Riesz sequences and arithmetic progressions

by
Itay Londner and Alexander OlevskiĬ (Tel-Aviv)

Abstract

Given a set \mathcal{S} of positive measure on the circle and a set Λ of integers, one can ask whether $E(\Lambda):=\left\{e^{i \lambda t}\right\}_{\lambda \in \Lambda}$ is a Riesz sequence in $L^{2}(\mathcal{S})$.

We consider this question in connection with some arithmetic properties of the set Λ. Improving a result of Bownik and Speegle (2006), we construct a set \mathcal{S} such that $E(\Lambda)$ is never a Riesz sequence if Λ contains an arithmetic progression of length N and step $\ell=O\left(N^{1-\varepsilon}\right)$ with N arbitrarily large. On the other hand, we prove that every set \mathcal{S} admits a Riesz sequence $E(\Lambda)$ such that Λ does contain arithmetic progressions of length N and step $\ell=O(N)$ with N arbitrarily large.

1. Introduction. We use the following notation:

- Λ - a set of integers.
- \mathcal{S} - a set of positive measure on the circle \mathbb{T}.
- $|\mathcal{S}|$ - the Lebesgue measure of \mathcal{S}.

For $A, B \subset \mathbb{R}$ and $x \in \mathbb{R}$ we let

$$
A+B:=\{\alpha+\beta \mid \alpha \in A, \beta \in B\}, \quad x \cdot A:=\{x \cdot \alpha \mid \alpha \in A\}
$$

A sequence $\left\{\varphi_{i}\right\}_{i \in I}$ of elements in a Hilbert space \mathcal{H} is called a Riesz sequence (RS) if there are positive constants c, C such that

$$
c \sum_{i \in I}\left|a_{i}\right|^{2} \leq\left\|\sum_{i \in I} a_{i} \varphi_{i}\right\|^{2} \leq C \sum_{i \in I}\left|a_{i}\right|^{2}
$$

for every finite sequence $\left\{a_{i}\right\}_{i \in I}$ of scalars.
Given $\Lambda \subset \mathbb{Z}$ (referred to as a set of frequencies) we denote

$$
E(\Lambda):=\left\{e^{i \lambda t}\right\}_{\lambda \in \Lambda}
$$

The following result is classical (see [9, p. 203, Lemma 6.5]):

- If $\Lambda=\left\{\lambda_{n}\right\}_{n \in \mathbb{N}} \subset \mathbb{Z}$ is lacunary in the sense of Hadamard, i.e.

$$
\frac{\lambda_{n+1}}{\lambda_{n}} \geq q>1, \quad n \in \mathbb{N}
$$

then $E(\Lambda)$ forms a $R S$ in $L^{2}(\mathcal{S})$ for every $\mathcal{S} \subset \mathbb{T}$ with $|\mathcal{S}|>0$.

[^0]The following generalization is due to I. M. Mikheev [7, Thm. 7]:

- If $E(\Lambda)$ is an S_{p}-system for some $p>2$, i.e.

$$
\left\|\sum_{\lambda \in \Lambda} a_{\lambda} e^{i \lambda t}\right\|_{L^{p}(\mathbb{T})} \leq C\left\|\sum_{\lambda \in \Lambda} a_{\lambda} e^{i \lambda t}\right\|_{L^{2}(\mathbb{T})}
$$

with some $C>0$ for every finite sequence $\left\{a_{\lambda}\right\}_{\lambda \in \Lambda}$ of scalars, then it forms a RS in $L^{2}(\mathcal{S})$ for every $\mathcal{S} \subset \mathbb{T}$ with $|\mathcal{S}|>0$.
J. Bourgain and L. Tzafriri proved the following result as a consequence of their "restricted invertibility theorem" [2, Thm. 2.2]:

- Given $\mathcal{S} \subset \mathbb{T}$, there is a set Λ of integers with positive asymptotic density

$$
\operatorname{dens} \Lambda:=\lim _{N \rightarrow \infty} \frac{\#\{\Lambda \cap[-N, N]\}}{2 N}>C|\mathcal{S}|
$$

such that $E(\Lambda)$ is a $R S$ in $L^{2}(\mathcal{S})$.
(Here and below, C denotes positive absolute constants, which might be different from one another.)
W. Lawton [5, Cor. 2.1], assuming the Feichtinger conjecture for exponentials, proved the following proposition:
(L) For every \mathcal{S} there is a set of frequencies $\Lambda \subset \mathbb{Z}$ which is syndetic, that is, $\Lambda+\{0, \ldots, n-1\}=\mathbb{Z}$ for some $n \in \mathbb{N}$, and such that $E(\Lambda)$ is a $R S$ in $L^{2}(\mathcal{S})$.
Recall that the Feichtinger conjecture says that every bounded frame in a Hilbert space can be decomposed into a finite family of RSs. This claim turned out to be equivalent to the Kadison-Singer conjecture (see [4). The latter conjecture has recently been proved by A. Marcus, D. Spielman and N. Srivastava [6, so proposition (L) holds unconditionally.

Notice that in some results above, the system $E(\Lambda)$ serves as a RS for all sets \mathcal{S}; however, the set of frequencies Λ is then quite sparse. In others, Λ is rather dense but it works for an \mathcal{S} given in advance.

One could wonder whether one can somehow combine the density and "universality" properties. It turns out this is indeed possible. In [8], a sequence $\Lambda \subset \mathbb{R}$ has been constructed such that $E(\Lambda)$ forms a RS in $L^{2}(\mathcal{S})$ for any open set \mathcal{S} of a given measure, and the set of frequencies has optimal density, proportional to $|\mathcal{S}|$. This is not true for nowhere dense sets \mathcal{S}.
2. Results. In this paper we consider sets of frequencies Λ which contain arbitrarily long arithmetic progressions. Below we denote by N the length of a progression, and by ℓ its step. Given Λ which contains arbitrarily long arithmetic progressions there exists a set $\mathcal{S} \subset \mathbb{T}$ of positive measure such that $E(\Lambda)$ is not a RS in $L^{2}(\mathcal{S})$ (see [7]).

In the case where ℓ grows slowly with respect to N, one can define \mathcal{S} independent of Λ.

A quantitative version of such a result was proved in 3):

- There exists a set \mathcal{S} such that $E(\Lambda)$ is not a $R S$ in $L^{2}(\mathcal{S})$ whenewer Λ contains arithmetic progressions of length N_{j} and step

$$
\ell_{j}=o\left(N_{j}^{1 / 2} \log ^{-3} N_{j}\right) \quad\left(N_{1}<N_{2}<\cdots\right) .
$$

The proof is based on some estimates of the discrepancy of sequences of the form $\{\alpha k\}_{k \in \mathbb{N}}$ on the circle.

Using a different approach we prove a stronger result:
Theorem 1. There exists a set $\mathcal{S} \subset \mathbb{T}$ such that if a set $\Lambda \subset \mathbb{Z}$ contains arithmetic progressions of length $N\left(=N_{1}<N_{2}<\cdots\right)$ and step $\ell=O\left(N^{\alpha}\right)$, $\alpha<1$, then $E(\Lambda)$ is not a RS in $L^{2}(\mathcal{S})$.

Here one can construct \mathcal{S} not depending on α and with arbitrarily small measure of the complement.

The next theorem shows that the result is sharp.
Theorem 2. Given a set $\mathcal{S} \subset \mathbb{T}$ of positive measure, there is a set $\Lambda \subset \mathbb{Z}$ such that:
(i) For infinitely many N 's Λ contains an arithmetic progression of length N and step $\ell=O(N)$.
(ii) $E(\Lambda)$ forms a $R S$ in $L^{2}(\mathcal{S})$.

Slightly increasing the bound for ℓ, one can get a version of Theorem 2 which admits a progression of any length:

Theorem 3. Given \mathcal{S} one can find Λ with property (ii) above and such that
(i') For every $\alpha>1$ and for every $N \in \mathbb{N}$ the set Λ contains an arithmetic progression of length N and step $\ell<C(\alpha) N^{\alpha}$.

3. Proof of Theorem 1

Proof. Fix $\varepsilon>0$. Take a decreasing sequence $\{\delta(\ell)\}_{\ell \in \mathbb{N}}$ of positive numbers such that
(a) $\sum_{\ell \in \mathbb{N}} \delta(\ell)<\varepsilon / 2$,
(b) $\delta(\ell) \cdot \ell^{1 / \alpha} \rightarrow \infty$ as $\ell \rightarrow \infty$ for all $\alpha \in(0,1)$,

For every $\ell \in \mathbb{N}$ set $I_{\ell}=(-\delta(\ell), \delta(\ell))$ and let \tilde{I}_{ℓ} be the 2π-periodic extension of I_{ℓ}, i.e.

$$
\tilde{I}_{\ell}=\bigcup_{k \in \mathbb{Z}}\left(I_{\ell}+2 \pi k\right) .
$$

We define

$$
\begin{equation*}
I_{[\ell]}=\left(\frac{1}{\ell} \cdot \tilde{I}_{\ell}\right) \cap[-\pi, \pi] \quad \text { and } \quad \mathcal{S}=\mathbb{T} \backslash \bigcup_{\ell \in \mathbb{N}} I_{[\ell]}=\left(\bigcup_{\ell \in \mathbb{N}} I_{[\ell]}\right)^{c} \text {, } \tag{1}
\end{equation*}
$$

whence

$$
|\mathcal{S}| \geq 1-\sum_{\ell=1}^{\infty}\left|I_{[\ell]}\right|=1-\sum_{\ell=1}^{\infty} 2 \delta(\ell)>1-\varepsilon .
$$

Fix $\alpha<1$ and let $\Lambda \subset \mathbb{Z}$ be such that one can find arbitrarily large $N \in \mathbb{N}$ for which

$$
\{M+\ell, \ldots, M+N \cdot \ell\} \subset \Lambda,
$$

with some $M=M(N) \in \mathbb{Z}, \ell=\ell(N) \in \mathbb{N}$ and

$$
\begin{equation*}
\ell<C(\alpha) N^{\alpha} . \tag{2}
\end{equation*}
$$

Recall that by (1) we have $t \in I_{[\ell]}$ if and only if $t \ell \in \tilde{I}_{\ell} \cap[-\pi \ell, \pi \ell]$. Since \mathcal{S} lies inside the complement of $I_{[]]}$, we get

$$
\begin{array}{r}
\int_{\mathcal{S}}\left|\sum_{k=1}^{N} c(k) e^{i(M+k \ell) t}\right|^{2} \frac{d t}{2 \pi} \leq \int_{I_{[\ell]}^{c}}\left|\sum_{k=1}^{N} c(k) e^{i(M+k \ell) t}\right|^{2} \frac{d t}{2 \pi} \\
=\int_{[-\pi \ell, \pi \ell] \backslash \tilde{I}_{\ell}}\left|\sum_{k=1}^{N} c(k) e^{i k \tau}\right|^{2} \frac{d \tau}{2 \pi \ell}=\int_{I_{\ell}^{c}}\left|\sum_{k=1}^{N} c(k) e^{i k \tau}\right|^{2} \frac{d \tau}{2 \pi}
\end{array}
$$

To complete the proof, it is enough to show that $\left\|\sum_{k=1}^{N} c(k) e^{i k \tau}\right\|_{L^{2}\left(I_{\ell}^{c}\right)}$ can be made arbitrarily small while keeping $\sum_{k=1}^{N}|c(k)|^{2}$ bounded away from zero. This observation allows us to reformulate the problem as a norm concentration problem for trigonometric polynomials of degree N on the interval I_{ℓ}.

Let

$$
P_{N}(t)=\frac{1}{\sqrt{N}} \sum_{k=1}^{N} e^{i k t}
$$

so $\left\|P_{N}\right\|_{L^{2}(\mathbb{T})}=1$. Moreover, for every $t \in \mathbb{T}$ we have $\left|P_{N}(t)\right| \leq \frac{1}{\sqrt{N} \sin \frac{t}{2}}$, hence

$$
\int_{I_{\ell}^{c}}\left|P_{N}(t)\right|^{2} \frac{d t}{2 \pi} \leq \frac{1}{N} \int_{\delta(\ell)}^{\pi} \frac{d t}{\sin ^{2} \frac{t}{2}}<\frac{C}{N} \int_{\delta(\ell)}^{\pi} \frac{d t}{t^{2}}<\frac{C}{\delta(\ell) N}<\frac{C(\alpha)}{\delta(\ell) \ell^{1 / \alpha}},
$$

where the last inequality holds for every N for which (2) holds. Using condition (b) we see that indeed the last term can be made arbitrarily small, and so $E(\Lambda)$ is not a RS in $L^{2}(\mathcal{S})$.
4. Proof of Theorem 2. For $n \in \mathbb{N}$ we define

$$
B_{n}:=\left\{n, 2 n, \ldots, n^{2}\right\} .
$$

Lemma 4. Let \mathcal{P} be the set of all prime numbers. Then the blocks $\left\{B_{p}\right\}_{p \in \mathcal{P}}$ are pairwise disjoint.

Proof. Let $p<q$ be prime numbers. Notice that $a \in B_{p} \cap B_{q}$ if and only if there exist $1 \leq m \leq p$ and $1 \leq k \leq q$ such that

$$
a=m p=k q,
$$

which is possible only if q divides m. But since $m<q$ this cannot happen and so such an a does not exist.

Lemma 5. Let $\{a(n)\}_{n \in \mathbb{N}}$ be a sequence of non-negative numbers such that $\sum_{n=1}^{\infty} a(n) \leq 1$. Then for every $\varepsilon>0$ there exist infinitely many $n \in \mathbb{N}$ such that

$$
\sum_{\ell=1}^{n} a(\ell n)<\frac{\varepsilon}{n}
$$

Proof. By Lemma 4 we may write

$$
\sum_{n=1}^{\infty} a(n) \geq \sum_{p \in \mathcal{P}} \sum_{\ell=1}^{p} a(\ell p)
$$

Assuming the contrary for some ε, i.e. for all but finitely many $p \in \mathcal{P}$ we have $\sum_{\ell=1}^{p} a(\ell p) \geq \varepsilon / p$, we get a contradiction to the well-known fact that $\sum_{p \in \mathcal{P}} 1 / p=\infty$.

Corollary 6. Let $\{a(n)\}_{n \in \mathbb{N}}$ be as in Lemma 5 . Then for every $\varepsilon>0$ there exist infinitely many $n \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{\substack{\lambda, \mu \in B_{n} \\ \mu<\lambda}} a(\lambda-\mu)<\varepsilon . \tag{3}
\end{equation*}
$$

Proof. Every $\mu<\lambda$ from B_{n} must take the form

$$
\lambda=k n, \quad \mu=k^{\prime} n, \quad 1 \leq k^{\prime}<k \leq n,
$$

hence $\lambda-\mu=\ell n$ for some $\ell \in\{1, \ldots, n-1\}$. From Lemma 5 we get, for infinitely many $n \in \mathbb{N}$,

$$
\sum_{\substack{\lambda, \mu \in B_{n} \\ \mu<\lambda}} a(\lambda-\mu)=\sum_{\ell=1}^{n}(n-\ell) a(\ell n) \leq n \sum_{\ell=1}^{n} a(\ell n)<\varepsilon
$$

Given a sequence $B \subset \mathbb{R}$, we say that a positive number γ is a lower Riesz bound (in $L^{2}(\mathcal{S})$) for the sequence $E(B)$ if

$$
\left\|\sum_{\lambda \in B} c(\lambda) e^{i \lambda t}\right\|_{L^{2}(\mathcal{S})}^{2} \geq \gamma \sum_{\lambda \in B}|c(\lambda)|^{2}
$$

for every finite sequence $\{c(\lambda)\}_{\lambda \in B}$ of scalars.

Lemma 7. Given $\mathcal{S} \subset \mathbb{T}$ of positive measure, there exists a constant $\gamma=$ $\gamma(\mathcal{S})>0$ which is a lower Riesz bound (in $L^{2}(\mathcal{S})$) for $E\left(B_{n}\right)$ for infinitely many $n \in \mathbb{N}$.

Proof. Let $\mathcal{S} \subset \mathbb{T}$ with $|\mathcal{S}|>0$. Applying Corollary 6 to the sequence $\{a(n)\}_{n \in \mathbb{N}}:=\left\{\left|\widehat{\mathbb{1}_{\mathcal{S}}}(n)\right|^{2}\right\}_{n \in \mathbb{N}}$ (where $\mathbb{1}_{\mathcal{S}}$ is the indicator function of \mathcal{S}), we get for every $\varepsilon>0$ infinitely many $n \in \mathbb{N}$ for which (3) holds. We write

$$
\begin{aligned}
\int_{\mathcal{S}}\left|\sum_{\lambda \in B_{n}} c(\lambda) e^{i \lambda t}\right|^{2} \frac{d t}{2 \pi} & =\int_{\mathcal{S}}\left(\sum_{\lambda \in B_{n}}|c(\lambda)|^{2}+\sum_{\substack{\lambda, \mu \in B_{n} \\
\lambda \neq \mu}} c(\lambda) \overline{c(\mu)} e^{i(\lambda-\mu) t}\right) \frac{d t}{2 \pi} \\
& =|\mathcal{S}| \sum_{\lambda \in B_{n}}|c(\lambda)|^{2}+\sum_{\substack{\lambda, \mu \in B_{n} \\
\lambda \neq \mu}} c(\lambda) \overline{c(\mu)} \widehat{\mathbb{1}_{\mathcal{S}}}(\mu-\lambda)
\end{aligned}
$$

By the Cauchy-Schwarz inequality,

$$
\begin{aligned}
&\left|\sum_{\substack{\lambda, \mu \in B_{n} \\
\lambda \neq \mu}} c(\lambda) \overline{c(\mu)} \widehat{\mathbb{1}_{\mathcal{S}}}(\mu-\lambda)\right| \\
& \leq\left(\sum_{\lambda, \mu \in B_{n}}|c(\lambda) \overline{c(\mu)}|^{2}\right)^{1 / 2}\left(\sum_{\substack{\lambda, \mu \in B_{n} \\
\lambda \neq \mu}}\left|\widehat{\mathbb{1}_{\mathcal{S}}}(\mu-\lambda)\right|^{2}\right)^{1 / 2} \\
&=\sum_{\lambda \in B_{n}}|c(\lambda)|^{2}\left(\sum_{\substack{\lambda, \mu \in B_{n} \\
\lambda \neq \mu}}\left|\widehat{\mathbb{1}_{\mathcal{S}}}(\mu-\lambda)\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

By (3) we get

$$
\sum_{\substack{\lambda, \mu \in B_{n} \\ \lambda \neq \mu}}\left|\widehat{\mathbb{I}_{\mathcal{S}}}(\mu-\lambda)\right|^{2}=2 \sum_{\substack{\lambda, \mu \in B_{n} \\ \mu<\lambda}}\left|\widehat{\mathbb{I}_{\mathcal{S}}}(\mu-\lambda)\right|^{2}<2 \varepsilon,
$$

hence

$$
\int_{\mathcal{S}}\left|\sum_{\lambda \in B_{n}} c(\lambda) e^{i \lambda t}\right|^{2} \frac{d t}{2 \pi} \geq\left(|\mathcal{S}|-(2 \varepsilon)^{1 / 2}\right) \sum_{\lambda \in B_{n}}|c(\lambda)|^{2} \geq \frac{|\mathcal{S}|}{2} \sum_{\lambda \in B_{n}}|c(\lambda)|^{2} .
$$

Fixing some $\varepsilon<|\mathcal{S}|^{2} / 8$, we see that the last inequality holds for infinitely many $n \in \mathbb{N}$.

The next lemma shows how to combine blocks which correspond to different progressions.

Lemma 8. Let $\gamma>0, \mathcal{S} \subset \mathbb{T}$ with $|\mathcal{S}|>0$, and $A_{1}, A_{2} \subset \mathbb{N}$ finite subsets such that γ is a lower Riesz bound (in $L^{2}(\mathcal{S})$) for $E\left(A_{j}\right), j=1,2$. Then for any $0<\gamma^{\prime}<\gamma$ there exists $M \in \mathbb{Z}$ such that the system $E\left(A_{1} \cup\left(M+A_{2}\right)\right)$ has γ^{\prime} as a lower Riesz bound.

Proof. Denote $P_{j}(t)=\sum_{\lambda \in A_{j}} c_{j}(\lambda) e^{i \lambda t}, j=1,2$. Notice that for sufficiently large $M=M(\mathcal{S})$, the polynomials P_{1} and $e^{i M t} P_{2}$ are "almost orthog-
onal" on \mathcal{S}, meaning

$$
\int_{\mathcal{S}}\left|P_{1}(t)+e^{i M t} \cdot P_{2}(t)\right|^{2} \frac{d t}{2 \pi}=\left\|P_{1}\right\|_{L^{2}(\mathcal{S})}^{2}+\left\|P_{2}\right\|_{L^{2}(\mathcal{S})}^{2}+o(1),
$$

where the last term is uniform with respect to all polynomials having $\|P\|_{L^{2}(\mathbb{T})}=1$.

Now we are ready to finish the proof of Theorem 2. Given \mathcal{S} take γ from Lemma 7 and denote by \mathcal{N} the set of all natural numbers n for which γ is a lower Riesz bound (in $L^{2}(\mathcal{S})$) for $E\left(B_{n}\right)$. Define

$$
\Lambda=\bigcup_{n \in \mathcal{N}}\left(M_{n}+B_{n}\right) .
$$

By Lemma 8 we can define subsequently, for every $n \in \mathcal{N}$, an integer M_{n} such that for any partial union

$$
\Lambda(N)=\bigcup_{\substack{n \in \mathcal{N} \\ n<N}}\left(M_{n}+B_{n}\right), \quad N \in \mathcal{N},
$$

the corresponding exponential system $E(\Lambda(N))$ has lower Riesz bound $\frac{\gamma}{2}$. $\left(1+\frac{1}{N}\right)$, so we conclude that $E(\Lambda)$ is a RS in $L^{2}(\mathcal{S})$.
5. Proof of Theorem 3. In order to obtain Λ which satisfies property (i^{\prime}) we will need the following result.

Theorem A ([1, Thm. 13.12]). Let $d(n)$ denote the number of divisors of an integer n. Then $d(n)=o\left(n^{\varepsilon}\right)$ for every $\varepsilon>0$.

The next lemma will be used to control the contribution of blocks when they are not disjoint.

Lemma 9. Let $\{a(n)\}_{n \in \mathbb{N}}$ be a sequence of non-negative numbers such that $\sum_{n=1}^{\infty} a(n) \leq 1$. Then for every $\alpha>1$ there exist $\varepsilon(\alpha)>0$ and $\nu(\alpha) \in \mathbb{N}$ such that for every $N \geq \nu(\alpha)$ one can find an integer $\ell_{\alpha, N}<N^{\alpha}$ satisfying

$$
\begin{equation*}
\sum_{n=1}^{N} a\left(n \ell_{\alpha, N}\right)<\frac{1}{N^{1+\varepsilon(\alpha)}} \tag{4}
\end{equation*}
$$

Proof. Fix $\alpha>1$ and apply Theorem A with ε small enough, depending on α, to be chosen later. We get the inequality $d(k)<k^{\varepsilon}$ for every $k \geq \nu(\alpha)$. Fix $N \geq \nu(\alpha)$, and notice that for every $L \in \mathbb{N}$,

$$
\sum_{\ell=1}^{L} \sum_{n=1}^{N} a(n \ell) \leq \sum_{k=1}^{L N} d(k) a(k)<(L N)^{\varepsilon}
$$

It follows that there exists an integer $0<\ell<L$ such that

$$
\sum_{n=1}^{N} a(n \ell)<\frac{(L N)^{\varepsilon}}{L}=\frac{N^{\varepsilon}}{L^{1-\varepsilon}}
$$

In order to get (4) we require

$$
\frac{N^{\varepsilon}}{L^{1-\varepsilon}}<\frac{1}{N^{1+\varepsilon}}
$$

which yields

$$
N^{\frac{1+2 \varepsilon}{1-\varepsilon}}<L
$$

Therefore, choosing $\varepsilon=\varepsilon(\alpha)$ sufficiently small we see that L may be chosen to be smaller than N^{α}.

Setting

$$
B_{\alpha, N}:=\left\{\ell_{\alpha, N}, 2 \ell_{\alpha, N}, \ldots, N \ell_{\alpha, N}\right\}
$$

we get
Corollary 10. Let $\{a(n)\}_{n \in \mathbb{N}}$ be as in Lemma 9. For every $\alpha>1$ and $N \geq \nu(\alpha)$,

$$
\begin{equation*}
\sum_{\substack{\lambda, \mu \in B_{\alpha, N} \\ \mu<\lambda}} a(\lambda-\mu)<\frac{1}{N^{\varepsilon(\alpha)}} \tag{5}
\end{equation*}
$$

The proof is identical to that of Corollary 6.
We now combine our estimates.
Lemma 11. Given $\mathcal{S} \subset \mathbb{T}$ of positive measure, there exists a constant $\gamma=\gamma(\mathcal{S})>0$ such that for every $\alpha>1$ there exists $N(\alpha) \in \mathbb{N}$ for which the following holds: For every integer $N \geq N(\alpha)$ one can find $\ell_{\alpha, N} \in \mathbb{N}$ with $\ell_{\alpha, N}<N^{\alpha}$ such that γ is a lower Riesz bound (in $L^{2}(\mathcal{S})$) for $E\left(B_{\alpha, N}\right)$.

Proof. Let $\mathcal{S} \subset \mathbb{T}$ with $|\mathcal{S}|>0$. We fix $\alpha>1$ and apply Corollary 10 to the sequence $\{a(n)\}_{n \in \mathbb{N}}:=\left\{\left|\widehat{\mathbb{1}_{\mathcal{S}}}(n)\right|^{2}\right\}_{n \in \mathbb{N}}$; we get $\varepsilon(\alpha)$ and for every $N \geq \nu(\alpha)$ a positive integer $\ell_{\alpha, N}<N^{\alpha}$ satisfying (5). Proceeding as in the proof of Lemma 7, we get
$\int_{\mathcal{S}}\left|\sum_{\lambda \in B_{\alpha, N}} c(\lambda) e^{i \lambda t}\right|^{2} d t \geq\left(|\mathcal{S}|-\frac{C}{N^{\varepsilon(\alpha) / 2}}\right) \sum_{\lambda \in B_{\alpha, N}}|c(\lambda)|^{2} \geq \frac{|\mathcal{S}|}{2} \sum_{\lambda \in B_{\alpha, N}}|c(\lambda)|^{2}$, where the last inequality holds for all $N \geq N(\alpha)$.

For the last step of the proof we will use a diagonal process. Given \mathcal{S}, find γ using Lemma 11. This provides, for every $\alpha>1$ and every $N \geq N(\alpha)$, a block $B_{\alpha, N}$ such that γ is a lower Riesz bound (in $L^{2}(\mathcal{S})$) for $E\left(B_{\alpha, N}\right)$.

Let $\alpha_{k} \rightarrow 1$ be a decreasing sequence. Define

$$
\Lambda=\bigcup_{k \in \mathbb{N}} \bigcup_{N=N\left(\alpha_{k}\right)}^{N\left(\alpha_{k+1}\right)-1}\left(M_{N}+B_{\alpha_{k}, N}\right)
$$

Again, by Lemma 8, we can make sure any partial union has lower Riesz bound not smaller than $\gamma / 2$, and so $E(\Lambda)$ is a RS in $L^{2}(\mathcal{S})$.

It follows directly from the construction that for every $N \in \mathbb{N}, \Lambda$ contains an arithmetic progression of length N and step $\ell<C(\alpha) N^{\alpha}$, for any $\alpha>1$, as required.

Acknowledgements. This research is supported in part by the Israel Science Foundation.

References

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, Berlin, 1976.
[2] J. Bourgain and L. Tzafriri, Invertibility of "large" submatrices with applications to the geometry of Banach spaces and harmonic analysis, Israel J. Math. 57 (1987), 137-224.
[3] M. Bownik and D. Speegle, The Feichtinger conjecture for wavelet frames, Gabor frames and frames of translates, Canad. J. Math. 58 (2006), 1121-1143.
[4] P. G. Casazza, M. Fickus, J. C. Tremain and E. Weber, The Kadison-Singer problem in mathematics and engineering: a detailed account, In: Operator Theory, Operator Algebras, and Applications, Contemp. Math. 414, Amer. Math. Soc., Providence, RI, 2006, 299-355.
[5] W. Lawton, Minimal sequences and the Kadison-Singer problem, Bull. Malaysian Math. Sci. Soc. 33 (2010), 169-176.
[6] A. Marcus, D. A. Spielman and N. Srivastava, Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem, arXiv:1306.3969 (2013).
[7] I. M. Miheev, On lacunary series, Math. USSR-Sb. 27 (1975), no. 4, 481-502.
[8] A. Olevskiĭ and A. Ulanovskii, Universal sampling and interpolation of band-limited signals, Geom. Funct. Anal. 18 (2008), 1029-1052.
[9] A. Zygmund, Trigonometric Series. Vol. I, 2nd ed., Cambridge Univ. Press, New York, 1959.

Itay Londner, Alexander Olevskiĭ
School of Mathematical Sciences
Tel-Aviv University
Tel-Aviv 69978, Israel
E-mail: itaylond@post.tau.ac.il
olevskii@post.tau.ac.il

[^0]: 2010 Mathematics Subject Classification: Primary 42C15; Secondary 42A38.
 Key words and phrases: Riesz sequences, arithmetic progressions.

