Riesz sequences and arithmetic progressions

by

ITAY LONDNER and ALEXANDER OLEVSKIĬ (Tel-Aviv)

Abstract. Given a set S of positive measure on the circle and a set Λ of integers, one can ask whether $E(\Lambda) := \{e^{i\lambda t}\}_{\lambda \in \Lambda}$ is a Riesz sequence in $L^2(S)$.

We consider this question in connection with some arithmetic properties of the set Λ . Improving a result of Bownik and Speegle (2006), we construct a set $\mathcal S$ such that $E(\Lambda)$ is never a Riesz sequence if Λ contains an arithmetic progression of length N and step $\ell = O(N^{1-\varepsilon})$ with N arbitrarily large. On the other hand, we prove that every set $\mathcal S$ admits a Riesz sequence $E(\Lambda)$ such that Λ does contain arithmetic progressions of length N and step $\ell = O(N)$ with N arbitrarily large.

1. Introduction. We use the following notation:

- Λ a set of integers.
- ullet S a set of positive measure on the circle \mathbb{T} .
- |S| the Lebesgue measure of S.

For $A, B \subset \mathbb{R}$ and $x \in \mathbb{R}$ we let

DOI: 10.4064/sm225-2-5

$$A + B := \{ \alpha + \beta \mid \alpha \in A, \beta \in B \}, \quad x \cdot A := \{ x \cdot \alpha \mid \alpha \in A \}.$$

A sequence $\{\varphi_i\}_{i\in I}$ of elements in a Hilbert space \mathcal{H} is called a *Riesz sequence* (RS) if there are positive constants c, C such that

$$c\sum_{i\in I}|a_i|^2 \le \left\|\sum_{i\in I}a_i\varphi_i\right\|^2 \le C\sum_{i\in I}|a_i|^2$$

for every finite sequence $\{a_i\}_{i\in I}$ of scalars.

Given $\Lambda \subset \mathbb{Z}$ (referred to as a set of frequencies) we denote

$$E(\Lambda) := \{e^{i\lambda t}\}_{\lambda \in \Lambda}.$$

The following result is classical (see [9, p. 203, Lemma 6.5]):

• If $\Lambda = {\lambda_n}_{n \in \mathbb{N}} \subset \mathbb{Z}$ is lacunary in the sense of Hadamard, i.e.

$$\frac{\lambda_{n+1}}{\lambda_n} \ge q > 1, \quad n \in \mathbb{N},$$

then $E(\Lambda)$ forms a RS in $L^2(S)$ for every $S \subset \mathbb{T}$ with |S| > 0.

2010 Mathematics Subject Classification: Primary 42C15; Secondary 42A38. Key words and phrases: Riesz sequences, arithmetic progressions.

The following generalization is due to I. M. Mikheev [7, Thm. 7]:

• If $E(\Lambda)$ is an S_p -system for some p > 2, i.e.

$$\left\| \sum_{\lambda \in \Lambda} a_{\lambda} e^{i\lambda t} \right\|_{L^{p}(\mathbb{T})} \le C \left\| \sum_{\lambda \in \Lambda} a_{\lambda} e^{i\lambda t} \right\|_{L^{2}(\mathbb{T})}$$

with some C > 0 for every finite sequence $\{a_{\lambda}\}_{{\lambda} \in \Lambda}$ of scalars, then it forms a RS in $L^2(S)$ for every $S \subset \mathbb{T}$ with |S| > 0.

- J. Bourgain and L. Tzafriri proved the following result as a consequence of their "restricted invertibility theorem" [2, Thm. 2.2]:
 - Given $S \subset \mathbb{T}$, there is a set Λ of integers with positive asymptotic density

$$\operatorname{dens} \Lambda := \lim_{N \to \infty} \frac{\#\{\Lambda \cap [-N, N]\}}{2N} > C|\mathcal{S}|$$

such that $E(\Lambda)$ is a RS in $L^2(S)$.

(Here and below, C denotes positive absolute constants, which might be different from one another.)

- W. Lawton [5, Cor. 2.1], assuming the Feichtinger conjecture for exponentials, proved the following proposition:
 - (L) For every S there is a set of frequencies $\Lambda \subset \mathbb{Z}$ which is syndetic, that is, $\Lambda + \{0, \ldots, n-1\} = \mathbb{Z}$ for some $n \in \mathbb{N}$, and such that $E(\Lambda)$ is a RS in $L^2(S)$.

Recall that the Feichtinger conjecture says that every bounded frame in a Hilbert space can be decomposed into a finite family of RSs. This claim turned out to be equivalent to the Kadison–Singer conjecture (see [4]). The latter conjecture has recently been proved by A. Marcus, D. Spielman and N. Srivastava [6], so proposition (L) holds unconditionally.

Notice that in some results above, the system $E(\Lambda)$ serves as a RS for all sets S; however, the set of frequencies Λ is then quite sparse. In others, Λ is rather dense but it works for an S given in advance.

One could wonder whether one can somehow combine the density and "universality" properties. It turns out this is indeed possible. In [8], a sequence $\Lambda \subset \mathbb{R}$ has been constructed such that $E(\Lambda)$ forms a RS in $L^2(\mathcal{S})$ for any open set \mathcal{S} of a given measure, and the set of frequencies has optimal density, proportional to $|\mathcal{S}|$. This is not true for nowhere dense sets \mathcal{S} .

2. Results. In this paper we consider sets of frequencies Λ which contain arbitrarily long arithmetic progressions. Below we denote by N the length of a progression, and by ℓ its step. Given Λ which contains arbitrarily long arithmetic progressions there exists a set $S \subset \mathbb{T}$ of positive measure such that $E(\Lambda)$ is not a RS in $L^2(S)$ (see [7]).

In the case where ℓ grows slowly with respect to N, one can define \mathcal{S} independent of Λ .

A quantitative version of such a result was proved in [3]:

• There exists a set S such that $E(\Lambda)$ is not a RS in $L^2(S)$ whenever Λ contains arithmetic progressions of length N_i and step

$$\ell_j = o(N_j^{1/2} \log^{-3} N_j) \quad (N_1 < N_2 < \cdots).$$

The proof is based on some estimates of the discrepancy of sequences of the form $\{\alpha k\}_{k\in\mathbb{N}}$ on the circle.

Using a different approach we prove a stronger result:

THEOREM 1. There exists a set $S \subset \mathbb{T}$ such that if a set $\Lambda \subset \mathbb{Z}$ contains arithmetic progressions of length $N \ (= N_1 < N_2 < \cdots)$ and step $\ell = O(N^{\alpha})$, $\alpha < 1$, then $E(\Lambda)$ is not a RS in $L^2(S)$.

Here one can construct \mathcal{S} not depending on α and with arbitrarily small measure of the complement.

The next theorem shows that the result is sharp.

THEOREM 2. Given a set $S \subset \mathbb{T}$ of positive measure, there is a set $\Lambda \subset \mathbb{Z}$ such that:

- (i) For infinitely many N's Λ contains an arithmetic progression of length N and step $\ell = O(N)$.
- (ii) $E(\Lambda)$ forms a RS in $L^2(S)$.

Slightly increasing the bound for ℓ , one can get a version of Theorem 2 which admits a progression of any length:

Theorem 3. Given $\mathcal S$ one can find Λ with property (ii) above and such that

(i') For every $\alpha > 1$ and for every $N \in \mathbb{N}$ the set Λ contains an arithmetic progression of length N and step $\ell < C(\alpha)N^{\alpha}$.

3. Proof of Theorem 1

Proof. Fix $\varepsilon > 0$. Take a decreasing sequence $\{\delta(\ell)\}_{\ell \in \mathbb{N}}$ of positive numbers such that

- (a) $\sum_{\ell \in \mathbb{N}} \delta(\ell) < \varepsilon/2$,
- (b) $\delta(\ell) \cdot \ell^{1/\alpha} \to \infty$ as $\ell \to \infty$ for all $\alpha \in (0,1)$,

For every $\ell \in \mathbb{N}$ set $I_{\ell} = (-\delta(\ell), \delta(\ell))$ and let \tilde{I}_{ℓ} be the 2π -periodic extension of I_{ℓ} , i.e.

$$\tilde{I}_{\ell} = \bigcup_{k \in \mathbb{Z}} (I_{\ell} + 2\pi k).$$

We define

$$(1) \qquad I_{[\ell]} = \left(\frac{1}{\ell} \cdot \tilde{I}_{\ell}\right) \cap [-\pi, \pi] \quad \text{and} \quad \mathcal{S} = \mathbb{T} \setminus \bigcup_{\ell \in \mathbb{N}} I_{[\ell]} = \left(\bigcup_{\ell \in \mathbb{N}} I_{[\ell]}\right)^{c},$$

whence

$$|\mathcal{S}| \ge 1 - \sum_{\ell=1}^{\infty} |I_{[\ell]}| = 1 - \sum_{\ell=1}^{\infty} 2\delta(\ell) > 1 - \varepsilon.$$

Fix $\alpha < 1$ and let $\Lambda \subset \mathbb{Z}$ be such that one can find arbitrarily large $N \in \mathbb{N}$ for which

$$\{M+\ell,\ldots,M+N\cdot\ell\}\subset\Lambda,$$

with some $M=M\left(N\right)\in\mathbb{Z},\,\ell=\ell\left(N\right)\in\mathbb{N}$ and

$$(2) \ell < C(\alpha)N^{\alpha}.$$

Recall that by (1) we have $t \in I_{[\ell]}$ if and only if $t\ell \in \tilde{I}_{\ell} \cap [-\pi\ell, \pi\ell]$. Since \mathcal{S} lies inside the complement of $I_{[\ell]}$, we get

$$\int_{S} \left| \sum_{k=1}^{N} c(k) e^{i(M+k\ell)t} \right|^{2} \frac{dt}{2\pi} \leq \int_{I_{[\ell]}^{c}} \left| \sum_{k=1}^{N} c(k) e^{i(M+k\ell)t} \right|^{2} \frac{dt}{2\pi} \\
= \int_{[-\pi\ell,\pi\ell] \setminus \tilde{I}_{\ell}} \left| \sum_{k=1}^{N} c(k) e^{ik\tau} \right|^{2} \frac{d\tau}{2\pi\ell} = \int_{I_{\ell}^{c}} \left| \sum_{k=1}^{N} c(k) e^{ik\tau} \right|^{2} \frac{d\tau}{2\pi}.$$

To complete the proof, it is enough to show that $\|\sum_{k=1}^N c(k)e^{ik\tau}\|_{L^2(I_\ell^c)}$ can be made arbitrarily small while keeping $\sum_{k=1}^N |c(k)|^2$ bounded away from zero. This observation allows us to reformulate the problem as a norm concentration problem for trigonometric polynomials of degree N on the interval I_ℓ .

Let

$$P_N(t) = \frac{1}{\sqrt{N}} \sum_{k=1}^{N} e^{ikt},$$

so $||P_N||_{L^2(\mathbb{T})} = 1$. Moreover, for every $t \in \mathbb{T}$ we have $|P_N(t)| \leq \frac{1}{\sqrt{N}\sin\frac{t}{2}}$, hence

$$\int\limits_{I_{\ell}^c} |P_N(t)|^2 \, \frac{dt}{2\pi} \leq \frac{1}{N} \int\limits_{\delta(\ell)}^{\pi} \frac{dt}{\sin^2 \frac{t}{2}} < \frac{C}{N} \int\limits_{\delta(\ell)}^{\pi} \frac{dt}{t^2} < \frac{C}{\delta(\ell)N} < \frac{C(\alpha)}{\delta(\ell)\ell^{1/\alpha}},$$

where the last inequality holds for every N for which (2) holds. Using condition (b) we see that indeed the last term can be made arbitrarily small, and so $E(\Lambda)$ is not a RS in $L^2(S)$.

4. Proof of Theorem 2. For $n \in \mathbb{N}$ we define

$$B_n := \{n, 2n, \dots, n^2\}.$$

LEMMA 4. Let \mathcal{P} be the set of all prime numbers. Then the blocks $\{B_p\}_{p\in\mathcal{P}}$ are pairwise disjoint.

Proof. Let p < q be prime numbers. Notice that $a \in B_p \cap B_q$ if and only if there exist $1 \le m \le p$ and $1 \le k \le q$ such that

$$a = mp = kq$$

which is possible only if q divides m. But since m < q this cannot happen and so such an a does not exist. \blacksquare

LEMMA 5. Let $\{a(n)\}_{n\in\mathbb{N}}$ be a sequence of non-negative numbers such that $\sum_{n=1}^{\infty} a(n) \leq 1$. Then for every $\varepsilon > 0$ there exist infinitely many $n \in \mathbb{N}$ such that

$$\sum_{\ell=1}^{n} a(\ell n) < \frac{\varepsilon}{n}.$$

Proof. By Lemma 4 we may write

$$\sum_{n=1}^{\infty} a(n) \ge \sum_{p \in \mathcal{P}} \sum_{\ell=1}^{p} a(\ell p).$$

Assuming the contrary for some ε , i.e. for all but finitely many $p \in \mathcal{P}$ we have $\sum_{\ell=1}^p a(\ell p) \geq \varepsilon/p$, we get a contradiction to the well-known fact that $\sum_{p \in \mathcal{P}} 1/p = \infty$.

COROLLARY 6. Let $\{a(n)\}_{n\in\mathbb{N}}$ be as in Lemma 5. Then for every $\varepsilon > 0$ there exist infinitely many $n \in \mathbb{N}$ such that

(3)
$$\sum_{\substack{\lambda,\mu \in B_n \\ \mu < \lambda}} a(\lambda - \mu) < \varepsilon.$$

Proof. Every $\mu < \lambda$ from B_n must take the form

$$\lambda = kn, \quad \mu = k'n, \quad 1 \le k' < k \le n,$$

hence $\lambda - \mu = \ell n$ for some $\ell \in \{1, \dots, n-1\}$. From Lemma 5 we get, for infinitely many $n \in \mathbb{N}$,

$$\sum_{\substack{\lambda,\mu \in B_n \\ \mu < \lambda}} a(\lambda - \mu) = \sum_{\ell=1}^n (n - \ell) a(\ell n) \le n \sum_{\ell=1}^n a(\ell n) < \varepsilon. \blacksquare$$

Given a sequence $B \subset \mathbb{R}$, we say that a positive number γ is a lower Riesz bound (in $L^2(\mathcal{S})$) for the sequence E(B) if

$$\Big\| \sum_{\lambda \in B} c(\lambda) e^{i\lambda t} \Big\|_{L^2(\mathcal{S})}^2 \ge \gamma \sum_{\lambda \in B} |c(\lambda)|^2$$

for every finite sequence $\{c(\lambda)\}_{\lambda \in B}$ of scalars.

LEMMA 7. Given $S \subset \mathbb{T}$ of positive measure, there exists a constant $\gamma = \gamma(S) > 0$ which is a lower Riesz bound (in $L^2(S)$) for $E(B_n)$ for infinitely many $n \in \mathbb{N}$.

Proof. Let $S \subset \mathbb{T}$ with |S| > 0. Applying Corollary 6 to the sequence $\{a(n)\}_{n \in \mathbb{N}} := \{|\widehat{\mathbb{1}_S}(n)|^2\}_{n \in \mathbb{N}}$ (where $\mathbb{1}_S$ is the indicator function of S), we get for every $\varepsilon > 0$ infinitely many $n \in \mathbb{N}$ for which (3) holds. We write

$$\int_{\mathcal{S}} \left| \sum_{\lambda \in B_n} c(\lambda) e^{i\lambda t} \right|^2 \frac{dt}{2\pi} = \int_{\mathcal{S}} \left(\sum_{\lambda \in B_n} |c(\lambda)|^2 + \sum_{\substack{\lambda, \mu \in B_n \\ \lambda \neq \mu}} c(\lambda) \, \overline{c(\mu)} \, e^{i(\lambda - \mu)t} \right) \frac{dt}{2\pi}$$

$$= |\mathcal{S}| \sum_{\lambda \in B_n} |c(\lambda)|^2 + \sum_{\substack{\lambda, \mu \in B_n \\ \lambda \neq \mu}} c(\lambda) \, \overline{c(\mu)} \, \widehat{\mathbb{1}_{\mathcal{S}}}(\mu - \lambda).$$

By the Cauchy-Schwarz inequality,

$$\left| \sum_{\substack{\lambda,\mu \in B_n \\ \lambda \neq \mu}} c(\lambda) \, \overline{c(\mu)} \, \widehat{\mathbb{1}_{\mathcal{S}}}(\mu - \lambda) \right| \\
\leq \left(\sum_{\substack{\lambda,\mu \in B_n \\ \lambda \neq \mu}} |c(\lambda) \, \overline{c(\mu)}|^2 \right)^{1/2} \left(\sum_{\substack{\lambda,\mu \in B_n \\ \lambda \neq \mu}} |\widehat{\mathbb{1}_{\mathcal{S}}}(\mu - \lambda)|^2 \right)^{1/2} \\
= \sum_{\substack{\lambda \in B_n \\ \lambda \neq \mu}} |c(\lambda)|^2 \left(\sum_{\substack{\lambda,\mu \in B_n \\ \lambda \neq \mu}} |\widehat{\mathbb{1}_{\mathcal{S}}}(\mu - \lambda)|^2 \right)^{1/2}.$$

By (3) we get

$$\sum_{\substack{\lambda,\mu \in B_n \\ \lambda \neq \mu}} |\widehat{\mathbb{1}_{\mathcal{S}}}(\mu - \lambda)|^2 = 2 \sum_{\substack{\lambda,\mu \in B_n \\ \mu < \lambda}} |\widehat{\mathbb{1}_{\mathcal{S}}}(\mu - \lambda)|^2 < 2\varepsilon,$$

hence

$$\int_{\mathcal{S}} \left| \sum_{\lambda \in B_n} c(\lambda) e^{i\lambda t} \right|^2 \frac{dt}{2\pi} \ge (|\mathcal{S}| - (2\varepsilon)^{1/2}) \sum_{\lambda \in B_n} |c(\lambda)|^2 \ge \frac{|\mathcal{S}|}{2} \sum_{\lambda \in B_n} |c(\lambda)|^2.$$

Fixing some $\varepsilon < |\mathcal{S}|^2/8$, we see that the last inequality holds for infinitely many $n \in \mathbb{N}$.

The next lemma shows how to combine blocks which correspond to different progressions.

LEMMA 8. Let $\gamma > 0$, $S \subset \mathbb{T}$ with |S| > 0, and $A_1, A_2 \subset \mathbb{N}$ finite subsets such that γ is a lower Riesz bound (in $L^2(S)$) for $E(A_j)$, j = 1, 2. Then for any $0 < \gamma' < \gamma$ there exists $M \in \mathbb{Z}$ such that the system $E(A_1 \cup (M + A_2))$ has γ' as a lower Riesz bound.

Proof. Denote $P_j(t) = \sum_{\lambda \in A_j} c_j(\lambda) e^{i\lambda t}$, j = 1, 2. Notice that for sufficiently large $M = M(\mathcal{S})$, the polynomials P_1 and $e^{iMt}P_2$ are "almost orthog-

onal" on S, meaning

$$\int_{\mathcal{S}} |P_1(t) + e^{iMt} \cdot P_2(t)|^2 \frac{dt}{2\pi} = ||P_1||_{L^2(\mathcal{S})}^2 + ||P_2||_{L^2(\mathcal{S})}^2 + o(1),$$

where the last term is uniform with respect to all polynomials having $||P||_{L^2(\mathbb{T})} = 1$.

Now we are ready to finish the proof of Theorem 2. Given S take γ from Lemma 7 and denote by N the set of all natural numbers n for which γ is a lower Riesz bound (in $L^2(S)$) for $E(B_n)$. Define

$$\Lambda = \bigcup_{n \in \mathcal{N}} (M_n + B_n).$$

By Lemma 8 we can define subsequently, for every $n \in \mathcal{N}$, an integer M_n such that for any partial union

$$\Lambda(N) = \bigcup_{\substack{n \in \mathcal{N} \\ n < N}} (M_n + B_n), \quad N \in \mathcal{N},$$

the corresponding exponential system $E(\Lambda(N))$ has lower Riesz bound $\frac{\gamma}{2} \cdot (1 + \frac{1}{N})$, so we conclude that $E(\Lambda)$ is a RS in $L^2(\mathcal{S})$.

5. Proof of Theorem 3. In order to obtain Λ which satisfies property (i') we will need the following result.

THEOREM A ([1, Thm. 13.12]). Let d(n) denote the number of divisors of an integer n. Then $d(n) = o(n^{\varepsilon})$ for every $\varepsilon > 0$.

The next lemma will be used to control the contribution of blocks when they are not disjoint.

LEMMA 9. Let $\{a(n)\}_{n\in\mathbb{N}}$ be a sequence of non-negative numbers such that $\sum_{n=1}^{\infty} a(n) \leq 1$. Then for every $\alpha > 1$ there exist $\varepsilon(\alpha) > 0$ and $\nu(\alpha) \in \mathbb{N}$ such that for every $N \geq \nu(\alpha)$ one can find an integer $\ell_{\alpha,N} < N^{\alpha}$ satisfying

(4)
$$\sum_{n=1}^{N} a(n\ell_{\alpha,N}) < \frac{1}{N^{1+\varepsilon(\alpha)}}.$$

Proof. Fix $\alpha > 1$ and apply Theorem A with ε small enough, depending on α , to be chosen later. We get the inequality $d(k) < k^{\varepsilon}$ for every $k \ge \nu(\alpha)$. Fix $N \ge \nu(\alpha)$, and notice that for every $L \in \mathbb{N}$,

$$\sum_{\ell=1}^{L} \sum_{n=1}^{N} a(n\ell) \le \sum_{k=1}^{LN} d(k)a(k) < (LN)^{\varepsilon}.$$

It follows that there exists an integer $0 < \ell < L$ such that

$$\sum_{n=1}^{N} a(n\ell) < \frac{(LN)^{\varepsilon}}{L} = \frac{N^{\varepsilon}}{L^{1-\varepsilon}}.$$

In order to get (4) we require

$$\frac{N^{\varepsilon}}{L^{1-\varepsilon}}<\frac{1}{N^{1+\varepsilon}},$$

which yields

$$N^{\frac{1+2\varepsilon}{1-\varepsilon}} < L.$$

Therefore, choosing $\varepsilon = \varepsilon(\alpha)$ sufficiently small we see that L may be chosen to be smaller than N^{α} .

Setting

$$B_{\alpha,N} := \{\ell_{\alpha,N}, 2\ell_{\alpha,N}, \dots, N\ell_{\alpha,N}\},\$$

we get

COROLLARY 10. Let $\{a(n)\}_{n\in\mathbb{N}}$ be as in Lemma 9. For every $\alpha > 1$ and $N \geq \nu(\alpha)$,

(5)
$$\sum_{\substack{\lambda,\mu \in B_{\alpha,N} \\ \mu < \lambda}} a(\lambda - \mu) < \frac{1}{N^{\varepsilon(\alpha)}}.$$

The proof is identical to that of Corollary 6.

We now combine our estimates.

LEMMA 11. Given $S \subset \mathbb{T}$ of positive measure, there exists a constant $\gamma = \gamma(S) > 0$ such that for every $\alpha > 1$ there exists $N(\alpha) \in \mathbb{N}$ for which the following holds: For every integer $N \geq N(\alpha)$ one can find $\ell_{\alpha,N} \in \mathbb{N}$ with $\ell_{\alpha,N} < N^{\alpha}$ such that γ is a lower Riesz bound (in $L^2(S)$) for $E(B_{\alpha,N})$.

Proof. Let $S \subset \mathbb{T}$ with |S| > 0. We fix $\alpha > 1$ and apply Corollary 10 to the sequence $\{a(n)\}_{n \in \mathbb{N}} := \{|\widehat{\mathbb{1}_S}(n)|^2\}_{n \in \mathbb{N}}$; we get $\varepsilon(\alpha)$ and for every $N \geq \nu(\alpha)$ a positive integer $\ell_{\alpha,N} < N^{\alpha}$ satisfying (5). Proceeding as in the proof of Lemma 7, we get

$$\int\limits_{\mathcal{S}} \Big| \sum_{\lambda \in B_{\alpha,N}} c(\lambda) e^{i\lambda t} \Big|^2 \, dt \geq \left(|\mathcal{S}| - \frac{C}{N^{\varepsilon(\alpha)/2}} \right) \sum_{\lambda \in B_{\alpha,N}} |c(\lambda)|^2 \geq \frac{|\mathcal{S}|}{2} \sum_{\lambda \in B_{\alpha,N}} |c(\lambda)|^2,$$

where the last inequality holds for all $N \geq N(\alpha)$.

For the last step of the proof we will use a diagonal process. Given S, find γ using Lemma 11. This provides, for every $\alpha > 1$ and every $N \geq N(\alpha)$, a block $B_{\alpha,N}$ such that γ is a lower Riesz bound (in $L^2(S)$) for $E(B_{\alpha,N})$.

Let $\alpha_k \to 1$ be a decreasing sequence. Define

creasing sequence. Define
$$\Lambda = \bigcup_{k \in \mathbb{N}} \bigcup_{N=N(\alpha_k)}^{N(\alpha_{k+1})-1} (M_N + B_{\alpha_k,N}).$$

Again, by Lemma 8, we can make sure any partial union has lower Riesz bound not smaller than $\gamma/2$, and so $E(\Lambda)$ is a RS in $L^2(\mathcal{S})$.

It follows directly from the construction that for every $N \in \mathbb{N}$, Λ contains an arithmetic progression of length N and step $\ell < C(\alpha)N^{\alpha}$, for any $\alpha > 1$, as required.

Acknowledgements. This research is supported in part by the Israel Science Foundation.

References

- [1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, Berlin, 1976.
- J. Bourgain and L. Tzafriri, Invertibility of "large" submatrices with applications to the geometry of Banach spaces and harmonic analysis, Israel J. Math. 57 (1987), 137–224.
- [3] M. Bownik and D. Speegle, The Feichtinger conjecture for wavelet frames, Gabor frames and frames of translates, Canad. J. Math. 58 (2006), 1121–1143.
- [4] P. G. Casazza, M. Fickus, J. C. Tremain and E. Weber, The Kadison-Singer problem in mathematics and engineering: a detailed account, In: Operator Theory, Operator Algebras, and Applications, Contemp. Math. 414, Amer. Math. Soc., Providence, RI, 2006, 299–355.
- [5] W. Lawton, Minimal sequences and the Kadison-Singer problem, Bull. Malaysian Math. Sci. Soc. 33 (2010), 169–176.
- [6] A. Marcus, D. A. Spielman and N. Srivastava, Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem, arXiv:1306.3969 (2013).
- [7] I. M. Miheev, On lacunary series, Math. USSR-Sb. 27 (1975), no. 4, 481–502.
- [8] A. Olevskiĭ and A. Ulanovskii, Universal sampling and interpolation of band-limited signals, Geom. Funct. Anal. 18 (2008), 1029–1052.
- [9] A. Zygmund, Trigonometric Series. Vol. I, 2nd ed., Cambridge Univ. Press, New York, 1959.

Itay Londner, Alexander Olevskii School of Mathematical Sciences Tel-Aviv University Tel-Aviv 69978, Israel E-mail: itaylond@post.tau.ac.il olevskii@post.tau.ac.il

> Received July 3, 2014 Revised version November 11, 2014 (8006)