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A common fixed point theorem
for a commuting family of weak∗

continuous nonexpansive mappings

by

Sławomir Borzdyński and Andrzej Wiśnicki (Lublin)

Abstract. It is shown that if S is a commuting family of weak∗ continuous nonex-
pansive mappings acting on a weak∗ compact convex subset C of the dual Banach space E,
then the set of common fixed points of S is a nonempty nonexpansive retract of C. This
partially solves an open problem in metric fixed point theory in the case of commutative
semigroups.

1. Introduction. A subset C of a Banach space E is said to have the
fixed point property if every nonexpansive mapping T : C → C (that is,
‖Tx − Ty‖ ≤ ‖x − y‖ for x, y ∈ C) has a fixed point. A general problem,
initiated by the works of F. Browder, D. Göhde and W. A. Kirk and studied
by numerous authors for over 40 years, is to classify those E and C which
have the fixed point property. For a fuller discussion of this topic we refer
the reader to [3, 6].

In this paper we concentrate on weak∗ compact convex subsets of a dual
Banach space E. In 1976, L. Karlovitz [5] proved that if C is a weak∗ compact
convex subset of `1 (as the dual to c0) then every nonexpansive mapping
T : C → C has a fixed point. His result was extended by T. C. Lim [11]
to the case of left reversible topological semigroups. On the other hand,
C. Lennard gave an example of a weak∗ compact convex subset of `1 with the
weak∗ topology induced by its predual c and an affine contractive mapping
without fixed points (see [12, Example 3.2]). This shows that, apart from
nonexpansiveness, some additional assumptions have to be made to obtain
the fixed points.

Let S be a semitopological semigroup, i.e., a semigroup with a Hausdorff
topology such that for each t ∈ S, the mappings s 7→ t · s and s 7→ s · t from
S into S are continuous. Consider the following fixed point property:
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(F∗) Whenever S = {Ts : s ∈ S} is a representation of S as norm-
nonexpansive mappings on a nonempty weak∗ compact convex set
C of a dual Banach space E and the mapping (s, x) 7→ Ts(x) from
S×C to C is jointly continuous, where C is equipped with the weak∗
topology of E, then there is a common fixed point for S in C.

It is not difficult to show (see, e.g., [9, p. 528]) that property (F∗) implies
that S is left amenable (in the sense that LUC(S), the space of bounded
complex-valued left uniformly continuous functions on S, has a left invariant
mean). Whether the converse is true is a long-standing open problem, posed
by A. T.-M. Lau [8] (see also [9, Problem 2], [10, Question 1]).

It is well known that all commutative semigroups are left amenable. The
aim of this paper is to give a partial answer to the above problem by showing
that every commuting family S of weak∗ continuous nonexpansive mappings
acting on a weak∗ compact convex subset C of a dual Banach space E has
common fixed points. Moreover, we prove that the set FixS of fixed points
is a nonexpansive retract of C.

Note that the structure of FixS (with S commutative) was examined by
R. Bruck [1, 2] who proved that if every nonexpansive mapping T : C → C
has a fixed point in every nonempty closed convex subset of C which is
invariant under T , and C is convex and weakly compact or separable, then
FixS is a nonexpansive retract of C. We are able to mix the elements of
Bruck’s method with some properties of w∗-continuous and nonexpansive
mappings to get the desired result.

2. Preliminaries. Let E be the dual of a Banach space E∗. In this paper
we focus on the weak∗ topology—the weakest locally convex topology on E
satisfying the condition: for all e ∈ E, the functional ê(x) = x(e) is continuous
(in the strong topology). This definition opens up the possibility to consider
the so-called weak∗ properties, for example, w∗-compactness (compactness in
the w∗-topology), w∗-completeness, etc. In this topology, E becomes a locally
convex Hausdorff space.We say that a dual Banach spaceE has thew∗-FPP if
every nonexpansive self-mapping defined on a nonempty w∗-compact convex
subset of E has a fixed point. It is known that `1 = c∗0 and some other Banach
lattices have w∗-FPP, while `1 = c∗ and the dual of C(Ω), where Ω is an
infinite compact Hausdorff topological space, do not possess this property.

A nonvoid set D ⊂ C is said to be a nonexpansive retract of C if there
exists a nonexpansive retraction R : C → D (i.e., a nonexpansive mapping
R : C → D such that R|D = I). Since we deal a lot with w∗-continuous
nonexpansive mappings, we abbreviate them to w∗-CN.

We conclude by recalling the following consequence of the Ishikawa the-
orem [4]: if C is a bounded convex subset of a Banach space X, γ ∈ (0, 1),
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and T : C → C is nonexpansive, then the mapping Tγ = (1 − γ)I + γT
is asymptotically regular, i.e., limn→∞

∥∥Tn+1
γ x− Tnγ x

∥∥ = 0 for every x ∈ C.
We use this theorem in Lemma 3.5.

3. Fixed-point theorems. We begin with a structural result concern-
ing a single w∗-continuous nonexpansive mapping T : C → C.

Theorem 3.1. Let C be a nonempty weak∗ compact convex subset of a
dual Banach space. Then for any w∗-CN self-mapping T of C, the set FixT
of fixed points of T is a (nonempty) nonexpansive retract of C.

The proof will follow by constructing consecutively (and establishing
properties of) three functions, each one defined in terms of the earlier ones,
and the last one being the retraction from C to FixT .

Proof. Notice first that C is complete in the strong topology. Now, for
x ∈ C and a positive integer n, consider a mapping Tx : C → C defined by

Txz =
1

n
x+

(
1− 1

n

)
Tz, z ∈ C.

It is not difficult to see that Tx is a contraction:

‖Txy − Txz‖ ≤
(
1− 1

n

)
‖y − z‖.

It follows from the Banach Contraction Principle that there exists exactly one
point Fnx ∈ C such that TxFnx = Fnx. This defines a mapping Fn : C → C
satisfying

(1) Fnx =
1

n
x+

(
1− 1

n

)
TFnx

for x ∈ C. Thus

‖TFnx− Fnx‖ =
1

n
‖TFnx− x‖ ≤

1

n
diamC

and consequently
lim
n
‖TFnx− Fnx‖ = 0

since C is norm bounded as a weak∗ compact subset of a Banach space.
Notice that for x ∈ FixT we have

Txx = x

and consequently Fnx = x.
Furthermore, Fnx is nonexpansive, which follows from

(2) Fnx− Fny = TxFnx− TyFny =
1

n
(x− y) +

(
1− 1

n

)
(TFnx− TFny)

and nonexpansiveness of T .
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Notice that we can view CC as the product space of copies of C, where
each copy is endowed with the w∗-topology. Then, according to Tikhonov’s
theorem, CC is compact in the product topology generated in this way (“w∗-
product topology”). It follows that the sequence (Fn)n∈N of elements in CC
has a convergent subnet (Fnα)α∈Λ and we can define

R = w∗- lim
α
Fnα ,

where the above limit should be understood as taken in the aforementioned
w∗-product topology. Now we can treat the application of R to some x ∈ C
as the projection of the mapping onto the xth coordinate and since such
projections are continuous in the product topology, we obtain

Rx = w∗- lim
α
Fnαx,

where this limit is an ordinary w∗-limit. With this approach, we are able to
construct one subnet which guarantees convergence for all x ∈ C.

Notice that
TRx = w∗- lim

α
TFnαx

since T is weak∗ continuous. Now, it follows from the weak∗ lower semicon-
tinuity of the norm that for any x ∈ C,

‖TRx−Rx‖ =
∥∥∥w∗- lim

α
(TFnαx− Fnαx)

∥∥∥ ≤ lim inf
α
‖TFnαx− Fnαx‖ = 0

and hence
TRx = Rx,

which means that Rx ∈ FixT . Furthermore, Rx = x if x ∈ FixT .
We can now use (2) and the weak∗ lower semicontinuity of the norm to

prove that R is nonexpansive:

‖Rx−Ry‖ =
∥∥∥w∗- lim

α
(Fnαx− Fnαy)

∥∥∥
≤ lim inf

α

∥∥∥∥ 1

nα
(x− y) +

(
1− 1

nα

)
(Tx− Ty)

∥∥∥∥
≤ lim sup

α

1

nα
‖x− y‖+ lim sup

α

(
1− 1

nα

)
‖Tx− Ty‖

= ‖Tx− Ty‖ ≤ ‖x− y‖.
Thus we conclude that FixT is indeed a nonexpansive retract of C.

Remark 3.2. The w∗-continuity of T cannot be omitted in the assump-
tions of Theorem 3.1. Indeed, otherwise we would conclude that any dual
Banach space has w∗-FPP. But it is known (see, e.g., [12, Example 3.2]) that
`1 (as the dual to the Banach space c) fails the w∗-FPP, a contradiction.
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The following example shows that we cannot relax the assumption of
nonexpansiveness of T to continuity, even if we only postulate the existence
of a (continuous) retraction.

Example 3.3. Let `1 = c∗0 and define

T (x1, x2, x3, . . .) = ((x1)
2, 0, x2, x3, . . .)

on the unit ball B`1 . Notice that T : B`1 → B`1 is w∗-continuous and FixT =
{(0, 0, . . .), (1, 0, . . .)}. But a disconnected set cannot be a retract of the ball.

Our next objective is to generalize Theorem 3.1 to a commuting family
of w∗-continuous nonexpansive mappings. If S = {Ts : s ∈ S} is a family of
mappings, we denote by

FixS =
⋂
s∈S

FixTs

the set of common fixed points of S.
We first prove a lemma which resembles [1, Lemma 6].

Lemma 3.4. Let S be a family of commuting self-mappings of a set C
and suppose that there exists a retraction R of C onto Fix S. If T̃ commutes
with every element of the family S, then

FixS ∩ Fix T̃ = Fix(T̃R).

Proof. The inclusion from left to right follows from the simple observa-
tion that if x ∈ FixS ∩ Fix T̃ , then Rx = x and T̃ x = x.

For the other direction, assume x ∈ Fix(T̃R), which means T̃Rx = x.
Then, for every T ∈ S, it follows from the commutativity and the fact that
Rx ∈ FixT that

T T̃Rx = T̃ (TRx) = T̃Rx.

Therefore T̃Rx ∈ FixT for every T ∈ S and consequently

x = T̃Rx ∈ FixS.
Since R is a retraction onto FixS, we have Rx = x and hence T̃ x = x. It
follows that x ∈ FixS ∩ Fix T̃ , which proves the desired inclusion.

Lemma 3.5. Suppose that C is as in Theorem 3.1 and Sn = {T1, . . . , Tn}
is a finite commuting family of w∗-CN self-mappings on C. Then FixSn is
a nonexpansive retract of C.

Proof. We will show by induction on n that there exists a nonexpansive
retraction Rn from C onto FixSn. The base case n = 1 follows directly from
Theorem 3.1 since FixS1 = FixT1.

Now assume that that there exists a nonexpansive retraction Rn of C
onto FixSn. We need to show the existence of a nonexpansive retraction
Rn+1 of C onto FixSn+1.
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Let

R̃nx =
1

2
x+

1

2
Tn+1Rnx, x ∈ C,

and consider the sequence (R̃kn)k∈N of successive iterations of R̃n. As in
the proof of Theorem 3.1, we can view CC as the product space, compact
with respect to the w∗-topology on C. Hence the sequence (R̃kn)k∈N has a
convergent subnet (R̃kαn )α∈Λ and we can define

Rn+1x = w∗- lim
α
R̃kαn x

for every x ∈ C.
Since Tn+1Rn is nonexpansive as a composition of such mappings, it is

easy to see that also R̃n is nonexpansive. The nonexpansiveness of Rn+1 now
follows from the weak∗ lower semicontinuity of the norm. It is also easy to
see that FixTn+1Rn ⊂ FixRn+1 and, by using Lemma 3.4, we conclude that

FixSn+1 ⊂ FixRn+1.

But this does not yet prove that Rn+1 is a mapping we are looking for, nor
that FixSn+1 is nonempty. To complete the proof, we must show that Rn+1

is a mapping onto FixSn+1.

Since C is convex closed and bounded, and R̃n is a convex combination
of a nonexpansive mapping and the identity, it follows from the Ishikawa
theorem [4] that R̃n is asymptotically regular, i.e.,

lim
k→∞

‖R̃k+1
n x− R̃knx‖ = 0

for every x ∈ C.
Now, fix x and notice that (R̃kαn x)α∈Λ is an approximate fixed point net

for the mapping Tn+1Rn. To see this, use the equation

R̃kα+1
n x =

1

2
(R̃kαn x− Tn+1RnR̃

kα
n x) + Tn+1RnR̃

kα
n x

and the asymptotical regularity in the following calculations:

lim sup
α
‖Tn+1RnR̃

kα
n x− R̃kαn x‖

≤ lim sup
α
‖Tn+1RnR̃

kα
n x− R̃kα+1

n x‖+ lim
α
‖R̃kα+1

n x− R̃kαn x‖

= lim sup
α
‖Tn+1RnR̃

kα
n x− R̃kα+1

n x‖ = 1

2
lim sup

α
‖Tn+1RnR̃

kα
n x− R̃kαn x‖.

Thus we conclude that

(3) lim
α
‖Tn+1RnR̃

kα
n x− R̃kαn x‖ = 0,

as desired.
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Now, for brevity, denote rα = R̃kαn x and notice that for every m ≤ n,
TmTn+1Rnrα = Tn+1TmRnrα = Tn+1Rnrα.

That is, Tn+1Rnrα ∈ FixTm, which is equivalent to the statement that
Tn+1Rnrα belongs to FixSn. It follows that

Tn+1Rnrα = RnTn+1Rnrα.

and using (3), we obtain

(4) lim sup
α
‖Rnrα − rα‖

≤ lim sup
α
‖Rnrα − Tn+1Rnrα‖+ lim

α
‖Tn+1Rnrα − rα‖

= lim sup
α
‖Rnrα −RnTn+1Rnrα‖ ≤ lim

α
‖rα − Tn+1Rnrα‖ = 0.

In the same manner we can see that for every m ≤ n,
lim sup

α
‖Tmrα − rα‖ ≤ lim sup

α
‖Tmrα − TmRnrα‖+ lim sup

α
‖TmRnrα − rα‖

≤ lim
α
‖rα −Rnrα‖+ lim

α
‖Rnrα − rα‖ = 0.

Since Tm is w∗-continuous, this easily yields

TmRn+1x = Rn+1x,

and consequently

(5) Rn+1x ∈ FixSn.
Finally, by using (3) and (4), we get

lim sup
α
‖Tn+1rα − rα‖ ≤ lim sup

α
‖Tn+1rα − Tn+1Rnrα‖

+ lim
α
‖Tn+1Rnrα − rα‖

≤ lim
α
‖rα −Rnrα‖ = 0.

Then, from the w∗-continuity of Tn+1,

Tn+1Rn+1x = Rn+1x,

which combined with (5) gives

Rn+1x ∈ FixSn+1.

That is, FixSn+1 is nonempty and Rn+1 acts onto it, which completes the
proof.

We are now in a position to prove our main theorem.

Theorem 3.6. Suppose that C is as in Theorem 3.1 and S is an ar-
bitrary family of commuting w∗-CN self-mappings on C. Then FixS is a
nonexpansive retract of C.
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Proof. If S is finite, we can use Lemma 3.5. So assume that S is infinite.
First notice that

FixT = (T − I)−1{0}
is closed in the w∗-topology for every T ∈ S. Let

Λ = {α ⊂ S : #α <∞}
be a directed set with the inclusion relation ≤. Denote by Rα the nonex-
pansive retraction from C to Fixα =

⋂
T∈α FixT (a more convenient way of

writing Fixα) whose existence is guaranteed by Lemma 3.5. Then we have
a net (Rα)α∈Λ, and we can select a subnet (Rαγ )γ∈Γ, w∗-convergent for any
x ∈ C. Define

Rx = w∗- lim
γ
Rαγx.

For a fixed T ∈ S, take γ0 such that αγ ≥ {T} for every γ ≥ γ0. It exists,
directly from the definition of subnet. Then

∀γ≥γ0 Rαγx ∈ Fixαγ ⊂ Fixαγ0
⊂ FixT

and hence Rαγx lies eventually in the w∗-closed set FixT . Therefore, Rx ∈
FixT for every T ∈ S, which implies Rx ∈ FixS. It is easy to see that R is
nonexpansive. Also, for every α,

x ∈ FixS ⇒ x ∈ Fixα ⇒ Rαx = x,

which yields

(6) Rx = x, x ∈ FixS.
Thus R is a nonexpansive retraction from C onto FixS.

Remark 3.7. In particular, the set FixS is non-empty. Thus Theorem
3.6 answers affirmatively [10, Question 1] in the case of commutative semi-
groups.
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