_q(\lambda)$ with ||x|| = 1 of the form $x = \sum_{n=L}^N \beta_n h'_n$ we have $||\widetilde{S}x|| \le ||S^0x|| + \epsilon_L$ for some sequence $\epsilon_L \to 0$ as $L \to \infty$.

Note that if we consider a map $J: \Sigma_1(\Omega_0) \to \mathfrak{B}(0,1)$ such that

$$J(A_{n,k}) = \Delta_{n,k} = [(k-1)/2^n, k/2^n], \quad m(J(A_{n,k})) = \lambda^{-1}(\Omega_0)\lambda(A_{n,k}),$$

where $\mathfrak{B}(0,1)$ is the Borel algebra and m is Lebesgue measure, then $L_q(\Omega_0, \Sigma_1, \lambda)$ is isometric to $L_q = L_q((0,1), \mathfrak{B}, m)$. Thus we have an operator $\tilde{S}: L_q \to X$ of a special structure, not narrow and l_2 -strictly singular. This contradicts [5, Theorem B].

It remains an open question whether any Banach space which does not contain isomorphic copies of l_2 is Lyapunov.

198 A. Novikova

Acknowledgements. This research was partly supported by grant RFFR 11-01-00614-a. I would like to thank Prof. Gideon Schechtman for valuable comments.

References

- [1] J. Diestel and J. J. Uhl, *Vector Measures*, Math. Surveys Monogr. 15, Amer. Math. Soc., 1977.
- [2] V. M. Kadets and G. Schechtman, Lyapunov theorem for l_p -valued measures, Algebra i Analiz 4 (1992), 148–154 (in Russian).
- [3] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II: Function Spaces, Springer, 1979.
- [4] A. Lyapunov, Sur les fonctions-vecteurs complètement additives, Izv. Akad. Nauk SSSR 4 (1940), 465–478.
- [5] V. Mykhaylyuk, M. Popov, B. Randrianantoanina and G. Schechtman, Narrow and ℓ_2 -strictly singular operators from L_p , Israel J. Math. 203 (2014), 81–108.
- [6] E. Saab and P. Saab, Lyapunov convexity type theorems for non-atomic vector measures, Quaestiones Math. 26 (2003), 371–383.
- [7] J. J. Uhl, Jr., The range of a vector-valued measure, Proc. Amer. Math. Soc. 23 (1969), 158–163.

Anna Novikova
Faculty of Mathematics and Computer Science
The Weizmann Institute of Science
POB 26, Rehovot 76100, Israel
E-mail: novikova.anna18@gmail.com

Received October 22, 2013 Revised version November 20, 2014 (7854)