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Numerical index with respect to an operator

by

Mohammad Ali Ardalani (Sanandaj)

Abstract. We introduce new concepts of numerical range and numerical radius of
one operator with respect to another one, which generalize in a natural way the known
concepts of numerical range and numerical radius. We study basic properties of these new
concepts and present some examples.

1. Introduction. In our paper the letters X and Y stand for Banach
spaces over a field K (= R or C). The space of all bounded linear operators
from X into Y is denoted by L(X,Y ), shortened to L(X) if X = Y . The
dual space to X is denoted by X∗. For a Banach space X, we denote by BX
and SX the corresponding unit ball and unit sphere.

Let T ∈ L(X). The numerical range of T , V (T ), the numerical radius
of T , ν(T ), and the numerical index of the space X, n(X), are defined as
follows:

V (T ) := {x∗(Tx) : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1},
ν(T ) := sup{|λ| : λ ∈ V (T )},
n(X) := inf{ν(T ) : T ∈ L(X), ‖T‖ = 1}.

It is well-known (see [3, 5]) that

sup ReV (T ) = lim
α↓0

‖Id + αT‖ − 1

α

and

ν(T ) = max
ω∈T

lim
α↓0

‖Id + αωT‖ − 1

α

where T stands for the unit sphere of the base field K. Also we have

(1.1) (ν(T ) = ‖T‖) ⇔
(

max
ω∈T
‖Id + ωT‖ = 1 + ‖T‖

)
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(see [7, Lemma 2.3]). Therefore,

(1.2) (n(X) = 1)⇔
(
∀T ∈ L(X) max

ω∈T
‖Id + ωT‖ = 1 + ‖T‖

)
.

In this note we generalize the concepts of numerical range, numerical ra-
dius and numerical index, considering instead of the identity operator some
other operator G ∈ L(X,Y ) in such a way that relation (1.1) (and hence
(1.2)) extends to these new general notions. The main difficulty that we
had to overcome is that L(X,Y ) is not a Banach algebra, so we cannot
use the technique of Banach algebras [3] in the study of numerical radius.
Hence, the proof of the generalized version of (1.1) is different from the
original one, and is more geometric in nature. We also present some ex-
amples.

2. Definitions. Before we present the generalized definitions, we recall
the famous Bishop–Phelps–Bollobás theorem.

Theorem 2.1 (Bishop–Phelps–Bollobás). Let X be a real Banach space
and 0 < ε < 1/2. Suppose x ∈ SX and x∗ ∈ SX∗ satisfy x∗(x) ≥ 1 − ε2/2.
Then there exists (y, y∗) ∈ SX × SX∗ such that y∗(y) = 1, ‖x− y‖ < ε+ ε2

and ‖x∗ − y∗‖ ≤ ε.
Proof. See [2].

Note that:

(a) Theorem 2.1 is applicable to real parts of complex functionals.
(b) The norms of a complex functional and of its real part are the same.

Taking into account the above comments we can reformulate the above
theorem for arbitrary (real or complex) spaces in the following form:

Theorem 2.2. Let X be a Banach space and 0 < ε < 1/2. Suppose
x ∈ SX and x∗ ∈ SX∗ satisfy Rex∗(x) ≥ 1−ε2/2. Then there exists (y, y∗) ∈
SX × SX∗ such that y∗(y) = 1, ‖x− y‖ < ε+ ε2 and ‖x∗ − y∗‖ ≤ ε.

Observe also that according to [4, Theorem 2.1], the summand ε2 in
the estimate for ‖x − y‖ above can be omitted, and that in fact the result
remains valid for 0 < ε < 2 and for x ∈ BX and x∗ ∈ BX∗ .

Definition 2.3. For T,G ∈ L(X,Y ) with ‖G‖ = 1 we define the nu-
merical range of T with respect to G, VG(T ), as follows:

VG(T ) :=
⋂
ε>0

{x∗(Tx) : x ∈ SX , x∗ ∈ SY ∗ , Rex∗(Gx) > 1− ε}.

Note that VG(T ) is a closed set, but V (T ) may not be closed. Neverthe-
less, the following lemma shows that for G = Id : X → X the new definition
almost agrees with the classical one.
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Lemma 2.4. VId(T ) = V (T ).

Proof. We have

VId(T ) =
⋂
ε>0

{x∗(Tx) : x ∈ SX , x∗ ∈ SX∗ , Rex∗(x) > 1− ε}.

If λ ∈ V (T ) then there are x ∈ SX and x∗ ∈ SX∗ such that x∗(x) = 1
and λ = x∗(Tx). Since Rex∗(x) = x∗(x) = 1, we have λ ∈ {x∗(Tx) :
x ∈ SX , x∗ ∈ SX∗ , Rex∗(x) > 1− ε} for all ε > 0, and hence

λ ∈
⋂
ε>0

{x∗(Tx) : x ∈ SX , x∗ ∈ SX∗ , Rex∗(x) > 1− ε}.

This means that V (T ) ⊆ VId(T ), so V (T ) ⊆ VId(T ) = VId(T ).
For the inverse inclusion consider an arbitrary µ ∈ VId(T ). Then for all

δ > 0,

µ ∈ {x∗(Tx) : x ∈ SX , x∗ ∈ SX∗ , Rex∗(x) > 1− δ},
which means that for all ε, δ > 0, there are x ∈ SX and x∗ ∈ SX∗ such that
Rex∗(x) > 1 − δ and |µ − x∗(Tx)| < ε. If in particular 0 < ε < 1/2 and
δ = ε2/2 then we get x ∈ SX and x∗ ∈ SX∗ such that Rex∗(x) > 1 − ε2/2
and |µ − x∗(Tx)| < ε. Theorem 2.2 implies that there exist y ∈ SX and
y∗ ∈ SX∗ such that y∗(y) = 1, ‖x∗ − y∗‖ < ε and ‖x − y‖ < ε + ε2.
Obviously, y∗(Ty) ∈ V (T ). Now, we have

|y∗(Ty)− µ| ≤ |y∗(Ty)− x∗(Tx)|+ |x∗(Tx)− µ| ≤ |y∗(Ty)− x∗(Tx)|+ ε.

Let us estimate |y∗(Ty)− x∗(Tx)|:
|y∗(Ty)− x∗(Tx)| = |y∗(Ty)− x∗(Ty) + x∗(Ty)− x∗(Tx)|

≤ |(y∗ − x∗)(Ty)|+ |x∗(T (y − x))|
≤ ‖x∗ − y∗‖ ‖T‖ ‖y‖+ ‖x∗‖ ‖T‖ ‖y − x‖.

Therefore |y∗(Ty)− µ| ≤ ‖T‖(2ε+ ε2) + ε. Hence VId(T ) ⊆ V (T ).

Definition 2.5. Suppose T,G ∈ L(X,Y ) and ‖G‖ = 1. We define the
numerical radius of T with respect to G, νG(T ), as follows:

νG(T ) := max{|t| : t ∈ VG(T )}.
Again, if G = Id then νId(T ) = max{|t| : t ∈ VId(T )}. Since VId(T ) =

V (T ), we have

νId(T ) = max{|t| : t ∈ V (T )} = max{|t| : t ∈ V (T )} = ν(T ).

Finally, we extend the definition of numerical index:

Definition 2.6. Suppose T,G ∈ L(X,Y ) and ‖G‖ = 1. We define
nG(X,Y ), the numerical index of the pair (X,Y ) with respect to G, by

nG(X,Y ) = inf{νG(T ) : T ∈ L(X,Y ), ‖T‖ = 1}.
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In the case of X = Y we simplify the notation to nG(X). Evidently,

nId(X) = inf{νId(T ) : T ∈ L(X), ‖T‖ = 1}(2.1)

= inf{ν(T ) : T ∈ L(X), ‖T‖ = 1} = n(X).

We conclude this section with the following remark.

Remark 2.7. Obviously, by the definition VG(T ) is a closed subset of C.
Since |x∗(Tx)| ≤ ‖x∗‖ ‖T‖ ‖x‖ = ‖T‖ for all x∗ ∈ SY ∗ and x ∈ SX , VG(T )
is a compact subset of C. Also, we have νG(T ) ≤ ‖T‖.

3. Main results. Now, we are able to generalize relations (1.1)
and (1.2). Observe that our proofs in the general case are even simpler
than the original ones.

Lemma 3.1. If νG(T ) = ‖T‖ then maxω∈T ‖G+ ωT‖ = 1 + ‖T‖.

Proof. If νG(T ) = ‖T‖, then the definition of νG(T ) implies there is a
t = reiθ ∈ VG(T ) such that r = |t| = ‖T‖. The inclusion t ∈ VG(T ) means
that for all ε > 0 we have

t ∈ {x∗(Tx) : x ∈ SX , x∗ ∈ SY ∗ , Rex∗(Gx) > 1− ε}.
Hence, for every ε > 0 there is a pair (x, x∗) ∈ SX × SY ∗ such that
Rex∗(Gx) > 1− ε and |x∗(Tx)− t| < ε. Then

(3.1) |Re e−iθx∗(T (x))− r| ≤ |e−iθx∗(T (x))− r| = |x∗(Tx)− t| < ε.

Now,

max
ω∈T
‖G+ ωT‖ ≥ ‖G+ e−iθT‖ ≥ |x∗((G+ e−iθT )(x))|

≥ Rex∗((G+ e−iθT )(x)) = Rex∗(G(x)) + Re e−iθx∗(T (x)),

which together with (3.1) means that

max
ω∈T
‖G+ ωT‖ ≥ Rex∗(G(x)) + r − ε ≥ 1− ε+ r − ε = 1 + ‖T‖ − 2ε.

Since ε > 0 is arbitrary, maxω∈T ‖G + ωT‖ ≥ 1 + ‖T‖. By the triangle
inequality,

max
ω∈T
‖G+ ωT‖ ≤ 1 + ‖T‖,

so maxω∈T ‖G+ ωT‖ = 1 + ‖T‖.

The next lemma is the converse of the previous one.

Lemma 3.2. If maxω∈T ‖G+ ωT‖ = 1 + ‖T‖ then νG(T ) = ‖T‖.

Proof. Since maxω∈T ‖G+ ωT‖ = 1 + ‖T‖, there is an ω ∈ T such that
‖G+ ωT‖ = 1 + ‖T‖. For this ω we have

1 + ‖T‖ = ‖G+ ωT‖ = sup{‖(G+ ωT )x‖ : x ∈ SX},
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so there is a sequence {xn} ⊆ SX such that

‖(G+ ωT )xn‖ > 1 + ‖T‖ − 1

n
, n = 1, 2, . . . .

Let us select supporting functionals x∗n at points (G+ ωT )xn, i.e. x∗n ∈ SY ∗

such that x∗n((G+ ωT )xn) = Rex∗n((G+ ωT )xn) = ‖(G+ ωT )xn‖. Then

1 + ‖T‖ − 1

n
< Rex∗n(G(xn)) + Reωx∗n(T (xn)) ≤ 1 + ‖T‖

Thus, since evidently

Rex∗n(G(xn)) ≤ 1 and Reωx∗n(T (xn)) ≤ ‖T‖,
we have

1− 1

n
< Rex∗n(G(xn)) ≤ 1

and

‖T‖ − 1

n
< Reωx∗n(T (xn)) ≤ ‖T‖.

Consider D := {z ∈ C : ‖T‖ − 1/n < Re z and |z| ≤ ‖T‖}. Obviously,
D is the intersection of the disc of radius ‖T‖ centered at 0 with the half-
plane Re z > ‖T‖ − 1/n. The maximal distance to the point (‖T‖, 0) from
the points of D is ((1/n)2 + (2‖T‖/n − 1/n2))1/2, which tends to zero as
n → ∞. Clearly, ωx∗n(T (xn)) ∈ D. Thus the above argument implies that
ωx∗n(T (xn))→ ‖T‖. Therefore,

Rex∗n(G(xn))→ 1, x∗n(T (xn))→ ω−1‖T‖.
So, we have demonstrated that for all ε, δ > 0, there exists (x, x∗)∈ SX × SY ∗

such that Rex∗(G(x)) > 1−ε and |x∗(Tx)−ω−1‖T‖ | < δ. This means that
for all ε > 0,

ω−1‖T‖ ∈ {x∗(Tx) : x ∈ SX , x∗ ∈ SY ∗ , Rex∗(Gx) > 1− ε}.
According to the definition, this means that ω−1‖T‖ ∈ VG(T ) and conse-
quently ‖T‖ = νG(T ).

These two lemmas evidently imply the following theorem:

Theorem 3.3. Let G ∈ L(X,Y ) and ‖G‖ = 1. Then nG(X,Y ) = 1 if
and only if for every T ∈ L(X,Y ),

max
ω∈T
‖G+ ωT‖ = 1 + ‖T‖.

4. ‘Spears” and examples of operators G with nG(X,Y ) = 1.
According to (2.1), nId(X) = n(X), so evident examples of operators G
with nG(X,Y ) = 1 are provided by G = Id : X → X, where X is a space
with numerical index one. In this section we present other examples, very
different from the identity. In particular nG(X,Y ) can be equal to 1 for some
operators that are neither surjective nor injective.
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Definition 4.1. An element z ∈ X is called a spear if for every x ∈ X
there is a modulus one scalar t for which ‖z+tx‖ = 1+‖x‖. In such a case X
is said to be spear-containing .

Note that substituting x = 0 into the above definition we find that for
every spear z ∈ X necessarily ‖z‖ = 1.

According to Theorem 3.3, G ∈ SL(X,Y ) is a spear if and only if nG(X,Y )
= 1, so in this case the space L(X,Y ) is spear-containing. Let us list some
other, simpler examples of spears.

• `1 is spear-containing. The only examples of spears in `1 are vectors of
the form θen, where |θ| = 1 and en is the nth member of the canonical
basis, i.e. all coordinates of en are zeros except the nth that equals 1.
• L1(Ω,Σ, µ) is spear-containing if and only if the measure µ has atoms.

In that case all spears in L1(Ω,Σ, µ) are of the form θf , where |θ| = 1
and f is the characteristic function of some atom.
• C(K) is spear-containing. The spears are functions f such that
|f(t)| = 1 at all points t ∈ K. For the same reason L∞(Ω,Σ, µ) is
spear-containing.

Theorem 4.2. Let G ∈ L(`1, Y ), ‖G‖ = 1 and let (en) ⊂ `1 be the
canonical basis. Then nG(`1, Y ) = 1 if and only if G(en) is a spear in Y for
all n ∈ N.

Proof. Recall that for any bounded operator U : `1 → Y we have ‖U‖ =
supn∈N ‖Uen‖ (see, for example, [6, §6.4.3, Exercise 4]). Consequently, for
every T ∈ L(`1, Y ),

(4.1) max
ω∈T
‖G+ ωT‖ = max

ω∈T
sup
n∈N
‖Gen + ωTen‖ = sup

n∈N
max
ω∈T
‖Gen + ωTen‖.

If all the G(en) are spears in Y , this leads to the equality

max
ω∈T
‖G+ ωT‖ = sup

n∈N
max
ω∈T

(1 + ‖Ten‖) = 1 + ‖T‖,

which, thanks to Theorem 3.3, means that nG(`1, Y ) = 1.

Now assume that G(em) is not a spear for some m ∈ N. Then there is
a y ∈ Y such that maxω∈T ‖Gem + ωy‖ < 1 + ‖y‖. Consider the operator
T ∈ L(`1, Y ) defined by

T (x1, x2, . . .) = xmy.

Then ‖T‖ = ‖y‖ and according to (4.1),

max
ω∈T
‖G+ ωT‖ = sup

n∈N
max
ω∈T
‖Gen + ωTen‖ < 1 + ‖y‖ = 1 + ‖T‖,

so G does not satisfy the condition of Theorem 3.3.
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Finally we remark that the last theorem enables us to construct a lot of
operators with nG(`1, Y ) = 1 that have properties very different from the
identity operator. For example, the operator G ∈ L(`1, `1) defined by

G(x1, x2, . . .) =
(∑
n∈N

xn

)
e1

has nG(`1, `1) = 1 but is neither surjective nor injective.
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